
STUDIA MATHEMATICA 170 (3) (2005)

Subharmonicity in von Neumann algebras

by

Thomas Ransford and Michel Valley (Québec)

Abstract. Let M be a von Neumann algebra with unit 1M. Let τ be a faithful,
normal, semifinite trace on M. Given x ∈ M, denote by µt(x)t≥0 the generalized s-
numbers of x, defined by

µt(x) = inf{‖xe‖ : e is a projection in M with τ(1M − e) ≤ t} (t ≥ 0).

We prove that, if D is a complex domain and f : D → M is a holomorphic function, then,

for each t ≥ 0, λ 7→
T

t

0
log µs(f(λ)) ds is a subharmonic function on D. This generalizes

earlier subharmonicity results of White and Aupetit on the singular values of matrices.

1. Introduction. Let D be a domain in C and let Mn(C) denote
the algebra of complex n × n matrices. It is elementary to show that, if
f : D → Mn(C) is a holomorphic function, then λ 7→ log ̺(f(λ)) is a sub-
harmonic function on D, where ̺(x) denotes the spectral radius of x. Vesen-
tini [12] extended this result to holomorphic functions f : D → A, where
A is a general Banach algebra. Vesentini’s theorem has many interesting
applications; an account of these can be found in Chapter 5 of [1].

More recently, White [13] and Aupetit [2] independently discovered a
subharmonicity theorem for the singular values of matrices. Given x ∈
Mn(C), let us write s1(x), . . . , sn(x) for the singular values of x, namely

the eigenvalues of |x| := (x∗x)1/2 listed in decreasing order. White and Au-
petit showed that, if f : D →Mn(C) is holomorphic, then

λ 7→
k∑

j=1

log sj(f(λ))

is subharmonic on D, for each k with 1 ≤ k ≤ n. Notice that, as pointed
out in [2], the individual functions λ 7→ log sj(f(λ)) need not be subhar-
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monic if j ≥ 2. Aupetit proved his theorem in response to a question of
O. Nevanlinna, who subsequently exploited the result in his development of
a value-distribution theory for matrices (see for example [11, §5]).

The proofs of White and Aupetit (which are essentially the same) rely
heavily on the fact that a matrix has a discrete spectrum, and so do not
readily generalize to other algebras. There is an alternative method of proof
which avoids this problem. The idea is to reduce to the case k = n by consid-
ering functions of the form λ 7→ ef(λ)e, for suitable projections e, and then
to observe that

∑n
j=1 log sj((f(λ)) = log |det(f(λ))|, which is clearly sub-

harmonic. Our aim in this article is to exploit this general idea to extend the
White–Aupetit theorem to the case of holomorphic functions f : D → M,
where M is an arbitrary semifinite von Neumann algebra.

2. Notation and statement of results. Let M be a von Neumann
algebra. Denote by 1M the unit of M, and by M+ the cone of positive
elements of M. A trace on M is a function τ : M+ → [0,∞] with the
following properties:

• τ(x+ y) = τ(x) + τ(y) (x, y ∈ M+)
• τ(αx) = ατ(x) (x ∈ M+, α ∈ R

+)
• τ(x∗x) = τ(xx∗) (x ∈ M).

A trace τ is said to be normal if, for every bounded, increasing net {xα},
we have supα τ(xα) = τ(supα xα). It is finite if τ(1M) < ∞, and semifinite

if τ(x) = sup{τ(y) : 0 ≤ y ≤ x, τ(y) <∞}. Finally, it is faithful if τ(x) = 0
implies x = 0. A classic reference for von Neumann algebras and traces
is [4].

Let M be a von Neumann algebra, equipped with a faithful, normal,
semifinite trace τ . Given x ∈ M and t ∈ R

+, we define

(1) µt(x) := inf{‖xe‖ : e is a projection in M with τ(1M − e) ≤ t}.

