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Embeddings of finite-dimensional operator spaces

into the second dual

by

Alvaro Arias (Denver, CO) and Timur Oikhberg (Irvine, CA)

Abstract. We show that, if a a finite-dimensional operator space E is such that X

contains E C-completely isomorphically whenever X∗∗ contains E completely isometri-
cally, then E is 215C11-completely isomorphic to Rm ⊕ Cn for some n, m ∈ N ∪ {0}.
The converse is also true: if X∗∗ contains Rm ⊕Cn λ-completely isomorphically, then X

contains Rm ⊕ Cn (2λ + ε)-completely isomorphically for any ε > 0.

1. Introduction. Local reflexivity of Banach spaces was first discovered
by J. Lindenstrauss and H. Rosenthal in [12]. Later, W. Johnson, H. Rosen-
thal, and M. Zippin [9] improved on this result, and obtained:

Theorem 1.1. Suppose X is a Banach space, E and F are finite-dimen-
sional subspaces of X∗∗ and X∗, respectively , and ε > 0. Then there exists
an operator u : E → X such that ‖u‖ < 1+ ε, u|E∩X = IE∩X , and 〈ue, f〉 =
〈e, f〉 for any e ∈ E and f ∈ F .

This immediately implies the result of [12]:

Corollary 1.2. Suppose E and X are Banach spaces, E is a finite-
dimensional space, and E is contained in X∗∗ C-isomorphically (that is,
there exists E′ →֒ X∗∗ such that d(E, E′) ≤ C). Then E is contained in X
(C + ε)-isomorphically for any ε > 0.

In the non-commutative case, the results quoted above do not hold in
general. It is well known that an infinite-dimensional operator space need
not be locally reflexive. Moreover, for every n > 2 the space ℓn

1 (equipped
with the maximal operator space structure) is contained in B = K∗∗, while,
by Theorem 21.5 of [16], dcb(ℓ

n
1 , E) ≥ n/(2

√
n − 1) for any E →֒ K (here

and below, B and K denote the spaces of bounded and compact operators
on ℓ2, respectively).
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In this paper, we show that a “non-commutative” analogue of Corol-
lary 1.2 holds for a finite-dimensional operator space E if and only if E is
completely isomorphic to a direct sum of row and column spaces (Theo-
rem 1.3). We say that X contains E C-completely isomorphically (C-ci) if
there exists F →֒ X such that dcb(E, F ) ≤ C; and X is said to contain E
C+-ci if it contains E C1-ci for every C1 > C. A finite-dimensional oper-
ator space E is said to be C-bidually representable (C-BDR, for short) if
an operator space X contains E C-completely isomorphically whenever X∗∗

contains a completely isometric copy of E; and E is said to be C+-BDR if
it is C1-BDR for any C1 > C.

Below, Rn and Cn stand for the spaces spanned by the first row and the
first column of n × n matrices, respectively. ⊕ means ⊕∞ (the ℓ∞ sum of
spaces), unless specified otherwise.

Theorem 1.3.

(1) If E is λ-completely isomorphic to Rm ⊕ Cn for some m, n ∈ Z+,
then E is 2λ2+-BDR.

(2) If E is λ+-BDR, then, for some m, n ∈ Z+, dcb(E,Rm ⊕ Cn) ≤
215λ11.

Theorem 1.4. An operator space is 1-BDR if and only if it is 1-dimen-
sional.

The rest of the paper is organized as follows: in Section 2, we gather some
essential facts about non-dual local reflexivity, and prove item (1) of Theo-
rem 1.3. The proof of Theorem 1.3(2) proceeds in two steps. First, we show
that E embeds “nicely” into R ⊕ C (Section 3). In Section 4 we complete
the proof of Theorem 1.3(2). Section 5 is devoted to proving Theorem 1.4.
Finally, in Section 6, we consider our problem in the setting of C∗-algebras.

The notation used in this paper is, by and large, either standard, or ex-
plained above. The minimal (also called injective, or spatial) tensor product
of operator spaces is denoted by ⊗. If T : X → Y is a finite rank operator,

T̃ stands for the corresponding element of X∗ ⊗ Y (then ‖T‖cb = ‖T̃‖). We
often use Mn, B, K, and K0—the spaces of n × n matrices, of bounded
operators on ℓ2, of compact operators on ℓ2, and of compact operators with
matrices having finitely many non-zero entries, respectively.

In the proofs, we use the notion of exactness of an operator space, and
the notion of a complete M -ideal in an operator space.

We say that an operator space Z is C-exact (C > 0) if, for any finite-
dimensional subspace E →֒ Z, and every ε > 0, there exist N ∈ N and
F →֒ MN with dcb(E, F ) < C + ε; and Z is said to be exact if it is C-exact
for some C. The exactness constant of Z (denoted by ex(Z)) is the infimum
of all the C’s with the above property. It is easy to see that the row space R,
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the column space C, and the space of compact operators K are 1-exact. On
the other hand, it is known that B is not exact. The reader is referred to
[15], Chapter 17 of [16], or Chapter 14 of [6] for more information.

A subspace X of an operator space Y is called a complete M -summand if
Y = Y ⊕∞ Z for some Z →֒ Y ; and X is a complete M -ideal in Y if X⊥⊥ is
a complete M -summand in Y ∗∗. We refer the reader to [5], or to Section 4.8
of [2], for information about complete M -ideals. For the theory of M -ideals
in Banach spaces, see [8].

Finally, Z+ = N ∪ {0} is the set of non-negative integers.

2. Some remarks on bidual representability. To prove Theorem
1.3(1), we begin with

Proposition 2.1. Suppose E and F are finite-dimensional operator
spaces, X is an operator space, u : E → X∗∗ and v : X∗∗ → F are linear
maps, and ε > 0. Then there exist linear maps u1 : E → X and v1 : X → F
such that ‖u1‖cb‖v1‖cb < (1 + ε) ex(E∗) ex(F )‖u‖cb‖v‖cb and v1u1 = vu.

