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A nonlinear Bana
h�Steinhaus theorem andsome meager sets in Bana
h spa
esby
Jacek Jachymski (�ód¹)Dedi
ated to the memory of my Tea
her,Professor Tadeusz �wi¡tkowskiAbstra
t. We establish a Bana
h�Steinhaus type theorem for nonlinear fun
tionalsof several variables. As an appli
ation, we obtain extensions of the re
ent results of Bal-
erzak and Wa
howi
z on some meager subsets of L1(µ)× L1(µ) and c0 × c0. As another
onsequen
e, we get a Bana
h�Mazurkiewi
z type theorem on some residual subset of

C[0, 1] involving Kharazishvili's notion of Φ-derivative.1. Introdu
tion. The Bana
h�Steinhaus theorem for normed linearspa
es is usually given in the following form (see, e.g., [Ze95, p. 173℄):Let X be a Bana
h spa
e over K and Y be a normed spa
e over K. Ifa family {Tn : n ∈ N} ⊆ L(X, Y ) is pointwise bounded on X, then it isuniformly bounded , i.e., sup{‖Tnx‖ : n ∈ N, ‖x‖ ≤ 1} is �nite.This result has numerous appli
ations in fun
tional analysis.However, in their paper [BS27℄ Bana
h and Steinhaus obtained a some-what more general result. Namely, it su�
es that {Tn : n ∈ N} is pointwisebounded on some set of se
ond 
ategory. (This version�even in a moregeneral setting�is given, e.g., in [Ru91, Theorem 2.5℄.) Hen
e we get thefollowing equivalent reformulation:If a family {Tn : n ∈ N} ⊆ L(X, Y ) is not uniformly bounded , then theset E := {x ∈ X : (Tnx)∞n=1 is bounded} is meager.(We use the term �meager set� instead of �set of �rst 
ategory�.) Thus theBana
h�Steinhaus theorem also gives us a tool to study the Baire 
ategoryof sets: Given a set D ⊆ X, if there exists a normed spa
e Y and a family2000 Mathemati
s Subje
t Classi�
ation: Primary 46B25, 54E52; Se
ondary 26A15,26A24, 26B35, 28A12.Key words and phrases: Bana
h�Steinhaus theorem, Baire 
ategory, subadditivity,semi
ontinuity, σ-�nite measure, integrable fun
tion, Φ-derivative.[303℄
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{Tn : n ∈ N} ⊆ L(X, Y ) su
h that lim supn→∞ ‖Tn‖ = ∞ and D ⊆ E,then D is meager.In this paper we are going to present some appli
ations of this approa
h.However, we will need a more general version of the Bana
h�Steinhaus the-orem in whi
h we allow Tn to be nonlinear. Some results of this kind knownin the literature usually deal with homogeneous operators, whereas the addi-tivity of Tn is repla
ed by weaker 
onditions like subadditivity of x 7→ ‖Tnx‖(see, e.g., [Ra04, p. 246℄, [Yo80, p. 69℄) or its asymptoti
 variant [Ga51℄.For our purposes, however, both homogeneity and subadditivity 
onditionsare too strong, and moreover, we need to 
onsider fun
tionals of severalvariables. A Bana
h�Steinhaus type theorem in this setting is established inSe
tion 2 (Theorem 1). The rest of the paper is devoted to its appli
ations. InSe
tion 3 we generalize a re
ent result of Bal
erzak and Wa
howi
z [BW01℄stating that the set

{(f, g) ∈ L1[0, 1] × L1[0, 1] : f · g ∈ L1[0, 1]}is meager. Here we 
onsider the Bana
h spa
e Lp(µ), where 1 ≤ p < ∞ andthe measure µ is σ-�nite, and we give a list of equivalent 
onditions for theset
{(f, g) ∈ Lp(µ) × Lp(µ) : f · g ∈ Lp(µ)}to be of se
ond 
ategory (
f. Theorem 2). Some examples of meager subsetsof c0 × c0 and c0 × lp other than those in [BW01℄ are given in Se
tion 4.Finally, we establish a Bana
h�Mazurkiewi
z ([Ba31℄, [Ma31℄) type theoremon some residual subset of C[0, 1] involving Kharazishvili's [Kh98, p. 147℄notion of Φ-derivative.2. A Bana
h�Steinhaus theorem for nonlinear fun
tionals. Westart with the following version of the uniform boundedness prin
iple whi
his similar to [Ze95, Theorem 3B℄, though slightly more general.Proposition 1. Let (X, τ) be a topologi
al spa
e and Fn : X → R+ belower semi
ontinuous for all n ∈ N. Set(1) E := {x ∈ X : (Fnx)∞n=1 is bounded}.If E is of se
ond 
ategory , then the family {Fn : n ∈ N} is equibounded onsome nonempty open subset of X.Proof. We use a standard argument, observing that E =

⋃
m∈N

Em,where
Em :=

⋂

n∈N

{x ∈ X : Fnx ≤ m}.
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e the Fn are lower semi
ontinuous, all the sets Em are 
losed. By hy-pothesis, at least one of them has a nonempty interior, whi
h yields theassertion.Let R+ denote the set of all nonnegative reals. Let A be a subset of alinear spa
e X su
h that A + A ⊆ A. Given L ≥ 1, we say that a fun
tion
ϕ : A → R+ is L-subadditive if

