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Potential spaes on fratalsby
Jiaxin Hu (Beijing) and Martina Zähle (Jena)Abstrat. We introdue potential spaes on fratal metri spaes, investigate theirembedding theorems, and derive various Besov spaes. Our starting point is that thereexists a loal, stohastially omplete heat kernel satisfying a two-sided estimate on thefratal onsidered.

1. Introdution. The lassial Besov spaes Bs
pq(R

n) with s > 0 and
1 ≤ p, q ≤ ∞ are losely related to the Gauss�Weierstrass and the Cauhy�Poisson semigroups. This goes bak to Taibleson [25℄ and Flett [10℄. Si-milarly, the frational Sobolev spaes Hs

p(Rn), s ∈ R, 1 ≤ p ≤ ∞, maybe expressed in terms of these semigroups. In partiular, for s > 0 theyan be interpreted as potential spaes (see for example [22, Chapter V℄).The orresponding Gauss�Weierstrass and Cauhy�Poisson heat kernels areexpliitly given on R
n.For several fratal sets, loal Dirihlet forms and sub-Gaussian heat ker-nel estimates of the orresponding semigroups have been obtained. A newand interesting phenomenon has been disovered that the walk dimensionsof the heat kernels on these fratal sets are stritly greater than 2. Theimportane of the walk dimension w is that the number w/2 measures thesmoothness degree of funtions de�ned on the underlying spae. As to thesub-Gaussian estimates of the heat kernels, the reader may refer to the pio-neering paper [4℄ for the Sierpi«ski gaskets, to [3℄ for the Sierpi«ski arpets,[9℄ for nested fratals, and to [13, 18℄ for a ertain lass of post-ritially�nite fratals. The assoiated Markov proesses are Brownian motions onthe fratal sets.In the present paper the setting is a omplete metri spae (X, ̺) ad-mitting a heat kernel with respet to a Radon measure µ supported on X.2000 Mathematis Subjet Classi�ation: Primary 31C28; Seondary 46E58.Key words and phrases: potential spae, Besov spae, Bessel (Riesz) potential, heatkernel, fratal.JH was supported by NSFC (Grant No. 10371062) and the Alexander von HumboldtFoundation. [259℄



260 J. Hu and M. ZähleOur main assumption is that the heat kernel is loal and satis�es two-sideddeay estimates (see (G6) and (G7) below). By means of the assoiated semi-group {Gt}t≥0 we introdue funtion spaes on X whih agree with thosementioned above for X = R
n. As in the Eulidean ase we obtain some har-aterizations and embedding theorems. (This may be applied for nonlinearPDE's on X.) The opposite way is to introdue funtion spaes on fratalsin a more diret way (see for example [17, 26, 27, 23℄) and to �nd heat kernelestimates related to assoiated p-energy forms. First steps in this diretionare [7℄ for some non-loal struture and [29℄ for the loal version on d-sets,when p = 2 and the walk dimension is equal to 2.The paper is organized as follows: in Setion 2 we �rst introdue potentialoperators of a general strongly ontinuous ontrative semigroup {Gt}t≥0 inthe same way as for the Gauss�Weierstrass semigroup. They oinide withthe positive frational powers of the operators (I−Ap)

−1 and (−Ap)
−1 (pro-vided they exist), respetively, where Ap denotes the p-generator of {Gt}t≥0.Then we obtain a formula for the positive frational powers of I − Ap asinverse operators. (The proof is similar to the ase of Gauss�Weierstrasssemigroups [20℄.) If {Gt}t≥0 has a loal heat kernel satisfying some two-sideddeay estimates, the generator Ap may be interpreted as a p-Laplaian. Un-der an integrability ondition for the upper bound, the referene measure µis shown to be a d-measure. Moreover, the potential operators of order α inthis ase have integral kernels (loally) equivalent to ̺(x, y)d−αw/2, whihorresponds to the lassial ase if d = n and w = 2. Thus we may interpretthese operators as the p-Bessel and p-Riesz potential operators.In Setion 3 frational Sobolev spaes on X are introdued as the Besselpotential spaes for loal heat kernels satisfying the deay ondition. For thespeial ase p = 2 and 0 < α ≤ 1, we obtain haraterizations whih lead, for

d-subsets in R
n, to the well known Besov spaes introdued in [17℄ with themethod of traes for w = 2, 0 < α < 1, and to the Lipshitz spaes initiatedin [16℄ for w ≥ 2, α = 1.In Setion 4 embeddings of Sobolev spaes in Lq(µ) spaes or in Hölderspaes are disussed. The lassial ases are again inluded.Finally, Setion 5 omplements these ontributions by the de�nition ofBesov spaes Bα

pq(µ) related to the semigroup {Gt}t≥0. For p = q = 2,they oinide with the orresponding Sobolev spaes, whih generalizes theEulidean ase.2. Bessel and Riesz potentials2.1. Assumptions. Let (X, ̺) be a separable, omplete metri spae thatis generally interpreted as a bounded or unbounded fratal. Let µ be a loally�nite Borel measure with suppµ = X. Assume that (X, ̺) is onneted in



Potential spaes on fratals 261the sense that (X, ̺) satis�es the hain ondition, that is, there exists aonstant C > 0 suh that, for any two points x, y ∈ X and for any positiveinteger n, there is a sequene {xi}
n
i=0 of points in X with x0 = x, xn = y,and

̺(xi, xi+1) ≤ Cn−1̺(x, y), 0 ≤ i ≤ n− 1.Let G(t, x, y) be a stohastially omplete heat kernel or transition densityon (X, ̺, µ), that is, G(t, x, y) is a real-valued funtion on (0,∞) ×X ×Xsatisfying the following onditions: for all 0 < t <∞ and x, y ∈ X,(G1) (non-negativity): G(t, x, y) ≥ 0;(G2) (symmetry): G(t, x, y) = G(t, y, x);(G3) (semigroup property):
G(s+ t, x, y) =

\
X

G(s, x, z)G(t, z, y) dµ(z) (s > 0);(G4) (identity approximation): limt→0+ ‖Gtf−f‖p = 0 for any f ∈ Lp(µ)where 1 ≤ p < ∞, and limt→0+Gtf(x) = f(x) for µ-almost all
x ∈ X if f ∈ L∞(µ);(G5) (stohasti ompleteness): TX G(t, x, y) dµ(y) = 1.Here Lp(µ) := Lp(X, ̺, µ) is the usual spae of real-valued p-integrablefuntions with norm

‖f‖p :=
( \

X

|f(x)|p dµ(x)
)1/p

(1 ≤ p <∞), ‖f‖∞ := ess sup
x∈X

|f(x)|.Furthermore {Gt}t≥0 is the semigroup assoiated with G(t, x, y):(2.1) Gtf(x) =
\
X

G(t, x, y)f(y) dµ(y) (t > 0, x ∈ X).(As usual we set G0 = I, the identity operator on Lp(µ).)
Remark. Condition (G5) is important in this paper, and it annot bereplaed by a weaker version\

X

G(t, x, y) dµ(y) ≤ 1 (t > 0, x ∈ X).

