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Abstract. We establish a Banach—Steinhaus type theorem for nonlinear functionals
of several variables. As an application, we obtain extensions of the recent results of Bal-
cerzak and Wachowicz on some meager subsets of L' (x) x L' (i) and ¢co X co. As another
consequence, we get a Banach—Mazurkiewicz type theorem on some residual subset of
C'[0,1] involving Kharazishvili’s notion of ¢-derivative.

1. Introduction. The Banach—Steinhaus theorem for normed linear
spaces is usually given in the following form (see, e.g., [Ze95, p. 173]):

Let X be a Banach space over K and Y be a normed space over K. If
a family {T,, : n € N} C L(X,Y) is pointwise bounded on X, then it is
uniformly bounded, i.e., sup{||Tpz| : n € N, ||z|| < 1} is finite.

This result has numerous applications in functional analysis.

However, in their paper [BS27] Banach and Steinhaus obtained a some-
what more general result. Namely, it suffices that {T,, : n € N} is pointwise
bounded on some set of second category. (This version—even in a more
general setting—is given, e.g., in [Ru91, Theorem 2.5|.) Hence we get the
following equivalent reformulation:

If a family {T, : n € N} C L(X,Y) is not uniformly bounded, then the
set B :={x € X : (T,x)22, is bounded} is meager.

(We use the term “meager set” instead of “set of first category”.) Thus the
Banach—Steinhaus theorem also gives us a tool to study the Baire category
of sets: Given a set D C X, if there exists a normed space Y and a family
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{T), - n € N} C L(X,Y) such that limsup,,_, [|T,,]] = oo and D C E,
then D is meager.

In this paper we are going to present some applications of this approach.
However, we will need a more general version of the Banach—Steinhaus the-
orem in which we allow T, to be nonlinear. Some results of this kind known
in the literature usually deal with homogeneous operators, whereas the addi-
tivity of T}, is replaced by weaker conditions like subadditivity of x — ||T,,x||
(see, e.g., [Ra04, p. 246], [Yo80, p. 69]) or its asymptotic variant [Ga51].
For our purposes, however, both homogeneity and subadditivity conditions
are too strong, and moreover, we need to consider functionals of several
variables. A Banach—-Steinhaus type theorem in this setting is established in
Section 2 (Theorem 1). The rest of the paper is devoted to its applications. In
Section 3 we generalize a recent result of Balcerzak and Wachowicz [BWO01]
stating that the set

{(f.9) € L'[0,1] x L'[0,1] : f - g € L'[0,1]}

is meager. Here we consider the Banach space LP(u), where 1 < p < oo and
the measure u is o-finite, and we give a list of equivalent conditions for the
set

{(f,9) € LP(u) x LP(p) : f-g € LP(p)}

to be of second category (cf. Theorem 2). Some examples of meager subsets
of cg X ¢y and ¢y x [P other than those in [BWO01] are given in Section 4.
Finally, we establish a Banach-Mazurkiewicz ([Ba31|, [Ma31]) type theorem
on some residual subset of C[0, 1] involving Kharazishvili’s [Kh98, p. 147]
notion of @-derivative.

2. A Banach—Steinhaus theorem for nonlinear functionals. We
start with the following version of the uniform boundedness principle which
is similar to [Ze95, Theorem 3B], though slightly more general.

PROPOSITION 1. Let (X, 7) be a topological space and F, : X — Ry be
lower semicontinuous for all n € N. Set

(1) E :={x e X :(F,x);2, is bounded}.

If E is of second category, then the family {F, : n € N} is equibounded on
some nonempty open subset of X.

Proof. We use a standard argument, observing that E = |J,,cn Em,
where

Em:=[){z € X : Fax <m}.
neN
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Since the F), are lower semicontinuous, all the sets F,, are closed. By hy-
pothesis, at least one of them has a nonempty interior, which yields the
assertion. m

Let R4 denote the set of all nonnegative reals. Let A be a subset of a
linear space X such that A+ A C A. Given L > 1, we say that a function
v : A — Ry is L-subadditive if

e(x+y) < L(p(x) +¢(y) forallz,yeX.

In particular, if X = R, A := R4 and ¢ is nondecreasing, then it is easily
seen that ¢ is L-subadditive if and only if ¢ is moderated (see, e.g., [Ra04,
p. 235]), i.e., (2z) < Cp(x) for some C' > 0 and all x € R,..

The following result is an extension of the classical Banach—Steinhaus
[BS27] theorem.

