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Weak compactness and σ-Asplund generated Banach spaces

by

M. Fabian (Praha), V. Montesinos (Valencia) and
V. Zizler (Praha)

Abstract. σ-Asplund generated Banach spaces are used to give new characteriza-
tions of subspaces of weakly compactly generated spaces and to prove some results on
Radon–Nikodým compacta. We show, typically, that in the framework of weakly Lindelöf
determined Banach spaces, subspaces of weakly compactly generated spaces are the same
as σ-Asplund generated spaces. For this purpose, we study relationships between quanti-
tative versions of Asplund property, dentability, differentiability, and of weak compactness
in Banach spaces. As a consequence, we provide a functional-analytic proof of a result of
Arvanitakis: A compact space is Eberlein if (and only if) it is simultaneously Corson and
quasi-Radon–Nikodým.

1. Definitions and notation. In [9], the results on quantitative ver-
sions of the differentiability of norms and of weak compactness were used
to give characterizations of several subclasses of weakly Lindelöf determined
spaces.

In the present paper, we study a quantitative version of the Asplund
property to obtain new characterizations of subspaces of weakly compactly
generated spaces. Recall that a Banach space is called Asplund if each sep-
arable subspace of it has a separable dual.

Let (X, ‖ · ‖) be a real Banach space with topological dual X∗. The
closed unit balls of X and X∗ are denoted by BX and BX∗ respectively. Let
∅ 6= M ⊂ BX . We define a seminorm ‖ · ‖M on X∗ by

‖x∗‖M := sup |〈M, x∗〉| := sup{|〈x, x∗〉|; x ∈ M}, x∗ ∈ X∗.

Let ε > 0. Given a convex function f : X → R, we say that it is ε-M -
differentiable at x ∈ X if

lim
t↓0

1

t
sup{f(x + th) + f(x − th) − 2f(x); h ∈ M} < ε.
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The norm ‖ · ‖ is called ε-M -smooth if it is ε-M -differentiable at each 0 6=
x ∈ X. We say that the norm on X∗, dual to ‖ · ‖, and denoted by the
same symbol, is ε-M -LUR if lim supn→∞ ‖x∗−x∗

n‖M < ε whenever x∗, x∗
n ∈

BX∗ , n ∈ N, and limn→∞ ‖x∗ +x∗
n‖ = 2. We say that the dual norm ‖ · ‖ on

X∗ has the weak∗ ε-M -Kadec property if lim supτ ‖x
∗
τ −x∗‖M < ε whenever

x∗ and the net (x∗
τ )τ∈T lie in the unit sphere SX∗ of X∗ and x∗

τ
w∗

→ x∗.
We note that if we have ε-M -smoothness, ε-M -LUR, or weak∗ ε-M -Kadec
property for every ε > 0, and M = BX , then we get the usual concepts of
Fréchet smoothness, LUR, and weak∗ Kadec property respectively.

Given a non-empty set A ⊂ BX , we say that the closed dual unit ball
BX∗ is ‖ · ‖A-ε-separable if there exists a countable set C ⊂ BX∗ such that
for every x∗ ∈ BX∗ there is c ∈ C so that ‖x∗ − c‖A < ε, that is, BX∗ can
be covered by open balls with centers in C and of ‖ · ‖A-radius ε. We say
in this case that C is ‖ · ‖A-ε-dense in BX∗ . A subset M ⊂ BX is said to be
ε-Asplund if for every countable subset ∅ 6= A ⊂ M , the dual unit ball BX∗

is ‖ · ‖A-ε-separable. Clearly, if a set is ε-Asplund for every ε > 0, then it is
an Asplund set (see [7, Definition 1.4.1]). Note that if A ⊂ εBX then BX∗

is ‖ · ‖A-ε′-separable, and hence A is an ε′-Asplund set for every ε′ > ε.

We say that a Banach space (X, ‖ · ‖) is σ-Asplund generated if for every
ε > 0 there is a decomposition BX =

⋃∞
n=1 Aε

n where each Aε
n is an ε-

Asplund set. We say that the norm ‖ · ‖ on X∗, dual to ‖ · ‖, is σ-LUR if
for every ε > 0 there is a decomposition BX =

⋃∞
n=1 Aε

n such that ‖ · ‖ is
ε-Aε

n-LUR for every n ∈ N. We say that the norm ‖ · ‖ on X∗, dual to ‖ · ‖,
has the σ-weak∗ Kadec property if for every ε > 0 there is a decomposition
BX =

⋃∞
n=1 Aε

n such that ‖ · ‖ has the weak∗ ε-Aε
n-Kadec property for every

n ∈ N. We say that the norm ‖ · ‖ on X is σ-Fréchet smooth if for every
ε > 0 there is a decomposition BX =

⋃∞
n=1 Aε

n such that the norm ‖ · ‖ is
ε-Aε

n-differentiable at every 0 6= x ∈ X for every n ∈ N.

A Banach space X is called weakly compactly generated (WCG) if it
contains a weakly compact set whose linear span is dense in it. X is called
weakly Lindelöf determined (WLD) if its dual unit ball BX∗ , with the weak∗

topology, is a Corson compact space. A compact space is called Corson if it is
homeomorphic to a subset of Σ(Γ ) := {u ∈ RΓ ; #{γ ∈ Γ ; u(γ) 6= 0} ≤ ω},
with a suitable set Γ , endowed with the product topology. A compact space
K is called Eberlein if it is homeomorphic to a weakly compact set of c0(Γ )
in its weak topology, for some set Γ . We refer to [4, 7, 11] for the standard
notation and results used in this paper.

The paper is organized as follows: Section 2 lists and discusses the main
results in this paper. Section 3 studies relationships between the quantitative
concepts described above. Most of the statements from this section are then
used in Section 4, where the main results are proved.
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2. Characterizations of subspaces of WCG spaces. We start with
the following well-known

Theorem 0. Let X be a Banach space. Then (o)⇒(i)⇔(ii)⇒(iii)⇒(iv)
where

(o) X is a WCG and Asplund space.
(i) X admits an equivalent norm whose dual norm is LUR.
(ii) X admits an equivalent norm whose dual norm has the weak∗ Kadec

property.
(iii) X admits an equivalent norm which is Fréchet smooth.
(iv) X is an Asplund space.

Moreover , if X is a WLD space, then all (o)–(iv) are equivalent.

As regards its proof, (o)⇒(i) can be found in [4, Theorem VII.1.14];
(i)⇔(ii) is from [26, 27]; for (i)⇒(iii)⇒(iv) see, e.g., [4, Proposition II.1.5
and Theorem II.5.3]; and for the last statement, see, e.g., [7, Theorem 8.3.4].

The following analogue of the above pattern is one of the main results
of this paper.

Theorem 1. Let X be a Banach space. Then (o)⇒(i)⇒(ii)⇒(iv) and

(o)⇒(i)⇒(iii)⇒(iv), where

(o) X is a subspace of a WCG space.

(i) X admits an equivalent norm whose dual norm is σ-LUR.

(ii) X admits an equivalent norm whose dual norm has the σ-weak∗

Kadec property.

(iii) X admits an equivalent norm which is σ-Fréchet smooth.

(iv) X is a σ-Asplund generated space.

Moreover , if X is a WLD space, then all (o)–(iv) are equivalent.

A compact space K is called quasi-Radon–Nikodým if there is a lower
semicontinuous function ̺ : K×K → [0, 1] which separates the points of K,
and which fragments K, i.e., for every ε > 0 and every ∅ 6= M ⊂ K there is
an open set Ω ⊂ K so that M ∩Ω 6= ∅ and sup{̺(k, h); k, h ∈ M ∩Ω} < ε.

Theorem 2.

(i) A compact space K is quasi-Radon–Nikodým if and only if the Ba-

nach space C(K) is σ-Asplund generated.

(ii) A Banach space X is σ-Asplund generated if and only if (BX∗ , w∗)
is a quasi-Radon–Nikodým compact space.

Here, (i) was proved by Avilés [3, Theorem 20] (see also [8, Theorem 7]),
while (ii) follows from [3, Theorem 20], [13, Lemma 4], [8, Theorem 7], and
Remark 8 below.
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From Theorems 1 and 2, we get, after a mild effort, the following known

Theorem 3. For a compact space K the following assertions are equiv-

alent :

(i) K is an Eberlein compact space.

(ii) K is a Corson compact space and C(K) is σ-Asplund generated.

(iii) K is a Corson and simultaneously quasi-Radon–Nikodým compact

space.

The implication (iii)⇒(i) in Theorem 3 is due to Arvanitakis [2]. In his
proof, he used purely topological tools.

Remarks. 1. (i) 6⇒(o) in Theorem 1: Let X be the dual JT∗ to the
James tree space JT [11, pp. 199–201]. Note that JT is separable and that X∗

is isomorphic to JT⊕ℓ2(Γ ). Thus X∗ admits an equivalent dual LUR norm
[4, Theorem VII.2.3(ii)]. If X were a subspace of a WCG space, then JT∗

would admit an equivalent dual LUR norm [4, Theorem VII.2.3(ii)]. But this
would imply that JT∗ is separable, a contradiction. Other counterexamples
are the spaces JL0 or JL2 constructed by Johnson and Lindenstrauss (see,
e.g. [30]).

2. Concerning the implication (ii)⇒(i) in Theorem 1, see the remark at
the very end of the paper.

3. (iii) 6⇒(i) in Theorem 1: The space C([0, ω1]) admits an equivalent
Fréchet smooth norm [4, Th. 5.4, Ch. VII]. However, it does not satisfy (i).
Indeed, it is easy to check that every dual norm which is σ-LUR is already
strictly convex. However, by Talagrand [4, Theorem VII.5.2], C([0, ω1]) does
not admit any equivalent norm whose dual norm would be strictly convex.

4. (iv) 6⇒(iii) in Theorem 1: It is easy to check that the σ-Fréchet smooth-
ness of a norm implies its Gateaux smoothness. Thus any Asplund space
which admits no equivalent Gateaux smooth norm provides a counterexam-
ple here (see, e.g., [4, Section VII.6]).

5. Every Gateaux smooth norm on a separable Banach space is already
σ-Fréchet smooth (so, in particular, every separable Banach space satisfies
(iii) in Theorem 1 and hence it is σ-Asplund generated, although not always
Asplund). Indeed, assume that (X, ‖ · ‖) is a separable Banach space with
Gateaux smooth norm, and let {xn; n ∈ N} be a dense subset of BX . Put

Aε
n = (xn + (ε/3)BX) ∩ BX , n ∈ N, ε > 0.