ϕ(x + y) ≤ L(ϕ(x) + ϕ(y)) for all x, y ∈ X.In parti
ular, if X = R, A := R+ and ϕ is nonde
reasing, then it is easilyseen that ϕ is L-subadditive if and only if ϕ is moderated (see, e.g., [Ra04,p. 235℄), i.e., ϕ(2x) ≤ Cϕ(x) for some C > 0 and all x ∈ R+.The following result is an extension of the 
lassi
al Bana
h�Steinhaus[BS27℄ theorem.Theorem 1. Given k ∈ N, let X1, . . . , Xk be normed linear spa
es,
X := X1 if k = 1, and X := X1 × · · · × Xk if k > 1. Assume that L ≥ 1,
Fn : X → R+ (n ∈ N) are lower semi
ontinuous and su
h that all fun
tions
xi 7→ Fn(x1, . . . , xk) (i ∈ {1, . . . , k}) are L-subadditive and even. Let E bede�ned by (1).(a) If(2) sup {Fnx : n ∈ N, ‖x‖ ≤ 1} = ∞,then E is a meager set.(b) If (2) does not hold , then E = X.In parti
ular , if X1, . . . , Xk are Bana
h spa
es, then the following statementsare equivalent :(i) E is meager ;(ii) E 6= X;(iii) sup{Fnx : n ∈ N, ‖x‖ ≤ 1} = ∞.Proof. We start with the proof of (a). Endow X with the max norm if
k > 1. Assume that (2) holds. Suppose, on the 
ontrary, that E is of se
ond
ategory. Then, by Proposition 1, there exists a 
losed ball B(x0, r) su
hthat {Fn : n ∈ N} is equibounded on B(x0, r). Let x0 = (x0

1, . . . , x
0
k). Thuswe get

M := sup{Fn(x1, . . . , xk) : ‖x1 − x0
1‖, . . . , ‖xk − x0

k‖ ≤ r, n ∈ N} < ∞.Following the Bana
h�Steinhaus argument we divide the proof into two steps.
Step 1. We show that the family {Fn : n ∈ N} is equibounded on

B(0, r). Let n ∈ N and x = (x1, . . . , xk) ∈ B(0, r), i.e., ‖xi‖ ≤ r for i ∈
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{1, . . . , k}. Then, by hypothesis, we get

Fnx = Fn(x1 + x0
1 − x0

1, x2, . . . , xk)

≤ L (Fn(x1 + x0
1, x2, . . . , xk) + Fn(−x0

1, x2, . . . , xk))

= L(Fn(x1 + x0
1, x2 + x0

2 − x0
2, x3, . . . , xk)

+ Fn(x0
1, x2 + x0

2 − x0
2, x3, . . . , xk)).Continuing in this fashion, after k steps we will get the sum of 2k values of

Fn at some points of B(x0, r) multiplied by Lk. This yields(3) sup{Fnx : n ∈ N, ‖x‖ ≤ r} ≤ 2kMLk.

Step 2. Given n, p ∈ N and x ∈ X, by L-subadditivity we get
Fnx = Fn

( p∑

i=1

x1/p, x2, . . . , xk

)
≤ pLp−1Fn(x1/p, x2, . . . , xk).The same argument applied su

essively to the 
oordinates x2, . . . , xk gives(4) Fnx ≤ pkLk(p−1)Fn(x/p).Let p ∈ N be su
h that 1/p ≤ r. If ‖x‖ ≤ 1, then x/p ∈ B(0, r), so (3) and(4) imply that

Fnx ≤ (2p)kMLkp.This means {Fn : n ∈ N} is equibounded on the unit ball, 
ontrary to (2).Thus E is meager.Now we prove (b). So assume that (2) does not hold, i.e.,
C := sup{Fnx : n ∈ N, ‖x‖ ≤ 1} < ∞.We show that E = X. Given x ∈ X, there is a p ∈ N su
h that ‖x/p‖ ≤ 1.Then, by (4),

Fnx ≤ pkLk(p−1)C for all n ∈ N,whi
h means x ∈ E.To prove the last statement observe that if E is meager, then E 6= Xby Baire's theorem. (ii)⇒(iii) follows from (b), whereas (iii)⇒(i) was statedin (a).Remark 1. The referee pointed out that Theorem 1 
ould be general-ized by assuming that X1, . . . , Xk are lo
ally bounded F ∗-spa
es. Indeed, bythe Aoki�Rolewi
z theorem (see, e.g., [Ro84, Theorems 3.2.1 and 3.2.1′℄), forsome p > 0, there are p-homogeneous F -norms on the above spa
es equiv-alent to the original ones. Using these new F -norms, we 
ould rewrite theproof of Theorem 1 with one minor 
hange in the line following (4).Remark 2. The assumption of Theorem 1 that all Fn are even in ea
hvariable 
annot be omitted. Indeed, let X := R and ϕ : R → R+ be a
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reasing fun
tion. Then it is easily seen that ϕ is subadditive i� ϕ|R+is subadditive. In parti
ular, if Fnx := 0 for x ≤ 0 and Fnx := nx for x > 0,then all Fn are subadditive and 
ontinuous, the family {Fn : n ∈ N} is notequibounded on [−1, 1], but E (= (−∞, 0]) is of se
ond 
ategory.If, however, k = 1 and a family {Fn : n ∈ N} of lower semi
ontinuous,
L-subadditive (not ne
essarily even) and nonnegative fun
tionals is point-wise bounded on some symmetri
 set of se
ond 
ategory, then the proof ofTheorem 1 shows that {Fn : n ∈ N} is equibounded on the unit ball. In the
ase where L = 1, this result is given in [Bo02, p. 90℄.Corollary 1. Let X, Y and Z be normed linear spa
es and let
B(X × Y, Z) denote the spa
e of all 
ontinuous bilinear mappings from X×Yinto Z. Assume that a family {Tn : n ∈ N} ⊆ B(X × Y, Z) is pointwisebounded on some set D ⊆ X × Y of se
ond 
ategory. Then the sequen
e
(‖Tn‖)∞n=1 is bounded.Proof. Set

