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The John–Nirenberg type inequality for

non-doubling measures

by

Yoshihiro Sawano and Hitoshi Tanaka (Tokyo)

Abstract. X. Tolsa defined a space of BMO type for positive Radon measures satisfy-
ing some growth condition on R

d. This new BMO space is very suitable for the Calderón–
Zygmund theory with non-doubling measures. Especially, the John–Nirenberg type in-
equality can be recovered. In the present paper we introduce a localized and weighted
version of this inequality and, as applications, we obtain some vector-valued inequalities
and weighted inequalities for Morrey spaces.

1. Introduction. It is well known that the doubling property of the
underlying measure is a basic condition in the classical Calderón–Zygmund
theory of harmonic analysis. Recently, more attention has been paid to non-
doubling measures. It has been shown that many results of this theory still
hold without the doubling property.

Nazarov, Treil and Volberg developed the theory of singular integrals for
certain non-doubling measures (growth measures), satisfying a growth con-
dition given by (1.1) below, and investigated the analytic capacity on the
complex plane [3, 4]. Tolsa proved subadditivity and bi-Lipschitz invariance
of the analytic capacity, which had been left open for a long time [12, 13].
The research, stemming from their pioneer works using the modified max-
imal operator, has been developed in many ways. Tolsa defined for growth
measures the RBMO (regular bounded mean oscillation) space, the Hardy
space H1(µ) and the Littlewood–Paley decomposition [9, 10]. He also gave
his H1(µ) space in terms of the grand maximal operator [11]. He estab-
lished a John–Nirenberg type inequality for his RBMO space. Deng, Han
and Yang defined Besov spaces and Triebel–Lizorkin spaces and the present
authors defined Morrey spaces and established some inequalities for growth
measures [1, 2, 7, 8].
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The purpose of the present paper is to introduce and prove a localized
and weighted John–Nirenberg type inequality for growth measures. The re-
sult can be applied to obtain a vector-valued sharp maximal inequality and
a weighted sharp maximal inequality for Morrey spaces.

We first recall some definitions and notations. By a “cube” Q ⊂ R
d we

mean a compact cube whose edges are parallel to the coordinate axes. Its
center will be denoted by zQ and its sidelength by ℓ(Q). Q(x, l) denotes the
cube centered at x and of sidelength l. For ̺ > 0, ̺Q denotes the cube
concentric with Q of sidelength ̺ℓ(Q). Throughout this paper we assume
that µ is a positive Radon measure satisfying the following growth condition:

(1.1) µ(Q(x, l)) ≤ C0l
n for all x ∈ supp(µ) and l > 0,

where C0 and n ∈ (0, d] are some fixed numbers. We emphasize that µ is
not necessarily a doubling measure, that is, we do not assume the doubling
inequality µ(2Q) ≤ Cµ(Q) for every cube Q ⊂ R

d. We denote by Q(µ) the
set of all cubes Q ⊂ R

d with positive µ-measure. We say that Q ∈ Q(µ) is a
doubling cube if µ(2Q) ≤ 2d+1µ(Q). Let Q(µ, 2) denote the set of all doubling
cubes. By the growth condition (1.1) there are a lot of big doubling cubes.
More precisely, given any Q ∈ Q(µ), we can find j ∈ N with 2jQ ∈ Q(µ, 2).
Given Q ∈ Q(µ), we let Q∗ be the smallest doubling cube R of the form
R = 2jQ with j = 0, 1, . . . . Given two cubes Q, R ∈ Q(µ) with Q ⊂ R, we set

δ(Q, R) :=

ℓ(QR)\
ℓ(Q)

µ(Q(zQ, l))

ln
dl

l
,

where QR denotes the smallest cube concentric with Q and containing R.
The space of BMO type we use in the present paper is RBMO (regular

bounded mean oscillation) introduced by Tolsa [9], which is a suitable sub-
stitute for the classical BMO space. A function f ∈ L1

loc(µ) is said to be in
RBMO if

‖f‖∗ := sup
Q∈Q(µ)

1

µ
(

3
2 Q

)
\
Q

|f(x) − mQ∗(f)| dµ(x)

+ sup
Q⊂R

Q,R∈Q(µ,2)

|mQ(f) − mR(f)|

1 + δ(Q, R)
< ∞,

where mQ(f) := µ(Q)−1
T
Q f(x) dµ(x), Q ∈ Q(µ). (Many other equivalent

norms may be found in [9, Section 2].) An advantage of RBMO is that it
satisfies the following John–Nirenberg inequality due to Tolsa.

Theorem 1.1 ([10, Section 3]). Let f ∈ RBMO and Q ∈ Q(µ).

(i) There exist positive constants C and C ′ independent of f so that ,
for every λ > 0 and every cube Q,
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µ{x ∈ Q : |f(x) − mQ∗(f)| > λ} ≤ C µ

(
3

2
Q

)
exp

(
−

C ′λ

‖f‖∗

)
.

(ii) Let q ∈ [1,∞). Then there exists a constant C independent of f so

that , for every cube Q ∈ Q(µ),

(
1

µ
(

3
2 Q

)
\
Q

|f(x) − mQ∗(f)|q dµ(x)

)1/q

≤ C‖f‖∗.

The purpose of the present paper is to obtain a localized and weighted
version of Theorem 1.1(ii) (Theorem 1.2 below). As an application, we ex-
tend Theorem 1.1(ii) to a vector-valued inequality (Corollary 3.3).