THEOREM 1. Given k € N, let X1,...,X; be normed linear spaces,
X=X1ifk=1and X := X1 x--- x X if k > 1. Assume that L > 1,
F, : X — Ry (n € N) are lower semicontinuous and such that all functions
xi — Fp(xi,...,x,) (0 € {1,...,k}) are L-subadditive and even. Let E be
defined by (1).

(a) If
(2) sup {Fpz :n €N, |lz|| <1} = oo,
then E is a meager set.
(b) If (2) does not hold, then E = X.

In particular, if X1, ..., X are Banach spaces, then the following statements
are equivalent:
(i) E is meager;
(il) F # X;
(iii) sup{Fpx:n €N, [jz|| <1} = oo.
Proof. We start with the proof of (a). Endow X with the max norm if
k > 1. Assume that (2) holds. Suppose, on the contrary, that E is of second
category. Then, by Proposition 1, there exists a closed ball B(z",r) such
that {F,, : n € N} is equibounded on B(z°% 7). Let 2 = (29,...,2Y). Thus
we get
M = sup{Fp(z1,...,21) : [|[x1 — 23, ..., |zx — 22| <7, n € N} < 0.

Following the Banach—Steinhaus argument we divide the proof into two steps.

STEP 1. We show that the family {F,, : n € N} is equibounded on
B(0,r). Let n € N and = = (x1,...,2x) € B(0,7), ie., |z < r fori €
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{1,...,k}. Then, by hypothesis, we get
Fox = Fy(zy + 29 — 29,29, 1)
<L (Fo(zy+ a8, @o, ... xp) + Fo(—20, 20, ..., 21))
= L(Fp(zy + 2%, 20 + 25 — 25, 23, ..., 1)
+ B (29, w0 + 23 — 23, 23, ..., 11)).
Continuing in this fashion, after k steps we will get the sum of 2% values of
F,, at some points of B(xg, ) multiplied by L¥. This yields
(3) sup{Fpz:n €N, |z| <r} <2FML*
STEP 2. Given n,p € N and z € X, by L-subadditivity we get

p
Fow = Fo( Y a1 /p s, k) < ol Fulan /o2, ).
i=1

The same argument applied successively to the coordinates s, ...,z gives
(4) Foz < p"LFO~VE, (2/p).
Let p € N be such that 1/p < r. If ||z|| < 1, then z/p € B(0,r), so (3) and
(4) imply that

Fox < (2p)*ML*P.

This means {F,, : n € N} is equibounded on the unit ball, contrary to (2).
Thus FE is meager.
Now we prove (b). So assume that (2) does not hold, i.e.,

C:=sup{F,z:neN, |z <1} < 0.

We show that E = X. Given x € X, there is a p € N such that ||z/p| < 1.
Then, by (4),
Fhx < pkLk(p_l)C for all n € N,

which means z € E.

To prove the last statement observe that if F is meager, then £ # X
by Baire’s theorem. (ii)=-(iii) follows from (b), whereas (iii)=-(i) was stated
in (a). =

REMARK 1. The referee pointed out that Theorem 1 could be general-
ized by assuming that X1i,..., X, are locally bounded F*-spaces. Indeed, by
the Aoki-Rolewicz theorem (see, e.g., [Ro84, Theorems 3.2.1 and 3.2.1']), for
some p > 0, there are p-homogeneous F-norms on the above spaces equiv-
alent to the original ones. Using these new F-norms, we could rewrite the
proof of Theorem 1 with one minor change in the line following (4).

REMARK 2. The assumption of Theorem 1 that all F), are even in each
variable cannot be omitted. Indeed, let X := R and ¢ : R — Ry be a
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nondecreasing function. Then it is easily seen that ¢ is subadditive iff |,
is subadditive. In particular, if F,z := 0 for z < 0 and F,x := nx for z > 0,
then all F,, are subadditive and continuous, the family {F,, : n € N} is not
equibounded on [—1,1], but E (= (—00,0]) is of second category.

If, however, k = 1 and a family {F, : n € N} of lower semicontinuous,
L-subadditive (not necessarily even) and nonnegative functionals is point-
wise bounded on some symmetric set of second category, then the proof of
Theorem 1 shows that {F,, : n € N} is equibounded on the unit ball. In the
case where L = 1, this result is given in [Bo02, p. 90].

COROLLARY 1. Let X, Y and Z be normed linear spaces and let
B(X x Y, Z) denote the space of all continuous bilinear mappings from X XY
into Z. Assume that a family {T,, : n € N} C B(X xY,Z) is pointwise
bounded on some set D C X X Y of second category. Then the sequence
(1705, is bounded.