Proof. Pick biorthogonal systems (ei, e
∗
i )

n
i=1 and (fj, f

∗
j )m

j=1 in E and F ,

respectively. Write ũ =
∑

i e
∗
i ⊗ x∗∗

i and ṽ =
∑

j fj ⊗ x∗∗∗
j with x∗∗

i ∈ X∗∗

and x∗∗∗
j ∈ X∗∗∗. By Proposition 3.2.1 of [6], (MN (X))∗∗ = MN (X∗∗) iso-

metrically, hence ṽ ∈ X∗∗∗⊗F can be “approximated” by ṽ1 =
∑

j fj ⊗x∗
j ∈

F ⊗X∗ in such a way that (1) ‖ṽ1‖ <
√

1 + ε ex(F )‖ṽ‖, and (2) 〈x∗
j , x

∗∗
i 〉 =

〈x∗∗∗
j , x∗∗

i 〉 for any pair (i, j). Similarly, there exists ũ1 =
∑

i e
∗
i ⊗ xi ∈ E∗⊗X

such that ‖ũ1‖ ≤
√

1 + ε ex(E∗)‖ũ‖, and 〈x∗
j , x

∗∗
i 〉 = 〈x∗

j , xi〉 for any pair

(i, j).
Now go back from tensor products to c.b. maps u1 : E → X and

v1 : X → F . By the above, ‖u1‖cb <
√

1 + ε ex(E∗)‖u‖cb and ‖v1‖cb <√
1 + ε ex(F )‖v‖cb. Moreover, for any i,

v1u1ei =
∑

j

〈x∗
j , xi〉fj =

∑

j

〈x∗∗∗
j , x∗∗

i 〉fj = vuei.

Therefore, vu = v1u1 and ‖u1‖cb‖v1‖cb < (1 + ε) ex(E∗) ex(F )‖u‖cb‖v‖cb.

Proposition 2.1 implies:

Corollary 2.2. Suppose X is an operator space, and δ > 0. Then:

(1) If X∗∗ contains a λ-injective finite-dimensional operator space E C-
completely isomorphically, then X contains E (λC ex(E) ex(E∗)+δ)-
completely isomorphically.

(2) If X∗∗ contains Rm ⊕Cn (n, m ∈ Z+) C-completely isomorphically,
then X contains Rm ⊕Cn (2C + δ)-completely isomorphically. Con-
sequently , Rm ⊕ Cn is 2+-BDR.
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(3) Suppose E = Rm, Cm, ℓ2
∞, C ⊕∞ Rm, or C ⊕∞ Rm (m ∈ N). If

X∗∗ contains E C-completely isomorphically, then X contains E
(C + δ)-completely isomorphically. Consequently, E is 1+-BDR.

Proof. (1) Consider a subspace E′ →֒ X∗∗ for which there exists a com-
pletely contractive isomorphism uE → E′ with ‖u−1‖cb ≤ C. As E is λ-
injective, there exists v : X∗∗ → E extending u−1 (that is, v|E′ = u−1) of
norm not exceeding λC. By Proposition 2.1, for every ε > 0 there exist u1 :
E → X and v1 : X → E such that ‖u1‖cb‖v1‖cb ≤ (1 + ε) ex(E) ex(E∗)λC
and v1u1 = vu = IE . Therefore, dcb(E, u1(E)) ≤ (1 + ε) ex(E) ex(E∗)λC.
Since ε can be arbitrarily small, we are done.

(2) The space Rm ⊕ Cn embeds into Mm+n as a 1-completely com-
plemented subspace, hence ex(Rm ⊕ Cn) = 1. Moreover, (Rm ⊕ Cn)∗ =
Cn⊕1Rm is 2-completely isomorphic to Cn⊕Rm, hence ex((Rm⊕Cn)∗) ≤ 2.
An application of part (1) yields the desired result.

(3) Reason as in the proof of part (2), and recall that ex(E) = ex(E∗) = 1
for any E from the list (see Chapter 21 of [16]).

Remark 2.3. We return to the connections between injectivity, exact-
ness, and BDR in Section 5. Meanwhile, note that by Theorem 1.4, C is the
only 1-BDR space. Hence, the condition of being 1-BDR is much stronger
than being 1+-BDR.

The next result shows that bidual representability is an isomorphic prop-
erty.

Proposition 2.4. Suppose X is an operator space, E is a finite-dimen-
sional subspace of X∗∗, dcb(E, F ) = C1, and ex(F ) < C2. Then there exists
an operator space Y such that dcb(X, Y ) < C1C2 and Y ∗∗ contains a com-
pletely isometric copy of F .

Proof. Suppose the map u : E → F is such that ‖u‖cb = C1 and
‖u−1‖cb = 1. By renorming X, we shall construct a space Y and a map
T : X → Y such that ‖T‖cb < C1C2, and T−1 is completely contractive.
To this end, find a subspace F1 →֒ MN and a map v : F1 → F such that
‖v−1‖cb = 1 and ‖v‖cb < C2. Embedding F into B completely isometri-
cally, and applying Stinespring’s extension theorem, we obtain an operator

ṽ : MN → B such that ṽ|F1
= v and ‖ṽ‖cb = ‖v‖cb. Let F̃ = ṽ(MN ).

Extend w = v−1u to w̃ : X∗∗ → MN such that ‖w̃‖cb = ‖w‖cb ≤ C1 and
w̃|E = w. Let C ′

1 = C1C2/‖v‖cb. The unit ball of X∗ ⊗ MN is weak∗ dense
in the unit ball of X∗∗∗⊗MN , hence there exists an operator w1 : X → MN

such that ‖w1‖cb < C ′
1 and w∗∗

1 |E = w.
Define a new operator space structure Y on X by setting, for x ∈ X⊗K0,

‖x‖Y ⊗K = max{‖x‖X⊗K, ‖(ṽw1 ⊗ IK)x‖
F̃⊗K

}.
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Denote by T the formal identity map from X to Y . Clearly, T−1 is a complete
contraction, and ‖T‖cb ≤ ‖ṽw1‖cb < C1C2. Moreover, for x∗∗ ∈ X∗∗ ⊗K0,

‖x∗∗‖Y ∗∗⊗K = max{‖x∗∗‖X∗∗⊗K, ‖(ṽw∗∗
1 ⊗ IK)x∗∗‖F̃⊗K

},
which implies that, for e ∈ E ⊗ K0, ‖e‖Y ∗∗⊗K = ‖(u ⊗ IK)e‖F⊗K.

Proposition 2.5. Suppose the space E is C+-BDR. Then E is C-exact.

Proof. Apply the definition of BDR to X = K.

Corollary 2.6. Suppose E and E′ are operator spaces of the same
(finite) dimension, E is C-BDR, dcb(E, E′) = λ, and ex(E) < µ. Then an
operator space X contains E Cλµ-completely isomorphically whenever X∗∗

contains E′ completely isometrically. Consequently, E′ is Cλ2µ-BDR.