Fn(x, y) := ‖Tn(x, y)‖ for n ∈ N, x ∈ X and y ∈ Y.Clearly, all Fn are 
ontinuous; moreover, they are subadditive and even inea
h variable. Further, D ⊆ E, where E is de�ned by (1). Sin
e D is ofse
ond 
ategory, so is E and thus Theorem 1 is appli
able.Remark 3. It seems that Corollary 1 is not well known sin
e even itsparti
ular version with D = X×Y (whi
h may be found in [Kö79, p. 158℄ forsome wider 
lass of spa
es) was redis
overed in [Ge92℄. A
tually, this version
an be obtained via the 
lassi
al Bana
h�Steinhaus theorem using the fa
tthat the spa
e B(X × Y, Z) is isometri
ally isomorphi
 to L(X, L(Y, Z)). Infa
t, Corollary 1 
an also be proved in this way with the help of a 
onverseto the Kuratowski�Ulam theorem (see, e.g., [Ox71, p. 57℄; observe that E isan Fσ set, so it has the property of Baire). In this 
ase, however, we needthe extra assumption that X or Y is separable.As another simple 
onsequen
e of Theorem 1, we obtain the followingextension of the 
lassi
al prin
iple of 
ondensation of singularities ([BS27℄;see also, e.g., [Yo80, p. 74℄), whi
h will be useful in Se
tion 5.Corollary 2. Let X1, . . . , Xk and X be as in Theorem 1. Assume that
L ≥ 1, Fn,m : X → R+ (n, m ∈ N) are lower semi
ontinuous and su
h thatall fun
tions xi 7→ Fn,m(x1, . . . , xk) (i ∈ {1, . . . , k}) are L-subadditive andeven. If

sup{Fn,mx : n ∈ N, ‖x‖ ≤ 1} = ∞for ea
h m ∈ N, then the set
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R := {x ∈ X : lim sup

n→∞
Fn,mx = ∞ for all m ∈ N}is residual.Proof. We need to show that E := X \ R is meager. Given m ∈ N, set

Em := {x ∈ X : (Fn,mx)∞n=1 is bounded}.It is 
lear that E =
⋃

m∈N
Em. Sin
e, by Theorem 1, ea
h Em is meager, sois E.3. A meager set in Lp(µ)× Lp(µ). Let (X, Σ, µ) be a measure spa
e.Following Bal
erzak and Wa
howi
z [BW01℄, given a real p ≥ 1, we 
onsiderthe set(5) Ep := {(f, g) ∈ Lp(µ) × Lp(µ) : f · g ∈ Lp(µ)}.It is shown in [BW01℄ that if p = 1, X := [0, 1] and µ is Lebesgue measure,then E is meager.In what follows we assume that (X, Σ, µ) is σ-�nite. Then there exists anas
ending sequen
e (Xn)∞n=1 of measurable sets of �nite measure su
h that

X =
⋃

n∈N
Xn. Given n ∈ N and f ∈ Lp(µ), set(6) f∗n(x) := min{|f(x)|p, n}χXn

(x) for all x ∈ X,where χXn
denotes the 
hara
teristi
 fun
tion of Xn. Clearly, 0≤f∗n(x)≤n.Now for n ∈ N and f, g ∈ Lp(µ), de�ne(7) Fn(f, g) :=

\
X

f∗ng∗n dµ.Then we have
Fn(f, g) ≤

\
n2χXn

= n2µ(Xn) < ∞,so Fn : Lp(µ) × Lp(µ) → R+.Lemma 1. Let Ep be de�ned by (5). Then
Ep = {(f, g) ∈ Lp(µ) × Lp(µ) : (Fn(f, g))∞n=1 is bounded}with Fn as in (7).Proof. Let f, g ∈ Lp(µ). Sin
e (Xn)∞n=1 is as
ending and it 
overs X, weget χXn
ր 1. Hen
e and by (6), given x ∈ X, both sequen
es (f∗n(x))∞n=1and (g∗n(x))∞n=1 are nonde
reasing and 
onverge to |f(x)|p and |g(x)|p, re-spe
tively. Consequently, f∗ng∗n ր |fg|p. By Beppo-Levi's theorem, we get(8) Fn(f, g) →

\
|f · g|p.Now if we assume that (Fn(f, g))∞n=1 is bounded, then (8) implies that f ·g ∈

Lp(µ), i.e., (f, g) ∈ Ep. Conversely, if (f, g) ∈ Ep, then T|f · g|p < ∞, and(8) implies that (Fn(f, g))∞n=1 is bounded. This 
ompletes the proof.
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h variable.Proof. Let f1, f2, g ∈ Lp(µ). Sin
e the fun
tion t 7→ min {t, n} (t ∈ R+) issubadditive, with the help of Hölder's inequality we infer that given x ∈ Xn,
(f1 + f2)

∗n(x) ≤ min{(|f1(x)| + |f2(x)|)p, n}
≤ min{2p−1(|f1(x)|p + |f2(x)|p), n}
≤ min{2p−1|f1(x)|p, n} + min{2p−1|f2(x)|p, n}.As n ≤ 2p−1n, we get

(f1 + f2)
∗n(x) ≤ 2p−1(f∗n

1 (x) + f∗n

2 (x)).Sin
e this inequality also holds for x ∈ X \ Xn, we obtain
(f1 + f2)

