On C_0 multi-contractions having a regular dilation

by

Dan Popovici (Timişoara)

Abstract. Commuting multi-contractions of class C_0 and having a regular isometric dilation are studied. We prove that a polydisc contraction of class C_0 is the restriction of a backwards multi-shift to an invariant subspace, extending a particular case of a result by R. E. Curto and F.-H. Vasilescu. A new condition on a commuting multi-operator, which is equivalent to the existence of a regular isometric dilation and improves a recent result of A. Olofsson, is obtained as a consequence.

1. Introduction. The problem of finding an isometric (or a unitary) dilation of a commuting system of contractions was proposed by Sz.-Nagy [8] in the early fifties: for a given commuting system $T = (T_1, \ldots, T_n)$ of bounded operators (called commuting multi-operator; briefly c.m.) on a Hilbert space \mathscr{H} find conditions for the existence of a c.m. $V = (V_1, \ldots, V_n)$ consisting of isometric operators (or, equivalently [5], unitary operators) on a Hilbert space \mathscr{H} containing \mathscr{H} (as a closed subspace) such that

$$T^m h = P_{\mathscr{H}} V^m h, \quad m \in \mathbb{Z}_+^n, \ h \in \mathscr{H}$$

(if $T = (T_1, \ldots, T_n)$ and $m = (m_1, \ldots, m_n) \in \mathbb{Z}_+^n$ we use the notation $T^m = \prod_{i=1}^n T_i^{m_i}$; $P_{\mathscr{H}}$ is just the orthogonal projection of \mathscr{K} onto \mathscr{H}). Then V is said to be an *isometric* (respectively a *unitary*) dilation of T. Ando [1] proved that arbitrary pairs of commuting contractions have isometric dilations. Unfortunately, according to a counter-example given by Parrott [7], the existence is not always ensured for systems of at least three commuting contractions. By contrast to the single operator case, for $n \geq 2$, the *minimality* condition

(1)
$$\mathscr{K} = \bigvee_{m \in \mathbb{Z}_+^n} V^m \mathscr{H}$$

does not ensure the uniqueness, up to unitary equivalence, of the isometric dilation V (if such a dilation does exist). However, if V is a minimal isometric

²⁰⁰⁰ Mathematics Subject Classification: 47A20, 47A13, 47A45.

Key words and phrases: regular isometric dilation, commuting multi-contraction, polydisc contraction, class C_0 .

dilation of T then \mathscr{H} is invariant under $V^* := (V_1^*, \dots, V_n^*)$ and $V_i^*|_{\mathscr{H}} = T_i^*$, $i = 1, \dots, n$: V^* is said to be a minimal co-isometric extension of T^* . In addition, if U is the minimal unitary extension of V then the restriction of U^* to $\bigvee_{m \in \mathbb{Z}_+^n} U^{*m} \mathscr{H}$ is a minimal isometric dilation of T^* . It will be referred to as the minimal isometric dilation of T^* corresponding to V.

It was the idea of Brehmer [2] to introduce a special class of isometric or unitary dilations: an isometric or unitary dilation V (on \mathcal{H}) of T (on \mathcal{H}) is called regular if it satisfies

$$(T^{m^-})^*T^{m^+}h = P_{\mathscr{H}}(V^{m^-})^*V^{m^+}h, \quad m \in \mathbb{Z}^n, \ h \in \mathscr{H}.$$

Brehmer provided necessary and sufficient conditions on T ensuring the existence of a regular isometric (hence also unitary) dilation, namely,

(2)
$$\Delta_T^{\beta} := \sum_{0 \le \alpha \le \beta} (-1)^{|\alpha|} T^{*\alpha} T^{\alpha} \ge 0$$

for every $\beta \in \mathbb{Z}_+^n$ with $\beta \leq e := (1, \dots, 1)$. If it exists, a minimal regular isometric dilation is unique up to unitary equivalence. A c.m. T is said to be a polydisc contraction if $\Delta_T^e \geq 0$. If T is a commuting multi-contraction with $\Delta_T^e = 0$ then T is a polydisc isometry ([3]).