This notion was introduced by Murray and von Neumann [10], and has since
been further developed by Fack [5], Fack–Kosaki [6] and Hiai–Nakamura [9].
The µt are called generalized s-numbers. They generalize the usual notion of
singular values in the sense that, if M is the algebra of bounded operators
on a Hilbert space H and τ is the usual trace, then, for a compact operator
x ∈ M, we have µt(x) = sj(x) for t ∈ [j − 1, j) (where we agree to define
sj(x) = 0 if j > dimH) (see [5, Exemple 1.2.2]). Many results about singu-
lar values extend naturally to the context of generalized s-numbers, most
notably the Weyl inequalities.

The following result is our main theorem.

Theorem 2.1. Let M be a von Neumann algebra, equipped with a

faithful , normal , semifinite trace τ . Let D be a complex domain and let
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f : D → M be a holomorphic function. Then, for each t ≥ 0,

λ 7→

t\
0

logµs(f(λ)) ds

is a subharmonic function on D.

In view of the remarks preceding the theorem, we immediately obtain
the following corollary.

Corollary 2.2. Let H be a Hilbert space, and let f : D → K(H) be

a holomorphic function, where K(H) denotes the ideal of compact operators

on H. Then, for each positive integer k,

λ 7→
k∑

j=1

log sj(f(λ))

is subharmonic on D.

In particular, when dimH = n, we recover the theorem of White and
Aupetit mentioned in the introduction (in fact White proved Corollary 2.2
in its general form).

A further example is furnished by the commutative von Neumann algebra
M = L∞(Ω, ν), where ν is a σ-finite measure on a set Ω, and τ(φ) =T
φdν (φ ∈ M+). In this case, µs(φ) = φ∗(s), where φ∗ denotes the non-

decreasing rearrangement of |φ| (see [5, Exemple 1.2.1]). We thus obtain the
following corollary.

Corollary 2.3. Let ν be a σ-finite measure on Ω, and let λ 7→ φλ :
D → L∞(Ω, ν) be a holomorphic map. Then, for each t ≥ 0,

λ 7→

t\
0

logφ∗λ(s) ds

is subharmonic on D, where φ∗λ denotes the non-decreasing rearrangement

of |φλ|.

Theorem 2.1 easily implies the following stronger form of itself.

Corollary 2.4. Let M, τ,D, f be as in Theorem 2.1, and let g :
(−∞,∞) → R be an increasing , convex function. Then, for each t ≥ 0,

λ 7→

t\
0

g(logµs(f(λ))) ds

is subharmonic on D.

Proof. Let λ0 ∈ D, and fix r with 0 < r < dist(λ0, ∂D). For s ≥ 0, define

φ(s) = logµs(f(λ0)) and ψ(s) =
1

2π

2π\
0

logµs(f(λ0 + reiθ)) dθ.
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By Theorem 2.1,
Tt
0 φ(s) ds ≤

Tt
0 ψ(s) ds for all t ≥ 0. Using [5, Lemme 4.1],

we deduce that
Tt
0 g(φ(s)) ds ≤

Tt
0 g(ψ(s)) ds for all t ≥ 0. This gives the

result.

This strengthened form of the result has an application to finite von
Neumann algebras. Suppose that τ(1M) = 1. Then, by [5, Proposition 1.11],

(2)

1\
0

µs(x) ds = τ(|x|) (x ∈ M),

and by [5, Exemple 2.2.2],

(3)

1\
0

logµs(x) ds = log∆(x) (x ∈ M),

where ∆ denotes (the analytic extension of) the Fuglede–Kadison determi-
nant on M (see [7]).

Corollary 2.5. Let M, τ,D, f be as in Theorem 2.1, and suppose in

addition that τ(1M) = 1. Then

λ 7→ log τ(|f(λ)|) and λ 7→ log∆(f(λ))

are both subharmonic functions on D.

Proof. The subharmonicity of log∆(f(λ)) is an immediate consequence
of (3) and Theorem 2.1. Similarly, from (2) and Corollary 2.4 (applied with
g(u) = eu), it follows that τ(|f(λ)|) is subharmonic on D. Repeating the
above with f(λ) replaced by ep(λ)f(λ), where p is an arbitrary complex

polynomial, we deduce that |ep(λ)|τ(|f(λ)|) is subharmonic on D. This is
enough to ensure that log τ(|f(λ)|) is subharmonic on D (see e.g. [1, Theo-
rem A.1.5]).