To describe our theorem, we need to introduce two maximal operators
also due to Tolsa. For f ∈ L1

loc(µ), the sharp maximal operator M ♯f(x) is
defined as

M ♯f(x) := sup
x∈Q∈Q(µ)

1

µ
(

3
2 Q

)
\
Q

|f(x) − mQ∗(f)| dµ(x)

+ sup
x∈Q⊂R

Q,R∈Q(µ,2)

|mQ(f) − mR(f)|

1 + δ(Q, R)
,

and Nf(x) is defined as

Nf(x) := sup
x∈Q∈Q(µ,2)

mQ(|f |).

It is well known that N is a bounded operator on Lp(µ) with p > 1. We
denote by ‖N‖p its operator norm. Since for every Q ∈ Q(µ) the sequence
Q, 2−1Q, 2−2Q, . . . contains infinitely many doubling cubes, we also have a
pointwise estimate |f(x)| ≤ Nf(x) for µ-a.e. x ∈ R

d. Denote by Nk, k ∈ N,
the k-fold composition of the operator N . Throughout the paper a weight

w will be a non-negative function on R
d satisfying the (mild) condition

(1.2) w ∈ Lp0(µ) for some p0 > 1.

For simplicity we denote
T
E w(x) dµ(x), E ⊂ R

d, by w(E). For a weight
function w satisfying (1.2), we define

(1.3) W (x) :=
∞∑

k=1

(2β)1−kNkw(x), β ≥ ‖N‖p0 .

The following theorem is the main result of the present paper.

Theorem 1.2. Let 0 < α < 1 and 1 ≤ q < ∞. Suppose that a weight

function w satisfies (1.2). Then, for every f ∈ L1
loc(µ) and Q0 ∈ Q(µ), there
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exists a constant C independent of f and Q0 such that

( \
Q0

|f(x)−m(Q0)∗(f)|q W (x)α dµ(x)
)1/q

≤C
( \

3
2
Q0

M ♯f(x)qW (x)α dµ(x)
)1/q

.

2. Proof of Theorem 1.2. The letter C will be used for constants that
may change from one occurrence to another. Constants with subscripts, such
as C0 and C1, do not change in different occurrences.

Generations of cubes. Here we shall define generations of cubes and in-
vestigate their properties. It is a local version of [11] and our construction
is based on a slightly modified form of the one given in [11].

Lemma 2.1. The following assertions hold.

(i) For ̺ > 1 and Q ∈ Q(µ), we have δ(Q, ̺Q) ≤ C0 log ̺.
(ii) Let Q ∈ Q(µ). Then δ(Q, Q∗) ≤ C02

n+1 log 2.
(iii) Let Q ∈ Q(µ), k0 ∈ N and θ0 > 0. Suppose that , for some θ1 > 0,

(2.1) θ0 ≤ µ(Q) ≤ µ(2k0Q) ≤ θ0θ1.

Then δ(Q, 2k0Q) ≤ 2n log 2 · θ1C0cn, where cn :=
∑∞

k=0 2−nk.

Proof. Assertion (i) follows easily from the growth condition (1.1). We
prove (ii). Let Q∗ = 2k1Q with k1 ∈ N∪{0}. A dyadic argument shows that

δ(Q, 2k1Q) =

ℓ(2k1Q)\
ℓ(Q)

µ(Q(zQ, l))

ln
dl

l
≤ 2n log 2

k1∑

k=1

µ(2kQ)

ℓ(2kQ)n
.

By the growth condition we have d − n ≥ 0. The definitions of Q∗ and
doubling cubes imply 2d+1µ(2k−1Q) ≤ µ(2kQ), k = 1, . . . , k1. These obser-
vations yield

δ(Q, 2k1Q) ≤ 2n log 2 ·
µ(2k1Q)

ℓ(2k1Q)n

k1∑

k=1

(2n−d−1)k1−k ≤ C02
n+1 log 2.

It remains to prove (iii). It follows from a dyadic argument and assump-
tion (2.1) that

δ(Q, 2k0Q) ≤ 2n log 2 ·
k0∑

k=1

µ(2kQ)

ℓ(2kQ)n
≤ 2n log 2 · θ1

θ0

ℓ(Q)n

k0∑

k=1

2−nk

≤ 2n log 2 · θ1C0cn,

which concludes the proof.



John–Nirenberg type inequality 157

Given two cubes Q ⊂ R, we set

δ̃(Q, R) :=

ℓ(QR)\
ℓ(Q)

µ(Q(zQ, l))

ln
dl

l
,

where QR denotes the largest cube concentric with Q and contained in R.
We will treat a point x ∈ supp(µ) as if it were a cube with sidelength 0. So,

for x ∈ supp(µ) and some cube R ∋ x, the notations δ̃(x, R) and xR make
sense.

Let C1 := C02
n+1 log 2. Letting Q0 ∈ Q(µ), we set Q1 := 3

2Q0.

Lemma 2.2. Suppose that A0 is large enough, say A0 > 3C1. Then, for

each x ∈ Q0 ∩ supp(µ) with δ̃(x, Q1) > A0, there exists some doubling cube

Q ⊂ Q1 centered at x satisfying

|δ̃(Q, Q1) − A0| ≤ 2C1.