Then
⋃∞

n=1 Aε
n = BX . Moreover, for every 0 6= x ∈ X, n ∈ N, and ε > 0,

lim
t↓0

1

t
sup{‖x + th‖ + ‖x − th‖ − 2‖x‖; h ∈ Aε

n}

≤ lim
t↓0

1

t
{‖x + txn‖ + ‖x − txn‖ − 2‖x‖} +

2ε

3
=

2ε

3
< ε.
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6. Note that a norm is σ-Fréchet smooth if it is uniformly Gateaux
smooth [10], [9, p. 445]. Thus the σ-Fréchet smoothness is a common gener-
alization for both the Fréchet smoothness and the uniform Gateaux smooth-
ness. Klee showed in [20] that any separable Banach space X has an equiv-
alent Gateaux smooth norm ‖ · ‖ whose dual norm is not strictly convex.
Hence this norm on X is not uniformly Gateaux smooth (see [4, Theorem
II.6.7]). If, moreover, X∗ is not separable, then X is not an Asplund space
and so the norm ‖·‖ is not Fréchet smooth; however, according to Remark 5,
‖ · ‖ is σ-Fréchet smooth.

7. Let X be a weakly K-analytic (and so weakly countably determined)
Banach space which is not a subspace of a WCG space—one of such spaces,
due to Talagrand, can be found, e.g., in [7, Section 4.3]. Let ‖ · ‖ be an
equivalent Gateaux smooth norm on X; it exists according to a result of
Mercourakis (see, e.g., [4, Theorem VII.1.16]). This norm is not σ-Fréchet
smooth by Theorem 1.

8. A Banach space X is called Asplund generated provided that there are
an Asplund space Y and a bounded linear mapping T : Y → X with TY
dense in X. This is equivalent to saying that X contains a linearly dense
Asplund subset (see, e.g., [7, Theorem 1.4.4]). In general, this property is not
inherited by subspaces: There are examples of subspaces of a WCG Banach
space which are not WCG (the first one was given by Rosenthal [28], see also
[7, Section 1.6]); use then [7, Theorem 8.3.4]. On the other hand, it is easy
to check that subspaces of Asplund generated Banach spaces are σ-Asplund

generated. Indeed, assume that A is an Asplund set generating a Banach
space Z and that X is a subspace of Z. Then the absolutely convex hull
of A, say C, is also an Asplund set in Z. Now, the sets

Aε
n = (nC + (ε/2)BZ) ∩ BX , ε > 0, n ∈ N,

witness that X is σ-Asplund generated. Also, subspaces of σ-Asplund gener-

ated spaces are σ-Asplund generated. However, we do not know if σ-Asplund
generated Banach spaces are already subspaces of Asplund generated Ba-
nach spaces.

9. A compact space is called Radon–Nikodým if it is homeomorphic to
a weak∗ compact subset of a space that is dual to an Asplund space. A
compact space is Radon–Nikodým if and only if it admits a lower semicon-
tinuous metric which fragments it. Trivially, a Radon–Nikodým compact
space is quasi-Radon–Nikodým, and it is unknown if the opposite is true. It
is easy to show that a continuous image of a quasi-Radon–Nikodým com-
pact space is quasi-Radon–Nikodým. Hence, Theorem 3 implies a result of
Stegall that a continuous image of a Radon–Nikodým compact space which

is moreover Corson must be Eberlein (see, e.g., [7, Theorem 8.3.6]). Here we
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recall two well-known results. A compact space is Eberlein if and only if it

is simultaneously Radon–Nikodým and Corson (see, e.g., [7, Theorem 8.3.5]
and references therein). A compact space K is Radon–Nikodým if and only

if C(K) is Asplund generated (see, e.g., [7, Theorem 1.5.4]).

10. The implication (iv)⇒(o) in Theorem 1 for WLD spaces can be de-
duced once we have Theorem 3 at hand. Indeed, (iv) and [13, Lemma 4] guar-
antee that C(BX∗ , w∗) is σ-Asplund generated. Moreover, if X is WLD then
(BX∗ , w∗) is a Corson compact space. Therefore, by Theorem 3, (BX∗ , w∗)
is an Eberlein compact space, and hence X is a subspace of a WCG space
(see, e.g. [11, p. 392]).

11. A Banach space X is a subspace of an Asplund generated space if

(and only if ) (BX∗ , w∗) is a continuous image of a Radon–Nikodým compact

space [7, Theorem 1.5.6]. It is unknown whether every σ-Asplund generated
space is a subspace of an Asplund generated space. Actually, this is equiva-
lent to the question whether every quasi-Radon–Nikodým compact space is
a continuous image of a Radon–Nikodým compact space. For more details
we refer to [8].

12. Compact spaces K such that C(K) is σ-Asplund generated are called
in [13] countably lower fragmentable.

We postpone the proofs of Theorems 1 and 3 to Section 4, after we prove,
in Section 3, results on ε-versions of several qualitative concepts of Banach
space theory.

3. ε-concepts. We collect here quantitative versions of known qualita-
tive results on Asplund property, differentiability, dentability, fragmentabil-
ity, and weak compactness. We shall use them in the proofs of Theorems 1
and 3. The proofs of such statements are mostly analogous to known proofs
of their qualitative counterparts. However, as they are of independent in-
terest, and some more applications of them may be expected in the future,
we mostly include their proofs. Sometimes, in the proofs, we are not able to
avoid the jump from ε to 2ε or 4ε, and we do not have at hand counterex-
amples demonstrating the necessity of such growth. Actually, we do not care
much about this increase since our main objective is the qualitative essence
of the quantitative results.

Let M be a non-empty bounded subset of X. The M -diameter of a set
U ⊂ X∗ is defined by

M -diamU := sup{‖x∗
1 − x∗

2‖M ; x∗
1, x

∗
2 ∈ U}.

We shall start with a Shmul’yan-like characterization of ε-M -differentiability
of a norm; its proof is similar to that of [4, Theorem I.1.4], and hence we
omit it.
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Proposition 4. Let (X, ‖·‖) be a Banach space, M ⊂ BX a non-empty

subset , ε > 0, and x0 an element in the unit sphere SX of X. Then the

following statements are equivalent :

(i) The norm ‖ · ‖ is ε-M -differentiable at x0.

(ii) For all sequences (x∗
n) and (y∗n) in BX∗ such that 〈x0, x

∗
n〉 → 1 and

〈x0, y
∗
n〉 → 1 as n → ∞, we have ‖x∗

n − y∗n‖M < ε for all sufficiently

large n ∈ N.

(iii) The slice {x∗ ∈ BX∗ ; 〈x0, x
∗〉 > 1 − δ}, with a suitable δ > 0, has

M -diameter less than ε.

Let ε > 0 and ∅ 6= M ⊂ BX be given. We say that BX∗ is weak∗

ε-M -dentable if for every non-empty set U ⊂ BX∗ there are x ∈ X and
α ∈ R such that the slice {x∗ ∈ U ; 〈x, x∗〉 > α} is non-empty and has
M -diameter less than ε. We say that BX∗ is weak∗ ε-M -fragmentable if for
every non-empty set U ⊂ BX∗ there exists a weak∗ open set Ω ⊂ X∗ such
that the intersection U ∩ Ω is non-empty and has M -diameter less than ε.
Clearly, the weak∗ ε-BX-dentability (the weak∗ ε-BX-fragmentability) valid
for every ε > 0 yields the classical concept of the weak∗ dentability (resp.
fragmentability) by the norm.

The following proposition shows connections between ε-versions of differ-
entiability of functions on the space and the dentability and fragmentability
in the dual.

Proposition 5. Let (X, ‖ · ‖) be a Banach space, M ⊂ BX be a non-

empty set , and let ε > 0 be given. Then the following assertions are equiva-

lent :

(i) BX∗ is weak∗ ε-M -dentable.

(ii) BX∗ is weak∗ ε-M -fragmentable.

(iii) Every convex 1-Lipschitzian function on X is ε-M -differentiable at

every point of an open dense subset of X.

(iv) Every convex 1-Lipschitzian function on X is ε-M -differentiable at

least at one point.

Proof. (i)⇒(ii) is trivial.

(ii)⇒(iii). Let f : X → R be a convex 1-Lipschitzian function. Let
U ⊂ X be any non-empty open set. Let ∂f : X → 2X∗

be the Moreau–
Rockafellar subdifferential of f (see [25, p. 6]). ∂f is norm-to-weak∗ upper
semicontinuous [25, Proposition 2.5]. Let F : X → 2X∗

be a minimal norm-
to-weak∗ upper semicontinuous mapping such that F (x) ⊂ ∂f(x) for every
x ∈ X. Since f is 1-Lipschitzian, F (U) is a subset of BX∗ . Now, (ii) yields a
weak∗ open set W ⊂ X∗ such that the set F (U) ∩W is non-empty and has
M -diameter less than ε. By [7, Lemma 3.1.2], there exists a non-empty open
set Ω ⊂ U so that F (Ω) ⊂ W . Then M -diamF (Ω) < ε. We shall show that
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f is ε-M -differentiable at each point of Ω. So fix any x ∈ Ω. Find t > 0 so
small that x ± tM ⊂ Ω. Then for all h ∈ M we have

1

t
(f(x + th) + f(x − th) − 2f(x)) ≤ 〈h, ξ − η〉 ≤ M - diamF (Ω) < ε,

where ξ ∈ F (x+ th) and η ∈ F (x− th). We have thus proved that any open
set U ⊂ X contains an open subset Ω ⊂ U such that f is ε-M -differentiable
at each point of Ω, which is (iii).

(iii)⇒(iv) is trivial.
(iv)⇒(i). Fix any non-empty set U ⊂ BX∗ . Put f = sup〈·, U〉; this is

a convex 1-Lipschitzian function on X. Find x0 ∈ X, t > 0, and δ > 0 so
small that (1/t) sup{f(x0 + th) + f(x0 − th) − 2f(x0); h ∈ M} + 3δ/t < ε.
Consider any x∗

1, x
∗
2 in the slice {x∗ ∈ U ; 〈x0, x

∗〉 > f(x0)− δ}. Then for all
h ∈ M we have

〈x0±th, x∗
1〉+〈x0∓th, x∗

2〉−2f(x0) ≤ f(x0±th)+f(x0∓th)−2f(x0) < tε−3δ,

and hence,

±t〈h, x∗
1−x∗

2〉 < tε−3δ +2f(x0)−〈x0, x
∗
1〉−〈x0, x

∗
2〉 < tε−3δ +2δ = tε− δ,

and so ‖x∗
1 − x∗

2‖M < ε − δ/t. Therefore the slice {x∗ ∈ U ; 〈x0, x
∗〉 >

f(x0) − δ} has M -diameter not greater than ε − δ/t < ε.