∗n ≤ 2p−1(f∗n

1 + f∗n

2 ).Hen
e f 7→ Fn(f, g) is 2p−1-subadditive. Moreover, sin
e (−f1)
∗n = f∗n

1 , we
on
lude that Fn is even in the �rst variable. Being symmetri
, it has all theproperties we need.Lemma 3. The fun
tionals Fn : Lp(µ) × Lp(µ) → R+ de�ned by (7) arelower semi
ontinuous.Proof. Fix an n ∈ N. Given f0, g0 ∈ Lp(µ), we need to show that
M := lim inf

(f,g)→(f0,g0)
Fn(f, g) ≥ Fn(f0, g0).Consider a sequen
e ((fk, gk))

∞
k=1 su
h that ‖fk − f0‖p → 0, ‖gk − g0‖p → 0and Fn(fk, gk) → M as k → ∞. By passing to a subsequen
e if ne
essary,we may assume that both (fk)

∞
k=1 and (gk)

∞
k=1 
onverge a.e. to f and g,respe
tively. Then it is easily seen that (f∗n

k )∞k=1 and (g∗n

k )∞k=1 
onverge a.e.to f∗n

0 and g∗n

0 , respe
tively. By Fatou's Lemma,
lim inf
k→∞

\
f∗n

k · g∗n

k ≥
\
lim inf
k→∞

f∗n

k · g∗n

k ,i.e., M ≥ Fn(f0, g0), whi
h 
ompletes the proof.Remark 4. In fa
t, it 
an be proved that all Fn are 
ontinuous (seeAppendix), whi
h, however, is somewhat more di�
ult to show.Now Lemmas 1�3 and Theorem 1 immediately yield the followingProposition 2. Let (X, Σ, µ) be a σ-�nite measure spa
e, p ≥ 1 and
Ep be de�ned by (5). The following statements are equivalent :(i) Ep is meager in Lp(µ) × Lp(µ);(ii) Ep 6= Lp(µ) × Lp(µ).
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ular, the latter 
ondition holds if X := [0, 1] and µ is Lebesguemeasure (
onsider the pair (h, h), where h(x) := x−1/(2p)), so Proposition 2extends [BW01, Theorem 1.2℄.Remark 5. A
tually, Proposition 2 is also valid for p ∈ (0, 1). (I owethis result to the referee.) This follows from Remark 1 and the fa
t that the
F -spa
e Lp(µ) is lo
ally bounded. Moreover, Lemmas 1 and 3 remain validfor su
h p, whereas the same argument as in the proof of Lemma 2 showsthis time that all fun
tionals Fn are subadditive in ea
h variable be
ause ofthe subadditivity of t 7→ tp for p ∈ (0, 1). Proposition 2 
an also be extendedby substituting the Orli
z spa
e N(L(µ)) for Lp(µ) if the fun
tion N hasappropriate properties. The details will be given in a forth
oming paper.In the rest of this se
tion, we give other 
onditions equivalent to (ii) ofProposition 2 under some weaker assumptions on the measure spa
e. Re-
all that (X, Σ, µ) is semi�nite (
f. [Fr01, 211F℄) if whenever A ∈ Σ and
µ(A) = ∞, there is a B ∈ Σ su
h that B ⊆ A and 0 < µ(B) < ∞. (X, Σ, µ)is lo
alizable (
f. [Fr01, 211G℄) if it is semi�nite and whenever A ⊆ Σ, thereis a B ∈ Σ su
h that A \ B is negligible for every A ∈ A; moreover, given
C ∈ Σ, if A \ C is negligible for every A ∈ A, then B \ C is negligible.Also re
all that a measurable fun
tion f : X → R is quasi-simple (
f. [Fr00,122Y(d)℄) if f is µ-integrable and f(X) is 
ountable.Note �rst that it is su�
ient to examine 
ondition (ii) of Proposition 2only for p = 1 be
ause of the followingLemma 4. Let (X, Σ, µ) be a measure spa
e. The following statementsare equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) Er 6= Lr(µ) × Lr(µ) for some r ≥ 1;(iii) Ep 6= Lp(µ) × Lp(µ) for all p ≥ 1.Proof. (i)⇒(ii) and (iii)⇒(i) are obvious. We show (ii) implies (iii). By(ii), there exist f, g ∈ Lr(µ) su
h that T|f · g|r = ∞. Given p ≥ 1, set
fp := |f |r/p and gp := |g|r/p. It is 
lear that fp, gp ∈ Lp(µ), but (fp, gp) /∈ Ep,so (iii) holds.Lemma 5. Let (X, Σ, µ) be a measure spa
e and f : X → R+ be measur-able. Then there exists a sequen
e (fn)∞n=1 of measurable nonnegative fun
-tions taking values in some 
ountable set su
h that fn → f uniformly on Xand (fn(x))∞n=1 is nonde
reasing for all x ∈ X.Proof. Given n ∈ N, set

Ai,n :=

{
x ∈ X :

i − 1

2n
≤ f(x) <

i

2n

} for all i ∈ N.
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Ai,n = X sin
e f takes �nite values. Hen
e given x ∈ X, there isan ix ∈ N su
h that x ∈ Aix,n, and the ix is unique sin
e (Ai,n)∞i=1 is disjoint.We set
fn(x) :=

ix − 1

2n
for all x ∈ X.Clearly, fn is measurable and fn(X) is 
ountable. Sin
e |fn(x)−f(x)| < 1/2nfor all x ∈ X, it follows that fn → f uniformly on X. Finally, it is easilyseen that fn(x) ≤ fn+1(x) for all x ∈ X.We will also need the following result 
on
erning sequen
es of reals, inthe proof of whi
h we use Hadamard's tri
k (
f. [Kn47, �41, 178.1℄).Lemma 6. Let (bn)∞n=1 be a sequen
e of positive reals su
h that the series∑∞

