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On the vector-valued Fourier transform
and compatibility of operators
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In Sook Park (Taejeon)

Abstract. Let G be a locally compact abelian group and let 1 < p ≤ 2. G′ is the dual
group of G, and p′ the conjugate exponent of p. An operator T between Banach spaces X
and Y is said to be compatible with the Fourier transform FG if FG ⊗ T : Lp(G)⊗X →
Lp′(G′)⊗Y admits a continuous extension [FG, T ] : [Lp(G),X]→ [Lp′(G′), Y ]. Let FT Gp
denote the collection of such T ’s. We show that FT R×Gp = FT Z×Gp = FT Zn×Gp for any
G and positive integer n. Moreover, if the factor group of G by its identity component
is a direct sum of a torsion-free group and a finite group with discrete topology then
FT Gp = FT Zp .

1. Introduction. A locally compact abelian group means a topological
abelian group whose topology is locally compact Hausdorff and which is
equipped with a Haar measure. The real line R, the discrete group of integers
Z and the circle group T are important examples. Further information can be
found in [3], [5] and [13]. Let G be a locally compact abelian group and G′ its
dual (character) group. Then the Haar measure of G′ can be determined so
that Parseval’s identity holds with constant 1. For 1 ≤ r <∞, we denote by
[Lr(G, µG),X] the Banach space of all µG-measurable functions f : G → X
such that ‖f |Lr(G)‖ := (

�
G ‖f(s)‖r dµG(s))1/r is finite.

Let G be a fixed infinite locally compact abelian group and 1 < p ≤ 2.
Then FG denotes the Fourier transform from Lp(G) into Lp′(G′). For a
bounded linear operator T between Banach spaces X and Y ,

FG ⊗ T :
n∑

k=1

fk ⊗ xk 7→
n∑

k=1

FGfk ⊗ Txk

yields a well defined map from Lp(G)⊗X into Lp′(G′)⊗Y . The operator T
is said to be compatible with FG, or have G-Fourier type p, if the operator
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FG ⊗ T : Lp(G)⊗X → Lp′(G′)⊗ Y admits a continuous extension

[FG, T ] : [Lp(G),X]→ [Lp′(G′), Y ].

For such T , we let

‖T |FT Gp ‖ := ‖[FG, T ] : [Lp(G),X]→ [Lp′(G′), Y ]‖.
The norm defined above is invariant under changing the Haar measure of G.
The class of these operators is a Banach ideal, denoted by FT Gp . The defi-
nition and notation follow those of [11].

It is known that FT Rp = FT Zp = FT Tp (see [11]), but the problem whether
the operator ideal FT Gp depends on G or not is unsolved. There are several
results about FTGp , the class of Banach spaces whose identity operators are
compatible with FG. These are immediately extended to the case of FT Gp
by replacing the identity operator on a Banach space X with T . Peetre [10]
who introduced the concept of Banach space of Fourier type p proved that
X belongs to FTRp if and only if the dual space X ′ belongs to FTRp . In fact,
T belongs to FT Gp if and only if the dual operator T ′ belongs to FT G′p , i.e.
‖T |FT Gp ‖ = ‖T ′ |FT G′p ‖ for any locally compact abelian group G. Bourgain
[2] showed that FTTp ⊂ FTRp and König [8] modified Kwapień’s argument
[9] to show that FTRp = FTTp and extended this to FTGp = FTTp if G is
one of Rm and Tm, where m is a positive integer. Garćıa-Cuerva, Kazarian
and Torrea [4] and Andersson [1] showed independently that FTGp = FTZp
whenever G is one of Tm, T∞, Rm, Zm and Z∞. Andersson [1] also proved
that ‖IX |FT Hp ‖ ≤ ‖IX |FT Gp ‖ when H is an open subgroup of G, and that
FTEp = FTZp if E is a nontrivial torsion free abelian group with the discrete
topology.

In this paper we characterize FT Gp partly as follows. In Section 2, we
show for every locally compact abelian group G that ‖T |FT R×Gp ‖ is equiva-
lent to ‖T |FT Z×Gp ‖, and ‖T |FT Zn×Gp ‖ = ‖T |FT Z×Gp ‖. The cartesian prod-
uct means the direct product. By applying these, we easily obtain some
results in the above paragraph and the relation FT Rk×Zl×Tm×Gp = FT Z×Gp

for any nonnegative integers k, l, m with k + l + m ≥ 1. In Section 3,
we combine the results of Section 2 with the properties of locally compact
abelian groups to show that FT Rk×Zl×Fp = FT Zp for any compact abelian
group F with finitely many components. Moreover, we show that if G ∼=
Rk×[torsion-free group with discrete topology]×[compact group with finitely
many components] then FT Gp = FT Zp . If the factor group of a locally com-
pact abelian groupG by the identity component is in the form of [torsion-free
group]×[finite group] with the discrete topology, then we have FT Gp = FT Zp .

From now on, X and Y are Banach spaces and T : X → Y is a bounded
linear operator. We denote the dual group of G by G′. We use the fact
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that R′ = R and Z′ = T. We use the abbreviation LCA for “locally compact
abelian”. The term “isomorphic” means “topologically and algebraically iso-
morphic”. The integral of a vector-valued function is the Bochner integral.