Example 2.1 (Classial ase). Let X = R
n with ̺ the Eulidean metriand µ be the Lebesgue measure. It is easy to see that the Gauss�Weierstrassheat kernel(2.2) GRn(t, x, y) =

(
1

4πt

)n/2

exp

(
−
|x− y|2

4t

)

satis�es (G1)�(G5). The Cauhy�Poisson heat kernel
PRn(t, x, y) = Cnt

−n(1+t−2|x−y|2)−(n+1)/2 (Cn = π−(n+1)/2Γ ((n+1)/2))also satis�es (G1)�(G5).



262 J. Hu and M. ZähleExample 2.2 (Fratal ase).1 (Brownian motion on the Sierpi«ski arpet). Let X be a Sierpi«skiarpet in R
n with the Eulidean metri, and let µ be the d-dimensionalHausdor� measure on X. Barlow and Bass [3℄ showed that there exists aheat kernel on X satisfying

(2.3) a1 t
−d/w exp(−b1(t

−1/w|x− y|)γ)

≤ G(t, x, y) ≤ a2 t
−d/w exp(−b2 (t−1/w|x− y|)γ)for all x, y ∈ X and all 0 < t < diam(X), where w > 2 and γ = w/(w − 1),

ai, bi > 0 (i = 1, 2). The Barlow�Bass heat kernel satis�es (G1)�(G5).2 (Stable-like proesses). For eah 0 < σ < 1, there is a funtion
p(σ)(t, x, y) on a Sierpi«ski arpet in R

n satisfying (G1)�(G5) and
(2.4) a1t

−d/σw(1 + t−1/σw|x− y|)−(d+σw)

≤ p(σ)(t, x, y) ≤ a2t
−d/σw(1 + t−1/σw|x− y|)−(d+σw)for all x, y ∈ X and all 0 < t < diam(X), where a1, a2 > 0 (see for exam-ple [5℄ or [15℄).

Notation. Throughout this paper we denote by C a general onstantand let r0 = diam(X) ∈ (0,∞]. Two non-negative funtions f and g areequivalent, denoted by f ∼= g, if C−1f(x) ≤ g(x) ≤ Cf(x) for all x ∈ X andsome C > 0. By the �lassial ase" we mean X = R
n, ̺(x, y) = |x− y| and

µ is the Lebesgue measure on R
n (see Example 2.1).By (G3) and (G4), we see that {Gt}t≥0 is strongly ontinuous on Lp(µ)

(1 ≤ p <∞):
lim
t→t0

‖Gtf −Gt0f‖p = 0 (f ∈ Lp(µ), t0 ≥ 0),and by (G5), {Gt}t≥0 is ontrative:
‖Gtf‖p ≤ ‖f‖p (t ≥ 0, f ∈ Lp(µ), 1 ≤ p ≤ ∞).Therefore, there exists an in�nitesimal generator Ap of {Gt}t≥0 on Lp(µ)

(1 ≤ p <∞):(2.5) Apf = lim
t→0+

Gtf − f

t
strongly in Lp(µ)with domain D(Ap), the spae of all funtions f suh that the limit in (2.5)exists. Note that D(Ap) is dense in Lp(µ) (see for example [28, p. 237℄).In the following we will repeatedly speify to L2(µ). For simpliity wewrite A := A2 and D(A) := D(A2). By (G2), we see that A is self-adjoint :

(Af, g) = (f,Ag) (f, g ∈ D(A)),



Potential spaes on fratals 263where ( , ) is the inner produt in L2(µ),
(f, g) :=

\
X

f(x)g(x) dµ(x).Moreover, the linear operator A is non-positive de�nite:(2.6) (Af, f) ≤ 0 (f ∈ D(A))sine, by (G5) and (G1),(2.7) (Af, f) = − lim
t→0

Et(f, f) ≤ 0 (f ∈ D(A)),where(2.8) Et(f, g) :=
1

2t

\
X

\
X

(f(y) − f(x))(g(y)− g(x))G(t, x, y) dµ(y) dµ(x).Thus −A admits a unique spetral resolution:(2.9) −Af =

∞\
0

λdEλf (f ∈ D(A))(see for example [28, p. 313℄). Note that(2.10) Gtf =

∞\
0

e−λt dEλf (f ∈ L2(µ), t ≥ 0).For α ∈ R, we de�ne
(2.11) D((−A)α) =

{
f ∈ L2(µ) :

∞\
0

λ2αd(Eλf, f) <∞
}
,

(−A)αf =

∞\
0

λα dEλf (f ∈ D((−A)α)).The unique Dirihlet form (E ,F) assoiated with A is determined by(2.12) F = D((−A)1/2),

E(f, g) = ((−A)1/2f, (−A)1/2g) (f, g ∈ F)(see for example [11℄). We may haraterize (E ,F) in terms of G(t, x, y) asfollows:(2.13) F = {f ∈ L2(µ) : lim
t→0

Et(f, f) <∞},

E(f, g) = lim
t→0

Et(f, g) (f, g ∈ F).Note that (G5) plays an important part in obtaining (2.13).2.2. Potentials assoiated with semigroups. In what follows we will studytwo distint kinds of potentials assoiated with semigroups as above. We �rstonsider the general ase of a strongly ontinuous ontrative semigroup



264 J. Hu and M. Zähle
{Gt}t≥0 on the Banah spae Lp(µ), p ≥ 1 (where the kernel assumption inSubsetion 2.1 is not needed).Definition 2.3. For α > 0 and 1 ≤ p ≤ ∞, the potential operators oforder α of f ∈ Lp(µ) are de�ned by

Jα
µ f(x) =

1

Γ (α/2)

∞\
0

tα/2−1e−tGtf(x) dt,(2.14)
Iα
µ f(x) =

1

Γ (α/2)

∞\
0

tα/2−1Gtf(x) dt (x ∈ X).(2.15)
Remarks. 1. Note that Iα

µ f may not be well de�ned for some α and f , if
X is bounded. For example, if f = 1 then Iα