Remark. There exists a direct proof of the implication (ii)⇒(i). Indeed,
it is enough to follow carefully the argument in [24, p. 742].

Let ε > 0 and ∅ 6= M ⊂ BX be given. We say that the dual ball BX∗

is ε-M -dentable if for every non-empty set U ⊂ BX∗ there are x∗∗ ∈ X∗∗

and α ∈ R such that the slice {x∗ ∈ U ; 〈x∗∗, x∗〉 > α} is non-empty and has
M -diameter less than ε. If BX∗ is ε-BX-dentable for every ε > 0, then we get
the usual concept of dentability of X∗, equivalent, as is well known, to the
Radon–Nikodým property of X∗. Trivially, weak∗ ε-M -dentability implies
ε-M -dentability.

Proposition 6. Let X be a Banach space, ∅ 6= M ⊂ BX , ε > 0, and

assume that the dual unit ball BX∗ is ε-M -dentable. Then BX∗ is weak∗

2ε′-M -dentable for every ε′ > ε.

Proof. We follow the proof of [5, Proposition 2]. Fix any ε′ > ε. Assume
that BX∗ is not weak∗ 2ε′-M -fragmentable. Find a set S ⊂ BX∗ whose non-
empty weak∗ relatively open subsets have M -diameter at least 2ε′ each. Take
ε′′ ∈ (ε, ε′). Set D = {∅}∪{0, 1}∪{0, 1}2∪· · · . For d ∈ D we shall construct
weak∗ relatively open sets Ud ⊂ S and vectors hd ∈ M such that Ud0 ∪ Ud1

⊂Ud and inf〈hd, Ud0−Ud1〉 > 2ε′′; here and further we put di = (d1, . . . , dn, i)
if d = (d1, . . . , dn) ∈ D and i ∈ {0, 1}. Put U∅ = S. Consider any d ∈ D and
assume that Ud has already been constructed. We know that sup〈M, Ud−Ud〉
> 2ε′′. Find hd ∈ M and ξ0, ξ1 ∈ Ud such that 〈hd, ξ0 − ξ1〉 > 2ε′′. Then
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find weak∗ relatively open sets Udi ⊂ Ud such that ξi ∈ Udi, i = 0, 1, and
inf〈hd, Ud0 − Ud1〉 > 2ε′′. This finishes the induction step.

For d ∈ D let Kd = coUd
∗

denote the weak∗ closed convex hull of Ud.
We note that Kd0 ∪ Kd1 ⊂ Kd, and hence 1

2(Kd0 + Kd1) ⊂ Kd for every
d ∈ D. We claim that there exists t = (td; d ∈ D) ∈

∏

d∈D Kd such that

td = 1
2(td0 + td1) for every d ∈ D; note that the set {td; d ∈ D} is called a

dyadic tree. Clearly, in order to prove the claim, it is enough to show that
⋂

d∈D Ad 6= ∅, where

Ad =
{

(td; d ∈ D) ∈
∏

d∈D

Kd; td = 1
2(td0 + td1)

}

, d ∈ D.

Using a compactness argument, it is enough to prove that
⋂

{Ad; d ∈ D,
|d| ≤ n} is non-empty for every n ∈ N. So fix n ∈ N. For d ∈ D with |d| > n
let td be any element of Kd. To give the definition for d ∈ D with |d| ≤ n,
we use downward induction. Fix any d ∈ D, with |d| ≤ n, and assume that
we have already defined td0 ∈ Kd0 and td1 ∈ Kd1. Put then td = 1

2(td0 + td1);
hence td ∈ Kd. Thus we finally construct td for every d ∈ D. It is clear that
every (td; d ∈ D) from the non-empty set

⋂∞
n=1{Ad; d ∈ D, |d| ≤ n} satisfies

the claim.
Pick some (td; d ∈ D) ∈

∏

d∈D Kd. By the assumption, there is a weak
open halfspace V ⊂ X∗ such that the set {td; d ∈ D} ∩ V is non-empty and
has M -diameter less than ε. Take d ∈ D so that td ∈ V . Then also tdi ∈ V for
a suitable i ∈ {0, 1}. Hence ‖td− tdi‖M < ε. However, from the construction
of the sets Ud0, Ud1 we have 2ε < 2ε′′ < 〈hd, td0 − td1〉 = 2|〈hd, td − tdi〉| <
2‖td − tdi‖M , a contradiction. Therefore BX∗ is weak∗ 2ε′-M -fragmentable.
Proposition 5 then finishes the proof.

Proposition 7. Let (X, ‖·‖) be a Banach space, M ⊂ BX a non-empty

set , and let ε > 0 be given. Then (i)⇒(ii)⇒(iii) where

(i) BX∗ is weak∗ ε-M -fragmentable.

(ii) M is an ε-Asplund set.

(iii) BX∗ is weak∗ 2ε-M -fragmentable.

Proof. (i)⇒(ii). We follow the argument from [24, p. 742]. Fix any count-
able set A ⊂ M . By Zorn’s lemma we find a set S ⊂ BX∗ such that
‖x∗

1 − x∗
2‖A ≥ ε for all distinct x∗

1, x
∗
2 ∈ S, and for every x∗ ∈ BX∗ there

is s ∈ S so that ‖x∗ − s‖A < ε. Assume that S is uncountable. On BX∗ ,
consider the topology of pointwise convergence on elements of A—call it τA.
Clearly, τA is semimetrizable. By deleting at most countably many points
from S we get an (uncountable) set S0 ⊂ S such that each point of S0 is a
τA-accumulation point of S0. This can be done easily by using the concept of
condensation points (see [6, p. 85]). Since BX∗ is weak∗ ε-M -fragmentable,
we can find a weak∗ open set W ⊂ X∗ such that S0 ∩ W is non-empty and
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has M -diameter less than ε. But this leads to a contradiction because S0∩W
is not a singleton. Therefore S must be at most countable and hence BX∗

is ‖ · ‖A-ε-separable. This holds for every countable A ⊂ M and hence M is
an ε-Asplund set.

(ii)⇒(iii). We guess that this argument goes back to I. Namioka. Let
U ⊂ BX∗ be a non-empty set. Let {0} 6= Y0 be some fixed separable sub-
space of X. Let W 0

i ⊂ BX∗ , i ∈ N, be a basis for the topology on BX∗

of pointwise convergence on Y0. For every i ∈ N we find a countable set
A0

i ⊂ M such that A0
i -diam(U ∩ W 0

i ) = M -diam(U ∩ W 0
i ). Let Y1 be the

closed linear span of Y0 ∪
⋃

i∈N A0
i . Generally, consider any fixed n ∈ N

and assume we have already found separable subspaces Y0 ⊂ Y1 ⊂ · · ·
· · · ⊂ Yn ⊂ X, sets A0

i , A
1
i , . . . , A

n−1
i ⊂ M, i ∈ N, and relatively weak∗ open

sets W 0
i , W 1

i , . . . , Wn−1
i ⊂ BX∗ , i ∈ N. Let Wn

i ⊂ BX∗ , i ∈ N, be a basis for
the topology on BX∗ of pointwise convergence on Yn. For every i ∈ N we find
a countable set An

i ⊂ M such that An
i -diam(U ∩Wn

i ) = M -diam(U ∩Wn
i ).

Let then Yn+1 be the closed linear span of the set Yn ∪
⋃

i∈N An
i . Finally, let

Y be the closure of
⋃

i∈N Yn, and put A =
⋃

i,n∈N An
i . We observe that Y is

separable and A is countable.

Now, we show that M -diam(U∩W ) < 2ε for a suitable weak∗ open set
W ⊂X∗. From (ii) we find a countable set C⊂BX∗ such that for every x∗∈
BX∗ there is c∈C satisfying ‖x∗ − c‖A <ε. Let τ denote the (possibly non-
Hausdorff) topology on BX∗ of pointwise convergence on Y , and let U

τ
be

the closure of U in τ . We note that (BX∗ , τ) is a compact space. We can write

U
τ

=
⋃

c∈C

⋃

j∈N

{x∗ ∈ U
τ
; ‖x∗ − c‖A ≤ ε − 1/j},

and Baire’s category theorem yields c ∈ C, j ∈ N, and a τ -open set V ⊂ BX∗

so that ∅ 6= U
τ
∩ V ⊂ {x∗ ∈ U

τ
; ‖x∗ − c‖A ≤ ε − 1/j}. Therefore the

(non-empty) set U ∩ V has A-diameter ≤ 2(ε − 1/j) < 2ε. We may and
do assume that V = {x∗ ∈ BX∗ ; 〈yi, x

∗〉 < αi, i = 1, . . . , l} for suitable
n, l ∈ N, y1, . . . , yl ∈ Yn, and α1, . . . , αl ∈ R. Thus V is an open set in
the topology of pointwise convergence on Yn. Hence, there must exist i ∈ N

such that ∅ 6= U ∩ Wn
i ⊂ U ∩ V . Find a weak∗ open set W ⊂ X∗ such that

Wn
i = W ∩ BX∗ . Then U ∩ W = U ∩ Wn

i and hence

M -diam(U ∩ W ) = An
i -diam(U ∩ Wn

i ) ≤ A-diam(U ∩ Wn
i )

≤ A-diam(U ∩ V ) < 2ε.

Remark. It is natural to ask what happens if the whole unit ball BX is
an ε-Asplund set. Clearly, this information is vacuous if ε > 1. On the other
hand, if 0 < ε < 1 and BX is an ε-Asplund set, then X is already an Asplund
space; this easily follows from Riesz’ lemma. Thus we get from Proposition 7
a result of M. Muñoz [22]: If BX∗ is weak∗ ε-BX-fragmentable, i.e., weak∗
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ε-fragmentable by the norm, for some 0 < ε < 1, then X is an Asplund

space (and hence BX∗ is weak∗ fragmentable by the norm). Further, using
this fact and Proposition 6 we find that if BX∗ is ε-BX-dentable for some

0 < ε < 1/2, then X must be an Asplund space. Finally, if BX is 1-Asplund,
then X may not be an Asplund space. In other words, the ‖·‖-1-separability
of BX∗ may not be enough for the separability of X∗. The following example
illustrating this is due to J. Tǐser. We thank him for allowing us to include
it in our paper.

Example. Consider X = ℓ1. Then X∗ = ℓ∞. Endow X∗ with the
(equivalent dual) norm

|‖x∗|‖ = sup
n∈N

|xn| +
∞

∑

n=1

2−n|xn|, x∗ = (x1, x2, . . .) ∈ ℓ∞.