2. Classifying FT Gp via direct product. First we observe that the
proof in [4] of the fact FTRp = FTZp can be modified to yield the following:

Proposition 1. For any LCA group G, we have the inequalities

‖T |FT R×Gp ‖ ≤ ‖T |FT Z×Gp ‖ ≤ π

2
‖T |FT R×Gp ‖,

and hence FT R×Gp = FT Z×Gp .

Proof. For arbitrary δ > 0, let

f(s, t) =
∑

m

χ[δ(m−1/2),δ(m+1/2)](s)gm(t),

where the summation is over Z, gm is an X-valued simple function on G
and gm = 0 except for finitely many m. Note that the set of all X-valued
functions f as above is dense in [Lp(R×G),X]. We compute

‖f |Lp(R×G)‖ =
( �

R×G

∥∥∥
∑

m

χ[δ(m−1/2),δ(m+1/2)](s)gm(t)
∥∥∥
p
ds dt

)1/p
(1)

= δ1/p
( �

G

∑

m

‖gm(t)‖p dt
)1/p

.

Since
� δ(m+1/2)
δ(m−1/2) exp(is̃s) ds = exp(imδs̃) sin(δs̃/2)

s̃/2 , we have

T̂ f(s̃, t̃) =
�

G

�

R

∑

m

Tgm(t)χ[δ(m−1/2),δ(m+1/2)](s) exp(is̃s) (t, t̃) ds dt

=
�

G

∑

m

Tgm(t) (t, t̃) exp(iδms̃)
sin(δs̃/2)
s̃/2

dt.

Hence

‖[FR×GT ]f‖p′

=
�

G′

�

R

∥∥∥∥
�

G

∑

m

Tgm(t) (t, t̃) exp(iδms̃)
sin(δs̃/2)
s̃/2

dt

∥∥∥∥
p′ 1

2π
ds̃ dt̃

= δp
′

�

G′

�

R

∥∥∥∥
�

G

∑

m

Tgm(t) (t, t̃) exp(iδms̃)
sin(δs̃/2)
δs̃/2

dt

∥∥∥∥
p′ 1

2π
ds̃ dt̃

= δp
′−1

�

G′

�

R

∣∣∣∣
sin(s̃/2)
s̃/2

∣∣∣∣
p′

×
∥∥∥

�

G

∑

k

(∑

m

Tgm(t)χ{m}(k)) (t, t̃) exp(iks̃) dt
∥∥∥
p′ 1

2π
ds̃ dt̃
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= δp
′−1

�

G′

π�

−π

∑

n

∣∣∣∣
sin(s̃/2)
s̃/2− nπ

∣∣∣∣
p′∥∥∥[FZ×G, T ]

(∑

m

gmχ{m}
)∥∥∥

p′ 1
2π

ds̃ dt̃

≤ δp′−1‖T |FT Z×Gp ‖p′
( �

G

∑

m

‖gm(t)‖p dt
)p′/p

= ‖T |FT Z×Gp ‖p′‖f |Lp(R×G)‖p′ by (1),

where we have used the inequality
∑

n | sin s̃
s̃−nπ |p

′ ≤ 1 for any real s̃ 6= nπ and
2 ≤ p′ <∞ (see [7]).

Therefore we have ‖T |FT R×Gp ‖ ≤ ‖T |FT Z×Gp ‖ and FT Z×Gp ⊆ FT R×Gp .
For the right inequality of the proposition let f(k, t) =

∑
m gm(t)χ{m}(k),

where gm is an X-valued simple function and gm = 0 except for finitely
many m. By a density argument it is enough to consider f of the above
form. Now we have

‖f |Lp(Z×G)‖ =
( �

G

∑

k

∥∥∥
∑

m

gm(t)χ{m}(k)
∥∥∥
p
dt
)1/p

(2)

=
( �

G

∑

m

‖gm(t)‖p dt
)1/p

;

and

T̂ f(s̃, t̃) =
�

G

∑

k

(∑

m

Tgm(t)χ{m}(k)
)

exp(is̃k) (t, t̃) dt

=
�

G

∑

m

Tgm(t) exp(is̃m) (t, t̃) dt.

We use the identity

exp(ims̃) =
�

R

s̃/2
sin(s̃/2)

χ[m−1/2,m+1/2](s) exp(iss̃) ds

to obtain the following inequality (we abbreviate χ[m−1/2,m+1/2] to χm):

‖[FZ×G , T ]f‖p′

=
1

2π

�

G′

π�

−π

∥∥∥
�

G

∑

m

Tgm(t) (t, t̃)
�

R

s̃/2
sin(s̃/2)

χm(s) exp(is̃s) ds dt
∥∥∥
p′

ds̃ dt̃

≤ 1
2π

�

G′

π�

−π

∣∣∣∣
s̃/2

sin(s̃/2)