µ f = ∞ for any α > 0. However,
Jα

µ f is well de�ned for any α > 0 and any f ∈ Lp(µ), 1 ≤ p ≤ ∞, beause
Jα

µ f ∈ Lp(µ) for f ∈ Lp(µ) due to the fat that ‖Jα
µ f‖p ≤ ‖f‖p. For thisreason we will mostly work with the potential operators Jα

µ .2. For the lassial ase, if G(t, x, y) is the Gauss�Weierstrass heat kernel,then Jα
µ and Iα

µ de�ned in De�nition 2.3 are the Bessel and Riesz potentialoperators respetively (see for example [22℄ or [20, 21℄). For the Sierpi«skiarpet X, in order that Jα
µ and Iα

µ be Bessel and Riesz potential operators,we take for G(t, x, y) the Barlow�Bass heat kernel (see Subsetion 2.3 below).The operator Jα
µ or Iα

µ in De�nition 2.3 may be interpreted as the fra-tional power of order α/2 of the resolvent (I −Ap)
−1 or of (−Ap)

−1 (shouldit exist) by the following arguments. We �rst onsider the ase p = 2 withsymmetri operators Gt, where suh powers are introdued by means of thespetral resolution.Proposition 2.4. Let Jα
µ be de�ned as in (2.14), and let A be the gen-erator of a symmetri strongly ontinuous ontrative semigroup {Gt}t≥0 on

L2(µ). Then the following holds on L2(µ):(2.16) Jα
µ = (I −A)−α/2 (α > 0).Proof. Let α > 0. By (2.10) and Fubini's theorem, we have

1

Γ (α/2)

∞\
0

tα/2−1e−tGtf dt=
1

Γ (α/2)

∞\
0

tα/2−1e−t
(∞\

0

e−λt dEλf
)
dt

=
1

Γ (α/2)

∞\
0

(∞\
0

tα/2−1e−(1+λ)t dt
)
dEλf

=

∞\
0

(1+λ)−α/2 dEλf = (I−A)−α/2f, f ∈L2(µ),whih ombines with (2.14) to yield (2.16).



Potential spaes on fratals 265For general 1 ≤ p ≤ ∞, we may use the notation
(I −Ap)

−α/2 := Jα
µ ,sine (I −Ap)

−1 = J2
µ, and
Jα1+α2

µ = Jα1
µ ◦ Jα2

µ (α1, α2 > 0).The last equality follows from (2.14) and the semigroup property of {Gt}t≥0.One an also use the notation
(−Ap)

−α/2 := Iα
µby similar arguments for suitable α and f .Note that (2.16) may formally be obtained as follows. Sine(2.17) (1 + u)−α/2 =

1

Γ (α/2)

∞\
0

tα/2−1e−(1+u)t dt (α > 0),we replae u by −A and then use Gt = eAt to obtain
(I −A)−α/2 =

1

Γ (α/2)

∞\
0

tα/2−1e−teAt dt =
1

Γ (α/2)

∞\
0

tα/2−1e−tGt dt = Jα
µ .Similarly, we replae 1 + u by u in (2.17), and then let u = −A to obtain

(−A)−α/2 =
1

Γ (α/2)

∞\
0

tα/2−1eAt dt =
1

Γ (α/2)

∞\
0

tα/2−1Gt dt = Iα
µ .We will see that there exists an expliit formula for the inversion of Jα

µfor any α > 0 and 1 ≤ p ≤ ∞, as in the lassial ase (f. [20, 21℄). For this,de�ne(2.18) Dα
ε =

1

χ(α/2, l)

∞\
ε

t−α/2−1(I − e−tGt)
l dt (ε > 0)for α > 0, where l = [α/2] + 1 ([α/2] is the integer part of α/2) and(2.19) χ(α/2, l) =

∞\
0

s−α/2−1(1 − e−s)l ds <∞ (0 < α/2 < l).

Theorem 2.5. Let {Gt}t≥0 be a strongly ontinuous ontrative semi-group on Lp(µ) and α > 0. If 1 ≤ p < ∞, the left inverse of Jα
µ exists inthe following sense:(2.20) lim

ε→0
‖Dα

ε J
α
µ f − f‖p = 0for any f ∈ Lp(µ). Moreover , if p = ∞ then(2.21) lim

ε→0
Dα

ε J
α
µ f(x) = f(x)for µ-almost all x ∈ X and f ∈ L∞(µ).



266 J. Hu and M. ZähleProof. The proof is similar to the lassial ase (see for example[20, Theorem 20.4, pp. 260�261℄ or [1, Theorem 1℄). For the reader's on-veniene, we sketh the proof. Let f ∈ Lp(µ) (1 ≤ p ≤ ∞). By (2.18), we seethat(2.22) Dα
ε J

α
µ f =

1

χ(α/2, l)

∞\
ε

t−α/2−1

{ l∑

k=0

(−1)k

(
l

k

)
e−ktGkt(J

α
µ f)

}
dt.By (2.14) and the semigroup property,

e−ktGkt(J
α
µ f) =

1

Γ (α/2)

∞\
0

sα/2−1e−(s+kt)Gs+ktf ds

=
1

Γ (α/2)

∞\
0

((s− kt)+)α/2−1e−sGsf ds,where
a+ =

{
a, a ≥ 0,
0, otherwise.Thus, it follows from (2.22) that(2.23) Dα

ε J
α
µ f =

1

χ(α/2, l)Γ (α/2)

∞\
0

e−sGsf

{ l∑

k=0

(−1)k

(
l

k

)
ψk,ε(s)

}
ds,where

ψk,ε(s) :=

∞\
ε

t−α/2−1((s− kt)+)α/2−1 dt.It is not hard to alulate that
ψk,ε(εs) =

2

αεs
((s− k)+)α/2 (s, k ≥ 0).Therefore, we see from (2.23) that(2.24) Dα

ε J
α
µ f =

∞\
0

Kα/2,l(s) e
−εsGεsf ds,where

Kβ,l(s) =
1

χ(β, l)Γ (β + 1)

l∑

k=0

(−1)k

(
l

k

)
s−1((s− k)+)β

for any β > 0 with l = [β]+1. The funtion Kβ,l has the following properties:
Kβ,l ∈ L1(0,∞), and

∞\
0

Kβ,l(s) ds = 1



Potential spaes on fratals 267(see for example [20, Lemma 10.47, p. 158℄). Hene, we see from (2.24) that,using the strong ontinuity and the dominated onvergene theorem,
‖Dα

ε J
α
µ f − f‖p ≤

∞\
0

|Kα/2,l(s)| · ‖e
−εsGεsf − f‖p ds→ 0as ε→ 0, for any f ∈ Lp(µ) and 1 ≤ p <∞.Now let p = ∞ and f ∈ L∞(µ). Sine ‖e−εsGεsf‖∞ ≤ ‖f‖∞ for s ≥ 0,and by ontinuity,

lim
ε→0

e−εsGεsf(x) = f(x) (s > 0)for µ-almost all x ∈ X, we see from (2.24) that limε→0D
α
ε J

α
µ f(x) = f(x)for µ-almost all x ∈ X by using again the dominated onvergene theorem,whih proves (2.21).