n=1 bn 
onverges. Let Rn−1 :=
∑∞

k=n bk for n ∈ N and assume that thesequen
e (Rn/bn)∞n=1 is bounded. Then there exists a sequen
e (an)∞n=1 ofpositive reals su
h that
∞∑

n=1

anbn < ∞ and ∞∑

n=1

a2
nbn = ∞.Moreover , a2

nbn 6→ 0.Proof. Set
an :=

√
Rn−1 −

√
Rn

bn
for all n ∈ N.Then ∑n

k=1 akbk =
√

R0 −
√

Rn. Sin
e Rn → 0, we 
on
lude that
∞∑

n=1

anbn =
( ∞∑

n=1

bn

)1/2
,in parti
ular, the series ∑∞

n=1 anbn 
onverges. On the other hand,
a2

nbn =

(√
Rn−1 −

√
Rn√

bn

)2

=

( √
bn√

bn + Rn +
√

Rn

)2

=
1

(
√

1 + Rn/bn +
√

Rn/bn)2
≥ 1

4(1 + Rn/bn)
.By hypothesis, there is an M > 0 su
h that Rn/bn ≤ M for all n ∈ N. Hen
e

a2
nbn 6→ 0, so the series ∑∞

n=1 a2
nbn diverges.Proposition 3. Let (X, Σ, µ) be a measure spa
e and E1 be de�nedby (5). The following statements are equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) L1(µ) \ L2(µ) 6= ∅;(iii) there is a quasi-simple fun
tion g su
h that g /∈ L2(µ);(iv) inf{µ(A) : A ∈ Σ, µ(A) > 0} = 0;
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e (An)∞n=1 of measurable sets of positivemeasure su
h that µ(An) → 0.Proof. (i)⇒(ii): By hypothesis, there are f, g ∈ L1(µ) su
h that f · g /∈
L1(µ). Then f and g are �nite a.e., so

f(x)g(x) = ((f(x) + g(x))2 − (f(x) − g(x))2)/4 a.e.This implies that f + g /∈ L2(µ) or f − g /∈ L2(µ), so L1(µ) \ L2(µ) 6= ∅.(ii)⇒(iii): By hypothesis, there is an f ∈ L1(µ) \L2(µ). Without loss ofgenerality we may assume that f ≥ 0 and it takes �nite values on X.
Step 1. Assume that µ is �nite. By Lemma 5, there is a measurablefun
tion h : X → R+ su
h that h(X) is 
ountable, h ≤ f2 and(9) f2(x) − h(x) ≤ 1 for all x ∈ X.Set g :=

√
h. Then g ≤ f so g ∈ L1(µ). Moreover,

∞ =
\
f2 =

\
(f2 − g2) +

\
g2.Sin
e by (9), T(f2 − g2) ≤ µ(X) < ∞, we infer that Tg2 = ∞. Thus g is thedesired fun
tion.

Step 2. Now assume that µ(X) = ∞ and µ is σ-�nite. Then there is adisjoint 
over (Xn)∞n=1 of X by measurable sets of �nite positive measure.By Lemma 5, given n ∈ N, there is a measurable fun
tion hn : Xn → R+su
h that hn ≤ f2|Xn
,

f2(x) − hn(x) ≤ 1

2nµ(Xn)
for all x ∈ Xn,and hn(Xn) is 
ountable. De�ne h :=

⋃
n∈N

hn. Then h : X → R+, h(X) is
ountable and h ≤ f2. Set g :=
√

h. Sin
e\
X

(f2 − g2) =

∞∑

n=1

\
Xn

(f2 − hn) ≤
∞∑

n=1

1

2n
= 1,

we infer as in Step 1 that g /∈ L2(µ). Moreover, g is quasi-simple.
Step 3. Finally, we 
onsider the 
ase of arbitrary measure. Set

X ′ := {x ∈ X : f(x) > 0}.Sin
e f ∈ L1(µ), the subspa
e measure µX′ is σ-�nite. Clearly, f |X′ ∈
L1(µX′) \ L2(µX′), so by Steps 1 and 2, there is a quasi-simple fun
tion
g : X ′ → R+ su
h that g ∈ L1(µX′) \L2(µX′). It su�
es to extend g onto Xby setting g(x) := 0 for x ∈ X \ X ′.(iii)⇒(iv): Sin
e g ∈ L1(µ) \L2(µ), it follows that g(X) is in�nite. Thusthere is a sequen
e (an)∞n=1 of distin
t reals su
h that g(X) = {an : n ∈ N}and we may assume an ≥ 0. Let An := g−1({an}). Then g =

∑∞
n=1 anχAn

.
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ontrary, that
r := inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0.Let K := {n ∈ N : µ(An) > 0}. Then Tg =

∑
n∈K anµ(An) and anµ(An) ≥

ran for all n ∈ K. Hen
e ∑
n∈K an < ∞; in parti
ular, (an)n∈K is bounded.On the other hand, we have

∞ =
\
g2 =

∑

n∈K

a2
nµ(An) ≤ sup

n∈K
an ·

\
g < ∞,whi
h is a 
ontradi
tion.(iv)⇒(v): By hypothesis, there is a sequen
e (Bn)∞n=1 of measurable setsof positive measure su
h that µ(Bn) → 0. By passing to a subsequen
e ifne
essary, we may assume that µ(Bn+1) < µ(Bn)/2. Set

An := Bn \
⋃

i∈N

Bn+i for all n ∈ N.