For a vector $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$ and a c.m. $T = (T_1, \ldots, T_n)$ let $rT := (r_1T_1, \ldots, r_nT_n)$. It is not hard to observe that, for any multi-index $\beta = (\beta_1, \ldots, \beta_n)$ with $0 \le \beta \le e$,

$$\Delta_{rT}^{\beta} = \Delta_{T}^{\beta} + \sum_{k=1}^{n} \sum_{i_{1}, \dots, i_{k}=1}^{n} \left(\prod_{p=1}^{k} \beta_{i_{p}} (1 - r_{i_{p}}^{2}) T_{i_{p}}^{*} \right) \Delta_{T}^{\beta - \sum_{p=1}^{k} \beta_{i_{p}} e_{i_{p}}} \left(\prod_{p=1}^{k} T_{i_{p}} \right).$$

If β is fixed and $\Delta_T^{\alpha} \geq 0$ for every α with $0 \leq \alpha \leq \beta$, we deduce that

$$\Delta_{rT}^{\alpha} \ge \Delta_{T}^{\alpha}, \quad 0 \le \alpha \le \beta, \ -e \le r \le e.$$

The following result, which can be seen as a particular case of [3, Lemma 3.6] (it was recently rediscovered in [6, Proposition 2.1]), is then obtained:

PROPOSITION 1.1. If T has a regular isometric dilation then so does rT for every vector r with $-e \le r \le e$.

It is our aim in the following to study c.m. of class C_0 , namely the class of c.m. $T = (T_1, \ldots, T_n)$ which satisfy $T_i^k h \xrightarrow{k} 0$ $(h \in \mathcal{H}, i = 1, \ldots, n)$. T is of class C_0 if T^* belongs to the class C_0 .

For a c.m. of class C_0 only one of the Brehmer positivity conditions (2) must a priori be satisfied in order to obtain a regular isometric dilation. More precisely, extending a particular case of a result by R. E. Curto and F.-H. Vasilescu [3, Theorem 3.16], we prove that a polydisc contraction of class C_0 is the restriction of a backwards multishift to an invariant subspace (Theorem 2.1). Improving a recent result by A. Olofsson [6] (Corollary 2.5),

we deduce a new necessary and sufficient condition on a c.m. in order to ensure the existence of a regular isometric dilation (Corollary 2.4). By contrast to the methods in [6] (where powerful tools of measure theory are used), our proofs are drastically simplified by applying (only) standard operator theory.

2. C_0 . multi-contractions and dilations. Recall from [3] that a multi-shift is just a doubly commuting tuple of shifts; a backwards multi-shift is the adjoint of a multi-shift.

Polydisc contractions of class C_0 . are restrictions of backwards multishifts. More precisely, extending a particular case of a result by R. E. Curto and F.-H. Vasilescu [3, Theorem 3.16], we have:

THEOREM 2.1. Let $T=(T_1,\ldots,T_n)$ be a c.m. on \mathcal{H} . The following conditions are equivalent:

- (i) T is a polydisc contraction of class C_{0} ;
- (ii) T is the restriction of a backwards multi-shift to an invariant subspace;
- (iii) T has a (minimal) regular isometric dilation and the corresponding minimal isometric dilation of T* is a multi-shift.

Proof. Let $m \ (1 \le m \le n)$ be a fixed positive integer and suppose that $\Delta_T^{\beta} \ge 0$ for every $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}_+^n$ with $\beta \le e$ and $|\beta| := \beta_1 + \dots + \beta_n = m$.