Remarks. 1. Note that for p = 2, Theorem 2.5 an simply be obtainedby using the spetral resolution, sine(2.25) (Jα
µ )−1 = (I −A)α/2 =

1

χ(α/2, l)

∞\
0

t−α/2−1(I − e−tGt)
l dt.The Riesz potential operator Iα

µ also has an inverse for α > 0 and 1 ≤
p <∞ (see for example [21, (5.85), p. 121℄); in partiular, for p = 2 we have
(2.26) (Iα

µ )−1 = (−A)α/2 =
1

χ(α/2, l)

∞\
0

t−α/2−1(I −Gt)
l dt

(l = [α/2] + 1).2. For 0 < α < 2, the formulas (2.25) and (2.26) are alled the Balakrish-nan formulas (see for example [28, p. 260℄). Note that (2.25) or (2.26) analso be formally obtained by using the fat that
(1 + u)α/2 =

1

χ(α/2, l)

∞\
0

t−α/2−1(1 − e−t(1+u))l dt, 0 < α/2 < l,and replaing u by −A or 1 + u by −A.For α > 0, let Dα
ε be as de�ned in (2.18) with l = [α/2] + 1. De�ne thelinear operator Dα by(2.27) lim

ε→0
‖Dα

ε f −Dαf‖p = 0for suitable f ∈ Lp(µ) where 1 ≤ p < ∞. Then Dα an be interpreted as
(I −Ap)

α/2.2.3. Loal heat kernels with deay onditions. We now turn bak to theassumptions (G1)�(G5). In order to study the Bessel potentials Jα
µ in moredetail, we need more onditions on the heat kernel G(t, x, y). We say that aheat kernel G(t, x, y) is loal, and satis�es a two-sided estimate respetively, if



268 J. Hu and M. Zähle(G6) (loality): lim
t→0

t−1G(t, x, y) = 0 for any x, y ∈ X (x 6= y),(G7) (estimate):
t−d/w Φ1(t

−1/w̺(x, y)) ≤ G(t, x, y) ≤ t−d/w Φ2(t
−1/w̺(x, y))for all x, y ∈ X, 0 < t < r0 and some d > 0, w ≥ 2, where

r0 = diam(X) (r0 = ∞ if X is unbounded), and Φi (i = 1, 2) arebounded, dereasing funtions on [0,∞).For X bounded, as a omplementary ondition to (G7), we assume that(G8) (large-time behavior): G(t, x, y) ≤ Ct−d/w exp(t/2) for all x, y ∈ Xand all t > r0, where C > 0.Condition (G8) is very weak and an be obtained from the Nash inequal-ity (see [6, Theorem (2.1), p. 251℄, by taking δ = 1/2) if X is bounded.Under these onditions the operator Ap is loal and will be interpreted as
p-Laplaian.Clearly the Gauss�Weierstrass heat kernel GRn(t, x, y) of (2.2) satis-�es (G6), and (G7) with d = n, w = 2, and

Φi(s) = (4π)−n/2 exp(−s2/4) (i = 1, 2),whilst the Cauhy�Poisson heat kernel satis�es (G7) with d = n, w = 1, and
Φi(s) = Cn(1 + s2)−(n+1)/2 (s > 0, i = 1, 2),but it is not loal.The Barlow�Bass heat kernel on the Sierpi«ski arpet satis�es (G7) with(2.28) Φi(s) = ai exp(−bis

γ), i = 1, 2.It is easy to see from (2.28) that (G6) holds, sine for x, y ∈ X (x 6= y),

0 ≤ t−1G(t, x, y) ≤ t−1−d/wΦ2(t
−1/w̺(x, y))

= ̺(x, y)−(d+w)sd+wΦ2(s) (s = t−1/w̺(x, y))

→ 0as t→ 0+ (or s→ ∞).Condition (G6) may be dropped if the heat kernel G(t, x, y) satis�es (G7)with(2.29) lim
s→∞

sd+wΦ2(s) = 0.For a stable-like proess on the Sierpi«ski arpet in R
n, the heat kernel

p(σ)(t, x, y) satis�es (G7) with w replaed by σw, and(2.30) Φi(s) = ai (1 + s)−(d+σw) (s ≥ 0, i = 1, 2)(see Example 2.2). Clearly p(σ)(t, x, y) is not loal.



Potential spaes on fratals 269Condition (G7), together with(2.31) ∞\
0

sd−1Φ2(s) ds <∞,will imply that µ is a d-measure, that is,(2.32) C−1rd ≤ µ(B(x, r)) ≤ Crdfor all x ∈ G and all 0 < r < r0, where C > 0 and B(x, r) = {y ∈ X :
̺(y, x) < r} is the ball in X with enter x and radius r. More preisely,Proposition 2.6. Let (X, ̺, µ) be a onneted metri measure spaeendowed with a stohastially omplete heat kernel G(t, x, y) satisfying (G7)with (2.31). Then µ is a d-measure.Proof. This result for r0 = ∞ (that is, X unbounded) was obtained in[12, Theorem 3.2, p. 2071℄. We only onsider r0 <∞. The proof is essentiallythe same. In fat, similar to [12, (3.3), p. 2071℄, we an show that there is a
C > 0 suh that(2.33) µ(B(x, r)) ≤ Crdfor all x ∈ G and 0 < r ≤ c1, where c1 = min(r0, r

1/w
0 ). Without loss ofgenerality we assume c1 < r0. Noting that µ(X) < ∞ sine X is bounded,we see that (2.33) also holds for all c1 < r ≤ r0, by hanging the onstant

C when neessary. Thus (2.33) holds for all 0 < r ≤ r0 and all x ∈ X(in fat, (2.33) also holds for all r0 < r <∞ sine µ is supported on X).In order to show the opposite inequality, we note that there is a smallnumber ε0 ∈ (0, r1−w
0 ) suh that\

X\B(x,r)

G(t, x, y) dµ(y) ≤
1

2for all x ∈ X and all 0 < r ≤ r0, if 0 < t ≤ ε0r
w, by using (2.31) and (2.33)(f. [12, (3.6), p. 2072℄), and so\