Proof. Suppose E′ is contained in X∗∗. Consider a map u : E′ → E such
that ‖u‖cb = λ and ‖u−1‖cb = 1. By the proof of Proposition 2.4, there
exists an operator space Y and a map T : X → Y such that ‖T‖cb < λµ,
‖T−1‖cb ≤ 1, and T ∗∗(E′) = E. There exists a subspace F →֒ Y with
dcb(E, F ) ≤ C. Let F ′ = T−1(F ) →֒ X. Then

dcb(E, F ′) ≤ dcb(E, F )dcb(F, F ′) ≤ dcb(E, F )‖T‖cb‖T−1‖cb < Cλµ.

Therefore, dcb(E
′, F ′) ≤ dcb(E

′, E)dcb(E, F ′) < Cλ2µ.

3. Proof of Theorem 1.3(2): E is a subspace of R ⊕ C. In this
section, we make the first step toward proving Theorem 1.3(2) by showing
that every C-BDR space embeds “neatly” into R ⊕ C. More precisely, we
prove:

Theorem 3.1. For every N ∈N, there exists a separable operator space X
such that :

(1) X∗∗ contains B as a complete M -summand.
(2) Suppose E is a finite-dimensional operator space such that dcb(E, E′)

< C for some E′ →֒ ℓ∞(MN ), and X contains E c-completely iso-
morphically for some c < C. Then E is 4

√
2C3-completely isomor-

phic to a subspace of R ⊕C.

Consequently , any C+-BDR space is 4
√

2C3-completely isomorphic to a sub-
space of R⊕ C.

We start the proof by constructing the space X. At the Banach space
level, let X = (

⊕
n>N Mn)c be the space of all sequences whose elements

are n×n matrices, and which have a limit (in K). Denote by Pn (once again,
n > N) the canonical “truncation” from X to (

∑n
k=N+1 Mk)∞. Let Xn =

MAXn((
∑n

k=N+1 Mk)∞) (see [13] or [11] for the definition and properties
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of the functor MAXn), and set, for x ∈ X ⊗ K0,

(3.1) ‖x‖ = sup
n

‖(Pn ⊗ IK)x‖Xn⊗K.

It is easy to notice that the Banach space structure of X is as described
above. Denote by Y the space (

⊕
n>N Mn)c0 , with the operator space struc-

ture inherited from X.
For further use, we state the following easy consequence of (3.1).

Lemma 3.2. Suppose x is an element of X ⊗ Mm (m ∈ N). Write x =
(xi)i>N with xi ∈ Mi ⊗ Mm. Then

‖x‖X⊗Mm
= max{‖x‖(

∑
n>N Mn)c⊗Mm

, max
N<n≤m

‖(Pn ⊗ IMm
)x‖Xn⊗Mm

}.

Lemma 3.3. Y is a complete M -ideal in X.

Proof. For n > N , define the map Tn : X → Y by setting

Tn((xi)i>N ) = (xN+1, . . . , xn, 0, 0, . . .).

We need to show that the sequence (Tn) is an M -complete approximate
identity (see Definition 1.1 of [1]). Clearly, Tny → y for any y ∈ Y . Moreover,
suppose x = (xi) and z = (zi) are elements of X ⊗Mm. By Lemma 3.2, for
n ≥ m,

‖(Tn ⊗ IMm
)(x) + ((I − Tn) ⊗ IMm

)(z)‖ = ‖(xN+1, . . . , xn, zn+1, zn+2, . . .)‖
= max{‖(xN+1, . . . , xn, zn+1, zn+2, . . .)‖(

∑
n>N Mn)c⊗Mm

,

max
N<k≤m

‖(xN+1, . . . , xk)‖Xk⊗Mm
}

= max{ max
N<k≤n

‖xk‖, sup
k>n

‖zk‖, max
N<k≤m

‖(xN+1, . . . , xk)‖Xk⊗Mm
}

≤ max{‖x‖, ‖z‖}.
Thus, (Tn) is indeed an M -completely approximate identity, and therefore,
by Theorem 1.1 of [1], Y is a complete M -ideal in X.

Lemma 3.4. The quotient X/Y is completely isometric to K.

Proof. Define the map U : X/Y → K by setting U([(xi)i>N ]) = limi xi.
To show that it is a complete isometry, fix m∈N, and consider x=(xi)i>N

∈ X ⊗ Mm. By Lemma 3.2, ‖[x]‖X/Y ⊗Mm
= limi ‖xi‖ = ‖U [x]‖K⊗Mm

.

Conclusion of the proof of Theorem 3.1. Part (1) of the theorem follows
from Lemma 3.4. Suppose E is a finite-dimensional operator space as in
part (2), u : E → X is a complete contraction, F = u(E), and ‖u−1‖cb < C.
Let Fn = Pn(F ) be a subspace of Xn (here, Pn and Xn are as in (3.1)), and
let un = Pnu. By the definition of MAXn,

‖(xN+1, . . . , xn)‖Xn⊗MN
= max

N<k≤n
‖xk‖,
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hence there exists n > N such that ‖(un ⊗ IMN
)e‖ > C−1‖e‖ for any

e ∈ E ⊗ MN . By Smith’s lemma, ‖u−1
n ‖cb < C‖u−1

n ⊗ IMN
‖ < C2.

Since X∗
n is 1-exact, by [17] there exist operators v : E → R ⊕ C and

w : R⊕C → Xn so that ‖v‖cb‖w‖cb ≤ 4
√

2C and un = wv. Let G = v(E).
Then dcb(E, G) ≤ ‖v‖cb‖u−1

n w‖cb < 4
√

2C3.
To prove the last assertion, note that, by the reasoning above and Propo-

sition 2.5, any N -dimensional C+-BDR space E embeds into RN ⊕ CN

4
√

2(C + ε)3-completely isomorphically for any ε > 0. Letting ε approach 0,
and applying a classical compactness argument, we complete the proof.

4. Proof of Theorem 1.3(2): E is Rm ⊕ Cn. In this section, we
complete the proof of Theorem 1.3(2). For the convenience of working with
Hilbert spaces as much as possible, we use the sum ⊕2: if X and Y are
operator spaces, and x and y are elements of X⊗K0 and Y ⊗K0, respectively,
define

(4.1) ‖x ⊕ y‖(X⊕2Y )⊗K = max{‖x‖, ‖y‖, ‖x ⊕ y‖MIN(X⊕2Y )⊗K}.
Clearly, Ruan’s axioms are satisfied, so X ⊕2 Y is indeed an operator space.

Note that any N -dimensional subspace E of R ⊕2 C is contained in
RN ⊕2 CN . In view of Theorem 3.1, the proof of Theorem 1.3(2) follows
from:

Theorem 4.1. Suppose E is an N -dimensional subspace of RN ⊕2 CN

which is λ-BDR. Then dcb(E,Rm ⊕2 Cn) ≤ 32
√

2λ for suitable m, n ∈ Z+.