Sin
e µ(Bn+i) < µ(Bn)/2i, we get
µ
( ⋃

i∈N

Bn+i

)
<

∞∑

i=1

µ(Bn)

2i
= µ(Bn),whi
h implies µ(An) > 0. Clearly, the sets An are disjoint and µ(An) → 0sin
e µ(An) ≤ µ(Bn).(v)⇒(i): Set bn := µ(An) for all n ∈ N. Again, as in the proof of(iv)⇒(v), we may assume that bn+1 < bn/2, so that bn+i < bn/2i for all

i, n ∈ N. Hen
e if Rn is as in Lemma 6, then Rn ≤ bn, so Rn/bn ≤ 1. ByLemma 6, there is a sequen
e (an)∞n=1 of positive reals su
h that ∑∞
n=1 anbn

< ∞ and ∑∞
n=1 a2

nbn = ∞. Hen
e if
f :=

∞∑

n=1

anχAn
,then f ∈ L1(µ) \ L2(µ), i.e., (f, f) ∈ L1(µ) × L1(µ) \ E1.Lemma 7. Let (X, Σ, µ) be a lo
alizable measure spa
e. If µ is not purelyatomi
, then there exists a δ > 0 su
h that µ(Σ) ⊇ [0, δ].Proof. By the Saks theorem (see, e.g., [Fr01, 214X(a)℄), there is an X ′ ∈

Σ su
h that the subspa
e measure µX′ is atomless and µX\X′ is purelyatomi
. Then µ(X ′) > 0; otherwise, if A ∈ Σ and µ(A) > 0, then µ(A \ X ′)
> 0 so A \ X ′ (hen
e A) 
ontains an atom. This means µ is purely atomi
,a 
ontradi
tion. If µ(X ′) is �nite, then µ(Σ) ⊇ [0, µ(X ′)] by the Sierpi«ski�Fi
htenholz theorem (
f. [Fr01, 215D℄) sin
e µX′ is atomless. If µ(X ′) = ∞,then there is an A ⊆ X ′ su
h that A ∈ Σ and 0 < µ(A) < ∞ sin
e, inparti
ular, µ is semi�nite. Then as before we infer that µ(Σ) ⊇ [0, µ(A)].
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hymskiProposition 4. Let (X, Σ, µ) be a lo
alizable measure spa
e and E1 bede�ned by (5). The following statements are equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) if µ is purely atomi
, then inf{µ(A) : A ∈ Σ, µ(A) > 0} = 0.Proof. (i)⇒(ii) is obvious sin
e (i) implies (iv) of Proposition 3.(ii)⇒(i): It is enough to show that (ii) implies (iv) of Proposition 3. If
µ is purely atomi
, then we are done; if not, then (iv) holds in virtue ofLemma 7.Proposition 5. Let (X, Σ, µ) be a measure spa
e and E1 be de�nedby (5). The following statements are equivalent :(i) E1 6= L1(µ) × L1(µ);(ii) L1(µ) \ L∞(µ) 6= ∅.Proof. (i)⇒(ii): Suppose, on the 
ontrary, that L1(µ) ⊆ L∞(µ). Let
f, g ∈ L1(µ). Then there is an M > 0 su
h that |f | ≤ M a.e. on X. Hen
e
|f · g| ≤ M · |g|, whi
h implies f · g ∈ L1(µ). Thus E1 = L1(µ) × L1(µ), a
ontradi
tion.(ii)⇒(i): It su�
es to show that (ii) implies (iv) of Proposition 3. Let
f ∈ L1(µ) \ L∞(µ). Suppose, on the 
ontrary, that

r := inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0.For n ∈ N, set
An := {x ∈ X : |f(x)| ≥ n}.Sin
e f /∈ L∞(µ), we infer that µ(An) > 0, whi
h implies µ(An) ≥ r. Hen
ewe get

∞ >
\
X

|f | ≥
\

An

|f | ≥ nµ(An) ≥ nrfor all n ∈ N, whi
h yields a 
ontradi
tion.Summing up the results of this se
tion, we have the followingTheorem 2. Let (X, Σ, µ) be a σ-�nite measure spa
e and
E :=

{
(f, g) ∈ L1(µ) × L1(µ) : f · g ∈ L1(µ)

}
.The following statements are equivalent :(i) E is of se
ond 
ategory ;(ii) E = L1(µ)×L1(µ), i.e., (L1(µ), ·) is a semigroup, where �·� denotesmultipli
ation of fun
tions;(iii) (Lp(µ), ·) is a semigroup for some p ≥ 1;(iv) (Lp(µ), ·) is a semigroup for all p ≥ 1;(v) L1(µ) ⊆ L2(µ);(vi) every quasi-simple fun
tion is in L2(µ);
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 and inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0;(ix) inf{µ(A) : A ∈ Σ, µ(A) > 0} > 0;(x) every disjoint sequen
e (An)∞n=1 of measurable sets of positive mea-sure has the property that µ(
⋃

n∈N
An) = ∞.Proof. Sin
e a σ-�nite measure spa
e is lo
alizable (
f. [Fr01, 211L℄), theequivalen
e of 
onditions (i)�(ix) follows from Lemma 4 and Propositions2�5. (ix)⇒(x) is obvious. To prove the 
onverse suppose, on the 
ontrary,that inf{µ(A) : A ∈ Σ, µ(A) > 0} = 0. By Proposition 3, there is a dis-joint sequen
e (An)∞n=1 of measurable sets of positive measure su
h that

µ(An) → 0. By passing to a subsequen
e if ne
essary, we may assume that
µ(An) < 1/2n. Then µ(

⋃
n∈N

An) < 1, whi
h 
ontradi
ts (x).4. Some meager sets in produ
ts of Bana
h sequen
e spa
es.As another appli
ation of Theorem 1, we give the following generalizationof [BW01, Theorem 1.1℄. We 
onsider here the spa
e c0 of all real sequen
es
onvergent to 0, endowed with the sup norm.Theorem 3. Let α ∈ RN and set
Eα :=

{
((xn)∞n=1, (yn)∞n=1) ∈ c0 × c0 :

( n∑

i=1

αixiyi

)∞

n=1
is bounded}.