Proof. Let R be a unique cube of the form 2−kxQ1 , k = 1, 2, . . . , such
that

δ̃(2R, Q1) ≤ A0 < δ̃(R, Q1).

Then

A0 < δ̃(R, Q1) = δ̃(R, 2R) + δ̃(2R, Q1) ≤ C0 log 2 + δ̃(2R, Q1).

This implies 2C1 ≤ δ̃(2R, Q1) and hence, by Lemma 2.1(ii), we conclude that

Q := (2R)∗ ⊂ Q1. It follows from Lemma 2.1(ii) again that A0 < δ̃(R, Q1) =

δ̃(R, Q) + δ̃(Q, Q1) ≤ 2C1 + δ̃(Q, Q1) and that δ̃(Q, Q1) ≤ δ̃(2R, Q1) ≤ A0.

Thus, we obtain |δ̃(Q, Q1) − A0| ≤ 2C1.

Let m ∈ N and A > 3C1. Then we set

Ωm,A := {x ∈ Q0 ∩ supp(µ) : δ̃(x, Q1) > mA}

and

D̂m,A := {Q ∈ Q(µ, 2) : Q ⊂ Q1, zQ ∈ Ωm,A and |δ̃(Q, Q1) − mA| ≤ 2C1}.

Lemma 2.3. Assume that A is large enough. Let P ∈ D̂m,A and P ′ ∈

D̂m+1,A.

(i) Suppose that zP = zP ′. Then 100P ′ ⊂ P .

(ii) Suppose that P ∩ P ′ 6= ∅. Then ℓ(P ′) ≤ 1
8ℓ(P ).

Proof. (i) Suppose to the contrary that P ⊂ 100P ′. Then since δ̃(P ′, Q1)

= δ̃(P ′, 100P ′) + δ̃(100P ′, Q1) we obtain

(m + 1)A − 2C1 ≤ δ̃(P ′, 100P ′) + mA + 2C1 ≤ C0 log 100 + mA + 2C1.

This implies A ≤ C0 log 100 + 4C1. Thus, we have P ⊃ 100P ′ provided
A > C0 log 100 + 4C1.
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(ii) If 8ℓ(P ′) > ℓ(P ), then P ⊂ 24P ′. As a result, defining R :=
Q(zP , 48ℓ(P ′)), we have P, P ′ ⊂ 24P ′ ⊂ R ⊂ 72P ′ ⊂ Q1, and hence

(2.2) δ̃(P ′, R) ≤ δ(P ′, 72P ′) ≤ C.

We now claim that

(2.3) s := |δ̃(P ′R, Q1) − δ̃(R, Q1)| ≤ C.

We decompose s as

s =

∣∣∣∣
ℓ(P ′Q1 )\
ℓ(P ′R)

µ(Q(zP ′, l))

ln
dl

l
−

ℓ(RQ1)\
ℓ(R)

µ(Q(zP , l))

ln
dl

l

∣∣∣∣

≤

ℓ(R)\
ℓ(P ′R)

µ(Q(zP ′, l))

ln
dl

l

+

∣∣∣∣
min{ℓ(P ′Q1 ),ℓ(RQ1 )}\

ℓ(R)

(µ(Q(zP ′, l)) − µ(Q(zP , l)))
dl

ln+1

∣∣∣∣

+

max{ℓ(P ′Q1 ),ℓ(RQ1)}\
min{ℓ(P ′Q1 ),ℓ(RQ1 )}

(
µ(Q(zP ′, l))

ln
+

µ(Q(zP , l))

ln

)
dl

l

=: s1 + s2 + s3.

The integrals s1 and s3 are easily estimated above by some constant C. We
bound s2 from above by

∞\
ℓ(R)

µ(Q(zP ′, l) △ Q(zP , l))
dl

ln+1
=

∞\
ℓ(R)

( \
Rd

χQ(zP ′ ,l)△Q(zP ,l)(x) dµ(x)
) dl

ln+1
,

where χE is the indicator function of a set E ⊂ R
d. Let

|x|∞ := max{|x1|, . . . , |xd|}, x = (x1, . . . , xd) ∈ R
d.

Then a simple geometric observation tells us that

χQ(zP ′ ,l)△Q(zP ,l)(x) = 0

if l /∈ [min{|x − zP |∞, |x − zP ′ |∞}, max{|x − zP |∞, |x − zP ′ |∞}].

In view of this observation we obtain

s2 ≤ C
\

Rd\P ′

∣∣∣∣
1

|x − zP |n∞
−

1

|x − zP ′ |n∞

∣∣∣∣ dµ(x)

≤ C
\

|x−zP ′ |∞≥ℓ(P ′)/2

|zP ′ − zP |∞

|x − zP ′ |n+1
∞

dµ(x).
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A routine dyadic argument gives

s2 ≤ C

∞∑

k=0

\
2k−1ℓ(P ′)≤|x−zP ′ |∞≤2kℓ(P ′)

|zP ′ − zP |∞

|x − zP ′ |n+1
∞

dµ(x)

≤ C
|zP ′ − zP |∞

ℓ(P ′)
≤ C.

This proves (2.3).