B(x,r)

G(t, x, y) dµ(y) ≥
1

2
.Therefore(2.34) µ(B(x, r)) ≥

1

2
( sup
y∈B(x,r)

G(t, x, y))−1

for all x ∈ X, 0 < r ≤ r0 and all 0 < t ≤ ε0r
w. In partiular, we take

t = ε0r
w and then use (G7) to obtain

sup
y∈B(x,r)

G(t, x, y) ≤ Φ2(0)t−d/w = Cr−d
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µ(B(x, r)) ≥ Crdfor all x ∈ X and 0 < r ≤ r0.From now on we assume that(Main Assumption): There exists a loal, stohastially omplete heatkernel G(t, x, y) on (X, ̺, µ), that is, there is a funtion G(t, x, y) on

(0,∞) ×X ×X satisfying (G1)�(G6).Condition (G7) with (2.31) guarantees the existene of integral kernelsof Jα
µ and Iα

µ , with two-sided estimates.Proposition 2.7.Assume that G(t, x, y) additionally satis�es (G7)�(G8)with the integral ondition (2.31), and that 0 < α < (2/w)d. Then the po-tential operator Jα
µ has an integral kernel , that is,(2.35) Jα
µ f(x) =

\
X

Bα
µ (x, y)f(y) dµ(y) (x ∈ X),for f ∈ Lp(µ) and 1 ≤ p ≤ ∞, where(2.36) Bα

µ (x, y) =
1

Γ (α/2)

∞\
0

tα/2−1e−tG(t, x, y) dt (x, y ∈ X, x 6= y).Moreover , there exists some C > 0 suh that(2.37) Bα
µ (x, y) ≤ C̺(x, y)−(d−αw/2)for all x, y ∈ X, and(2.38) Bα

µ (x, y) ≥ C−1 ̺(x, y)−(d−αw/2)for all x, y ∈ X with 0 < ̺(x, y) ≤ min(M0, r0), where M0 ∈ (0,∞) is any�xed number.Proof. First let X be bounded. For any x, y ∈ X (x 6= y), we see from(G7) that
r0\
0

tα/2−1e−tG(t, x, y) dt ≤

r0\
0

tα/2−1G(t, x, y) dt

≤

r0\
0

tα/2−1−d/wΦ2(t
−1/w̺(x, y)) dt

= w̺(x, y)−(d−αw/2)
∞\

̺(x,y)r
−1/w
0

sd−αw/2−1Φ2(s) ds

≤ C̺(x, y)−(d−αw/2)
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∞\

̺(x,y)r
−1/w
0

sd−αw/2−1Φ2(s) ds ≤

∞\
0

sd−αw/2−1Φ2(s) ds

=

1\
0

sd−αw/2−1Φ2(s) ds+

∞\
1

sd−αw/2−1Φ2(s) ds

≤ Φ2(0)

1\
0

sd−αw/2−1 ds+

∞\
1

sd−1Φ2(s) ds <∞.On the other hand, by (G8),
∞\
r0

tα/2−1e−tG(t, x, y) dt ≤ C

∞\
r0

tα/2−1−d/we−t/2 dt ≤ C.Therefore,
∞\
0

tα/2−1e−tG(t, x, y) dt =

r0\
0

tα/2−1e−tG(t, x, y) dt+

∞\
r0

tα/2−1e−tG(t, x, y) dt

≤ C(1 + ̺(x, y)−(d−αw/2)) ≤ C̺(x, y)−(d−αw/2)for all x, y ∈ X (x 6= y) sine X is bounded and d > αw/2. Thus (2.37)follows. On the other hand, by (G7) and noting the fat that ̺(x, y) ≤ r0,we have
∞\
0

tα/2−1e−tG(t, x, y) dt ≥ e−r0

r0\
0

tα/2−1G(t, x, y) dt

≥ e−r0

r0\
0

tα/2−1−d/wΦ1(t
−1/w̺(x, y)) dt

= we−r0̺(x, y)−(d−αw/2)
∞\

̺(x,y)r0
−1/w

sd−αw/2−1Φ1(s) ds

≥ we−r0̺(x, y)−(d−αw/2)
∞\

r
1−1/w
0

sd−αw/2−1Φ1(s) ds

≥ C−1̺(x, y)−(d−αw/2).Therefore (2.38) follows if X is bounded. In a similar way, we an obtain(2.37) and (2.38) if X is unbounded. The remaining statement followsfrom (2.14) and (2.1).Assume additionally that G(t, x, y) satis�es (G7) with (2.31). It is nothard to see from (2.36) and (G1)�(G5) that, for x, y ∈ X (x 6= y) and
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0 < α < (2/w)d,

• Bα
µ (x, y) ≥ 0, Bα

µ (x, y) = Bα
µ (y, x).

• Bα1+α2
µ (x, y) =

T
X Bα1

µ (x, z)Bα2
µ (z, y) dµ(z) (α1, α2 > 0, α1 + α2 <

(2/w)d).
• lim

α→0+
‖Jα

µ f − f‖p = 0 (f ∈ Lp(µ), 1 ≤ p <∞), TX Bα
µ (x, y) dµ(y) = 1.Proposition 2.8. Let X be unbounded. Assume that G(t, x, y) addi-tionally satis�es (G7) with the integral ondition (2.31), and that 0 < α

< (2/w)d. Then the potential operator Iα
µ has an integral kernel , that is,(2.39) Iα

µ f(x) =
\
X

Rα
µ(x, y)f(y) dµ(y),with(2.40) Rα

µ(x, y) =
1

Γ (α/2)

∞\
0

tα/2−1G(t, x, y) dt (x, y ∈ X, x 6= y).Moreover ,(2.41) Rα
µ(x, y) ∼= ̺(x, y)−(d−αw/2) (x, y ∈ X, x 6= y).Proof. The proof is similar to that of Proposition 2.7. We omit the de-tails.Definition 2.9. Assume that G(t, x, y) satis�es (G1)�(G7) on a mea-sure metri spae (X, ̺, µ) with the hain ondition. For α > 0 and 1≤p≤∞,the Jα

µ and Iα
µ de�ned as in (2.14) and (2.15) are termed the p-Bessel and

p-Riesz potential operators respetively.The operators Dα = (I−A)α/2 and (−A)α/2 may be interpreted as Besseland Riesz frational derivatives, respetively.
3. Sobolev spaes. Assume that G(t, x, y) satis�es (G1)�(G7). For eah

α > 0, let Jα
µ be the Bessel potential operator de�ned in (2.14). In this setionwe introdue (frational) Sobolev-type spaes on (X, ̺, µ). For 0 < α ≤ 1and p = 2, these spaes are shown to oinide with Lipshitz spaes initiatedby Jonsson and Wallin [16, 17℄. If X is an open subset of R

n with �nie"boundary, they are equivalent to the usual lassial Sobolev spaes. Thesefuntion spaes arise as the domains of (I − Ap)
α/2, and play an importantr�le in studying nonlinear (frational) PDE's on (X, ̺, µ). Their embeddingtheorems will be given in the next setion. Note that Theorem 2.5 is ruialto our argument.For any α > 0 and 1 ≤ p ≤ ∞, we see from (2.20) and (2.21) that theBessel potential operator Jα

µ : Lp(µ) → Lp(µ) is one-to-one.