Denote by AR and AC the orthogonal projections from E on RN and
CN , respectively. By polar decomposition, there exists an orthonormal basis

(ei)
N
i=1 in E such that ARei = a

(R)
i e

(R)
i , with 0 ≤ a

(R)
N ≤ · · · ≤ a

(R)
1 ≤ 1

and e
(R)
i being an orthonormal basis for RN . Then, for 1 ≤ i ≤ N , ACei =

a
(C)
i e

(C)
i , where e

(C)
i is a unit vector and a

(C)
i =

√
1 − (a

(R)
i )2. Note that,

for i 6= j,

〈ei, e
(R)
j 〉 = 〈a(R)

i e
(R)
i + a

(C)
i e

(C)
i , e

(R)
j 〉 = 0.

Moreover,

0 = 〈ei, ej〉 = 〈a(R)
i e

(R)
i + a

(C)
i e

(C)
i , a

(R)
j e

(R)
j + a

(C)
j e

(C)
j 〉

= a
(C)
i a

(C)
j 〈e(C)

i , e
(C)
j 〉,

and therefore, the vectors (e
(C)
i )N

i=1 form an orthonormal basis in CN (cer-

tain minor changes to this construction need to be made if a
(C)
i = 0 for

some i’s). One can also show that 〈ei, e
(C)
j 〉 = 0 for i 6= j.

Lemma 4.2. (ei)
N
i=1 is a 1-completely unconditional basis in E.
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Proof. Suppose λ1, . . . , λN are complex numbers of absolute value not
exceeding 1. We have to show that the operator Λ = diag((λi)

N
i=1) is com-

pletely contractive. To this end, consider an operator Λ̃ on RN ⊕2 CN map-

ping e
(R)
i (or e

(C)
i ) into λie

(R)
i (resp. λie

(C)
i ) for 1 ≤ i ≤ N . By the discussion

preceding the statement of this lemma, the restrictions of Λ̃ to RN and CN

are contractive, hence completely contractive (row and column spaces are
1-homogeneous). Thus, by the homogeneity of minimal spaces, and by (4.1),

Λ̃ is completely contractive. To complete the proof, observe that the restric-

tion of Λ̃ to E coincides with Λ.

This lemma, together with (4.1), yields:

Corollary 4.3. Suppose I is a subset of {1, . . . , N}. Let EI =
span[ei | i ∈ I], and E⊥

I = span[ei | i /∈ I]. Then the formal identity map

id : E → EI ⊕2 E⊥
I is completely contractive, and ‖id−1 ‖cb ≤

√
2.

Proof. For simplicity, denote the space EI ⊕2 E⊥
I by F . Consider x =∑

i ei ⊗ xi ∈ E ⊗ K. Then

‖x‖E⊗K = max
{∥∥∥

N∑

i=1

(a
(R)
i )2x∗

i xi

∥∥∥
1/2

,
∥∥∥

N∑

i=1

(a
(C)
i )2xix

∗
i

∥∥∥
1/2

,

∥∥∥
N∑

i=1

ei ⊗ xi

∥∥∥
MIN(ℓN

2
)⊗K

}
,

while

‖x‖F⊗K = max
{∥∥∥

∑

i∈I

(a
(R)
i )2x∗

i xi

∥∥∥
1/2

,
∥∥∥

∑

i∈Ic

(a
(R)
i )2x∗

i xi

∥∥∥
1/2

,

∥∥∥
∑

i∈I

(a
(C)
i )2xix

∗
i

∥∥∥
1/2

,
∥∥∥

∑

i∈Ic

(a
(C)
i )2xix

∗
i

∥∥∥
1/2

,
∥∥∥

N∑

i=1

ei ⊗ xi

∥∥∥
MIN(ℓN

2
)⊗K

}
.

Comparing the two displayed expressions yields the result.

Turning back to the proof of Theorem 4.1, denote by m the largest

number i for which a
(R)
i ≥ 1/

√
2 (if a

(R)
1 < 1/

√
2, set m = 0), and let

n = N−m. Let ER = span[ei | 1 ≤ i ≤ m], EC = span[ei |m < i ≤ N ]. For a
compact operator T ∈ B(H, K) (H and K are Hilbert spaces), we denote by

‖T‖2 its Hilbert–Schmidt norm. That is, ‖T‖2 = (
∑

n t2n)1/2, where t1 ≥ t2 ≥
· · · ≥ 0 are the singular numbers of T . Equivalently, ‖T‖2

2 =
∑

i,j |〈Tei, fj〉|2,
where (ei) and (fj) are orthonormal bases in H and K, respectively.

To complete the proof, it suffices to show that

max{‖AC|ER
‖2, ‖AR|EC

‖2} ≤ 16
√

2λ.
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Indeed, this would imply that ER and EC are 32λ-completely isomorphic to
Rm and Cn, respectively. An application of Corollary 4.3 would then yield
the result. Thus, it remains to prove:

Proposition 4.4. In the above notation, ‖AC|ER
‖2 ≤ 16

√
2λ.

Proof. If m = 0, there is nothing to prove. If m ≥ 1, denote AC|ER
by

A for simplicity of notation. Let

X1 =
( ∑

n>N

MAXn(ER)
)

c
, Y =

( ∑

n>N

MAXn(ER)
)

c0
, X = X1 ⊕2 EC.

By Proposition 3.2 of [1], Y is a complete M -ideal in X1. Imitating the proof
of Lemma 3.4, one can show that X1/Y = ER completely isometrically.
Therefore, X∗∗

1 contains ER as a complete M -summand. Finally, Ms(X
∗∗) =

(Ms(X))∗∗ for any s ∈ N, hence X∗∗ = X∗∗
1 ⊕2 EC, and therefore, X∗∗

contains E
√

2-completely isomorphically. By Corollary 2.6, X contains E√
2λ+-ci.

Pick C > λ, and consider a complete contraction u : E → X satisfying
‖u−1‖cb ≤

√
2C. Denote the “natural truncation” of u to EC (or the nth

summand of X1, n > N) by u0 (respectively, un). More precisely, we view
u0 (resp. un) as a map from E to EC (resp. MAXn(ER)). In this notation,
F = keru0 is an M -dimensional subspace of E (M ≥ m). Let v be an
isometry from RM onto F . To complete the proof, it suffices to show that

(4.2)
(1) ‖v‖cb ≥ max{1, ‖A‖2/2},
(2) ‖unv‖cb ≤ 8 for any n > N.