Put e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . We shall show that the closed

unit ball in (ℓ∞, |‖ · |‖) can be covered by a countable family of open balls of

|‖·|‖-radius 1. For this we shall show that the open balls {x∗∈ℓ∞; |‖x∗−1
2em|‖

< 1} and {x∗ ∈ ℓ∞; |‖x∗ + 1
2em|‖ < 1}, m ∈ N, cover the unit sphere

{x∗ ∈ ℓ∞; |‖x∗|‖ = 1}. Hence, all these balls, together with the open ball
{x∗ ∈ ℓ∞; |‖x∗ − 0|‖ < 1}, will cover the whole closed unit ball {x∗ ∈ ℓ∞;
|‖x∗|‖ ≤ 1}. So fix any x∗ = (x1, x2, . . .) ∈ ℓ∞ with |‖x∗|‖ = 1. Define
‖x∗‖∞ = supn∈N |xn|. Then 1 ≤ ‖x∗‖∞ +

∑∞
n=1 2−n‖x∗‖∞ = 2‖x∗‖∞, and

so ‖x∗‖∞ ≥ 1/2. Assume first that ‖x∗‖∞ > 1/2. Find m ∈ N so that
|xm| > 1/2. Assume, say, xm > 0; then xm > 1/2. We shall show that
|‖x∗ − 1

2em|‖ < 1. Indeed,

|‖x∗ − 1
2em|‖ = |xm − 1/2| ∨ sup

n 6=m
|xn| + 2−m|xm − 1/2| +

∑

n 6=m

2−n|xn|

= (xm − 1/2) ∨ sup
n 6=m

|xn| + 2−m(xm − 1/2) + (1 − 2−m|xm| − ‖x∗‖∞)

≤ ‖x∗‖∞ + 2−mxm − 2−m−1 + 1 − 2−mxm − ‖x∗‖∞ < 1.

If xm < 0, then we find similarly that |‖x∗+ 1
2em|‖ < 1. Second, assume that

‖x∗‖∞ = 1/2. Then, necessarily, |xn| = 1/2 for every n ∈ N and so

min |‖x∗ ± 1
2e1|‖ = 1

2 +
∞

∑

n=2

2−n 1
2 = 3

4 < 1.

Question. If X is a general separable Banach space with non-separable

dual , does it admit an equivalent norm |‖ · |‖ such that the closed unit ball

B(X,|‖·|‖) is a 1-Asplund set?

Next, we shall focus on ε-variants of some concepts of smoothness and
rotundity of the norm. An example of a space with a Gateaux smooth norm
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that has no equivalent M -smooth norm, with M linearly dense, is any non-
WCG subspace of a WCG space (see, e.g., [9, Theorem 1]).

Proposition 8. Let (X, ‖·‖) be a Banach space, M ⊂ BX a non-empty

set , and let ε > 0 be given. Then (i)⇒(ii)⇒(iii) where

(i) The dual norm ‖ · ‖ on X∗ is ε-M -LUR.

(ii) The dual norm ‖ · ‖ on X∗ has the weak∗ ε-M -Kadec property.

(iii) The set M is ε-Asplund.

Proof. (i)⇒(ii). Let x∗ and a net (x∗
τ )τ∈T lie in SX∗ and x∗

τ
w∗

→ x∗. Then
for every x ∈ BX we have

2 ≥ lim sup
τ

‖x∗ + x∗
τ‖ ≥ lim inf

τ
‖x∗ + x∗

τ‖ ≥ lim
τ

〈x, x∗ + x∗
τ 〉 = 2〈x, x∗〉.

Hence limτ ‖x∗ + x∗
τ‖ = 2. Assume that lim supτ ‖x

∗
τ − x∗‖M ≥ ε. Find then

τ1 < τ2 < · · · in T such that

‖x∗
τn

− x∗‖M > ε − 1/n and ‖x∗
τn

+ x∗‖ > 2 − 1/n

for every n ∈ N. Then limn→∞ ‖x∗
τn

+ x∗‖ = 2, and therefore, by (i),
lim supn→∞ ‖x∗

τn
− x∗‖M < ε, a contradiction.

(ii)⇒(iii). Let ∅ 6= A ⊂ M be a countable subset. Denote by Y the closed
linear span of A and let Q : X∗ → Y ∗ be the canonical quotient mapping. Let
τ denote the topology, on the dual unit sphere SX∗ , of pointwise convergence
on elements of A. Then (SX∗ , τ) is a separable space (maybe not Hausdorff).
Find a countable set D ⊂ SX∗ which is τ -dense in SX∗ . Fix any 0 6= y∗

∈ BY ∗ . Find a sequence (dn) in D such that 〈x, Q(dn)〉 → 〈x, y∗/‖y∗‖〉 as
n → ∞ for every x ∈ A. Let x∗ ∈ X∗ be a weak∗ cluster point of (dn).
It is easy to see that ‖x∗‖ = 1. From (ii) we can then find n ∈ N so that
‖x∗ − dn‖M < ε, and hence

‖y∗/‖y∗‖ − Q(dn)‖A = ‖x∗ − dn‖A ≤ ‖x∗ − dn‖M < ε.

Therefore ‖y∗ − ‖y∗‖Q(dn)‖A < ‖y∗‖ε ≤ ε. Thus, the (countable) set
⋃

{rQ(D); r ∈ Q, 0 ≤ r ≤ 1}, where Q stands for the set of rational
numbers, witnesses that BY ∗ is ‖ · ‖A-ε-separable. Finally, the (countable)
set

⋃

{rD; r ∈ Q, 0 ≤ r ≤ 1}, witnesses that BX∗ is ‖ · ‖A-ε-separable. We
have thus proved (iii).

We also have the following variant of Proposition 8.

Proposition 9. Let (X, ‖·‖) be a Banach space, M ⊂ BX a non-empty

set , and let ε > 0 be given. Then (i)⇒(ii)⇒(iii) where

(i) The dual norm ‖ · ‖ on X∗ is 1
2ε-M -LUR.

(ii) The norm ‖ · ‖ on X is ε-M -smooth.

(iii) The set M is ε′-Asplund for every ε′ > ε.
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Proof. (i)⇒(ii). Consider any x0 ∈ SX . Let (x∗
n) and (y∗n) be two se-

quences in BX∗ such that 〈x0, x
∗
n〉 → 1 and 〈x0, y

∗
n〉 → 1. Find x∗

0 ∈ SX∗

such that 〈x0, x
∗
0〉 = 1. Then

2 ≥ lim sup
n→∞

‖x∗
0 + x∗

n‖ ≥ lim inf
n→∞

‖x∗
0 + x∗

n‖ ≥ lim
n→∞

〈x0, x
∗
0 + x∗

n〉 = 2,

and similarly, limn→∞ ‖x∗
0 + y∗n‖ = 2. Thus (i) implies that

lim sup
n→∞

‖x∗
0 − x∗

n‖M < ε/2 and lim sup
n→∞

‖x∗
0 − y∗n‖M < ε/2.

Then lim supn→∞ ‖x∗
n − y∗n‖M < ε. Now, Proposition 4 yields (ii).

(ii)⇒(iii). Take any countable subset ∅ 6= A ⊂ M . Denote by Y the
closed linear span of A; this subspace is separable. Find a countable dense
subset C in SY . For every c ∈ C we find c∗ ∈ SY ∗ such that 〈c, c∗〉 = 1, and
let C∗ denote the set of all such c∗’s. Now, fix any y∗ ∈ SY ∗ such that there
is y ∈ SY satisfying 〈y, y∗〉 = 1. Find a sequence (cn) in C norm converging
to y. For every n ∈ N find c∗n ∈ C∗ such that 〈cn, c∗n〉 = 1. We have

〈y, c∗n〉 = 〈cn, c∗n〉 + 〈y − cn, c∗n〉 = 1 + 〈y − cn, c∗n〉 → 1 as n → ∞.

Hence, by Proposition 4, there is n ∈ N so that ‖c∗n − y∗‖A ≤ ‖c∗n − y∗‖M∩Y

< ε. We have proved that the set of all norm attaining elements of SY ∗ is
‖ · ‖A-ε-separable. Hence, by the Bishop–Phelps theorem, the whole SY ∗ is
‖ · ‖A-ε′-separable for every ε′ > ε. Then the (countable) set D :=

⋃

{rC∗;
r ∈ Q, 0 ≤ r ≤ 1} shows that the whole ball BY ∗ is ‖ · ‖A-ε′-separable for
every ε′ > ε. Finally, extending every element of d ∈ D to d̃ ∈ BX∗ , the
(countable) set {d̃; d ∈ D} witnesses that BX∗ is ‖·‖A-ε′-separable for every
ε′ > ε. We have thus proved (iii).

If X∗ is separable, then it admits an equivalent dual LUR norm [4,
Corollary II.4.3]. A quantitative version of this, which can be thought of as
a kind of converse to Propositions 8 and 9, reads:

Proposition 10. Let (X, ‖ · ‖) be a Banach space, let ∆ > 0, ε > 0 be

given, and let ∅ 6= M ⊂ BX be a separable ε-Asplund set. Then X admits

an equivalent norm | · |, with | · | ≤ ‖ · ‖ ≤ (1 + ∆)| · |, whose dual norm is

2ε-M -LUR.

Proof. We use Godefroy’s method of transfer ([4, Ch. II]). Replace M
by M ∪ (−M) and call it again M ; this set will also be ε-Asplund. Find
d∗i ∈ BX∗ , i ∈ N, such that for every x∗ ∈ BX∗ there is j ∈ N so that
‖x∗ − d∗j‖M < ε. For k ∈ N define

|x∗|2k := inf

{∥

∥

∥

∥

x∗ −
∞

∑

i=1

1

i
yid

∗
i

∥

∥

∥

∥

2

M

+
1

k

∞
∑

i=1

yi
2; (yi) ∈ ℓ2

}

, x∗ ∈ X∗,
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and then

|x∗|2 := ‖x∗‖2 + ∆
∞

∑

k=1

2−k|x∗|2k, x∗ ∈ X∗.

Clearly ‖x∗‖2 ≤ |x∗|2 ≤ (1 + ∆)‖x∗‖2 for every x∗ ∈ X∗. A use of the
triangle inequality in ℓ2 reveals that |·| is subadditive. That |·| is weak∗ lower
semicontinuous can be proved similarly to [4, Lemma VII.2.5(i)]. Therefore
| · | is an equivalent dual norm on X∗. We denote by | · | also the norm on
X predual to | · |; then |x|2 ≤ ‖x‖2 ≤ (1 + ∆)|x|2 for every x ∈ X.