From the relation δ̃(P ′, Q1) = δ̃(P ′, R) + δ̃(P ′R, Q1), (2.2) and (2.3) we
have

δ̃(P ′, Q1) ≤ δ̃(P ′, R) + |δ̃(P ′R, Q1) − δ̃(R, Q1)| + δ̃(R, Q1)

≤ δ̃(P, Q1) + C2,

where C2 is some fixed big constant. Hence (m + 1)A ≤ mA + 4C1 + C2.
Thus, ℓ(P ′) ≤ 1

8ℓ(P ) provided A > 4C1 + C2.

Let m ∈ N and choose A large enough so that the conclusion of Lem-
ma 2.3 holds. From Lemma 2.2 there exists a map Φm : Ωm,A → D̂m,A such
that zΦm(x) = x for all x ∈ Ωm,A. Fixing this collection {Φm}m∈N of maps,
we set Qx,m := Φm(x). Then by the definition we have

|δ̃(Qx,m, Q1) − mA| ≤ 2C1.

The cubes Qx,m, m ∈ N, x ∈ Ωm,A, are called cubes of the mth generation

(relative to Q0). The set of all cubes of the mth generation will be denoted
by Dm and the set

⋃
m Dm will be denoted by D.

The weight W . Now we record some simple properties of the weight W
defined by (1.3). To begin with, we notice that N is subadditive and W
satisfies the so-called A1-condition:

(2.4) NW (x) ≤ 2βW (x) for µ-a.e. x ∈ R
d.

Indeed,

NW (x) ≤
∞∑

j=1

(2β)1−jN j+1w(x) = 2β
{ ∞∑

j=1

(2β)1−jN jw(x) − Nw(x)
}

≤ 2βW (x).

Once we have established (2.4), the so-called A∞-property follows im-
mediately.

Lemma 2.4. Let α ∈ (0, 1) and Q ∈ Q(µ, 2). Then

Wα(E)

Wα(Q)
≤ (2β)α

(
µ(E)

µ(Q)

)1−α

for all µ-measurable subsets E ⊂ Q.
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Proof. Using Hölder’s inequality we have

Wα(E) =
\
E

W (x)α dµ(x) ≤
(\

E

W (x) dµ(x)
)α

µ(E)1−α

≤ µ(Q)

(
W (Q)

µ(Q)

)α(
µ(E)

µ(Q)

)1−α

.

It follows from (2.4) that

Wα(E) ≤
(\

Q

NW (x)α dµ(x)
)
·

(
µ(E)

µ(Q)

)1−α

≤ (2β)α Wα(Q) ·

(
µ(E)

µ(Q)

)1−α

,

which proves the lemma.

Proof of Theorem 1.2. Choose A large enough so that the conclusion of
Lemma 2.3 holds, and fix Dm and D. Letting F (x) := |f(x) − m(2Q0)∗(f)|,
we consider the maximal function

NDF (x) := sup
x∈Q∈D

mQ(F ), x ∈ Q1.

If x ∈ Q1 lies outside
⋃

Q∈D Q, it will be understood that NDF (x) = 0.

Claim 2.5. For µ-a.e. x ∈ Q0 ∩ supp(µ), we have

(2.5) |f(x) − m(Q0)∗(f)| ≤ CM ♯f(x) + F (x),

(2.6) F (x) ≤ C(M ♯f(x) + NDF (x)).

Proof. In view of δ((Q0)
∗, (2Q0)

∗) ≤ C the first inequality (2.5) is ob-
vious. To prove (2.6), first of all, we notice that, for µ-a.e. x ∈ Q0 ∩
supp(µ), there exists a sequence {Qk}

∞
k=1 of doubling cubes centered at

x with ℓ(Qk) → 0 as k → ∞ and (see [9])

(2.7) lim
k→∞

mQk
(F ) = F (x).

Fix x ∈ Q0 ∩ supp(µ) satisfying (2.7). If δ̃(x, Q1) = ∞, then ℓ(Qx,m) → 0

as m → ∞. Hence F (x) ≤ NDF (x). If δ̃(x, Q1) ∈ (mA, (m + 1)A] for some
m ∈ N, we have δ(Q, Qx,m) ≤ C for some sufficiently small doubling cube
Q centered at x and contained in Qx,m. Thus, we see that

mQ(F ) = mQ(|f − m(2Q0)∗(f)|)

≤ mQ(|f − mQ(f)|) + |mQ(f) − mQx,m(f)| + |mQx,m(f) − m(2Q0)∗(f)|

≤ C

(
mQ(|f − mQ(f)|) +

|mQ(f) − mQx,m(f)|

1 + δ(Q, Qx,m)

)
+mQx,m(|f − m(2Q0)∗(f)|)

≤ C(M ♯f(x) + NDF (x)).

If δ̃(x, Q1) ≤ A, we have δ̃(Q, (2Q0)
∗) ≤ C, and hence there exists a suf-

ficiently small doubling cube Q centered at x and contained in Q1 such
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that

mQ(F ) ≤ mQ(|f − mQ(f)|) + |mQ(f) − m(2Q0)∗(f)| ≤ CM ♯f(x).

These observations and (2.7) yield the claim.

By keeping Claim 2.5 in mind, it is now clear that the theorem follows
from Claim 2.6 below.

Claim 2.6. We have
( \

Q1

NDF (x)qW (x)α dµ(x)
)1/q

≤ C
( \

Q1

M ♯f(x)qW (x)α dµ(x)
)1/q

.

We shall prove Claim 2.6 by means of the so-called good-λ inequality.