Indeed, then ‖uv‖cb = supn ‖unv‖cb ≤ 8. On the other hand, v = u−1 ◦(uv),
hence the above inequalities imply

‖A‖2/2 ≤ ‖v‖cb <
√

2C‖uv‖cb ≤ 8
√

2C.

Since C > λ is arbitrary, we conclude that ‖A2‖2 ≤ 16
√

2λ.
We start by proving (4.2(1)). Denote by Q and Q⊥ the orthogonal pro-

jections from F onto ER and EC, respectively. Reasoning as in the proof of
Lemma 4.2 (see also the discussion preceding it), we can find an orthonor-
mal basis (fi)

M
i=1 in F such that 〈Qfi, Qfj〉 = 〈Q⊥fi, Q

⊥fj〉 = 0 if i 6= j.

By changing the numbering if necessary, assume that ‖Q⊥fi‖ ≥ 1/
√

2 for
1 ≤ i ≤ l, and ‖Qfi‖ > 1/

√
2 for l < i ≤ M . Let F1 = span[fi | 1 ≤ i ≤ l],

F2 = span[fi | l < i ≤ M ], and Gs = v−1(Fs) for s = 1, 2. We can identify
G1 and G2 with Rl and RM−l, respectively. Note that

‖v‖cb ≥ max{‖v|G1
‖cb, ‖v|G2

‖cb} ≥ (‖v|G1
‖2
cb + ‖v|G2

‖2
cb)

1/2/
√

2.

However,

‖v|G1
‖cb ≥ ‖Q⊥v|G1

‖CB(Rl,CM ) = ‖Q⊥v|G1
‖2 ≥

√
l/2.
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Similarly,

‖v|G2
‖cb ≥ ‖AQv|G2

‖CB(RM−l,CM ) = ‖AQv|G2
‖2 =

( M∑

i=l+1

‖AQfi‖2
)1/2

.

To evaluate ‖A‖2, introduce the vectors f ′
i ∈ ER (1 ≤ i ≤ M) in such a

way that ER = span[f ′
i | 1 ≤ i ≤ M ], and, for each i, ‖f ′

i‖ equals 0 or 1, and
f ′

i = Qfi/‖Qfi‖ provided Qfi 6= 0 (this is possible, since M ≥ m = dimER).
Since A is a contraction, we have

‖A‖2
2 =

M∑

i=1

‖Af ′
i‖2 ≤ l+2

M∑

i=l+1

‖AQfi‖2 ≤ 2(‖v|G1
‖2
cb+‖v|G2

‖2
cb) ≤ 4‖v‖2

cb.

Moreover, v is an isometry, thus we obtain (4.2(1)).
Next we tackle (4.2(2)). Fix n. By [17], there exist operators TR : F →

RM , TC : F → CM , SR : RM → MAXn(ER), and SC : CM → MAXn(ER)
so that un|F = SRTR + SCTC and max{‖TR‖cb‖SR‖cb, ‖TC‖cb‖SC‖cb} ≤
2
√

2. Then

‖SRTRv‖cb ≤ ‖SR‖cb‖TRv‖cb = ‖SR‖cb‖TRv‖ ≤ 2
√

2.

Moreover,

‖SC‖cb ≥ ‖ARSC‖CB(CM ,RN ) = ‖ARSC‖2 ≥ ‖SC‖2/
√

2,

hence

‖SCTCv‖cb ≤ ‖SCTCv‖2 ≤ ‖SC‖2‖TCv‖ ≤ 4.

Thus,

‖unv‖cb ≤ ‖SRTRv‖cb + ‖SCTCv‖cb ≤ 8.

This establishes (4.2(2)).

Proof of Theorem 1.3(2). Suppose an N -dimensional space E is λ+-
BDR. Pick C > λ. By Theorem 3.1, there exists a subspace F of CN ⊕2 RN

such that dcb(E, F ) < 8C3. By Corollary 2.6 and Proposition 2.5, F is

26C8-BDR. By Theorem 4.1, F is 223/2C8-ci to GC = Rm(C) ⊕2 Cn(C).

Thus, dcb(E, GC) ≤ 229/2C11. Find a sequence (Cj), decreasing to λ, such
that m = m(Cj) for any j (then n = N −m(Cj) = n(Cj)). Clearly, we have
dcb(E,Rm ⊕∞ Cn) ≤ 215λ10.

5. Proof of Theorem 1.4, and similar lower estimates. This sec-
tion is devoted to the proof of Theorem 1.4. Clearly, C is 1-BDR. A series of
lemmas helps us rule out other spaces. The first lemma seems to be partly
folklore.
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Lemma 5.1.

(1) Suppose (Ek)
∞
k=1 is a sequence of Banach spaces, and E is a finite-

dimensional subspace of (
∑

k Ek)c0. Then there exists N ∈ N such

that E is isometric to a finite-dimensional subspace of (
∑N

k=1 Ek)∞.
(2) Suppose (Ek)

∞
k=1 is a sequence of operator spaces, and E is a finite-

dimensional subspace of (
∑

k Ek)c0. Then there exists N ∈ N such
that E is completely isometric to a finite-dimensional subspace of
(
∑N

k=1 Ek)∞.

Proof. We prove part (2), since (1) can be dealt with in a similar man-
ner. Let n = dimE. Suppose (ei)

n
i=1 is an Auerbach basis in E—that is,

maxi |αi| ≤ ‖
∑

i αiei‖ ≤
∑

i |αi| for each sequence (αi) of scalars. In partic-
ular, the projection Rj : E → E :

∑
i αiei 7→ αjej is contractive for every j.

Since it is a rank one projection, it must also be completely contractive.
Thus, for any (ai)

n
i=1 ⊂ K, ‖∑

i ai ⊗ ei‖ ≥ maxi ‖ai‖.
Now write ei = (eik)

∞
k=1 with eik ∈ Ek. There exists N ∈ N such that

‖eik‖ < 1/n for any 1 ≤ i ≤ n, and any k > N . For such k, and for any
(ai)

n
i=1 ⊂ K, ‖∑

i ai ⊗ eik‖ < maxi ‖ai‖. Therefore,
∥∥∥

∑

i

ai ⊗ ei

∥∥∥ = sup
k

∥∥∥
∑

i

ai ⊗ eik

∥∥∥ = max
1≤k≤N

∥∥∥
∑

i

ai ⊗ eik

∥∥∥,

which implies that E is completely isometric to a subspace of (
∑

Ek)
N
k=1,

spanned by the vectors ẽi = (eik)
N
k=1 (1 ≤ i ≤ n).

We next apply this lemma to our situation.