Now, consider x∗
0, x

∗
1, x

∗
2, . . . in the unit sphere of (X∗, | · |) such that

|x∗
0 + x∗

n| → 2 as n → ∞. We have to show that lim supn→∞ ‖x∗
0 − x∗

n‖M

< 2ε. Find j ∈ N so that ‖x∗
0 − d∗j‖M < ε. Then find k ∈ N so large that

‖x∗
0−d∗j‖

2
M +j2/k < ε2. Further, for n = 0, 1, 2, . . . find yn = (yn

1 , yn
2 , . . .) ∈ ℓ2

such that

|x∗
n|

2
k =

∥

∥

∥

∥

x∗
n −

∞
∑

i=1

1

i
yn

i d∗i

∥

∥

∥

∥

2

M

+
1

k

∞
∑

i=1

(yn
i )2;

this is possible because the mapping Φ from ℓ2 with weak topology into R

defined for y = (yi) ∈ ℓ2 by

Φ(y) :=

∥

∥

∥

∥

x∗ −
∞
∑

i=1

1

i
yid

∗
i

∥

∥

∥

∥

2

M

+
1

k

∞
∑

i=1

y2
i

is lower semicontinuous and Φ(zm) → ∞ whenever z1, z2, . . . ∈ ℓ2 and
‖zm‖2 → ∞. We have the estimate

‖x∗
0 − x∗

n‖M ≤

∥

∥

∥

∥

x∗
0 −

∞
∑

i=1

1

i
y0

i d
∗
i

∥

∥

∥

∥

M

+

∥

∥

∥

∥

∞
∑

i=1

1

i
(y0

i − yn
i )d∗i

∥

∥

∥

∥

M

(1)

+

∥

∥

∥

∥

∞
∑

i=1

1

i
yn

i d∗i − x∗
n

∥

∥

∥

∥

M

≤ |x∗
0|k +

( ∞
∑

i=1

1

i2

)1/2( ∞
∑

i=1

(y0
i − yn

i )2
)1/2

+ |x∗
n|k

for every n = 1, 2, . . . . Now, a convexity argument and the parallelogram
identity in ℓ2 yield, for every n ∈ N,

4 − |x∗
0 + x∗

n|
2 ≥ ∆2−k(|x∗

0|k − |x∗
n|k)

2

and

4 − |x∗
0 + x∗

n|
2 ≥ ∆2−k 1

k

∞
∑

i=1

(y0
i − yn

i )2.
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Hence, because limn→∞ |x∗
0 + x∗

n| = 2, we have

|x∗
n|k → |x∗

0|k and
∞

∑

i=1

(y0
i − yn

i )2 → 0 as n → ∞.

Therefore, (1) shows that lim supn→∞ ‖x∗
0 − x∗

n‖M ≤ 2|x∗
0|k. As

|x∗
0|

2
k ≤

∥

∥

∥

∥

x∗
0 −

1

j
jd∗j

∥

∥

∥

∥

2

M

+
1

k
j2 = ‖x∗

0 − d∗j‖
2
M +

j2

k
< ε2,

we conclude that lim supn→∞ ‖x∗
0 − x∗

n‖M < 2ε.

Next, we focus on ε-weak compactness. Given ε > 0, we say that a
subset M of a Banach space (X, ‖ · ‖) is ε-weakly compact if it is bounded
and M

∗
⊂ X + ε′BX∗∗ for every ε′ > ε, or equivalently, dist(x∗∗, X) ≤ ε

for every x∗∗ ∈ M
∗
. A simple example of such a set is of course K + εBX ,

where K is a weakly compact subset of X. However, not all ε-weakly compact
sets are of this nature (see [15, Remark 4]). For another example, coming
naturally from uniform Gateaux smoothness, see [10]. Some results related
to this concept are presented in [12] and [17]. Clearly, if a set is ε-weakly
compact for every ε > 0, then it is relatively weakly compact.

Proposition 11. Let (X, ‖·‖) be a Banach space, M ⊂ BX a non-empty

set , and let ε > 0 be given. Then (i)⇒(ii)⇒(iii) where

(i) The double dual norm ‖ · ‖ on X∗∗ is ε-M -smooth.

(ii) M is ε-weakly compact.

(iii) M is 4ε′-Asplund for every ε′ > ε.

Proof. (i)⇒(ii). The argument is from [10]. Take an arbitrary x∗∗ ∈ M
∗
.

Put d = dist(x∗∗, X). Assume that d > 0. By the Hahn–Banach theorem find
F ∈ X∗∗∗ with ‖F‖ = 1 such that F vanishes on X and 〈x∗∗, F 〉 = d. Fix
any ε′ > ε. From the Bishop–Phelps theorem find G ∈ X∗∗∗ and x∗∗

0 ∈ X∗∗

such that ‖G − F‖ < 1
2(ε′ − ε) and 〈x∗∗

0 , G〉 = 1 = ‖x∗∗
0 ‖ = ‖G‖. Using

Goldstine’s theorem we find a sequence (x∗
k) in BX∗ so that

〈x∗∗
0 , x∗

k〉 → 〈x∗∗
0 , G〉 and 〈x∗∗, x∗

k〉 → 〈x∗∗, G〉 as k → ∞.

Since the double dual norm ‖ · ‖ on X∗∗ is ε-M -differentiable at x∗∗
0 , Propo-

sition 4 shows that lim supk→∞ ‖x∗
k − G‖M < ε. But F vanishes on X; so

lim sup
k→∞

‖x∗
k‖M = lim sup

k→∞
‖x∗

k − F‖M

≤ lim sup
k→∞

‖x∗
k − G‖M + ‖G − F‖M < ε + 1

2(ε′ − ε) = 1
2(ε′ + ε).

Hence lim supk→∞〈x∗∗, x∗
k〉 < 1

2(ε′ + ε), and so 〈x∗∗, G〉 < 1
2(ε′ + ε). Now

dist(x∗∗, X) = 〈x∗∗, F 〉 = 〈x∗∗, G〉+〈x∗∗, F −G〉 < 1
2(ε′+ε)+ 1

2 (ε′−ε) = ε′.

Since ε′ > ε was arbitrary, we get (ii).
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(ii)⇒(iii). Let ∅ 6= A ⊂ M be a countable set. Find a countable set
D ⊂ BX∗ which is dense in BX∗ in the topology of pointwise convergence
on elements of A. We shall show that BX∗ lies in the norm closure of the
set co D + 4εA◦, where coD is the convex hull of D and A◦ = {x∗ ∈ X∗;
sup |〈A, x∗〉| ≤ 1}. Assume that this is false. Find then x∗ ∈ BX∗ and
F ∈ X∗∗ so that

〈F, x∗〉 > sup 〈F, coD + 4εA◦〉 (= sup 〈F, D〉 + 4ε sup 〈F, A◦〉).

As A ⊂ BX , we may and do assume that sup 〈F, A◦〉 = 1; thus 〈F, x∗〉 >

sup 〈F, D〉 + 4ε. Now, the bipolar theorem implies that F ∈ co(A ∪ −A)
∗

(⊂ co(M ∪ −M)
∗
⊂ X∗∗). But, by [12], co(M ∪ −M)

∗
is 2ε-weakly com-

pact. Hence co(A ∪ −A)
∗
⊂ X + 2ε′BX∗∗ for every ε′ > ε. Take

ε < δ < 1
4(〈F, x∗〉 − sup 〈F, D〉).

We can write F = x + x∗∗ where x ∈ X, x∗∗ ∈ X∗∗, and ‖x∗∗‖ < 2δ. Thus

〈x, x∗〉 + 2δ > 〈x + x∗∗, x∗〉 = 〈F, x∗〉 > sup 〈F, D〉 + 4δ

≥ sup 〈x, D〉 − 2δ + 4δ = ‖x‖ + 2δ ≥ 〈x, x∗〉 + 2δ,

a contradiction. Thus we have shown that BX∗ is a subset of the norm
closure of coD + 4εA◦. Now, let C be a countable dense subset of coD.
Then BX∗ ⊂ C + 4ε′A◦ for every ε′ > ε. This proves that A is 4ε′-Asplund
for every ε′ > ε.

Remark. The implication (i)⇒(ii) in Proposition 11 applied for M :=
BX and every ε > 0 yields the well-known fact that (X, ‖·‖) is reflexive if its

norm is uniformly Fréchet smooth. Indeed, the corresponding double dual
norm on X∗∗ is then also uniformly Fréchet smooth. Hence BX is ε-weakly
compact for every ε > 0.

Let us mention two more criteria for ε-weak compactness, which may be
of use (see [10]). Given a Banach space (X, ‖ · ‖), and a linear set Y ⊂ X∗,
the seminorm x 7→ sup 〈x, Y ∩BX∗〉, x ∈ X, is called the Y -envelope of ‖ · ‖;
clearly, it is lower semicontinuous with respect to the topology of pointwise
convergence on Y .

Proposition 12. Let (X, ‖ · ‖) be a Banach space, M ⊂ BX be a non-

empty set , and let ε > 0 be given. Assume that for every norming hyperplane

Y ⊂ X∗ the Y -envelope of ‖·‖ is ε-M -smooth. Then M is 2ε-weakly compact.

Proof. Take x∗∗ ∈ M
∗

and assume that dist(x∗∗, X) > 2ε. It is well
known that the kernel of x∗∗—call it Y —is a norming hyperplane (see,
e.g., [10]). Then the Y -envelope of ‖ · ‖—call it | · |—is an equivalent norm
on X. Let | · | also denote the corresponding dual norm on X∗ and the bidual
norm on X∗∗. Observe that the closed unit ball in (X∗, |·|) is just Y ∩ BX∗

∗
.

By [15, Proposition 8], |x∗∗| > ε. The Bishop–Phelps theorem yields x ∈ X
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and x∗ ∈ Y ∩ BX∗

∗
so that 〈x, x∗〉 = 1 = |x| = |x∗| and 〈x∗∗, x∗〉 > ε. Find

a sequence (y∗n) in Y ∩BX∗ such that 〈x, y∗n〉 → 〈x, x∗〉 as n → ∞. Since | · |
is ε-M -smooth, Proposition 4 yields n ∈ N so large that ‖x∗ − y∗n‖M < ε. It
then follows that 〈x∗∗, x∗〉 = 〈x∗∗, x∗ − y∗n〉 < ε, a contradiction.

For the case of a dual Banach space we can dispense with the condition on
norming hyperplanes. Actually, we have the following quantitative version
of the well-known fact that X is reflexive if the dual norm on X∗ is Fréchet

smooth.

Proposition 13. Let (X, ‖ · ‖) be a Banach space, let ε > 0, let M be

a non-empty subset of BX∗ , and assume that the dual norm ‖ · ‖ on X∗ is

ε-M -smooth. Then M is 2ε-weakly compact.