Potential spaes on fratals 273Definition 3.1. Let α > 0 and 1 ≤ p ≤ ∞. The Sobolev spae (orBessel potential spae) Hα
p (µ) := Hα

p (X, ̺, µ,G) on (X, ̺, µ) is the image of
Lp(µ) under Jα

µ . The norm of f = Jα
µϕ ∈ Hα

p (µ) is(3.1) ‖f‖Hα
p (µ) = ‖ϕ‖p.Strihartz [23℄ introdued the Sobolev-type spaes Lp

s(X) for s > 0 and
1 < p <∞. It is easy to see that(3.2) Lp

s(X) = H2s/w
p (µ) (s > 0, 1 < p <∞).We may haraterize Hα

p (µ) in an alternative way. Let α > 0 and 1 ≤ p <∞.De�ne the spae Lα
p,p(µ) by(3.3) Lα

p,p(µ) = {f ∈ Lp(µ) : Dαf ∈ Lp(µ)},where Dαf is de�ned in (2.27). The norm of f ∈ Lα
p,p(µ) is

‖f‖Lα
p,p(µ) = ‖f‖p + ‖Dαf‖p .Proposition 3.2. Let α > 0 and 1 ≤ p < ∞. Then Hα

p (µ) = Lα
p,p(µ)with equivalent norms:

‖f‖Hα
p (µ) ≤ ‖f‖Lα

p,p(µ) ≤ 2‖f‖Hα
p (µ).Proof. Assume that f ∈ Hα

p (µ). Write f = Jα
µϕ for some ϕ ∈ Lp(µ). Itfollows from (2.20) and (2.27) that

Dαf = lim
ε→0

Dα
ε f = lim

ε→0
Dα

ε J
α
µϕ = ϕin the Lp-norm sine 1 ≤ p <∞. Thus,

‖f‖p + ‖Dαf‖p = ‖Jα
µϕ‖p + ‖ϕ‖p ≤ 2‖ϕ‖p = 2‖f‖Hα

p (µ),proving that Hα
p (µ) is embedded in Lα

p,p(µ). Conversely, assume that f ∈
Lα

p,p(µ). Let ϕ = Dαf ∈ Lp(µ). Then f = Jα
µϕ; this is beause, for any

g ∈ Lp′(µ) (p′ is the onjugate of p) we have
(Jα

µϕ, g) = (ϕ, Jα
µ g) = lim

ε→0
(Dα

ε f, J
α
µ g) = lim

ε→0
(f,Dα

ε J
α
µ g) = (f, g).(Note that the last equality still holds if p = 1 by using (2.21) and thedominated onvergene theorem.) Therefore, we see that f = Jα

µϕ ∈ Hα
p (µ),and

‖f‖Hα
p (µ) = ‖ϕ‖p = ‖Dαf‖p ≤ ‖f‖Lα

p,p(µ),showing that Lα
p,p(µ) is embedded in Hα

p (µ).In what follows we onsider the ase p = 2, and investigate Hα
2 (µ) inmore detail. Let α > 1 and f ∈ Hα

2 (µ). We laim that (−A)1/2f ∈ Hα−1
2 (µ).In fat, writing f = Jα

µϕ for some ϕ ∈ L2(µ), we see from Proposition 2.4that
(−A)1/2f = (I −A)−(α−1)/2ϕ̃,



274 J. Hu and M. Zählewhere ϕ̃ = (I − A)−1/2(−A)1/2ϕ, by using the operational alulus (f.[28, pp. 343�345℄). Note that ϕ̃ ∈ L2(µ) for ϕ ∈ L2(µ). Thus (−A)1/2f =

Jα−1
µ ϕ̃ ∈ Hα−1

2 (µ). Conversely, if (−A)1/2f ∈ Hα−1
2 (µ) (α > 1) then f ∈

Hα
2 (µ) in a similar way. The Riesz frational derivative (−A)1/2 behaveslike a pseudo-di�erential operator of order 1, exatly the same as the las-sial ase. On the other hand, if we instead onsider Lp

s(X) introdued byStrihartz as above, then we see that (−A)1/2f ∈ L2
s−w/2(X) (s > w/2)if and only if f ∈ L2

s(X), and (−A)1/2 behaves like a pseudo-di�erentialoperator of order w/2.Using the spetral resolution (f. Proposition 2.4), we see that for any
α > 0,(3.4) Hα

2 (µ) =
{
f ∈ L2(µ) :

∞\
0

(1 + λ)α d(Eλf, f) <∞
}
.For 0 < α ≤ 1, we give a simple haraterization of Hα

2 (µ). To do this, weintrodue a funtion jα : X ×X → R for α > 0 by jα(x, y) = 0 if x = y, and(3.5) jα(x, y) =
1

χ(α, 1)

∞\
0

t−α−1e−tG(t, x, y) dtif x 6= y. De�ne a funtional Wα by(3.6) Wα(f) =
\
X

\
X

(f(x) − f(y))2jα(x, y) dµ(y) dµ(x)for f ∈ L2(µ).Theorem 3.3. Let Hα
2 (µ) be de�ned as above. Then(3.7) Hα

2 (µ) = {f ∈ L2(µ) : Wα(f) <∞}with ‖f‖Hα
2 (µ)

∼= (‖f‖2
2 +Wα(f))1/2 if 0 < α < 1, while(3.8) H1
2 (µ) = {f ∈ L2(µ) : E(f, f) <∞}with ‖f‖H1

2 (µ)
∼= (‖f‖2

2 + E(f, f))1/2, where E is de�ned in (2.13).Proof. Let 0 < α < 1. Let f ∈ Hα
2 (µ), and write f = Jα

µϕ for some
ϕ ∈ L2(µ). Then

ϕ = Dαf = (I −A)α/2f.Therefore,
‖f‖2

Hα
2 (µ) = ‖ϕ‖2

2 = ((I −A)α/2f, (I −A)α/2f) = (f, (I −A)αf)