Easy computations show that

$$\Delta_T^{\alpha} - T_i^* \Delta_T^{\alpha} T_i = \Delta_T^{\alpha + e_i}$$

for any $\alpha \in \mathbb{Z}_+^n$ with $\alpha \leq e$ and $|\alpha| = m - 1$ and any $i \in \{1, \dots, n\} \setminus \operatorname{supp} \alpha$. Then

$$T_i^* \Delta_T^{\alpha} T_i \leq \Delta_T^{\alpha}$$

since $0 \le \alpha + e_i \le e$ and $|\alpha + e_i| = m$. By iteration we deduce that

(3)
$$T_i^{*p} \Delta_T^{\alpha} T_i^p \leq \Delta_T^{\alpha}$$
 for every $p \in \mathbb{Z}_+$.

If (i) holds true then

$$|\langle T_i^{*p} \Delta_T^{\alpha} T_i^p h, h \rangle| \le ||\Delta_T^{\alpha}|| \, ||T_i^p h||^2 \stackrel{p}{\to} 0$$

for every $h \in \mathcal{H}$. Hence $\Delta_T^{\alpha} \geq 0$ by (3). We proceed inductively to prove that a polydisc contraction of class C_0 . has a regular isometric dilation. The corresponding minimal isometric dilation $V = (V_1, \ldots, V_n)$ of T^* is then doubly commuting ([4], [9]). Moreover,

$$||V_i^{*p}V^mh|| = ||V^mV_i^{*p}h|| = ||V_i^{*p}h|| = ||T_i^ph|| \xrightarrow{p} 0$$

for every $i \in \{1, ..., n\}$, $m \in \mathbb{Z}_+^n$ and $h \in \mathcal{H}$. The minimality condition (1)

forces $V_i \in C_{\cdot 0}$ for any i. Therefore V is a multi-shift, and this completes the proof of (i) \Rightarrow (iii).

If V is the minimal isometric dilation of T^* given by (iii) (corresponding to the minimal regular isometric dilation of T) then V^* (which is a backwards multi-shift) is a minimal co-isometric extension of $(T^*)^* = T$. Condition (ii) is obtained.

Finally, observe that a backwards multi-shift is of class C_0 and has a regular dilation (being doubly commuting). The same is then true for its restriction to an invariant subspace. The implication (ii) \Rightarrow (i) is proved.

The restriction of a c.m. consisting of backwards shifts to an invariant subspace obviously belongs to the class C_0 , but it is not necessarily a polydisc contraction:

EXAMPLE 2.2. Let S be the standard (unilateral) shift on $\ell_{\mathbb{Z}_+}^2$, that is,

$$S(c_0, c_1, \ldots) = (0, c_0, c_1, \ldots), \quad (c_p)_{p \ge 0} \in \ell^2_{\mathbb{Z}_+}.$$

Then $T = (S^*, ..., S^*)$ is a c.m. on $\ell_{\mathbb{Z}_+}^2$ consisting of backwards shifts. In addition, if B is the standard bilateral shift on $\ell_{\mathbb{Z}}^2$, namely

$$B(c_p)_{p\in\mathbb{Z}} = (c_{p-1})_{p\in\mathbb{Z}}, \quad (c_p)_{p\in\mathbb{Z}} \in \ell^2_{\mathbb{Z}},$$

then, under the obvious identification $\ell_{\mathbb{Z}_+}^2 \subset \ell_{\mathbb{Z}}^2$, $U = (B^*, \dots, B^*)$ is a unitary dilation of T. However, T does not have a regular isometric dilation (equivalently, by Theorem 2.1, T is not a polydisc contraction). We only have to observe that

$$\Delta_T^{e_1+e_2} = I - 2SS^* + S^2S^{*2}$$

fails to be a positive operator since, for example,

$$\langle \Delta_T^{e_1+e_2}(0,1,0,\ldots), (0,1,0,\ldots) \rangle = -1.$$

Corollary 2.3. A polydisc contraction consisting of strict contractions has a regular isometric dilation.