Proof. Let x∗∗∗ = x∗ + x⊥ ∈ M
∗
, where x∗ ∈ X∗ and x⊥ ∈ X⊥, and

assume dist(x⊥, X∗) > 2ε. By [15, Proposition 8] applied to x⊥, we get
sup 〈B

∗
Y , x⊥〉 > ε, where Y ⊂ X∗∗ is the kernel of x⊥. Note that Y is then a

1-norming hyperplane in X∗∗ (as it contains X). It follows that B
∗
Y = BX∗∗

and we get ‖x⊥‖ = sup 〈x⊥, B
∗
Y 〉 > ε. The Bishop–Phelps theorem yields

x∗∗
0 ∈ SX∗∗ and x∗

0 ∈ SX∗ such that 〈x∗∗
0 , x∗

0〉 = 1 and 〈x∗∗
0 , x⊥〉 > ε. Let (xn)

be a sequence in BX such that 〈x∗∗
0 − xn, x∗

0〉 → 0 and 〈x∗∗
0 − xn, x∗〉 → 0 as

n → ∞. Then for all large n ∈ N we have, by Proposition 4, ‖x∗∗
0 −xn‖M < ε,

and hence 〈x∗∗
0 − xn, x∗∗∗〉 < ε . Fix any δ > 0. Then 〈xn − x∗∗

0 , x∗〉 < δ for
all large n ∈ N, and hence (〈x∗∗

0 , x⊥〉 =) 〈x∗∗
0 − xn, x⊥〉 < ε + δ for all large

n ∈ N. As δ > 0 was arbitrary, we get 〈x∗∗
0 , x⊥〉 ≤ ε, a contradiction. This

proves that dist(x⊥, X∗) ≤ 2ε, that is, dist(x∗∗∗, X∗) ≤ 2ε.

4. Proofs of Theorems 1 and 3

Proof of Theorem 1. The implication (o)⇒(i) is proved in [9, p. 438].
The chain (i)⇒(ii)⇒(iv) follows from Proposition 8, while (i)⇒(iii)⇒(iv)
follows from Proposition 9.

It remains to prove (iv)⇒(o) provided that X is WLD. In the course of
the proof, we shall use an ε-variant of the Jayne–Rogers selection theorem
due to Stegall, a technique of projectional resolutions of the identity, Simons’
lemma, transfinite induction, and a separable reduction.

We start with a selection statement, which is a slight variant of [7,
Lemma 8.1.1]. Hence, we omit its proof. We recall that ∂‖ · ‖ is the Moreau–
Rockafellar subdifferential of the norm ‖ · ‖ (see [25, p. 6]).

Proposition 14. Let (Z, ‖ · ‖) be a Banach space, let ε > 0, and let

∅ 6= M ⊂ Z be a bounded set. Assume that for every non-empty closed set

C ⊂ Z there exist an open set U ⊂ Z and ζ ∈ BZ∗ such that C ∩U 6= ∅ and

‖ · ‖M -dist(∂‖ · ‖(z), ζ) < ε for every z ∈ C ∩ U . Then there exists a Baire
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class one mapping f : Z → (Z∗, ‖ · ‖M ), with f(Z) ⊂ BZ∗ , such that

‖ · ‖M - dist(∂‖ · ‖(z), f(z)) < ε for every z ∈ Z.

A projectional resolution of the identity (for short PRI ) on a non-separ-
able Banach space Z is a family (Pα; ω ≤ α ≤ µ) of norm one projections
on Z, where ω is the first infinite ordinal and µ is the first ordinal with
cardinality densZ such that Pω ≡ 0, Pµ is the identity mapping on Z,
Pα ◦ Pβ = Pmin{α,β} for all α and β in [ω, µ], densPα(Z) ≤ #α for every
α ∈ [ω, µ], and for every z ∈ Z the mapping α 7→ Pα(z) is continuous from
[ω, µ] into Z. For more information about the PRI, see, e.g., [7, Section 6.1].

Proposition 15. Let (Z, ‖ · ‖) be a non-separable Banach space ad-

mitting a linearly dense set Γ ⊂ BZ such that #{γ ∈ Γ ; 〈γ, z∗〉 6= 0} is

at most countable for every z∗ ∈ Z∗ (hence Z is WLD). Assume that for

every n ∈ N we have εn > 0 and a closed convex symmetric εn-Asplund

set Mn ⊂ BZ . Then there exists a PRI (Pα; ω ≤ α ≤ µ) on Z such that

Pα(Mn) ⊂ Mn, Pα(γ) ∈ {γ, 0} for every α ∈ [ω, µ], every n ∈ N, and every

γ ∈ Γ , and moreover , for every limit ordinal ω < λ ≤ µ, every n ∈ N, and

every z∗ ∈ BZ∗ we have

lim sup
β↑λ

‖P ∗
λz∗ − P ∗

βz∗‖Mn
< 9εn.

Proof. We elaborate the argument from [16], which goes back to [19].
Fix any n ∈ N. We verify the assumptions of Proposition 14. So take any
closed set ∅ 6= C ⊂ Z. Let F : C → 2(BZ∗ ,w∗) be a minimal usco mapping
such that F (z) ⊂ ∂‖ · ‖(z) for every z ∈ C. By Proposition 7, we find a
weak∗ open set (halfspace if one wishes) W ⊂ Z∗ so that F (C) ∩ W 6= ∅
and ‖ · ‖Mn

- diam F (C) ∩ W < 2εn. By [7, Lemma 3.1.2], there is an open
set U ⊂ Z so that ∅ 6= C ∩ U and F (C ∩ U) ⊂ W . Fix some ζ ∈ F (C ∩ U).
Then

‖ · ‖Mn
- dist(∂‖ · ‖(z), ζ) ≤ ‖ · ‖Mn

- dist(F (z), ζ) < 2εn

for every z ∈ C ∩ U . Thus Proposition 14 yields a Baire one mapping fn :
Z → (Z∗, ‖ · ‖Mn

) such that

‖ · ‖Mn
- dist(∂‖ · ‖(z), fn(z)) < 2εn for every z ∈ Z.(2)

Further, we find continuous mappings Dm
n : Z → (BZ∗ , ‖ · ‖Mn

), m ∈ N,
such that ‖Dm

n (z) − fn(z)‖Mn
→ 0 as m → ∞ for every z ∈ Z.

Define M0 = BZ . Put

Φ(z∗) := {γ ∈ Γ ; 〈γ, z∗〉 6= 0}, z∗ ∈ Z∗;

thus Φ : Z∗ → 2Z . For n ∈ N∪ {0} and m ∈ N let ‖ · ‖n,m be the Minkowski
functional of the set Mn + (1/m)BZ ; this will be an equivalent norm on Z.
For every z ∈ Z we find a countable set Ψ(z) ⊂ Z∗ such that Ψ(z) ⊃
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{Dm
n (z); n, m ∈ N} and

‖z‖n,m = sup {〈z, z∗〉; z∗ ∈ Ψ(z) and ‖z∗‖n,m ≤ 1}

for all n ∈ N ∪ {0} and m ∈ N. Thus we have defined Ψ : Z → 2Z∗

.
For the construction of the projections Pα : Z → Z we shall use a now

standard back-and-forth argument (see, e.g., [7, Section 6.1]). We need

Claim 1. Let ℵ < dens Z be any infinite cardinal and consider two non-

empty sets A0 ⊂ Z, B0 ⊂ Z∗ with #A0 ≤ ℵ, #B0 ≤ ℵ. Then there exist

sets A0 ⊂ A ⊂ Z, B0 ⊂ B ⊂ Z∗, closed under taking linear combinations

with rational coefficients and such that #A ≤ ℵ, #B ≤ ℵ, and Φ(B) ⊂ A,
Ψ(A) ⊂ B.

In order to prove this, let spQ mean the Q-linear hull. Put A =
⋃∞

n=1 An,
B =

⋃∞
n=1 Bn, where the sets

An := spQ (An−1 ∪Φ(Bn−1)), Bn := spQ (Bn−1 ∪ Ψ(An)), n = 1, 2, . . . ,

are defined inductively. Then it is easy to verify all the proclaimed properties
of the sets A and B.

Having constructed the sets A, B, we observe that Φ(B)⊥ ∩ B
∗

= {0}.
Indeed, assume there is 0 6= z∗ ∈ Φ(B)⊥∩B

∗
. Find γ ∈ Γ so that 〈γ, z∗〉 6= 0.

Find b ∈ B so that 〈γ, b〉 6= 0. Then γ ∈ Φ(b). But z∗ ∈ Φ(B)⊥ and
so 〈γ, z∗〉 = 0, a contradiction (we have just proved that Φ is a so called
projectional generator on Z, see [7, Section 6.1]). Therefore A⊥ ∩B

∗
= {0}.

[7, Lemma 6.1.1] and its proof then yield a linear projection P : Z → Z
with PZ = A, P−1(0) = B⊥, and P ∗Z∗ = B

∗
, such that ‖P‖n,m = 1 for all

n ∈ N ∪ {0} and m ∈ N. Thus

PMn ⊂
∞
⋂

m=1

P
(

Mn + 1
m BZ

)

⊂
∞
⋂

m=1

Mn + 1
m BZ ⊂

∞
⋂

m=1

(

Mn + 2
m BZ

)

= Mn

for every n ∈ N ∪ {0}, and in particular, ‖P‖ = 1.
Fix any γ ∈ Γ . We now prove that Pγ ∈ {γ, 0}. If γ ∈ PZ, then, trivially,

Pγ = γ. Second, assume that γ 6∈ PZ (= A). Then γ 6∈ Φ(B), which implies
that 〈γ, b〉 = 0 for every b ∈ B, that is, γ ∈ B⊥. But B⊥ = P−1(0). Hence
Pγ = 0.

Now, once we know how to construct one projection P : Z → Z, the con-
struction of the whole PRI (Pα; ω ≤ α ≤ µ) is standard (see, e.g., [7, Section
6.1]). We just recall that the projections Pα “come” from sets Aα ⊂ Z and
Bα ⊂ Z∗ with several properties; in particular, they are rationally linear

(that is, closed under taking linear combinations with rational coefficients)
and satisfy

Φ(Bα) ⊂ Aα, Ψ(Aα) ⊂ Bα, Aα = PαZ, and B
∗
α = P ∗

αZ∗

for all ω ≤ α ≤ µ, and Aλ =
⋃

β<λ Aβ for every limit ordinal λ ∈ (ω, µ].
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Until the end of the proof, we fix any n ∈ N and any limit ordinal
ω < λ ≤ µ. It remains to show the last assertion of our proposition. Fix for
a while a subspace Y ⊂ PλZ. Put

∆Y := [fn(Y ) + 2εn(Pλ(Mn) ∩ Y )◦] ∩ BP ∗

λ
Z∗ ,

where (Pλ(Mn) ∩ Y )◦ = {z∗ ∈ Z∗; sup 〈Pλ(Mn) ∩ Y, z∗〉 ≤ 1}. This ∆Y is
a so called boundary for Y , that is, for every z ∈ Y there exists δ ∈ ∆Y

so that ‖z‖ = 〈z, δ〉. Indeed, fix any z ∈ Y . By (2) we find z∗ ∈ ∂‖ · ‖(z)
so that ‖z∗ − fn(z)‖Mn

< 2εn. Put δ = P ∗
λz∗. Then δ ∈ BP ∗

λ
Z∗ , 〈z, δ〉 =

〈z, z∗〉 = ‖z‖, and δ = fn(z)+(δ−fn(z)) ∈ fn(Y )+2εn(Pλ(Mn) ∩ Y )◦, and
so δ ∈ ∆Y . Here we have used the estimate

‖δ − fn(z)‖Pλ(Mn)∩Y ≤ ‖z∗ − fn(z)‖Mn
< 2εn.