Lemma 2.7. There exists a constant C such that

Wα{x ∈ Q1 : NDF (x) > 2λ, M ♯f(x) ≤ ηλ}

≤ Cη1−αWα{x ∈ Q1 : NDF (x) > λ}

for all λ, η > 0.

Proof. Clearly, we may assume that η > 0 is sufficiently small. Fixing
η > 0 sufficiently small, we set

Eλ := {x ∈ Q1 : NDF (x) > 2λ, M ♯f(x) ≤ ηλ},

Ωλ := {x ∈ Q1 : NDF (x) > λ}.

For all x ∈ Eλ, we can select a doubling cube Qx = Qz(x),m(x) ∈ D, Qx ∋ x,

that satisfies mQx(F ) > 3
2λ. If m(x) = 1, we have δ(Qx, (2Q0)

∗) < C and
hence,

mQx(F )≤mQx(|f−mQx(f)|)+|mQx(f)−m(2Q0)∗(f)| ≤ CM ♯f(x) ≤ Cηλ.

As a result we obtain Cηλ > 3
2λ, which is not possible for sufficiently

small η. Replacing Qz,m by a younger one if necessary, we may assume
that mQz,m(F ) < 3

2λ for any cube Qz,m ∋ x with m < m(x).

Let Sx = Qz(x),m(x)−1. We claim that mSx(F ) > λ if η is small enough.
Indeed, noticing δ(Qx, Sx) ≤ 2A, we see that

mQx(F ) ≤ mQx(|f − mQx(f)|) + |mQx(f) − mSx(f)|

+ |mSx(f) − m(2Q0)∗(f)|

≤ CM ♯f(x) + mSx(F )

≤ Cηλ + mSx(F ).

This yields mSx(F ) ≥ 3
2λ − Cηλ > λ. Thus, we have

(2.8) 3λ/2 > mSx(F ) > λ

for sufficiently small η.
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Notice that Qx ⊂ 1
100Sx by Lemma 2.3(i). By Besicovitch’s covering

lemma there exists a countable subset {xj}j∈J ⊂ Eλ such that

(2.9) Eλ ⊂
⋃

j∈J

Sxj
and

∑

j∈J

χSxj
≤ CχΩλ

.

To simplify notation we write Sj = Sxj
and Qj = Qxj

. Now we claim the
following:

Claim 2.8. If η is small enough, then

Wα(Sj ∩ Eλ) ≤ Cη1−αWα(Sj) for all j ∈ J.

Let us temporarily accept Claim 2.8. Then (2.9) and the claim lead to

Wα(Eλ) ≤
∑

j∈J

Wα(Sj ∩ Eλ) ≤ Cη1−α
∑

j∈J

Wα(Sj) ≤ Cη1−α Wα(Ωλ),

which proves Lemma 2.7.

We are left with the task of proving Claim 2.8.

Proof of Claim 2.8. By Lemma 2.4 it suffices to show that

µ(Sj ∩ Eλ) ≤ Cηµ(Sj).

Let y ∈ Sj ∩Eλ. There exists a doubling cube Ry = Qz(y),m(y) ∈ D, Ry ∋ y,

that satisfies mRy(F ) > 2λ. We show that ℓ(Ry) ≤ 1
8ℓ(Sj) whenever η is

sufficiently small. From Lemma 2.3(ii) we may assume that m(y) < m(xj).
By Lemma 2.3(i) if ℓ(Ry) > 1

8ℓ(Sj), then Qz(y),m(y)−1 ⊃ Sj ⊃ Qj . This and
the fact that m(y) − 1 < m(xj) imply 3λ/2 > mQz(y),m(y)−1

(F ). Notice that
mRy(F ) can be majorized by

mRy(|f − mRy(f)|) + |mRy(f) − mQz(y),m(y)−1
(f)|

+mQz(y),m(y)−1
(|f − m(2Q0)∗(f)|),

and consequently it can be bounded by CM ♯f(y) + mQz(y),m(y)−1
(F ). Thus,

3λ/2 > mQz(y),m(y)−1
(F ) ≥ mRy(F ) − CM ♯f(y) ≥ 2λ − Cηλ.

Hence, if η < 1/3C, we must have ℓ(Ry) ≤
1
8ℓ(Sj). Thus,

ND(χ 5
4
Sj

F )(y) > 2λ for all y ∈ Sj ∩ Eλ.

From (2.8) we obtain |mSj
(f) − m(2Q0)∗(f)| ≤ 3λ/2, and

ND(χ 5
4
Sj

(f − mSj
(f)))(y) > λ/2 for all y ∈ Sj ∩ Eλ.

It follows from the weak-(1, 1) boundedness of ND that

µ(Sj ∩ Eλ) ≤ µ{y ∈ R
d : ND(χ 5

4
Sj

(f − mSj
(f)))(y) > λ/2}

≤
C

λ

\
5
4
Sj

|f(x) − mSj
(f)| dµ(x).
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Recall that Sj is doubling. Noticing that\
5
4
Sj

|f(x) − mSj
(f)| dµ(x)

≤
\

5
4
Sj

|f(x)−m( 5
4
Sj)∗

(f)| dµ(x)+µ(Sj)|m( 5
4
Sj)∗

(f)−mSj
(f)| ≤ Cηλµ(Sj),

we conclude that µ(Sj ∩ Eλ) ≤ Cη µ(Sj).

We return to the proof of Claim 2.6.