Proof. Set
Fo(z,y) == ||Th(z,y)|| forneN,ze€ X andyeY.

Clearly, all F;, are continuous; moreover, they are subadditive and even in
each variable. Further, D C E, where E is defined by (1). Since D is of
second category, so is E and thus Theorem 1 is applicable. »

REMARK 3. It seems that Corollary 1 is not well known since even its
particular version with D = X x Y (which may be found in [K679, p. 158] for
some wider class of spaces) was rediscovered in [Ge92]. Actually, this version
can be obtained via the classical Banach—Steinhaus theorem using the fact
that the space B(X x Y, Z) is isometrically isomorphic to L(X, L(Y, Z)). In
fact, Corollary 1 can also be proved in this way with the help of a converse
to the Kuratowski-Ulam theorem (see, e.g., [Ox71, p. 57]; observe that E is
an F, set, so it has the property of Baire). In this case, however, we need
the extra assumption that X or Y is separable.

As another simple consequence of Theorem 1, we obtain the following
extension of the classical principle of condensation of singularities ([BS27];
see also, e.g., [Yo80, p. 74]), which will be useful in Section 5.

COROLLARY 2. Let Xq,..., X} and X be as in Theorem 1. Assume that
L>1,F,pm:X — Ry (n,m e N) are lower semicontinuous and such that
all functions x; — Fpm(x1,...,25) (4 € {1,...,k}) are L-subadditive and
even. If

sup{Fpmz:n €N, |z]| <1} = o0
for each m € N, then the set
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R :={z € X : limsup F, y,x = o0 for all m € N}

n—oo

15 residual.
Proof. We need to show that F := X \ R is meager. Given m € N, set
E, :={z € X : (Fymz),~; is bounded}.

It is clear that E = J,,,cyy Em- Since, by Theorem 1, each E,, is meager, so
iIsE. m

3. A meager set in LP(u) x LP(p). Let (X, X, 1) be a measure space.
Following Balcerzak and Wachowicz [BWO01], given a real p > 1, we consider
the set

(5) Ep:={(f,9) € LP(u) x LP(p) : f - g € LP() }-
It is shown in [BWO01] that if p =1, X :=[0,1] and p is Lebesgue measure,
then FE is meager.

In what follows we assume that (X, X, ) is o-finite. Then there exists an

ascending sequence (X,,)>°; of measurable sets of finite measure such that
X = Upeny Xn- Given n € N and f € LP(u), set

(6) f(x) == min{|f(z)|P,n} xx,(z) forall x € X,

where x x,, denotes the characteristic function of X,,. Clearly, 0< f*(z) <n.
Now for n € N and f,g € LP(u), define

(7) Fu(f,9) =\ fmg™ dp.
X
Then we have

Fulf,9) < [y, = n2(X,) < oo,
so Fy, : LP(u) x LP(u) — R,
LEMMA 1. Let E, be defined by (5). Then

E, ={(f,9) € LP(p) x LP(u) : (Fu(f,9))peq is bounded}
with Fy, as in (7).
Proof. Let f,g € LP(u). Since (X,,)5°, is ascending and it covers X, we

n=1

get xx, " 1. Hence and by (6), given x € X, both sequences (f**(x))>2,
and (g*»(x))22, are nondecreasing and converge to |f(z)|P and |g(x)[?, re-

spectively. Consequently, f*»g*» 7 |fg|P. By Beppo-Levi’s theorem, we get

(8) Fu(f,9) = \If - gl”.

Now if we assume that (F,(f, g))>2, is bounded, then (8) implies that f-g €
LP(u), ie., (f,g9) € Ep. Conversely, if (f,g) € Ep, then {|f - g’ < oo, and
(8) implies that (F,,(f,g))s>; is bounded. This completes the proof. m



Nonlinear Banach—Steinhaus theorem 309

LEMMA 2. Let F, be defined by (7). Then F, is 2P~'-subadditive and
even in each variable.

Proof. Let f1, fa,g € LP(u). Since the function ¢t — min {¢,n} (t € Ry) is
subadditive, with the help of Holder’s inequality we infer that given = € X,,,

(1 + fo)™(x) < min{(|f1(2)| + | fo(2) )P, n}
< min{27 (| fi(2) P + | fa() P), n}
< min{2°7 1 f1 ()P, n} + min{2P | fao(2) [P, n}.
As n < 2P~ n, we get
(fr+ f2) " (x) < 227 (fy (2) + f3 (@)).
Since this inequality also holds for x € X \ X,,, we obtain
(fr+ fo)™ < 2P7Hf + f57)

Hence f — F,(f,g) is 2P~ l-subadditive. Moreover, since (—f1)* = f;", we
conclude that F;, is even in the first variable. Being symmetric, it has all the
properties we need. m

LEMMA 3. The functionals F,, : LP(u) x LP(u) — Ry defined by (7) are
lower semicontinuous.