From now on fix any z∗ ∈ BZ∗ . Let C ⊂ Aλ be any countable set which
is rationally linear.

Claim 2. There are k∈N, rational numbers a1, . . . , ak, vectors y1, . . . , yk

∈ C, and m ∈ N such that

sup
〈

Pλ(Mn) ∩ C, P ∗
λz∗ −

k
∑

i=1

aiD
m
n (yi)

〉

<
9

2
εn.

To prove this, put Y = C; this is a subspace of PλZ. First, we show that
P ∗

λz∗ lies in the norm closure of co∆Y + 2εn(Pλ(Mn)∩ Y )◦. Assume this is
not true. Find then ϕ ∈ Z∗∗ and α ∈ R so that

〈ϕ, P ∗
λz∗〉 > α > sup 〈ϕ, co∆Y + 2εn(Pλ(Mn) ∩ Y )◦〉.

As Pλ(Mn) ∩ Y ⊂ BZ , we may and do assume that sup 〈ϕ, (Pλ(Mn) ∩ Y )◦〉

= 1. Thus, by the bipolar theorem, ϕ ∈ Pλ(Mn) ∩ Y
∗
, and hence, the above

inequalities have the form

〈ϕ, P ∗
λz∗〉 > α > sup 〈ϕ, ∆Y 〉 + 2εn.(3)

Since Pλ(Mn)∩Y is a separable εn-Asplund set, there exists a countable set
S⊂∆Y such that for every δ ∈ ∆Y there is s ∈ S such that sup 〈Pλ(Mn)∩Y,

δ−s〉 < εn. As ϕ ∈ Pλ(Mn) ∩ Y
∗
, there is a sequence (zi)i∈N in Pλ(Mn)∩Y

such that

〈zi, P
∗
λz∗〉 → 〈ϕ, P ∗

λz∗〉, and 〈zi, s〉 → 〈ϕ, s〉 for every s ∈ S

as i → ∞. We may and do assume that 〈zi, P
∗
λz∗〉 > α for all i ∈ N. We now

verify the assumptions of Simons’ lemma (see, e.g., [7, Lemma 8.1.3]). Put
Γ = BP ∗

λ
Z∗ , and for i ∈ N define gi ∈ ℓ∞(Γ ) by gi(γ) = 〈zi, γ〉, γ ∈ Γ . As ∆Y

is a boundary for Y , for any positive numbers λ1, λ2, . . . with
∑∞

i=1 λi = 1
there is γ ∈ ∆Y so that ‖

∑∞
i=1 λigi‖∞ =

∑∞
i=1 λigi(γ). Thus, by Simons’
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lemma, we have

sup{lim sup
i→∞

〈zi, δ〉; δ ∈ ∆Y } ≥ inf{‖g‖∞; g ∈ co{gi; i ∈ N}}.

But

inf{‖g‖; g ∈ co{gi; i ∈ N}} ≥ inf{〈y, P ∗
λz∗〉; y ∈ co{zi; i ∈ N}}

= inf{〈zi, P
∗
λz∗〉; i ∈ N} ≥ α.

Hence

sup{lim sup
i→∞

〈zi, δ〉; δ ∈ ∆Y } ≥ α.(4)

Now fix any δ ∈ ∆Y . Find s ∈ S so that sup〈Pλ(Mn)∩ Y, δ − s〉 < εn. Thus

lim sup
i→∞

〈zi, δ〉

= lim
i→∞

〈zi, s〉 + lim sup
i→∞

〈zi, δ − s〉 < 〈ϕ, s〉 + εn (as zi ∈ Pλ(Mn) ∩ Y )

= 〈ϕ, δ〉 + 〈ϕ, s − δ〉 + εn < 〈ϕ, δ〉 + 2εn (as ϕ ∈ Pλ(Mn) ∩ Y
∗
).

Then (4) gives α ≤ sup 〈ϕ, ∆Y 〉+2εn, contrary to (3). We have thus proved

that P ∗
λz∗ ∈ co ∆Y + 2εn(Pλ(Mn) ∩ Y )◦.

Having this at hand, we find k ∈ N, rational numbers a1, . . . , ak > 0 with
a1 + · · · + ak = 1, and δ1, . . . , δk ∈ ∆Y so that

sup
〈

Pλ(Mn) ∩ Y, P ∗
λz∗ −

k
∑

i=1

aiδi

〉

<
5

2
εn.

For i = 1, . . . , k write

δi = fn(zi) + 2εnz∗i ,

where zi ∈ Y and z∗i ∈ (Pλ(Mn) ∩ Y )◦; this comes from the definition of ∆Y .
Then

sup
〈

Pλ(Mn) ∩ Y, P ∗
λz∗ −

k
∑

i=1

ai(fn(zi) + 2εnz∗i )
〉

<
5

2
εn,

and so,

sup
〈

Pλ(Mn) ∩ Y, P ∗
λz∗ −

k
∑

i=1

aifn(zi)
〉

<
9

2
εn.

Since ‖Dm
n (zi) − fn(zi)‖Mn

→ 0 as m → ∞ for every i = 1, . . . , k, we can
find m ∈ N so that we still have (note that Pλ(Mn) ⊂ Mn)

sup
〈

Pλ(Mn) ∩ Y, P ∗
λz∗ −

k
∑

i=1

aiD
m
n (zi)

〉

<
9

2
εn.
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Since Dm
n is ‖ · ‖Mn

-continuous and Y = C, there are y1, . . . , yk ∈ C so that

sup
〈

Pλ(Mn) ∩ Y, P ∗
λz∗ −

k
∑

i=1

aiD
m
n (yi)

〉

<
9

2
εn.

We have thus proved Claim 2.

It remains to perform a separable reduction in the sense that we want
to show that Claim 2 holds also for C = Aλ, that is,

sup
〈

Pλ(Mn), P ∗
λz∗ −

k
∑

i=1

aiD
m
n (yi)

〉

<
9

2
εn(5)

with suitable k, m ∈ N, rational numbers a1, . . . , ak, and vectors y1, . . . , yk

∈ Aλ. To do so, let A denote the set of all sequences a = (a1, a2, . . .) with
rational entries such that ai = 0 for all large i ∈ N. Note that A is a
countable set. Pick a non-empty, at most countable set S1 ⊂ Pλ(Mn) and
find a countable rationally linear set C1 ⊂ Aλ so that C1 ⊃ S1. Enumer-
ate C1 as {v1

1, v
1
2, . . .}. For every m ∈ N and every a = (ai) ∈ A we find

z(1, m, a) ∈ Pλ(Mn) so that

sup
〈

Pλ(Mn), P ∗
λz∗−

∞
∑

i=1

aiD
m
n (v1

i )
〉

−
1

1
<

〈

z(1, m, a), P ∗
λz∗−

∞
∑

i=1

aiD
m
n (v1

i )
〉

.

Put then S2 = S1 ∪ {z(1, m, a); m ∈ N, a ∈ A} and find a countable
rationally linear set C2 ⊂ Aλ such that C2 ⊃ C1 and C2 ⊃ S2. Let l ∈ N,
and assume we have already constructed countable sets S1 ⊂ · · · ⊂ Sl ⊂
Pλ(Mn) and rationally linear countable sets C1 ⊂ · · · ⊂ Cl ⊂ Aλ with
S1 ⊂ C1, . . . , Sl ⊂ C l. Enumerate Cl as {vl

1, v
l
2, . . .}. For every m ∈ N and

every a ∈ A we find a vector z(l, m, a) ∈ Pλ(Mn) such that

sup
〈

Pλ(Mn), P ∗
λz∗−

∞
∑

i=1

aiD
m
n (vl

i)
〉

−
1

l
<

〈

z(l, m, a), P ∗
λz∗−

∞
∑

i=1

aiD
m
n (vl

i)
〉

.

Put then Sl+1 = Sl∪{z(l, m, a); m ∈ N, a ∈ A}, and find a rationally linear
countable set Cl+1 ⊂ Aλ such that Cl+1 ⊃ Cl and C l+1 ⊃ Sl+1. Finally,
having performed this for every l ∈ N, put S =

⋃∞
l=1 Sl and C =

⋃∞
l=1 Cl.

Clearly, C is rationally linear.

By Claim 2, we find k ∈ N, rational numbers a1, . . . , ak, vectors y1, . . . , yk

∈ C, m ∈ N, and l ∈ N such that

sup
〈

Pλ(Mn) ∩ C, P ∗
λz∗ −

k
∑

i=1

aiD
m
n (yi)

〉

+
1

l
<

9

2
εn.

By enlarging l if necessary, we can achieve that y1 = vl
i1

, . . . , yk = vl
ik

with
suitable i1, . . . , ik ∈ N. Define b = (b1, b2, . . .) by bi1 = a1, . . . , bik = ak, and
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bi = 0 for the remaining i ∈ N. Then b ∈ A and we can estimate

sup
〈

Pλ(Mn), P ∗
λz∗ −

k
∑

i=1

aiD
m
n (yi)

〉

= sup
〈

Pλ(Mn), P ∗
λz∗ −

∞
∑

i=1

biD
m
n (vl

i)
〉

< sup
〈

z(l, m, b), P ∗
λz∗ −

∞
∑

i=1

biD
m
n (vl

i)
〉

+
1

l

≤ sup
〈

Pλ(Mn) ∩ C, P ∗
λz∗ −

k
∑

i=1

aiD
m
n (yi)

〉

+
1

l
<

9

2
εn.

This proves (5) and completes the separable reduction.
Finally, find β0 < λ so that y1, . . . , yk ∈ Aβ0

; it exists as Aλ =
⋃

β<λ Aβ.