Lemma 5.2. Suppose a finite-dimensional operator space E is 1-BDR.
Then, for some N ∈ N, E embeds into ℓN

∞ isometrically , and into MN

completely isometrically.

Proof. For n ∈ N, find e∗1n, . . . , e∗Mnn ∈ E∗ of norm 1 so that, for any
e ∈ E,

max
1≤k≤Mn

|〈e∗kn, e〉| ≥ (1 − 2−n)‖e‖.

Define the operator space En by setting, for e ∈ E ⊗K0,

‖e‖En⊗K = max{(1 − 2−n)‖e‖E⊗K, max
1≤k≤Mn

‖(e∗kn ⊗ IK)e‖K}.

Note that, for e ∈ E,

(5.1) ‖e‖En
= max

1≤k≤Mn

|〈e∗kn, e〉|.

Let X = (
∑∞

n=1 En)c0 . Then the map

u : E → X∗∗ =
( ∞∑

n=1

En

)
ℓ∞

: e 7→ (e, e, . . .)
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is a complete isometry. On the other hand, if E embeds into X isometrically,
then, by Lemma 5.1, it must embed into (

∑K
n=1 En)∞ for some K ∈ N. By

(5.1), En embeds isometrically into ℓMn
∞ . Therefore, E embeds isometrically

into ℓN
∞ for N =

∑K
n=1 Mn.

Next test 1-bidual representability with X = (
∑∞

k=1 Mk)c0 . The space
X∗∗ = (

∑∞
k=1 Mk)∞ contains B, hence it also contains E. Therefore, X con-

tains E. By Lemma 5.1, E embeds into (
∑M

k=1 Mk)∞ for some M . A fortiori,
E embeds completely isometrically into MN with N = M(M + 1)/2.

Corollary 5.3. If a 1-BDR space E has dimension at least 2, then E
is not strictly convex.

Recall that a Banach space E is called strictly convex if, for any e1, e2

in E, the equality ‖e1 + e2‖2 = 2(‖e1‖2 + ‖e2‖2) implies e1 = e2.

Proof. By Lemma 5.2, there exist linear functionals f1, . . . , fN ∈ E∗ such
that ‖e‖ = max1≤i≤N |〈fi, e〉| for any e ∈ E. Therefore, there exist i and two
distinct elements e1, e2 of the unit ball of E satisfying

‖e1‖ = ‖e2‖ = |〈fi, e1〉| = |〈fi, e2〉| = 1.

Then 4 = ‖e1 + e2‖2 = 2(‖e1‖2 + ‖e2‖2).

Proof of Theorem 1.4. Suppose, for the sake of contradiction, that dimE
> 1, and E is 1-BDR. By Lemma 5.2, E embeds into MN completely iso-
metrically. We then construct an operator space X, isomorphic to c0(MN ),
which is strictly convex (hence, by Corollary 5.3, X cannot contain E iso-
metrically), but such that X∗∗ contains MN completely isometrically.

To this end, find a dense sequence (fj)
∞
j=1 in the unit ball of M∗

N . For

x = (x1, x2, . . .) ∈ c0(MN ), set

‖x‖X = sup
n

‖x‖n, where(5.2)

‖x‖n =
(
‖xn‖2 +

∞∑

j,k=1

10−(n+j+k)|〈fj, xk〉|2
)1/2

.

Observe that
∞∑

j,k=1

10−(n+j+k)|〈fj, xk〉|2 ≤ 10−(n+1)
∞∑

j,k=1

10−(j+k−1) = 10−(n+1)
∞∑

ℓ=0

l10−l

= 10−(n+1)
( 1

1 − 1/10

)2
< 1.25 · 10−(n+1),

so

(5.3) ‖x‖n < ‖xn‖ + 10−n‖x‖c0(MN ),
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hence ‖ · ‖X is well defined. To show that ‖ · ‖n is a norm, note that ‖x‖n =
‖Jnx‖MN⊕2ℓ2(N×N), where

Jn : c0(MN ) → MN ⊕2 ℓ2(N × N) : x 7→ (xn, (10−(n+j+k)〈fj , xk〉)j,k).

By (5.3), limn ‖Jnx‖ = 0 for any x, hence (5.2) describes X as a subspace of
(
∑

(MN ⊕2 ℓ2))c0 , and ‖·‖X is a norm. Thus, X∗∗ is isomorphic to ℓ∞(MN ),
and the norm is also given by (5.2).

Finally, note that the supremum in (5.2) is attained. Indeed, if
‖x‖c0(MN ) = 1, find K ∈ N such that ‖xn‖2 + 10−n < 1/4 for n ≥ K.
For such n, ‖x‖n < 1/2, while ‖x‖X > 1. Therefore, ‖x‖X = maxn<K ‖x‖n.

To show that X is strictly convex, suppose ‖x(1) + x(2)‖2 = 2(‖x(1)‖2 +
‖x(2)‖2) for some x(1), x(2) ∈ X. By the observation above, there exists n ∈ N

such that ‖x(1) +x(2)‖ = ‖x(1) +x(2)‖n. Therefore (writing x(s) = (x
(s)
n )∞n=1),

0 ≥ 2(‖x(1)‖2
n + ‖x(2)‖2

n) − ‖x(1) + x(2)‖2
n

= 2(‖x(1)
n ‖2 + ‖x(2)

n ‖2) − ‖x(1)
n + x(2)

n ‖2

+
∞∑

j,k=1

10−(n+j+k)(2(|〈fj, x
(1)
k 〉|2 + |〈fj , x

(2)
k 〉|2) − |〈fj, x

(1)
k + x

(2)
k 〉|2).

But, by the triangle inequality,

2(‖x(1)
n ‖2 + ‖x(2)

n ‖2) ≥ ‖x(1)
n + x(2)

n ‖2,

and
2(|〈fj, x

(1)
k 〉|2 + |〈fj, x

(2)
k 〉|2) ≥ |〈fj, x

(1)
k + x

(2)
k 〉|2.

In the last display, equality holds if and only if x
(1)
k = x

(2)
k for every k. Thus,

x(1) = x(2).
Define the operator space structure on X by setting, for x ∈ X ⊗ K0,

‖x‖ = max{‖x‖MIN(X)⊗K0
, ‖x‖c0(MN )⊗K0

}.
In other words, the operator space structure on X is generated by its “natu-
ral” embedding into MIN(X)⊕c0(MN ). Then X∗∗ embeds into MIN(X∗∗)⊕
ℓ∞(MN ), and, for x ∈ X∗∗ ⊗ K0,

(5.4) ‖x‖ = max{‖x‖MIN(X∗∗)⊗K0
, ‖x‖ℓ∞(MN )⊗K0

}.
Define U : MN → X∗∗ : a 7→ ((1 − 10−n)a)∞n=1. By (5.2) and the discus-

sion following it, and by (5.4), U is a complete contraction. Furthermore,
for any a ∈ MN ⊗ K0,

‖(U ⊗ IK)a‖X∗∗⊗K ≥ sup
n

(1 − 10−n)‖a‖MN⊗K = ‖a‖,

hence U is a complete isometry.