Proof. Fix an n € N. Given fy, go € LP(u), we need to show that

M := liminf F, , > F, : '
(f,.9)—(fo,90) (f,9) (fo,90)

Consider a sequence ((fx, gx))5se; such that || fi — foll, — 0, |gx — gollp, — O
and F,(fx,9x) — M as k — oo. By passing to a subsequence if necessary,
we may assume that both (f;)22, and (gx)p2, converge a.e. to f and g,
respectively. Then it is easily seen that (f,")72, and (g;")32, converge a.e.

to fy" and g, respectively. By Fatou’s Lemma,
liminfg wregt > Sliminff,:" R
k—o0 k—o0

ie., M > F,(fo,90), which completes the proof. m

REMARK 4. In fact, it can be proved that all F), are continuous (see
Appendix), which, however, is somewhat more difficult to show.

Now Lemmas 1-3 and Theorem 1 immediately yield the following

PROPOSITION 2. Let (X, X, u) be a o-finite measure space, p > 1 and
E, be defined by (5). The following statements are equivalent:

(i) Ep is meager in LP(u) x LP(p);
(ii) Ep # LP(p) x LP(p).
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In particular, the latter condition holds if X := [0,1] and u is Lebesgue
measure (consider the pair (h, h), where h(z) := z1/(?»)), so Proposition 2
extends [BWO01, Theorem 1.2].

REMARK 5. Actually, Proposition 2 is also valid for p € (0,1). (I owe
this result to the referee.) This follows from Remark 1 and the fact that the
F-space LP(u) is locally bounded. Moreover, Lemmas 1 and 3 remain valid
for such p, whereas the same argument as in the proof of Lemma 2 shows
this time that all functionals F,, are subadditive in each variable because of
the subadditivity of ¢ — t? for p € (0,1). Proposition 2 can also be extended
by substituting the Orlicz space N(L(p)) for LP(u) if the function N has
appropriate properties. The details will be given in a forthcoming paper.

In the rest of this section, we give other conditions equivalent to (ii) of
Proposition 2 under some weaker assumptions on the measure space. Re-
call that (X, X, u) is semifinite (cf. [Fr01, 211F]) if whenever A € X and
((A) = oo, there is a B € X such that B C A and 0 < u(B) < co. (X, X, )
is localizable (cf. [Fr01, 211G]) if it is semifinite and whenever 2 C X, there
is a B € X such that A\ B is negligible for every A € 2; moreover, given
C € X, if A\ C is negligible for every A € 2, then B\ C is negligible.
Also recall that a measurable function f : X — R is quasi-simple (cf. [Fr00,
122Y(d)]) if f is p-integrable and f(X) is countable.

Note first that it is sufficient to examine condition (ii) of Proposition 2
only for p = 1 because of the following

LEMMA 4. Let (X, X, u) be a measure space. The following statements
are equivalent:
(i) E1 # L' () x L' (n);
(i) B, # L"(u) x L™ (u) for some r > 1;
(i) E, # LP(p) x LP(p) for all p > 1.
Proof. (i)=-(ii) and (iii)=-(i) are obvious. We show (ii) implies (iii). By
(ii), there exist f,g € L"(u) such that {|f - g|” = oo. Given p > 1, set

( )‘f‘r/p and g, := ’g’r/p_ It is clear that f,, gp € LP(1), but (fp, gp) ¢ Ep,
iii) holds. =

LEMMA 5. Let (X, X, u) be a measure space and f : X — R4 be measur-
able. Then there exists a sequence (f,)>2, of measurable nonnegative func-
tions taking values in some countable set such that f, — f uniformly on X
and (fn(z))22, is nondecreasing for all v € X.

Proof. Given n € N, set
i—1
27L

Aiy = {x e X: < flx) < 2%} for all 7 € N.
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Then (J;cy Ai;n = X since f takes finite values. Hence given x € X, there is
an i, € N such that z € A4;_,, and the i, is unique since (4;,)5°, is disjoint.
We set

by — 1
fn(z) == o - for all z € X.

Clearly, f,, is measurable and f,,(X) is countable. Since |f,(z)— f(x)| < 1/2"
for all x € X, it follows that f, — f uniformly on X. Finally, it is easily
seen that f,(z) < fp41(x) forall x € X. =

We will also need the following result concerning sequences of reals, in
the proof of which we use Hadamard’s trick (cf. [Kn47, §41, 178.1]).