In fact, the subharmonicity of log∆(f(λ)) was already known. It was
established by Brown as part of a more general result [3, Theorem 3.3], from
which he introduced the so-called spectral distribution measure. The paper
of Haagerup and Larsen [8] is a recent source of information on Brown’s
spectral measure.

3. Proof of the main theorem. We now turn to the proof of The-
orem 2.1. Throughout this section, we assume that M is a von Neumann
algebra and that τ is a faithful, normal, semifinite trace on M.

We begin by listing some basic properties of the generalized s-num-
bers µs.

Proposition 3.1. Let x, y ∈ M and s ∈ R
+. Then

(a) µs(x) = µs(x
∗) = µs(|x|),

(b) µs(yx) ≤ ‖y‖µs(x),
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(c) |µs(x) − µs(y)| ≤ ‖x− y‖,
(d) µs(x + k1M) ≤ µs(x) + k for k ∈ R

+, with equality when x ∈ M+

and s < τ(1M).

Proof. Parts (a)–(c) are in [6, Lemma 2.5]. Part (d) is an easy conse-
quence of [5, Propositions 1.6(iii) and 1.3].

The next result takes care of upper semicontinuity.

Lemma 3.2. Let f : D → M be a continuous function. Then, for each

t ≥ 0, the function λ 7→
Tt
0 logµs(f(λ)) ds is upper semicontinuous on D.

Proof. Proposition 3.1(c) shows that the function λ 7→ µs(f(λ)) is con-
tinuous. Hence, if λn → λ0 in D, then, by Fatou’s lemma,

lim sup
n→∞

t\
0

logµs(f(λn)) ds ≤

t\
0

logµs(f(λ0)) ds.

This proves upper semicontinuity.

For the time being, we make the additional assumption that the trace
τ is finite, i.e. that τ(1M) < ∞. In this case, τ extends to a positive linear
functional on the whole of M.

Lemma 3.3. Let τ be a faithful , normal , finite trace on M. Then

(4)

τ(1M)\
0

log µs(expx) ds = Re τ(x) (x ∈ M).

Proof. Notice first that the validity of (4) remains unchanged if we work
with the trace cτ (c > 0) instead of τ . Thus, we may as well suppose
at the outset that τ(1M) = 1. The left-hand side of (4) is then equal to
log∆(expx), where ∆ is the Fuglede–Kadison determinant (see (3)). From
[7, Theorem 1 (2)], we have log∆(expx) = Re τ(x) for all x ∈ M. The result
follows.

Lemma 3.4. Let τ be a faithful , normal , finite trace on M, and let

f : D → M be a holomorphic function. Then

λ 7→

τ(1M)\
0

logµs(f(λ)) ds

is a subharmonic function on D.

Proof. For ε > 0, define

vε(λ) :=

τ(1M)\
0

log(µs(f(λ)) + ε) ds (λ ∈ D).
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We prove that each vε is a subharmonic function on D. The result then
follows upon letting ε→ 0.

Fix ε > 0. The upper semicontinuity of vε is proved in the same way as
in Lemma 3.2. It remains to check the mean-value inequality. Let λ0 ∈ D.
Fix a partial isometry u0 ∈ M such that u0f(λ0) = |f(λ0)|, and define

w(λ) :=

τ(1M)\
0

logµs(u0f(λ) + ε1M) ds (λ ∈ D).

Using parts (b) and (d) of Proposition 3.1, we see that w ≤ vε on D, with
equality at λ0. We claim that w is actually harmonic in a neighbourhood
of λ0. If so, then, for all small enough r > 0, we have

vε(λ0) = w(λ0) =
1

2π

2π\
0

w(λ0 + reiθ) dθ ≤
1

2π

2π\
0

vε(λ0 + reiθ) dθ,

thereby proving the mean-value inequality.
It remains to justify the claim about w. Notice that the spectrum

of u0f(λ0) + ε1M is a subset of [ε,∞). By the upper semicontinuity
of the spectrum, there exists an open disk D0 around λ0 such that
the spectrum of u0f(λ) + ε1M lies in the open right half-plane for every
λ ∈ D0. Using the holomorphic functional calculus, we can define h(λ) :=
log(u0f(λ) + ε1M) (λ ∈ D0). It follows that

w(λ) =

τ(1M)\
0

logµs(exp(h(λ))) ds = Re τ(h(λ)) (λ ∈ D0),

where the second equality is from Lemma 3.3. Since h is holomorphic on D0,
we deduce that w is harmonic on D0, justifying the claim.