Then Eα is meager in c0 × c0 if and only if α /∈ l1, i.e., ∑∞
n=1 |αn| = ∞.Remark 6. It is shown in [BW01℄ that the set E(1,...) is meager.Proof of Theorem 3. Set

Tn(x, y) :=
n∑

i=1

αixiyi for all n ∈ N and x, y ∈ c0.Clearly, all Tn are 
ontinuous bilinear fun
tionals on c0 × c0 and
Eα := {(x, y) ∈ c0 × c0 : (Tn(x, y))∞n=1 is bounded}.Thus by Theorem 1 (with Fn de�ned as in the proof of Corollary 1), Eα ismeager i� sup{‖Tn‖ : n ∈ N} = ∞. It is an easy exer
ise to show that

‖Tn‖ =
∑n

i=1 |αi|. Thus Eα is meager i� ∑∞
n=1 |αn| = ∞.In a similar way, with the help of theorems on representation of dualspa
es, we may obtain results of the above type for other produ
ts of Bana
hsequen
e spa
es. For example, we give the following theorem, the proof ofwhi
h is left to the reader.
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hymskiTheorem 4. Let α∈RN, 1≤p≤∞, and let q be su
h that 1/p + 1/q=1.Set
Eα :=

{
((xn)∞n=1, (yn)∞n=1) ∈ c0 × lp :

( n∑

i=1

αixiyi

)∞

n=1
is bounded}.Then Eα is meager i� α /∈ lq.5. A residual set in C[0, 1]. Assume that a mapping Φ : [0, 1] → c0is given, so that Φ = (ϕn)∞n=1, where ϕn : [0, 1] → R and ϕn(x) → 0 for all

x ∈ X. Suppose that(10) ϕn(1) < 0 < ϕn(0) and ϕn(x) 6= 0 for all n ∈ N and x ∈ (0, 1).Given f : [0, 1] → R and x ∈ [0, 1], we say that f has a Φ-derivative at x(see [Kh98, p. 147℄) if the following limit (possibly in�nite) exists:
f ′

Φ(x) := lim
n→∞

f(x + ϕn(x)) − f(x)

ϕn(x)
.In what follows we 
onsider the Bana
h spa
e C[0, 1] endowed with the supnorm. The following result was established in [Kh98, p. 148℄.Theorem 5 (Kharazishvili). Assume that Φ has the Baire property. De-�ne R1 ⊆ C[0, 1] as follows: f ∈ R1 if there is a residual set A in [0, 1] su
hthat for all x ∈ A, the �nite Φ-derivative f ′

Φ(x) does not exist. Then R1 isresidual in C[0, 1].Using the notion of Φ-derivative, the 
lassi
al theorem of Bana
h andMazurkiewi
z ([Ba31℄, [Ma31℄) 
an be written in the following way.Theorem 6 (Bana
h�Mazurkiewi
z). De�ne the set R2 ⊆ C[0, 1] asfollows: f ∈ R2 if there is a mapping Φ : [0, 1] → c0 su
h that ϕn(x) > 0 forall n ∈ N and x ∈ [0, 1), and f ′
Φ(x) is in�nite for all x ∈ [0, 1). Then R2 isresidual in C[0, 1].Note that R2 
an also be de�ned as follows: f ∈ R2 if for all x ∈ [0, 1),

D+f(x) or D+f(x) is in�nite, where D+f(x) (resp., D+f(x)) denotes theupper (resp., lower) right Dini derivative of f at x (in Bru
kner's [Br94℄notation).Given a mapping Φ satisfying (10), we de�ne the upper Dini Φ-derivativeof f : [0, 1] → R at x ∈ [0, 1] as follows:
f ′

Φ(x) := lim sup
n→∞

f(x + ϕn(x)) − f(x)

ϕn(x)
.By substituting lim inf for lim sup, we get the lower Dini Φ-derivative f ′

Φ(x).Using these notions and Corollary 2, we will prove the following
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h�Steinhaus theorem 317Theorem 7. Assume that Φ : [0, 1] → c0 satis�es (10) and A is a 
ount-able dense subset of [0, 1]. De�ne R3 ⊆ C[0, 1] as follows: f ∈ R3 if for all
x ∈ A, f ′

Φ(x) or f ′
Φ(x) is in�nite. Then R3 is residual in C[0, 1].Proof. Let A = {xm : m ∈ N}. Condition (10) implies that given x ∈

[0, 1], x + ϕn(x) ∈ [0, 1] for su�
iently large n. Hen
e given m ∈ N, there isa km ∈ N su
h that xm + ϕn+km
(xm) ∈ [0, 1] for all n ∈ N. Thus we mayde�ne fun
tionals Fn,m by

Fn,m(f) :=

∣∣∣∣
f(xm + ϕn+km

(xm)) − f(xm)

ϕn+km
(xm)

∣∣∣∣for all n, m ∈ N and f ∈ C[0, 1]. We show the assumptions of Corollary 2are satis�ed with k := 1 and X1 := C[0, 1]. It is easily seen that all Fn,m aresubadditive and even. Set
hn,m := ϕn+km