LEMMA 6. Let (by)02; be a sequence of positive reals such that the series
Yoo by converges. Let Ry—1 = Y o, bi for n € N and assume that the
sequence (R, /bp)>2, is bounded. Then there exists a sequence (an)3>, of
positive reals such that

oo o0
Z apb, < o0 and Z a,ibn =00
n=1 n=1

2
Moreover, a; by, + 0.

Proof. Set
\/ n—1 — \/ n

Then Y )_; arby = v/ Ro — v/ Ry. Since R, — 0, we conclude that

1/2
S ot = (o) "
in particular, the series Z — 1 apby, converges. On the other hand,

o2h :<\/ n—1 — \/_> ( Vb, >2
m Vb Von + Ry + VR,
1 1
N (v/1+ Ry /by + \/Rn/bn)? - 4(1+ R, /by)

By hypothesis, there is an M > 0 such that R, /b, < M for all n € N. Hence
aZb, /0, so the series >.°° . a2b, diverges. u

for all n € N.

n=1

PROPOSITION 3. Let (X, X, u) be a measure space and E; be defined
by (5). The following statements are equivalent:

() By # L () x L (u);

(i) Lt (1) \ L* () # 05

(iii) there is a quasi-simple function g such that g ¢ L*(p);
(iv) inf{p(A): A e X, u(A) >0} = 0;
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(v) there is a disjoint sequence (A,)52, of measurable sets of positive
measure such that u(Ay) — 0.

Proof. (i)=(ii): By hypothesis, there are f,g € L'(x) such that f - g ¢
L'(u). Then f and g are finite a.e., so
f@)g(a) = ((f(z) + 9(2))* = (f(x) — g(x))}) /4 ae.
This implies that f +¢g ¢ L?(u) or f —g & L?(u), so LY (u) \ L?(u) # 0.
(ii)=(iii): By hypothesis, there is an f € L'(u) \ L?(p). Without loss of
generality we may assume that f > 0 and it takes finite values on X.

STEP 1. Assume that p is finite. By Lemma 5, there is a measurable
function h: X — Ry such that h(X) is countable, h < f? and

(9) fA(z)—h(z) <1 forallz e X.

Set g := v/h. Then g < f so g € L'(;t). Moreover,
so={2={(f*-¢"+|g"

Since by (9), § (f? — ¢g?) < u(X) < oo, we infer that §g? = oo. Thus g is the

desired function.

STEP 2. Now assume that p(X) = oo and p is o-finite. Then there is a
disjoint cover (X,,)>°; of X by measurable sets of finite positive measure.
By Lemma 5, given n € N, there is a measurable function A, : X, — R
such that h, < f?|x,,

1
F(x) = ha(2) < s
0= In) = )
and hy,(X,) is countable. Define h := (J,cx hn. Then h: X — Ry, h(X) is
countable and h < f2. Set g := v/h. Since

oo o0 1

SW—%=ZSW—MS;%:L

X n=1X,

for all z € X,,,

we infer as in Step 1 that g ¢ L?(u). Moreover, g is quasi-simple.
STEP 3. Finally, we consider the case of arbitrary measure. Set
X':={zreX: f(x) >0}

Since f € L'(u), the subspace measure py: is o-finite. Clearly, f|x: €
L' (ux) \ L?(ux), so by Steps 1 and 2, there is a quasi-simple function
g: X' — Ry such that g € L' (ux+) \ L?(ux-). It suffices to extend g onto X
by setting g(x) := 0 for z € X \ X'.

(iii)=(iv): Since g € L'(u)\ L?(1), it follows that g(X) is infinite. Thus
there is a sequence (a,)5; of distinct reals such that g(X) = {a, : n € N}
and we may assume a, > 0. Let 4, := g7'({a,}). Then g = >°°  anxa,.
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Suppose, on the contrary, that
=inf{u(A): Ae X, u(A) >0} >0.

Let K := {n € N: u(A,) > 0}. Then {g =3 _x anp(Ay) and appu(Ay) >
ran for all n € K. Hence ) a, < 00; in particular, (a,)nex is bounded.
On the other hand, we have

o =\g"=>"alu(4, <Supan-89<007
nek
which is a contradiction.
(iv)=-(v): By hypothesis, there is a sequence (B),)>>; of measurable sets
of positive measure such that u(B,) — 0. By passing to a subsequence if
necessary, we may assume that p(Bp+1) < pu(By)/2. Set

Ay = B\ U B,+; foralln € N.
ieN

Since p1(Bpyi) < u(Bn)/2¢, we get

= ()
,U( U Bn+i> < Z MTR = w(Bn),
i€N i=1

which implies p(A4,) > 0. Clearly, the sets A,, are disjoint and pu(4,) — 0
since ju(An) < pu(By).