Put then ζ =
∑k

i=1 aiD
m
n (yi). We observe that

ζ ∈
k

∑

i=1

aiΨ(yi) ⊂
k

∑

i=1

aiΨ(Aβ0
) ⊂ Bβ0

⊂ B
∗
β0

= P ∗
β0

Z∗.

Therefore for β0 < β < λ we have, from (5),

‖P ∗
λz∗ − P ∗

βz∗‖Mn
≤ ‖P ∗

λz∗ − ζ‖Mn
+ ‖ζ − P ∗

βz∗‖Mn

= sup 〈Pλ(Mn), P ∗
λz∗ − ζ〉 + sup 〈Pβ(Mn), ζ − P ∗

λz∗〉

≤ 2 sup 〈Pλ(Mn), P ∗
λz∗ − ζ〉 < 9εn

as Pβ(Mn) ⊂ Pλ(Mn).

We are now ready to prove (iv)⇒(o) in Theorem 1 when X is WLD.
Note that if X is WLD, then it contains a linearly dense set Γ ⊂ BX

which countably supports all elements of X∗, that is, for every x∗ ∈ X∗ the
set {γ ∈ Γ ; 〈γ, x∗〉 6= 0} is at most countable [9, Theorem 5]. In order to
prove (o), by [9, Theorem 2], it suffices to show the following

Claim 1. There exists a linearly dense set Γ ⊂ BX such that for every

ε > 0 there are subsets Γ ε
i ⊂ Γ, i ∈ N, satisfying Γ =

⋃∞
n=1 Γ ε

n, and such

that for all n ∈ N and x∗ ∈ X∗ the set {γ ∈ Γ ε
n; 〈γ, x∗〉 > ε} is finite.

Instead of proving this, we shall prove a subtler statement:

Claim 2. Let X be a WLD space which is simultaneously σ-Asplund

generated , with sets Aε
n, ε > 0, n ∈ N, witnessing that. Let Γ ⊂ BX

be any set which is linearly dense in X and countably supports X∗. Then

there exist subsets Γi ⊂ Γ, i ∈ N, satisfying Γ =
⋃∞

i=1 Γi and such that

for every rational ε > 0, every n, i ∈ N, and every x∗ ∈ X∗ the set {γ ∈

Γi ∩ A
ε/9
n ; 〈γ, x∗〉 > ε} is finite.
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Now, if for a rational ε > 0 we put Γ ε
n,i := Γi ∩ A

ε/9
n , n, i ∈ N, and

for an irrational ε > 0 we put Γ ε
n,i := Γi ∩ A

ε′/9
n , n, i ∈ N, where ε′ is a

fixed rational number from the interval (ε/2, ε), then, enumerating N × N

by elements of N, we get Claim 1.
Claim 2 will be proved by transfinite induction on the density of X.

The case when X is separable is simple. Further, let ℵ be an uncountable
cardinal, and assume that Claim 2 has already been proved for all spaces
X with density less than ℵ. Now let X be a Banach space with density ℵ
and satisfying the assumptions of Claim 2. Let Γ ⊂ BX be any set which
is linearly dense in X and countably supports X∗. We replace each set Aε

n

by its absolutely convex closed hull; this change will not affect anything.
Applying Proposition 15, we get a PRI (Pα; ω ≤ α ≤ µ) on X such that

Pα(A
ε/9
n ) ⊂ A

ε/9
n , Pα(γ) ∈ {γ, 0} for every α ∈ [ω, µ], every n ∈ N, every

rational ε > 0, and every γ ∈ Γ ; and moreover, for every limit ordinal
ω < λ ≤ µ, every n ∈ N, every ε > 0, and every x∗ ∈ BX∗ we have

lim sup
β↑λ

sup 〈Aε/9
n , P ∗

λx∗ − P ∗
βx∗〉 < ε.(6)

Fix any ω ≤ α < µ and write Qα = Pα+1−Pα. Then the (complemented)
subspace QαX is also WLD, BQαX =

⋃∞
n=1(QαX ∩ Aε

n) for every ε > 0,
and each set QαX ∩ Aε

n is ε-Asplund in QαX. Also QαΓ is linearly dense
in QαX, QαΓ ⊂ Γ , and QαΓ countably supports the dual (QαX)∗. Thus
the assumptions of Claim 2 are satisfied for the subspace QαX. Then, by
the induction assumption, there are Γα

i ⊂ QαΓ, i ∈ N, satisfying QαΓ =
⋃∞

i=1 Γα
i and such that for every rational ε > 0,

∀n, i ∈ N ∀y∗ ∈ (QαX)∗ #{γ ∈ Γα
i ∩ (QαX ∩ Aε/9

n ); 〈γ, y∗〉 > ε} < ω.

Assume that we have done the above for every ω ≤ α < µ. Put then Γi =
⋃

ω≤α<µ Γα
i , i ∈ N. Clearly Γ =

⋃∞
i=1 Γi.

Now fix any rational ε > 0, n, i ∈ N, and x∗ ∈ X∗. Define

Λ = {α ∈ [ω, µ); 〈γ, x∗〉 > ε for some γ ∈ Γα
i ∩ Aε/9

n }.

We observe that

{γ ∈ Γi ∩ Aε/9
n ; 〈γ, x∗〉 > ε} =

⋃

α∈Λ

{γ ∈ Γα
i ∩ Aε/9

n ; 〈γ, x∗
|QαX〉 > ε}

and that each set from this union is finite, by the induction assumption.
Hence it remains to show that Λ is finite.

Assume not. Then there exists an infinite injective sequence γ1, γ2, . . .

in Γi ∩ A
ε/9
n such that 〈γj , x

∗〉 > ε for every j ∈ N. For each j ∈ N we
find αj < µ so that γj ∈ Γ

αj

i (⊂ Qαj
X). By suppressing some αj ’s and

reindexing, we can achieve that α1 < α2 < · · · . Put λ = limj→∞ αj ; then

λ ≤ µ. From (6) we find j ∈ N such that sup 〈A
ε/9
n , P ∗

λx∗ − P ∗
αl

x∗〉 < ε
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whenever l ∈ N and l ≥ j. Then we have

ε < 〈γj+1, x
∗〉 = 〈Pλγj+1, x

∗〉

= 〈γj+1, P
∗
λx∗ − P ∗

αj
x∗〉 + 〈Pαj

γj+1, x
∗〉 < ε + 0,

a contradiction. Therefore the set Λ must be finite.
Claim 2 is thus proved and the proof of Theorem 1 is finished.

Remark. From Proposition 15 we can also deduce a well known result
that a Banach space X is WCG if (and only if ) it is simultaneously WLD

and Asplund generated (see, e.g., [7, Theorem 8.3.4]). Indeed, let M be a
linearly dense convex symmetric closed Asplund set in a WLD space X. Put
εn = 1/n and Mn = M, n ∈ N. Then Proposition 15 yields a PRI (Pα) on X
so that PαM ⊂ M for all α, and for every limit ordinal λ and every x∗ ∈ X∗

we have ‖P ∗
λx∗ − P ∗

βx∗‖M → 0 as β ↑ λ. Now a standard argument shows
that X is WCG (see, e.g., [14]).

Proof of Theorem 3. (i)⇒(ii). Assume that the compact space K is
Eberlein. The space C(K) is then WCG (see [1]), and Theorem 1 implies
that C(K) is σ-Asplund generated. That K is a Corson compact follows for
instance from [7, Theorem 7.2.7].

The equivalence (ii)⇔(iii) follows from Avilés’ result [3, Theorem 20].
(ii)⇒(i). In the proof of [7, Theorem 8.3.5] we can find the following

Claim. Let ε > 0, let µ be a probability measure on K, let M ⊂ K be

a Borel set with µ(M) > 0, and let A ⊂ BC(K) be an ε-Asplund set. Then

there exists a closed set L ⊂ M such that µ(L) > 0 and A-diamL < ε.

Let Aε
n ⊂ BC(K), ε > 0, n ∈ N, be the sets witnessing that C(K)

is σ-Asplund generated. Fix any n, m ∈ N. Let Fm
n be a maximal fam-

ily of mutually disjoint closed subsets L ⊂ K such that µ(L) > 0 and

A
1/m
n -diamL < 1/m. Put Hm

n =
⋃

Fm
n ; this is an Fσ, hence Borel set. We

now show that µ(Hm
n ) = 1. Assume not. Then µ(K \ Hm

n ) > 0. By the
above claim, we find a closed set L ⊂ K \ Hm

n such that µ(L) > 0 and

A
1/m
n -diamL < 1/m. But this contradicts the maximality of the family Fm

n .
Therefore µ(Hm

n ) = 1. Clearly, the family Fm
n is at most countable. Find

an at most countable subset Sm
n ⊂ Hm

n such that for every k ∈ Hm
n there is

s ∈ Sm
n such that sup{|f(k) − f(s)|; f ∈ A

1/m
n } < 1/m.

Having done the above for all n, m ∈ N, put

H =
∞
⋂

n,m=1

Hm
n and S =

∞
⋃

n,m=1

Sm
n .

Note that H is a Borel set, µ(H) = 1, and S is at most countable. We now
show that H ⊂ S. Let f ∈ BC(K) be any function. It is enough to show that

f(H) ⊂ f(S). So fix any k ∈ H and any ε > 0. Find m ∈ N so that 1/m < ε.
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Find then n ∈ N so that f ∈ A
1/m
n . Since k ∈ Hm

n , there is an s ∈ Sm
n (⊂ S)

such that |f(k) − f(s)| < ε. We have proved that f(H) ⊂ f(S) for every
f ∈ BC(K), and therefore H ⊂ S.

Now, since K is a Corson compact space, we may and do assume that
K ⊂ (Σ(Γ ), pointwise) for a suitable set Γ . Find a countable set Γ0 ⊂ Γ
such that s(γ) = 0 whenever s ∈ S and γ ∈ Γ \ Γ0. Then also k(γ) = 0
whenever k ∈ H and γ ∈ Γ \Γ0. It follows that H is a separable subset of K.
Recalling that µ(H) = 1, we can conclude that µ has a separable support.
Then, by, e.g., [7, Lemma 7.3.5], the Banach space C(K) is WLD.

Finally, once we know that C(K) is both WLD and σ-Asplund generated,
Theorem 1 guarantees that C(K) is a subspace of a WCG space. Then [9,
Theorem 2] shows that the ball (BC(K)∗ , w

∗) is an Eberlein compact space,
and hence, a fortiori, so is K.

Remark. We have recently proved that (ii)⇒(i) in Theorem 1. The
proof, mostly based on ideas of M. Raja [26, 27], is longer and completely
different from the methods used in this paper. Therefore we have decided
to publish it elsewhere.
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ETSI Telecomunicación

Universidad Politécnica de Valencia
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