Proof of Claim 2.6. Lemma 2.7 implies that

Wα{x ∈ Q1 : NDF (x) > 2λ}

≤ Cη1−αWα{x ∈ Q1 : NDf(x) > λ} + Wα{x ∈ Q1 : M ♯f(x) > ηλ}.

Multiplying both sides by qλq−1 and integrating against λ, we have, after a
change of variables,

1

2

(L\
0

qλq−1Wα{x ∈ Q1 : NDF (x) > λ} dλ
)1/q

≤
(
Cη1−α

L\
0

qλq−1Wα{x ∈ Q1 : NDF (x) > λ} dλ
)1/q

+
1

η

( \
Q1

M ♯f(x)q Wα(x) dµ(x)
)1/q

.

When η is sufficiently small, we can bring the first term of the right-hand
side to the left-hand side. As a consequence it follows that

(L\
0

qλq−1Wα{x ∈ Q1 : NDF (x) > λ} dλ
)1/q

≤ C
( \

Q1

M ♯f(x)qW (x)α dµ(x)
)1/q

.

Letting L → ∞, we obtain the claim.

3. Application to vector-valued inequalities. Applying Theorem
1.2, we can obtain some vector-valued inequalities. To formulate them we
adopt the following notation. For a sequence {fj}

∞
j=1 of µ-measurable func-

tions and q, r ≥ 1, we write

‖fj(x) : lr‖ :=
( ∞∑

j=1

|fj(x)|r
)1/r
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and

‖fj : Lq(lr, µ)‖ :=
(\

Rd

‖fj(x) : lr‖q dµ(x)
)1/q

.

First of all, we need the following result (see [5, Theorem 1.7]).

Lemma 3.1. If q, r ∈ (1,∞), then

‖Nfj : Lq(lr, µ)‖ ≤ Cq,r‖fj : Lq(lr, µ)‖.

Proposition 3.2. Let q, r ∈ (1,∞) and let {fj}
∞
j=1 ⊂ L1

loc(µ). Then

there is a constant C independent of {fj}∞j=1 so that , for every Q0 ∈ Q(µ),

( \
Q0

‖fj(x)−m(Q0)∗(fj) : lr‖q dµ(x)
)1/q

≤ C
( \

3
2
Q0

‖M ♯fj(x) : lr‖q dµ(x)
)1/q

.

Proof. We may assume that fj ≡ 0 for sufficiently large j by the mono-
tone convergence theorem. Take 1 < s < min(q, r) and let t := q/s, u := r/s.
Take α slightly smaller than 1 so that 1 < 1/α < min(t′, u′). We shall esti-
mate

I :=
( \

Q0

‖fj(x) − m(Q0)∗(fj) : lr‖q dµ(x)
)s/q

(3.1)

=
( \

Q0

‖ |fj(x) − m(Q0)∗(fj)|
s : lu‖t dµ(x)

)1/t

by a duality argument.

Take a vector-valued weight (w1, w2, . . .) supported on Q0 and satisfying

(3.2)

I =
\

Q0

‖ |fj(x) − m(Q0)∗(fj)|
s wj(x)α : l1‖ dµ(x),

‖wα
j : Lt′(lu

′

, µ)‖ = 1.

Then it follows from Theorem 1.2 and Hölder’s inequality that

(3.3) I ≤
\

3
2
Q0

‖M ♯fj(x)s Wj(x)α : l1‖ dµ(x)

≤
( \

3
2
Q0

‖M ♯fj(x)s : lu‖t dµ(x)
)1/t

·
( \

3
2
Q0

‖Wj(x)α : lu
′

‖t′ dµ(x)
)1/t′

,

where we have set

Wj(x) :=
∞∑

k=1

(2β)1−kNkwj(x)

and used the fact that wj(x) ≤ Wj(x). Take for β the constant Cαt′,αu′ in
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Lemma 3.1. Then Lemma 3.1, the definition of Wj and (3.2) yield

(3.4)
( \

3
2
Q0

‖Wj(x)α : lu
′

‖t′ dµ(x)
)1/αt′

=
( \

3
2
Q0

‖Wj(x) : lαu′

‖αt′ dµ(x)
)1/αt′

≤ C.

Piecing (3.1), (3.3) and (3.4) together, we obtain the desired conclusion.

The following corollary is a vector-valued extension of Theorem 1.1(ii).

Corollary 3.3. Let fj ∈ RBMO. For any cube Q0 ∈ Q(µ) and q, r ∈
(1,∞), there exists a constant C independent of fj such that
(

1

µ
(

3
2Q0

)
\

Q0

‖fj(x) − m(Q0)∗(fj) : lr‖q dµ(x)

)1/q

≤ C sup
x∈Rd

‖M ♯fj(x) : lr‖.

We apply Proposition 3.2 to obtain a sharp maximal inequality on Mor-
rey spaces.

Let k > 1, 1 ≤ q ≤ p < ∞ and f ∈ Lq
loc(µ). Then we say that f belongs

to the Morrey space Mp
q(k, µ) provided

(3.5) ‖f : Mp
q(k, µ)‖ := sup

Q∈Q(µ)
µ(kQ)1/p−1/q

(\
Q

|f(x)|q dµ(x)
)1/q

< ∞.