(v)=(i): Set b, := u(Ay) for all n € N. Again, as in the proof of
(iv)=(v), we may assume that b,.; < b,/2, so that b,; < b,/2! for all
i,n € N. Hence if R, is as in Lemma 6, then R,, < b,, so R, /b, < 1. By
Lemma 6, there is a sequence (a,)5; of positive reals such that > "> | a,b,
< oo and Y o2, a2b, = co. Hence if

(o.9]
fi="anxa,,
n=1

then f € L'(u) \ L*(n), i-e., (f, f) € L' () x L'(n) \ Er. m

LEMMA 7. Let (X, X, u) be a localizable measure space. If 11 is not purely
atomic, then there exists a § > 0 such that p(X) 2 [0, 0].

Proof. By the Saks theorem (see, e.g., [Fr01, 214X (a)]), there is an X' €
2/ such that the subspace measure py is atomless and py\x is purely
atomic. Then p(X’) > 0; otherwise, if A € X and pu(A) > 0, then pu(A\ X')
> 0so A\ X' (hence A) contains an atom. This means y is purely atomic,
a contradiction. If p(X’) is finite, then p(X) 2 [0, u(X")] by the Sierpiriski-
Fichtenholz theorem (cf. [Fr01, 215D]) since px- is atomless. If pu(X') = oo,
then there is an A C X’ such that A € ¥ and 0 < p(A) < oo since, in
particular, x is semifinite. Then as before we infer that (%) 2 [0, u(A)]. =
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PROPOSITION 4. Let (X, X, ) be a localizable measure space and Ey be
defined by (5). The following statements are equivalent:

(i) By # L' (p) x L' (p);

(i) if p is purely atomic, then inf{u(A): A€ X, u(A) >0} =0.

Proof. (i)=-(ii) is obvious since (i) implies (iv) of Proposition 3.

(ii)=(i): It is enough to show that (ii) implies (iv) of Proposition 3. If
u is purely atomic, then we are done; if not, then (iv) holds in virtue of
Lemma 7. =

PROPOSITION 5. Let (X, X, 1) be a measure space and Ei be defined
by (5). The following statements are equivalent:

(i) Br # L' (p) x L' (w);

(i) L1 () \ L() # 0.

Proof. (i)=(ii): Suppose, on the contrary, that L'(u) C L% (u). Let
f,g € L'(it). Then there is an M > 0 such that |f| < M a.e. on X. Hence
|f - g| < M - |g|, which implies f-g € L'(u). Thus By = L'(p) x L'(u), a
contradiction.

(ii)=(i): It suffices to show that (ii) implies (iv) of Proposition 3. Let
f € LY(u)\ L (). Suppose, on the contrary, that

=inf{u(A): Ae X, u(A) >0} >0.

For n € N, set

Ap i ={x e X :|f(z)| > n}.
Since f ¢ L*(u), we infer that p(A,) > 0, which implies p(A4,) > r. Hence
we get

> VIl =\ 1F] = nu(An) > nr

X An

for all n € N, which yields a contradiction. =

Summing up the results of this section, we have the following

THEOREM 2. Let (X, X, pn) be a o-finite measure space and

E:={(f,9) € L'"(u) x L*(n) : f-g € L' (1)}
The following statements are equivalent:

(i) E is of second category;
(i) E = LY (u)x L' (p), i.e., (L*(p),-) is a semigroup, where “” denotes
multiplication of functions;
(iii) (LP(u),-) is a semigroup for some p > 1;
(iv) ( P(u),-) is a semigroup for all p > 1;
(V% ) € L2 (p);

(vi) every quasi-simple function is in L*(p);
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) L (p) © L*(p);

i) w is purely atomic and inf{u(A): A€ X, u(A) >0} > 0;
x) inf{u(A): Ae X, u(A) >0} > 0;
X) every disjoint sequence (Ap)>2, of measurable sets of positive mea-

sure has the property that p(|J,cy An) = 0.