The last ingredient is a technique from [5] which permits us to reduce
the general case to the case of finite trace. Given a projection e ∈ M with
τ(e) < ∞, the restriction of τ to the von Neumann algebra eMe gives a
normal, faithful, finite trace (since the unit of eMe is e). We will use the
symbol µe

s to denote the generalized s-numbers in eMe.

Lemma 3.5. Let e be a projection in M with τ(e) <∞. Then

µe
s(exe) ≤ µs(x) (x ∈ M, s ∈ R

+).

Proof. For x ∈ M+, this is proved in [5, Proposition 1.5(i)]. The general
case follows upon observing that, for general x ∈ M,

µe
s(exe) = µe

s(|exe|) ≤ µe
s(e|x|e) ≤ µs(|x|) = µs(x).

Lemma 3.6. Assume that M has no minimal projections. Let x ∈ M+

and t > 0. Suppose that µs(x) > 0 for 0 ≤ s < t. Then there exists
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a projection e ∈ M, commuting with x, such that τ(e) = t and µe
s(exe)

= µs(x) for 0 ≤ s < t.

Proof. This is proved in [5, Lemme 1.13], under the additional assump-
tion that lims→∞ µs(x) = 0. But in fact it is true without this restric-
tion. Indeed, just as in the proof of [6, Lemma 4.1], one can reduce to the
case M = L∞(Ω, ν), where ν is a non-atomic measure, and τ(φ) =

T
φdν

(φ ∈ M) (see also [6, Remarks 2.3]). In this case µs(φ) = φ∗(s), where φ∗

denotes the non-decreasing rearrangement of |φ|.
Given x, t as in the lemma, set E = {ω ∈ Ω : |x(ω)| > x∗(t)} and

F = {ω ∈ Ω : |x(ω)| ≥ x∗(t)}. Then ν(E) ≤ t ≤ ν(F ). As ν is non-atomic,
there exists a measurable set G with E ⊂ G ⊂ F and ν(G) = t. Let e be the
characteristic function of G; this satisfies all the conclusions of the lemma.

As remarked in both [5] and [6], the assumption that M have no minimal
projections is not a very serious restriction, because we can always embed
M into M ⊗ L∞[0, 1], extending τ by taking its tensor product with the

trace φ 7→
T1
0 φ on L∞[0, 1]. The s-numbers µ̃s in this new algebra satisfy

µ̃s(x⊗ 1) = µs(x) (x ∈ M).

Completion of the proof of Theorem 2.1. Upper semicontinuity has been
proved in Lemma 3.2, so it remains to check the mean-value inequality. Let
λ0 ∈ D and 0 < r < dist(λ0, ∂D). We shall show that

t\
0

logµs(f(λ0)) ds ≤
1

2π

2π\
0

t\
0

logµs(f(λ0 + reiθ)) ds dθ.

If µs(f(λ0)) = 0 for some s < t, then the left-hand side is −∞, and the
inequality is trivially satisfied. So we can suppose that µs(f(λ0)) > 0 for
0 ≤ s < t. By the remark above, we may also assume that the algebra M
has no minimal projections. Hence, by Lemma 3.6, there exists a projection
e ∈ M, commuting with |f(λ0)|, such that τ(e) = t and µe

s(ef(λ0)e) =
µs(f(λ0)) for 0 ≤ s < t. Therefore

t\
0

log µs(f(λ0)) ds =

t\
0

logµe
s(ef(λ0)e) ds

≤
1

2π

2π\
0

t\
0

log µe
s(ef(λ0 + reiθ)e) ds dθ

≤
1

2π

2π\
0

t\
0

log µs(f(λ0 + reiθ)) ds dθ,

where the first inequality is by Lemma 3.4 and the second by Lemma 3.5.
This completes the proof.
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