By applying Hölder’s inequality to (3.5) it is easy to see that

Lp(µ) = Mp
p(k, µ) ⊂ Mp

q1
(k, µ) ⊂ Mp

q2
(k, µ)

for 1 ≤ q2 ≤ q1 ≤ p < ∞. Let k1 > k2 > 1. Then Mp
q(k1, µ) and Mp

q(k2, µ)
coincide as sets and their norms are equivalent. More precisely (see [7, Propo-
sition 1.1]),

‖f : Mp
q(k1, µ)‖ ≤ ‖f : Mp

q(k2, µ)‖ ≤ Cd

(
k1 − 1

k2 − 1

)d

‖f : Mp
q(k1, µ)‖.

Nevertheless, for definiteness, we will assume k = 2 in the definition and de-
note Mp

q(2, µ) by Mp
q(µ). For a sequence {fj}

∞
j=1 of µ-measurable functions,

we also write
‖fj : Mp

q(l
r, µ)‖ :=

∥∥‖fj : lr‖ : Mp
q(µ)

∥∥.

The following proposition is a vector-valued extension of [8, Corollary 1.5].

Proposition 3.4. Let {fj}
∞
j=1 ⊂ L1

loc(µ). Suppose that 1 < q ≤ p < ∞,
r ∈ (1,∞) and there exists an increasing sequence of concentric doubling

cubes I1 ⊂ I2 ⊂ · · · such that

(3.6) lim
k→∞

mIk
(fj) = 0 for all j ∈ N and

∞⋃

k=1

Ik = R
d.
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Then there exists a constant C independent of {fj}
∞
j=1 such that

‖fj : Mp
q(l

r, µ)‖ ≤ C‖M ♯fj : Mp
q(l

r, µ)‖.

Proof. We may again assume that fj ≡ 0 for sufficiently large j. Letting
R ∈ Q(µ), we shall estimate µ(2R)1/p−1/q(

T
R ‖fj(x) : lr‖q dµ(x))1/q. We

begin by reducing the matter to the case when R ∈ Q(µ, 2). It follows from
Proposition 3.2 that

µ(2R)1/p−1/q
(\

R

‖fj : lr‖q dµ
)1/q

≤ µ(2R)1/p−1/q
(\

R

‖fj − mR∗(fj) : lr‖q dµ
)1/q

+ µ(R)1/p‖mR∗(fj) : lr‖

≤ Cµ(2R)1/p−1/q
( \

3
2
R

‖M ♯fj : lr‖q dµ
)1/q

+ µ(R)1/p‖mR∗(fj) : lr‖

≤ C‖M ♯fj : Mp
q(l

r, µ)‖ + µ(R)1/p‖mR∗(fj) : lr‖.

So we concentrate on estimating

(3.7) µ(R)1/p‖mR∗(fj) : lr‖.

We choose doubling cubes inductively. Let R1 = R∗ and Rm+1 = (2Rm)∗,
m ∈ N. Let d be the distance between the center of R1 and that of I1. We
select m1 ∈ N so large that ℓ(Rm1) ≥ 2d and there exists some Iκ, κ ∈ N,
such that Rm1 ⊂ Iκ, Rm1+1 6⊂ Iκ and

(3.8) µ(R)1/p‖mIκ(fj) : lr‖ ≤
∥∥ ‖M ♯fj : lr‖ : Mp

q(µ)
∥∥.

Then a simple geometric observation shows that Rm1 ⊂ Iκ ⊂ Rm1+3 and
hence

(3.9) δ(Rm1 , Iκ) ≤ δ(Rm1, Rm1+3) ≤ C.

For i = 1, 2, . . . we put

Mi := {m ∈ N ∩ [1, m1] : 2i−1µ(R) ≤ µ(Rm) < 2iµ(R)}.

Deleting all empty sets from {Mi}i=1,2,..., we obtain {Mi}i=i1,...,iκ′
. Set

a(ik) := minMik , b(ik) := maxMik , k = 1, . . . , κ′.

Then we notice that Rb(iκ′ ) = Rm1 .

For k = 1, . . . , κ′ − 1, from Lemma 2.1(iii) we see that

δ(Ra(ik), Rb(ik)), δ(Rb(ik), Ra(ik+1)) ≤ C,
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and hence δ(Ra(ik), Ra(ik+1)) ≤ C. This implies that

µ(R)1/p‖mRa(ik)
(fj) − mRa(ik+1)

(fj) : lr‖

≤ C 2−ik/p µ(Ra(ik))
1/p−1/q

( \
Ra(ik)

‖M ♯fj(x) : lr‖q dµ(x)
)1/q

≤ C 2−ik/p‖M ♯fj : Mp
q(l

r, µ)‖.

Similarly, from (3.9) we also have

µ(R)1/p‖mRa(i
κ′ )

(fj) − mIκ(fj) : lr‖ ≤ C2−iκ′/p ‖M ♯fj : Mp
q(l

r, µ)‖.

Applying the triangle inequality to (3.7), we finally have

µ(R)1/p‖mR∗(fj) : lr‖

≤ µ(R)1/p
κ′−1∑

k=1

‖mRa(ik)
(fj) − mRa(ik+1)

(fj) : lr‖

+ µ(R)1/p{‖mRa(i
κ′ )

(fj) − mIκ(fj) : lr‖ + ‖mIκ(fj) : lr‖}

≤ C
( κ′∑

k=1

2−ik/p
)
‖M ♯fj : Mp

q(l
r, µ)‖ + µ(R)1/p‖mIκ(fj) : lr‖

≤ C‖M ♯fj : Mp
q(l

r, µ)‖.