(vii
(viii

(i
(

Proof. Since a o-finite measure space is localizable (cf. [Fr01, 211L]), the
equivalence of conditions (i)—(ix) follows from Lemma 4 and Propositions
2-5. (ix)=-(x) is obvious. To prove the converse suppose, on the contrary,
that inf{u(A) : A € ¥, u(A) > 0} = 0. By Proposition 3, there is a dis-
joint sequence (A;)2%; of measurable sets of positive measure such that
u(A,) — 0. By passing to a subsequence if necessary, we may assume that
w(An) < 1/2". Then pu(lU, ey An) < 1, which contradicts (x). =

4. Some meager sets in products of Banach sequence spaces.
As another application of Theorem 1, we give the following generalization
of [BWO01, Theorem 1.1]. We consider here the space ¢ of all real sequences
convergent to 0, endowed with the sup norm.

THEOREM 3. Let a € RN and set

E, = {((:En)ff’:l, (Yn)pe1) € co X cp (Zamy& is bounded}.
n=

Then E, is meager in co X co if and only if o & 11, i.e., 00| |a| = oc.
REMARK 6. It is shown in [BWO1] that the set E(; ) is meager.

Proof of Theorem 3. Set
n
= Z a;xiy;  for allm € N and x,y € ¢p.

Clearly, all T}, are continuous bilinear functionals on ¢y X ¢y and
Ey ={(x,y) € co x co : (Tn(z,y))r>; is bounded}.

Thus by Theorem 1 (with F, defined as in the proof of Corollary 1), E, is
meager iff sup{||7,,| : n € N} = oo. It is an easy exercise to show that
| Tl = >°0 |eil. Thus E, is meager iff Y 00 | |a,| = 00. m

In a similar way, with the help of theorems on representation of dual
spaces, we may obtain results of the above type for other products of Banach
sequence spaces. For example, we give the following theorem, the proof of
which is left to the reader.
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THEOREM 4. Let a €RY, 1<p<oo, and let g be such that 1/p+1/q=1.
Set

E, = {((ﬂﬁn)n 1 (Yn)nzr) € co X 1P (Zaﬁ’yl)

Then E,, is meager iff o ¢ 19.

18 bounded}.

5. A residual set in C[0,1]. Assume that a mapping @ : [0,1] — cp
is given, so that & = (,)5%, where ¢, : [0,1] — R and ¢,(z) — 0 for all
x € X. Suppose that

(10)  ¢n(1) <0< pp(0) and ¢p(z) #0 for all n € N and z € (0,1).
Given f:[0,1] — R and = € [0, 1], we say that f has a ®-derivative at
(see [Kh98, p. 147]) if the following limit (possibly infinite) exists:
[z + pn(2)) = f(2)
fp(x) == lim .

In what follows we consider the Banach space C[0, 1] endowed with the sup
norm. The following result was established in [Kh98, p. 148].

THEOREM 5 (Kharazishvili). Assume that & has the Baire property. De-
fine Ry C C[0,1] as follows: f € Ry if there is a residual set A in [0, 1] such
that for all x € A, the finite @-derivative fj(x) does not exist. Then Ry is
residual in C[0,1].

Using the notion of @-derivative, the classical theorem of Banach and
Mazurkiewicz ([Ba31], [Ma31]) can be written in the following way.

THEOREM 6 (Banach-Mazurkiewicz). Define the set Ro C C10,1] as
follows: f € Ry if there is a mapping P : [0,1] — co such that p,(x) > 0 for
alln € N and x € [0,1), and f5(z) is infinite for all x € [0,1). Then Ry is
residual in C[0, 1].

Note that Ry can also be defined as follows: f € Ry if for all z € [0,1),
DT f(x) or Dy f(z) is infinite, where DT f(x) (resp., Dy f(z)) denotes the
upper (resp., lower) right Dini derivative of f at z (in Bruckner’s [Br94]
notation).

Given a mapping @ satisfying (10), we define the upper Dini ®-derivative
of f:]0,1] - R at z € [0, 1] as follows:

- : flx+on(x) — fl2)
fo(z) := limsup .
By substituting lim inf for lim sup, we get the lower Dini @-derivative fj(z).

Using these notions and Corollary 2, we will prove the following
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THEOREM 7. Assume that @ : [0,1] — co satisfies (10) and A is a count-
able dense subset of [0,1]. Define R3 C C[0,1] as follows: f € Rs if for all
x € A, fi(x) or fi(x) is infinite. Then Rj is residual in C[0,1].