A new condition on a c.m. T, equivalent to the existence of a regular isometric dilation, is also obtained:

COROLLARY 2.4. T has a regular isometric dilation if and only if there exists a sequence $r_k \in \mathbb{R}^n_+$, $r_k \leq e$, such that $r_k \to e$ as $k \to \infty$ and $r_k T$ is a polydisc contraction of class C_0 . for all k.

Proof. If T has a regular isometric dilation then so does rT for every $r \in \mathbb{R}^n_+$ with $r \leq e$ (by Proposition 1.1).

Conversely, if r_kT is a polydisc contraction of class C_0 . then, by Theorem 2.1, r_kT has a regular isometric dilation. Since $r_k\to e$ as $k\to\infty$ we conclude that T has a regular isometric dilation. \blacksquare

In particular, our methods provide a result of Olofsson [6, Theorem 2.1]:

COROLLARY 2.5. Let T be a c.m. consisting of contractions. Then T has a regular isometric dilation if and only if there exists a sequence $r_k = (r_1^k, \ldots, r_n^k) \in \mathbb{R}_+^n$, $r_i^k < 1$, such that $r_k \to e$ as $k \to \infty$ and $r_k T$ is a polydisc contraction for all k.

A similar argument can be applied for polydisc isometries:

PROPOSITION 2.6. A c.m. of class C_0 on a non-null Hilbert space cannot be a polydisc isometry.

Proof. Let $T = (T_1, \ldots, T_n)$ be a c.m. of class C_0 on a Hilbert space \mathcal{H} . Suppose that T is a polydisc isometry.

Proceed as in the proof of Theorem 2.1(i) \Rightarrow (iii). Suppose that $\Delta_T^{\beta} = 0$, for every $\beta \in \mathbb{Z}_+^n$ with $\beta \leq e$ and $|\beta| = m$ (m is fixed; $1 \leq m \leq n$). Then, for any $\alpha \in \mathbb{Z}_+^n$ with $\alpha \leq e$ and $|\alpha| = m - 1$, and for all $i \in \{1, \ldots, n\} \setminus \text{supp } \alpha$ and $p \in \mathbb{Z}_+$,

$$(4) T_i^{*p} \Delta_T^{\alpha} T_i^p = \Delta_T^{\alpha}.$$

We let $p \to \infty$ in (4) to deduce that $\Delta_T^{\alpha} = 0$. We repeat this step inductively to obtain

$$\Delta_T^{e_i} = I - T_i^* T_i = 0, \quad i \in \{1, \dots, n\}.$$

Hence each T_i is isometric, a contradiction.

COROLLARY 2.7. There are no polydisc isometries consisting of strict contractions.

References

- T. Ando, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88-90.
- [2] S. Brehmer, Über vertauschbare Kontraktionen des Hilbertschen Raumes, ibid. 22 (1961), 106–111.
- [3] R. E. Curto and F.-H. Vasilescu, Standard operator models in the polydisc, Indiana Univ. Math. J. 42 (1993), 791–810.
- [4] D. Gaspar and N. Suciu, On the intertwinings of regular dilations, Ann. Polon. Math. 66 (1997), 105–121.
- [5] T. Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido 58 (1958), 1–5.
- [6] A. Olofsson, Operator valued n-harmonic measure in the polydisc, Studia Math. 163 (2004), 203–216.
- [7] S. Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970), 481–490.
- [8] B. Sz.-Nagy, Transformations de l'espace de Hilbert, fonctions de type positif sur un groupe, Acta Sci. Math. (Szeged) 15 (1953), 104-114.

[9] D. Timotin, Regular dilations and models for multi-contractions, Indiana Univ. Math. J. 47 (1998), 671–684.

Department of Mathematics and Computer Science University of the West Timişoara Bd. Vasile Pârvan nr. 4 RO-300223 Timişoara, Romania E-mail: popovici@math.uvt.ro

> Received January 17, 2005 Revised version May 10, 2005 (5567)