Remark 5.4. In a similar way one can prove the commutative version of
Theorem 1.4: if a finite-dimensional Banach space E is such that a Banach
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space X contains E isometrically whenever X∗∗ contains E isometrically,
then E is 1-dimensional. Indeed, one can imitate the proof of Lemma 5.2
to show that such an E embeds into ℓN

∞ for some N . Then, as above, one
constructs a strictly convex Banach space Z whose dual contains ℓN

∞.

Next we investigate the smallest C for which the given space E is C-BDR.

Theorem 5.5. Suppose E is a finite-dimensional C-injective operator
space which is λ+-BDR. Then λ ≥ ex(E∗)/(C ex(E)).

Proof. Suppose, for the sake of contradiction, that λ<ex(E∗)/(C ex(E)).
Pick C1 > ex(E), C2 < ex(E∗), and C3 > λ such that C2/(C1C3) > C. Fol-
lowing the proof of Theorem 3.1, find E1 →֒MN such that dcb(E, E1)<C1.
Also, define the spaces Xn (n > N) and X as in the proof of that theo-
rem. We know that X∗∗ contains B as a complete M -summand. Suppose
X contains E C3-ci. As in the proof of Theorem 3.1, we conclude that,
for some n > N , Xn contains E C1C3-ci. That is, there exists a subspace
F →֒ Xn and a complete contraction u : F → E with ‖u−1‖cb ≤ C1C3.
Since E is C-injective, there exists a map ũ : Xn → E such that ũ|F = u
and ‖ũ‖cb ≤ C.

As ex(E∗)>C2, there exists an operator v : E →B such that ‖v‖cb >C2

and ‖v⊗IMn
‖ < 1 (to see this, apply Theorem 18 of [15] to E∗, and dualize).

Note that

‖vũ‖cb ≥ ‖vu‖cb ≥ ‖v‖cb

‖u−1‖cb
≥ C2

C1C3
.

On the other hand, by definition of Xn,

‖vũ‖cb = ‖vũ ⊗ IMn
‖ ≤ ‖v ⊗ IMn

‖ ‖ũ‖cb < C.

This contradicts our assumption that C2/(C1C3) > C.

Corollary 5.6. If ℓn
∞ is C-BDR, then C ≥ n/(2

√
n − 1).

Proof. We know that E = ℓn
∞ is 1-injective and 1-exact. Moreover (see

Theorem 21.5 of [16]), ex(E∗) ≥ n/(2
√

n − 1). We complete the proof by
applying Theorem 5.5.

6. C∗-algebras and bidual representability. Passing from operator
spaces to C∗-algebras, we obtain:

Proposition 6.1. Suppose X is a C∗-algebra, and n ∈ N. Then the
following are equivalent :

(1) X∗∗ contains Mn completely isometrically.
(2) X∗∗ contains Mn as a sub-C∗-algebra.
(3) X contains Mn completely isometrically.
(4) X∗∗ contains Mn c-completely isomorphically for some c<n/(n−1).
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(5) There exists an irreducible representation of X into B(H) with
dimH ≥ n.

Remark 6.2. J. Roydor [18] proved a related result: if a C∗-algebra X
embeds into C(Ω,Mn) (for some Ω) completely isometrically, then X is a
C∗-subalgebra of C(Ω′,Mn) for some set Ω′.

Below, we denote by (Eij)
n
i,j=1 the canonical matrix units in Mn.

Lemma 6.3. Suppose n > m, and T : Mn → Mm is a complete contrac-
tion. Then

∥∥∥T ⊗ IMn

( n∑

i=1

Eij ⊗ Eij

)∥∥∥
Mm⊗Mn

≤ m.

Corollary 6.4. If I is a set , m < n, and E is an n2-dimensional
subspace of ℓ∞(I,Mm), then dcb(Mn, E) ≥ n/m.

Proof. Consider a complete contraction T : Mn → E. By Lemma 6.3,
‖T ⊗IMn

(
∑n

i=1 Eij⊗Eij)‖ ≤ m. However, ‖∑n
i,j=1 Eij⊗Eij‖Mn⊗Mn

= n.

Proof of Lemma 6.3. Consider a complete contraction T : Mn → Mm.

By Stinespring’s representation theorem, there exists a Hilbert space H̃,

a unital representation π : Mn → B(H̃), and contractions U ∈ B(H̃, ℓm
2 ),

V ∈ B(ℓm
2 , H̃) such that Ta = Uπ(a)V for any a ∈ Mn. Note that, for each i,

pi = π(Eii) is a projection. Denote its range by Hi. Then π(Eij) is a partial
isometry, with initial and terminal projections Hi and Hj , respectively. Let
H = H1 and ui = π(Ei1) : H → Hi (once again, 1 ≤ i ≤ n). Then ℓn

2 (H)

can be identified with H̃ via (ξi)
n
i=1 7→

∑n
i=1 uiξi.

For 1 ≤ i ≤ n, let Ui = Uui ∈ B(H, ℓm
2 ) and Vi = uipiV ∈ B(ℓm

2 , H).
Then we can identify U with

∑n
i=1 E1i ⊗ Ui (viewed as an operator from

ℓn
2 (H) to ℓm

2 ). Similarly, we identify V with
∑n

i=1 Ei1 ⊗ Vi ∈ B(ℓm
2 , ℓn

2 (H)).
Then

‖V ‖ =
∥∥∥

n∑

i=1

Ei1 ⊗ Vi

∥∥∥ =
∥∥∥

n∑

i=1

V ∗
i Vi

∥∥∥
1/2

≤ 1,

‖U‖ =
∥∥∥

n∑

i=1

E1i ⊗ Ui

∥∥∥ =
∥∥∥

n∑

i=1

UiU
∗
i

∥∥∥
1/2

≤ 1.