(xm) for all n, m ∈ N.Given f, g ∈ C[0, 1] and n, m ∈ N, we have
|Fn,m(f) − Fn,m(g)| ≤ |f(xm + hn,m) − g(xm + hn,m)|/|hn,m|

+ |g(xm) − f(xm)|/|hn,m|
≤ 2‖f − g‖/|hn,m|,whi
h shows Fn,m is Lips
hitzian, hen
e 
ontinuous. Fix an m ∈ N. We show

M := sup{Fn,m(f) : n ∈ N, ‖f‖ ≤ 1} = ∞.Suppose that, on the 
ontrary, M is �nite. The following three 
ases arepossible.1) xm ∈ (0, 1). Let δ > 0 be su
h that (xm − δ, xm + δ) ⊆ [0, 1] and
δ(M + 1) ≤ 1. Set

f(x) :=





(M + 1)(x − xm) for x ∈ (xm − δ, xm + δ),
−δ(M + 1) for x ∈ [0, xm − δ],

δ(M + 1) for x ∈ [xm + δ, 1].Then f is 
ontinuous and ‖f‖ ≤ 1. Sin
e limn→∞ hn,m = 0, there is an n ∈ Nsu
h that hn,m < δ. Then Fn,m(f) = M + 1, whi
h is a 
ontradi
tion.2) xm = 0. Set
f(x) :=

{
(M + 1)x for x ∈ [0, 1/(M + 1)),

1 for x ∈ [1/(M + 1), 1].If n ∈ N is su
h that hn,m < 1/(M + 1), then Fn,m(f) = M + 1, a 
ontra-di
tion.3) xm = 1. Use a similar argument to item 2) setting
f(x) :=

{−1 for x ∈ [0, M/(M + 1)],

(M + 1)(x − 1) for x ∈ (M/(M + 1), 1].
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hymskiThus M = ∞ and by Corollary 2, the set
R = {f ∈ C[0, 1] : lim sup

n→∞
Fn,m(f) = ∞ for all m ∈ N}is residual. Clearly, R 
oin
ides with R3, so the proof is 
omplete.Remark 7. A
tually, the assumption of Theorem 7 that A is dense issuper�uous, but the result seems to be more interesting for su
h sets. More-over, Theorem 7 yields the more general version. Indeed, if A is a 
ountablesubset of [0, 1] and Ã := A ∪ (Q ∩ [0, 1]), then R3(Ã) ⊆ R3(A), and sin
e byTheorem 7, R3(Ã) is residual, so is R3(A).6. Appendix: Continuity of integral fun
tionals. Our purpose hereis to show that the fun
tionals Fn de�ned by (7) are 
ontinuous.Lemma 8. Given 1 ≤ p < ∞, the operator f 7→ |f |p from Lp(µ) into

L1(µ) is 
ontinuous.Proof. This follows immediately from the fa
t (
f. [Ru74, Chapter 3,Exer
ise 24℄) that if f, g ∈ Lp(µ) and M ≥ 0 is su
h that ‖f‖p ≤ M and
‖g‖p ≤ M , then(11) \

| |f |p − |g|p| ≤ 2pMp−1‖f − g‖p.Remark 8. Inequality (11) may be sharpened. Indeed, by Lagrange'stheorem we have
|sp − tp| ≤ p|s − t|(sp−1 + tp−1) for all s, t ≥ 0,whi
h yields(12) | |f |p − |g|p| ≤ p| |f | − |g| |(|f |p−1 + |g|p−1).Let p > 1 and q := p/(p − 1). Sin
e |f |p−1 and |g|p−1 are in Lq(µ), and

|f | − |g| ∈ Lp(µ), we get, by (12) and using Hölder's inequality twi
e,\
| |f |p − |g|p| ≤ p‖ |f | − |g| ‖p(‖f‖p/q

p + ‖g‖p/q
p )

= p‖ |f | − |g| ‖p(‖f‖p−1
p + ‖g‖p−1

p ),whi
h sharpens (11).Lemma 9. The operator (·)∗n : Lp(µ) → L1(µ) de�ned by (6) is 
ontin-uous.Proof. Let fk ∈ Lp(µ) for all k ∈ N∪{0}, and ‖fk−f0‖p → 0. Sin
e thereis a 
onegligible subset of X on whi
h all fun
tions fk have �nite values, wemay assume that fk are real-valued. Then, given k ∈ N, we have
f∗n

k = χXn
(|fk|p + n − | |fk|p − n|)/2.



Nonlinear Bana
h�Steinhaus theorem 319By 
ontinuity of the operators f 7→ |f |p from Lp(µ) into L1(µ) and (f, g) 7→
f + g from L1(µ) × L1(µ) into L1(µ), we now infer that ‖f∗n

k − f∗n

0 ‖1 → 0as k → ∞.Lemma 10. The fun
tional Fn : Lp(µ) × Lp(µ) → R+ de�ned by (7) is
ontinuous for all n ∈ N.Proof. Fix an n ∈ N. Assume that ‖fk − f‖p → 0 and ‖gk − g‖p → 0 as
k → ∞. By Lemma 9, we have ‖f∗n

k − f∗n‖1 → 0 and ‖g∗n

k − g∗n‖1 → 0 as
k → ∞. By the inequalities 0 ≤ f∗n

k ≤ n, 0 ≤ g∗n

k ≤ n, we hen
e get
|Fn(fk, gk) − Fn(f, g)| ≤

\
X

|f∗n

k g∗n

k − f∗ng∗n |χXn

=
\

Xn

|f∗n

k (g∗n

k − g∗n) + g∗n(f∗n

k − f∗n)|

≤ n(‖g∗n

k − g∗n‖1 + ‖f∗n

k − f∗n‖1) → 0 as k → ∞.A
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