The proof is now complete.

4. Application to weighted inequalities. Applying Theorem 1.2, we
can obtain a weighted sharp maximal inequality for Morrey spaces. For a
weight w, we define the norm of the weighted Morrey space Mp

q(w, µ) as

‖f : Mp
q(w, µ)‖ := sup

Q∈Q(µ)
µ(2Q)1/p−1/q

(\
Q

|f(x)|q w(x) dµ(x)
)1/q

,

1 ≤ q ≤ p < ∞.

The following proposition is a weighted version of [8, Corollary 1.5].

Proposition 4.1. Let 1 ≤ q ≤ p < ∞, 0 < α < q/p and w, W be

the same as Theorem 1.2. Suppose that f ∈ L1
loc(µ) and there exists an

increasing sequence of concentric doubling cubes I1 ⊂ I2 ⊂ · · · such that

(4.1) lim
k→∞

mIk
(f) = 0 and

∞⋃

k=1

Ik = R
d.

Then there exists a constant C independent of f such that

‖f : Mp
q(W

α, µ)‖ ≤ C‖M ♯f : Mp
q(W

α, µ)‖.
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Proof. The proof is similar to that of Proposition 3.4. We shall estimate

µ(2R)1/p−1/q
(\

R

|f(x)|q W (x)α dµ(x)
)1/q

, R ∈ Q(µ).

It follows from Theorem 1.2 that

µ(2R)1/p−1/q
(\

R

|f(x)|q W (x)α dµ(x)
)1/q

≤ µ(2R)1/p−1/q
(\

R

|f(x) − mR∗(f)|q W (x)α dµ(x)
)1/q

+ µ(R)1/p−1/qWα(R)1/q|mR∗(f)|

≤ Cµ(2R)1/p−1/q
( \

3
2
R

M ♯f(x)qW (x)α dµ(x)
)1/q

+ µ(R)1/p−1/qWα(R)1/q|mR∗(f)|

≤ C‖M ♯f : Mp
q(W

α, µ)‖ + µ(R)1/p−1/qWα(R)1/q|mR∗(f)|.

So the task is reduced to proving

(4.2) µ(R)1/p−1/qWα(R)1/q|mR∗(f)| ≤ C‖M ♯f : Mp
q(W

α, µ)‖.

Take κ ∈ N so large that

µ(R)1/p−1/qWα(R)1/q, |mIκ(f)| ≤ ‖M ♯f : Mp
q(W

α, µ)‖.

We will use the same definition and notation from the proof of Propo-
sition 3.4. For k = 1, . . . , κ′ − 1, we recall that δ(Ra(ik), Ra(ik+1)) ≤ C,
δ(Ra(iκ′ ), Iκ) ≤ C and, for k = 1, . . . , κ′, we have

Wα(R)

µ(R)1−α
≤ (2β)α Wα(Ra(ik))

µ(Ra(ik))1−α

by Lemma 2.4. Combining these observations, we obtain

µ(R)1/p−1/qWα(R)1/q|mRa(ik)
(f) − mRa(ik+1)

(f)|

= µ(R)1/p−α/q

(
Wα(R)

µ(R)1−α

)1/q

|mRa(ik)
(f) − mRa(ik+1)

(f)|

≤ C 2−(1/p−α/q)ikµ(Ra(ik))
1/p−α/q

(
Wα(Ra(ik))

µ(Ra(ik))1−α

)1/q

× |mRa(ik)
(f) − mRa(ik+1)

(f)|



John–Nirenberg type inequality 169

≤ C 2−(1/p−α/q)ikµ(Ra(ik))
1/p

(
Wα(Ra(ik))

µ(Ra(ik))

)1/q 1

µ(Ra(ik))

×
\

Ra(ik)

M ♯f(x) dµ(x)

≤ C 2−(1/p−α/q)ikµ(Ra(ik))
1/p−1/q

( \
Ra(ik)

M ♯f(x)qW (x)α dµ(x)
)1/q

≤ C 2−(1/p−α/q)ik‖M ♯f : Mp
q(W

α, µ)‖,

where we use Wα(Ra(ik))/µ(Ra(ik)) ≤ (W (Ra(ik))/µ(Ra(ik)))
α and (2.4).

Similarly, we also have

µ(R)1/p−1/qWα(R)1/q|mRa(i
κ′ )

(f) − mIκ(f)|

≤ C 2−(1/p−α/q)κ′

‖M ♯f : Mp
q(W

α, µ)‖.

Recall that 1/p − α/q > 0 by assumption. Applying the triangle inequality
to (4.2), we finally have

(4.2) ≤ µ(R)1/p−1/qWα(R)1/q
κ′−1∑

k=1

|mRa(ik)
(f) − mRa(ik+1)

(f)|

+ µ(R)1/p−1/qWα(R)1/q{|mRa(i
κ′ )

(f) − mIκ(f)| + |mIκ(f)|}

≤ C
( κ′∑

k=1

2−(1/p−α/q)ik
)
‖M ♯f : Mp

q(W
α, µ)‖

+ µ(R)1/p−1/qWα(R)1/q|mIκ(f)|

≤ C‖M ♯f : Mp
q(W

α, µ)‖,

which is our desired estimate.
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