Moreover, TEij = UiVj for any i and j. Therefore,

∥∥∥T ⊗ IMn

( n∑

i,j=1

Eij ⊗ Eij

)∥∥∥
Mm⊗Mn

=
∥∥∥

n∑

i,j=1

UiVj ⊗ Eij

∥∥∥

=
∥∥∥
( ∑

i

Ui ⊗ Ei1

)( ∑

j

Vj ⊗ E1j

)∥∥∥.
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However,
∥∥∥

∑

i

Ui ⊗ Ei1

∥∥∥ =
∥∥∥

n∑

i=1

U∗
i Ui

∥∥∥
1/2

≤
(
Tr

( n∑

i=1

U∗
i Ui

))1/2

=
(
Tr

( n∑

i=1

UiU
∗
i

))1/2
≤

√
m

∥∥∥
n∑

i=1

UiU
∗
i

∥∥∥ ≤
√

m,

and similarly, ‖
∑

j Vj ⊗ E1j‖ ≤ √
m. Thus,

∥∥∥T ⊗ IMn

( n∑

i,j=1

Eij ⊗ Eij

)∥∥∥ ≤
∥∥∥

∑

i

Ui ⊗ Ei1

∥∥∥ ·
∥∥∥

∑

j

Vj ⊗ E1j

∥∥∥ ≤ m.

Remark 6.5. In a similar fashion, one can show that
∥∥∥

n∑

i=1

Ei1 ⊗ Ei1

∥∥∥
Cn⊗Cn

=
√

n,

and ∥∥∥T ⊗ ICn

( n∑

i=1

Ei1 ⊗ Ei1

)∥∥∥
Mm⊗Cn

≤
√

m

whenever T : Cn → Mm is a complete contraction. From this, one concludes
that dcb(Cn, E) ≥

√
n/m for every n-dimensional subspace E of ℓ∞(I,Mm)

(provided n > m).

Lemma 6.6. Suppose π : Y → B(H) is an irreducible representation
of a C∗-algebra Y on a Hilbert space H of dimension at least n. Then Y
contains Mn completely isometrically as an operator system.

Proof. If p is a projection of rank n on H, then, by the transitivity of ir-
reducible representations (Theorem II.4.18 of [20]), π(Y )p = B(H)p. Denote
by A the set of all y ∈ Y satisfying π(y)p = pπ(y) (= pπ(y)p). Clearly, A is a
C∗-subalgebra of Y , and π(A) can be identified with B(p(H)) ∼ Mn. More-
over, A has a separable subalgebra (call it A1) such that π(A1) can again
be identified with Mn. In other words, Mn = A1/J , where J = kerπ∩A1 is
a closed two-sided ideal. By Theorem 3.10 of [3], Mn lifts to A1 completely
positively. Thus, A1 contains Mn completely isometrically.

Remark 6.7. A similar lifting technique was used in [7]. Earlier, lifting
methods were used in [19, 21] to prove that a C∗-algebra which is not (n−1)-
subhomogeneous contains a completely positive copy of Mn.

Proof of Proposition 6.1. The implications (2)⇒(1)⇒(4) and (3)⇒(1)
are clear.

(1)⇒(2): By Section 6.4 of [10], we can decompose the von Neumann
algebra X∗∗ into a direct sum of components of type Ik (k ∈ N ∪ {∞}), II,
and III. By Lemma 6.4, at least one of the summands of type Ik (k ≥ n),
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II, and III is non-trivial. All such summands contain Mn as a subalgebra
(see e.g. comparison theorem for projections in a von Neumann algebra,
Theorem 6.2.7 of [10]).

(1)⇒(5): Suppose, for the sake of contradiction, that (5) fails to hold.
Viewing X∗∗ as the enveloping algebra of X, we embed it into ℓ∞(I,Mn−1)
for some set I. Therefore, by Lemma 6.4, X∗∗ cannot contain Mn c-com-
pletely isomorphically with c < n/(n − 1).

(4)⇒(1) and (5)⇒(3): If there are no irreducible representations of X∗∗

(or X) on Hilbert spaces with dimension ≥ n, then X∗∗ (respectively, X)
embeds into ℓ∞(I,Mn−1), hence, by Lemma 6.4, X∗∗ cannot contain Mn

c-completely isomorphically when c < n/(n − 1). Otherwise, X∗∗ (or X)
contains Mn completely isometrically, by Lemma 6.6.

Remark 6.8. By Lemma 6.6, items (1) and (4) of Proposition 6.1 guar-
antee that X (or X∗∗) contains Mn as an operator system. However, X need
not contain Mn as a subalgebra. Indeed, let X be the left regular algebra
of a free group on two generators. By [4], X has no non-trivial projections,
hence it cannot contain Mn as a subalgebra.

Acknowledgments. We are grateful to H. Rosenthal for suggesting the
topic of this paper, and to M. Junge and R. Smith for useful conversations.
We would like to thank the organizers of the workshop in Linear Analysis
and Probability in College Station, TX, where part of this work was carried
out. We thank the referee for bringing [18] to our attention.

References

[1] A. Arias and H. Rosenthal, M-complete approximate identities in operator spaces,
Studia Math. 141 (200), 143–200.

[2] D. Blecher and C. le Merdy, Operator Algebras and Their Modules—an Operator

Space Approach, Oxford Univ. Press, New York, 2004.
[3] M.-D. Choi and E. Effros, The completely positive lifting problem for C∗-algebras,

Ann. of Math. 104 (1976), 585–609.
[4] K. Davidson, C∗-algebras by Example, Amer. Math. Soc., Providence, RI, 1996.
[5] E. Effros and Z.-J. Ruan, Mapping spaces and liftings for operator spaces, Proc.

London Math. Soc. 69 (1994), 171–197.
[6] —, —, Operator Spaces, Oxford Univ. Press, Oxford, 2000.
[7] F. Hansen, G. Ji, and J. Tomiyama, Gaps between classes of matrix monotone

functions, Bull. London Math. Soc. 36 (2004), 53–58.
[8] P. Harmand, D. Werner, and W. Werner, M-ideals in Banach Spaces and Banach

Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
[9] W. Johnson, H. Rosenthal, and M. Zippin, On bases, finite-dimensional decomposi-

tions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506.
[10] R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras I,

Amer. Math. Soc., Providence, RI, 1997.



198 A. Arias and T. Oikhberg

[11] F. Lehner, Mn espaces, sommes d’unitaires et analyse harmonique sur le groupe

libre, PhD thesis, Univ. Paris VI, 1997.
[12] J. Lindenstrauss and H. Rosenthal, The Lp spaces, Israel J. Math. 7 (1969), 325–349.
[13] T. Oikhberg and E. Ricard, Operator spaces with few completely bounded maps,

Math. Ann. 328 (2004), 229–259.
[14] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Univ.

Press, 2002.
[15] G. Pisier, Exact operator spaces, Astérisque 232 (1995), 159–186.
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