= (f,D2αf) =
1

χ(α, 1)

∞\
0

t−α−1(f, f − e−tGtf) dt
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=

1

χ(α, 1)

∞\
0

t−α−1[(1 − e−t)‖f‖2
2 + e−t(f, f −Gtf)] dt

= ‖f‖2
2 +

1

2χ(α, 1)

∞\
0

t−α−1e−t
[ \

X

\
X

(f(y) − f(x))2G(t, x, y) dµ(y) dµ(x)
]
dt

= ‖f‖2
2 +

1

2

\
X

\
X

(f(y) − f(x))2jα(x, y) dµ(y) dµ(x),proving (3.7). Moreover,
‖f‖2

H1
2 (µ) = ‖ϕ‖2

2 = ((I −A)1/2f, (I −A)1/2f)

=

∞\
0

(1 + λ) d(Eλf, f) = ‖f‖2
2 + E(f, f),and so (3.8) holds.Corollary 3.4. Suppose that (X, ̺, µ) is a onneted metri measurespae, endowed with a loal , stohastially omplete heat kernel G(t, x, y)satisfying (G7) with(3.9) ∞\

0

sd+w−1Φ2(s) ds <∞.Then Hα
2 (µ) = Hα

2 (d, w) with equivalent norms, where
(3.10) Hα

2 (d, w) =

{
f ∈ L2(µ) :\

X

\
̺(y,x)≤1

(f(y) − f(x))2

̺(x, y)d+αw
dµ(y) dµ(x) <∞

}

if 0 < α < 1, whilst
(3.11) H1

2 (d, w) =
{
f ∈L2(µ) :

sup
0<r<1

r−(d+w)
\
X

\
B(x,r)

(f(y)−f(x))2 dµ(y) dµ(x)<∞
}

The norm of f ∈ Hα
2 (d, w) is de�ned in an obvious way for α > 0.

Remark. Note that under the onditions of Corollary 3.4, the spae
Hα

2 (d, w) de�ned in (3.10) ontains only onstant funtions if α≥ 1 (see [19℄).Proof. Assume 0 < α < 1. Sine G(t, x, y) satis�es (G7) with (3.9), wean obtain jα(x, y) ≤ C̺(x, y)−(d+αw) for x, y ∈ X (x 6= y), and(3.12) jα(x, y) ≥ C−1̺(x, y)−(d+αw)if 0 < ̺(x, y) ≤ 1, in a similar way to (2.37), whether X is bounded or not,where C is independent of x, y. Thus (3.10) follows from (3.7). For α = 1,
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E(f, f) ∼= sup

0<r<1
r−(d+w)

\
X

\
B(x,r)

(f(y) − f(x))2 dµ(y) dµ(x)

by virtue of (G7) and (3.9) (see the details in [12, Theorem 4.2, p. 2076℄;note that µ is a d-measure if (G7) holds with (3.9), see Proposition 2.6).Thus (3.11) follows from (3.8).
Remark. If X is a subset of R

n supporting a d-measure, the spaes
Hα

2 (d, w) for 0 < α ≤ 1 and w = 2 were introdued by Jonsson andWallin in [16, 17℄; in partiular, they are the traes of the Sobolev spaes
H

α+(n−d)/2
2 (Rn) on X for 0 < α < 1.
4. Embedding theorems. Assume that G(t, x, y) satis�es (G1)�(G7)with (3.9). In this setion we disuss the embedding theorems for Hα

p (µ) for
α > 0 and 1 < p <∞.Theorem 4.1. Let Hα

p (µ) be de�ned as in De�nition 3.1 for α > 0 and
1 < p <∞. Then(1) if d > αpw/2, then Hα

p (µ) embeds in Lq(µ) for q = pd
d−αpw/2 ;(2) if d = αpw/2, then Hα

p (µ) embeds in Lq(µ) for any 1 < q <∞.Proof. (1) Assume d > αpw/2. Let f ∈ Hα
p (µ), and write f = Jα

µϕ,
ϕ ∈ Lp(µ). Sine 0 < α < 2d/pw < (2/w)d, we see from (2.37) that thereexists some C > 0 independent of x and f suh that(4.1) |f(x)| ≤ C

\
X

̺(x, y)−(d−αw/2)|ϕ(y)| dµ(y),whih implies that f ∈ Lq(µ) if d > αpw/2. The proof for this is standard(see for example [14, pp. 20�21℄). For the reader's onveniene, we sketh thearguments. Write
(4.2)

\
X

̺(x, y)−(d−αw/2)|ϕ(y)| dµ(y)

=
\

̺(y,x)>δ

̺(x, y)−(d−αw/2)|ϕ(y)| dµ(y) +
\

̺(y,x)≤δ

̺(x, y)−(d−αw/2)|ϕ(y)| dµ(y)

=: gδ(x) + bδ(x).Using Hölder's inequality, we have
gδ(x) ≤ ‖ϕ‖p

( \
̺(x,y)>δ

̺(x, y)−p′(d−αw/2) dµ(y)
)1/p′

(4.3)

≤ C‖ϕ‖pδ
−(d/p−αw/2),
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̺(x,y)>δ

̺(x, y)−p′(d−αw/2) dµ(y) =
∞∑

k=1

\
2kδ<̺(x,y)≤2k+1δ

̺(x, y)−p′(d−αw/2) dµ(y)

≤
∞∑

k=1

(2kδ)−p′(d−αw/2)µ(B(x, 2k+1δ))

≤
∞∑

k=1

(2kδ)−p′(d−αw/2)C(2k+1δ)d (by (2.33))

= Cδd−p′(d−αw/2)
∞∑

k=1

2k(d−p′(d−αw/2))

≤ Cδd−p′(d−αw/2) (sine d− p′(d− αw/2) < 0).On the other hand,
bδ(x) =

\
̺(x,y)≤δ

̺(x, y)−(d−αw/2)|ϕ(y)| dµ(y)(4.4)

=
∞∑

k=0

\
2−(k+1)δ<̺(x,y)≤2−kδ

̺(x, y)−(d−αw/2)|ϕ(y)| dµ(y)

≤
∞∑

k=0

(2−(k+1)δ)−(d−αw/2)
\

̺(x,y)≤2−kδ

|ϕ(y)| dµ(y)

≤
∞∑

k=0

(2−(k+1)δ)−(d−αw/2)µ(B(x, 2−kδ))Mµ(ϕ)(x)