Proof. Let A = {z,, : m € N}. Condition (10) implies that given z €
[0,1], 2 + ¢n(x) € [0, 1] for sufficiently large n. Hence given m € N, there is
a ky, € N such that x,, + ¢nik,, (zm) € [0,1] for all n € N. Thus we may

define functionals F, ,, by
Pr+km (zm)
for all n,m € N and f € CJ0,1]. We show the assumptions of Corollary 2

are satisfied with k£ := 1 and X; := C0, 1]. It is easily seen that all F;, ,, are
subadditive and even. Set

hom = @ntk,, (Tm) for all n,m € N.
Given f,g € C[0,1] and n,m € N, we have
|Enm () = Fnm(9)] < [f(@m + hnm) — 9(Tm + hnm) |/ | hm]
+19(xm) — f(@m)]/|hnm|
<2|[f = gll/[hnml,
which shows F}, ,,, is Lipschitzian, hence continuous. Fix an m € N. We show
M :=sup{F,n(f):neN, | f]| <1} =oc.
Suppose that, on the contrary, M is finite. The following three cases are
possible.
1) zy, € (0,1). Let 6 > 0 be such that (x,, — 0,2, +d) C [0,1] and
0(M+1) < 1. Set
(M +1)(x —zp,) forxz € (xy —06,xm +0),
fx):=¢ —0(M+1) for z € [0, zy, — 9],
(M +1) for z € [z, +6,1].
Then f is continuous and || f|| < 1. Since limy, .o Anm = 0, thereisann € N
such that Ay, < 6. Then F), ,,(f) = M + 1, which is a contradiction.
2) = 0. Set
‘ (M +1)x forx €0,1/(M +1)),
/(@) ':{1 for z € [1/(M +1),1].

If n € N is such that Ay, < 1/(M + 1), then F,,,,(f) = M + 1, a contra-
diction.
3) z, = 1. Use a similar argument to item 2) setting

(-1 for x € [0, M/(M + 1)],
f(z) _{(M+1)(33—1) for z € (M /(M +1),1].
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Thus M = oo and by Corollary 2, the set
R={f € C[0,1] : limsup Fy, n(f) = oo for all m € N}

n—oo

is residual. Clearly, R coincides with R3, so the proof is complete. m

REMARK 7. Actually, the assumption of Theorem 7 that A is dense is
superfluous, but the result seems to be more interesting for such sets. More-
over, Theorem 7 yields the more general version. Indeed, if A is a countable
subset of [0,1] and A := AU (QN[0,1]), then R3(A) C Rs(A), and since by
Theorem 7, Rs(A) is residual, so is Rs(A).

6. Appendix: Continuity of integral functionals. Our purpose here
is to show that the functionals F, defined by (7) are continuous.

LEMMA 8. Given 1 < p < oo, the operator f +— |f|P from LP(u) into
LY () is continuous.

Proof. This follows immediately from the fact (cf. [Ru74, Chapter 3,
Exercise 24|) that if f,g € LP(n) and M > 0 is such that || f]|, < M and
lgllp < M, then

(11) VAP =gl < 20MP7H | f =gl m
REMARK 8. Inequality (11) may be sharpened. Indeed, by Lagrange’s
theorem we have
1P — tP| < p|ls —t|(sP" L+ tP71)  for all s,t >0,
which yields

(12) [P = 1glPL < pl LT = lal 1(FP~ + 1glP™).

Let p > 1 and q := p/(p — 1). Since |f|P~! and |g[P~! are in L9(u), and

|f] — |g| € LP(w), we get, by (12) and using Holder’s inequality twice,
VUL = 1gPL< ol LA = Lal I (LI + g l15/)

= pll £ = gl I+ Ngllp™),
which sharpens (11).

LEMMA 9. The operator (-)* : LP(u) — L'(p) defined by (6) is contin-
uous.

Proof. Let f, € LP(p) for all k € NU{0}, and || fx — fo||p — 0. Since there
is a conegligible subset of X on which all functions f; have finite values, we
may assume that f; are real-valued. Then, given k£ € N, we have

fet = xx, (el +n = [ felP = nl)/2.
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By continuity of the operators f + |f|P from LP(u) into L'(x) and (f, g) —
f+g from L'(p) x L*(p) into L'(), we now infer that || fi™ — f3"[1 — 0
as k — 0o. m

LEMMA 10. The functional F, : LP(u) x LP(u) — Ry defined by (7) is
continuous for all n € N.

Proof. Fix an n € N. Assume that || f — f|l, — 0 and ||gx — g/, — 0 as
k — oco. By Lemma 9, we have | f;" — f*|[{ — 0 and ||g;" — g*"||s — 0 as
k — oo. By the inequalities 0 < f;" < n, 0 < g;" < n, we hence get

Fn(frrgr) — Fu(F,9)l < V1 £gim = Fma™ Ixx,

X
= Vg =g + g (i = )
Xn

n(Hg _g*"||1+||f;;"—f*"||1)—>()ask‘—>oo_ n
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