≤ Cδαw/2Mµ(ϕ)(x),where
Mµϕ(x) := sup

0<r≤r0

1

µ(B(x, r))

\
B(x,r)

|ϕ(y)| dµ(y)

is the maximal funtion of ϕ satisfying(4.5) ‖Mµϕ‖p ≤ C‖ϕ‖p for all ϕ ∈ Lp(µ).Combining (4.1)�(4.5), we see that
|f(x)| ≤ C(δ−(d/p−αw/2) ‖ϕ‖p + δαw/2Mµϕ(x)).Minimizing the right-hand side, we have

|f(x)| ≤ C‖ϕ‖αwp/2d
p (Mµϕ(x))(2d−αwp)/2d,
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‖f‖q ≤ C‖ϕ‖p, q =

dp

d− αpw/2
.Case (2), d = αpw/2, follows from (1) in a standard way. We omit thedetails.We give the embedding of Hα

p (µ) for p = 2, if d < αw and 0 < α ≤ 1.For 0 < σ ≤ 1, let Cσ(X) be the Hölder spae on X, that is,
Cσ(X) =

{
f ∈ C(X) : sup

x,y∈X, x6=y

|f(y) − f(x)|

̺(y, x)σ
<∞

}
.The norm of f ∈ Cσ(X) is

‖f‖Cσ(X) = ‖f‖C(X) + sup
x,y∈X, x6=y

|f(y) − f(x)|

̺(y, x)σ
.Theorem 4.2. If d < αw and 0 < α ≤ 1, then Hα

2 (µ) embeds in Cσ(X),where σ = (αw − d)/2.Proof. Let d < αw and 0 < α ≤ 1. By Corollary 3.4, it su�es to showthat Hα
2 (d, w) embeds in Cσ(X) with σ = (αw − d)/2. But this is proved inTheorem 4.1(iii) of [12℄ if α = 1, and in [15℄ for 0 < α < 1. (Note that thehain ondition implies that αw ≤ d+ 2 f. [12℄, and so σ ≤ 1.)By (3.2) and Theorem 4.2 we infer that L2

s(X) embeds in Cσ(X) with
σ = s− d/2 if d/2 < s ≤ w/2 (see the same result in [23℄).

5. Besov spaes. Let (X, ̺, µ) be a onneted metri measure spaeendowed with a G(t, x, y) satisfying (G1)�(G7). Let {Gt}t≥0 be the semi-group assoiated with G(t, x, y) as in (2.1). In this setion we de�ne variousBesov spaes Bα
p,q(µ) for α ∈ R and 1 ≤ p, q ≤ ∞.Definition 5.1. Let 1 ≤ p, q ≤ ∞, and let α ∈ R. De�ne Bα

p,q(µ) asfollows:(1) if α ≥ 0, k = [α/2] + 1, then
Bα

p,q(µ) =

{
f ∈ Lp(µ) :

(∞\
0

(
tk−α/2

∥∥∥∥
∂k

∂tk
Gtf

∥∥∥∥
p

)q dt

t

)1/q

<∞

}
;(2) if α < 0, take k = 0:

Bα
p,q(µ) =

{
f ∈ Lp(µ) :

(∞\
0

(t−α/2‖Gtf‖p)
q dt

t

)1/q

<∞

}

with the obvious norm (the integrals above are learly modi�ed if q = ∞).



Potential spaes on fratals 279The Besov spaes as above for the lassial ase were given in [10℄ byusing the Gauss�Weierstrass heat kernel. For other approahes to the fratalase, see [8, 23, 24, 26℄.Theorem 5.2. For α ≥ 0, we have Bα
2,2(µ) = Hα

2 (µ) with equivalentnorms.Proof. Note that
Hα

2 (µ) =
{
f ∈ L2(µ) :

∞\
0

(1 + λ)α d(Eλf, f) <∞
}

(α ≥ 0).On the other hand, for any integer k ≥ [α/2] + 1, we have
∥∥∥∥
∂k

∂tk
Gtf

∥∥∥∥
2

2

=

∞\
0

λ2ke−2λt d(Eλf, f),and so
∞\
0

t2k−α−1

∥∥∥∥
∂

∂t
Gtf

∥∥∥∥
2

2

dt =

∞\
0

t2k−α−1
(∞\

0

λ2ke−2λt d(Eλf, f)
)
dt

=

∞\
0

λ2k d(Eλf, f)
(∞\

0

t2k−α−1e−2λt dt
)

= 2α−2kΓ (2k − α)

∞\
0

λα d(Eλf, f),proving the theorem.6. Disussions. Starting from the existene of a loal, stohastiallyomplete heat kernel G(t, x, y) with a two-sided estimate (G7) on aonneted metri measure spae (X, ̺, µ), we have obtained various Besovspaes; in partiular, we have at hand the (frational) Sobolev spaes
Hα

2 (d, w) (0 < α ≤ 1) (see (3.10) and (3.11)). These spaes ontain twoparameters, d and w, whih are the Hausdor� dimension of X and the walkdimension of the di�usion on (X, ̺, µ) respetively. The key point is thatthese spaes are dense in L2(µ). There is a natural question: is it possibleto obtain the existene of a heat kernel satisfying a two-sided estimate (G7)if there exists a funtion spae, say Hα
2 (d, w) (f. (3.10) or (3.11)) for some

0 < α ≤ 1, that is dense in L2(µ)? This question has been answered for
0 < α < 1 and w = 2. Chen and Kumagai [7℄ applied the probability ap-proah to show that, if X is a d-subset of R

n (n ≥ 1) and µ is a d-measure,then there is a heat kernel p(σ)(t, x, y) satisfying(6.1) C−1t−d/2αΦ(t−1/2α|x−y|) ≤ p(σ)(t, x, y) ≤ Ct−d/2αΦ(t−1/2α|x−y|)



280 J. Hu and M. Zählefor all 0 < t < 1 and all x, y ∈ X, where 0 < α < 1 and
Φ(s) = (1 + s)−(d+2α) (s ≥ 0).(Note that the problem of the denseness of Hα

2 (d, w) does not appear if
0 < α ≤ 1 and w = 2.) For eah 0 < α < 1, the p(σ)(t, x, y) is not loal,and the orresponding proess is a jump proess on X. The limiting ase
α = 1 is still open. Reently, in [29℄ a regular loal Dirihlet form has beenonstruted on any bounded d-set whih orresponds to the limiting ase
α = 1. All the results mentioned above deal only with w = 2. It would beinteresting to investigate the general ase w > 2, and moreover, to show theequivalene between the existene of a ertain lass of potential spaes andthe existene of heat kernels with two-sided deay estimates.
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