∣∣∣∣
p′∥∥∥

�

G

�

R

∑

m

Tgm(t)χm(s) (t, t̃) exp(is̃s) ds dt
∥∥∥
p′

ds̃ dt̃

(because
∣∣ s̃/2

sin(s̃/2)

∣∣ ≤ π
2 for −π ≤ s̃ ≤ π)
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≤ 1
2π

(
π

2

)p′ �

G′

�

R

∥∥∥
�

G

�

R

∑

m

Tgm(t)χm(s) (t, t̃) exp(is̃s) ds dt
∥∥∥
p′

ds̃ dt̃

=
(
π

2

)p′∥∥∥[FR×G, T ]
(∑

m

gmχm
)∥∥∥

p′

≤
(
π

2

)p′
‖T |FT R×Gp ‖p′

∥∥∥
∑

m

gmχm
∣∣∣Lp(R×G)

∥∥∥
p′

(since ‖∑m gmχm|Lp(R×G)‖ = (
�
G
∑

m ‖gm(t)‖p dt)1/p)

=
(
π

2

)p′
‖T |FT R×Gp ‖p′‖f |Lp(Z×G)‖p′ by (2).

Therefore we have ‖T |FT Z×Gp ‖ ≤ π
2‖T |FT R×Gp ‖ and FT R×Gp ⊆ FT Z×Gp .

According to Theorem 6.3 of [4], for any LCA group G and operator T ,
‖T |FT Gp ‖ = ‖T ′|FT G′p ‖. By applying this property, we have the following:

Proposition 2. For every LCA group G, FT R×Gp = FT T×Gp .

Proof. By Proposition 1 we have

‖T |FT R×Gp ‖ = ‖T ′|FT R×G′p ‖ ≤ ‖T ′|FT Z×G′p ‖ = ‖T |FT T×Gp ‖.
Similarly

‖T |FT T×Gp ‖ ≤ π

2
‖T |FT R×Gp ‖.

From Propositions 1 and 2, we conclude that FT R×Gp = FT Z×Gp =
FT T×Gp for every LCA group G. We also have the following two corollaries.

Corollary 3. FT Rnp = FT Znp = FT Tnp for every integer n ≥ 1.

Proof. By Proposition 1 we have

FT Rnp = FT R×Rn−1

p = FT Z×Rn−1

p .

We continue this to obtain

FT R×Z×Rn−2

p = FT Z×Z×Rn−2

p = · · · = FT Znp .

Similarly we apply Proposition 2 n times to obtain

FT Rnp = FT Tnp .

Corollary 4. FT Rn×Gp = FT Zn×Gp = FT Tn×Gp for every LCA group G.

Proof. The proof is similar to that of Corollary 3.

Lemma 5. For every LCA group G and every positive integer n,

‖T |FT Zn×Gp ‖ = ‖T |FT Z×Gp ‖
and therefore FT Zn×Gp = FT Z×Gp .



100 I. S. Park

Proof. It is enough to prove this statement for n = 2. Proposition 1.2 in
[1] can be extended by replacing IX by T to the following statement: For
given LCA groups G1 and G2,

‖T |FT G1
p ‖ ‖IC|FT G2

p ‖ ≤ ‖T |FT G1×G2
p ‖,

where IC is the identity operator on C. We have ‖IC|FT G2
p ‖ = 1 when G2

is compact or discrete. Hence if we let G1 = Z×G and G2 = Z then

‖T |FT Z×Gp ‖ ≤ ‖T |FT Z2×G
p ‖.

To show ‖T |FT Z2×G
p ‖ ≤ ‖T |FT Z×Gp ‖ we consider

f(k1, k2, t) =
∑

l1,l2

gl1,l2(t)χ{l1}(k1)χ{l2}(k2),

where the summation is on a finite subset of Z×Z, and k1, k2 ∈ Z, gl1,l2(t) ∈
[Lp(G),X]. Then

‖f |Lp(Z2 ×G)‖ =
( �

G

∑

l1,l2

‖gl1,l2(t)‖p dt
)1/p

.(3)

Since

[FZ
2×G, T ]f(s̃1, s̃2, t̃) =

�

G

∑

l1,l2

Tgl1,l2(t) exp(is̃1l1) exp(is̃2l2) (t, t̃) dt

we have

‖[FZ2×G, T ]f‖p′

=
�

G′

�

T

�

T

∥∥∥
�

G

∑

l1,l2

Tgl1,l2(t) exp(is̃1l1) exp(is̃2l2) (t, t̃) dt
∥∥∥
p′

ds̃1 ds̃2 dt̃

=
�

G′

�

T

�

T

∥∥∥
�

G

∑

l1,l2

Tgl1,l2(t) exp(is̃1l1) exp(is̃2Al2) (t, t̃) dt
∥∥∥
p′

ds̃1 ds̃2 dt̃,

where we have let A := 2 max{|l1|} + 1. Since the Haar measure is trans-
lation-invariant we obtain

‖[FZ2×G, T ]f‖p′

=
�

G′

�

T

�

T

∥∥∥
�

G

∑

l1,l2

Tgl1,l2(t) exp(is̃1l1) exp(i(s̃1 + s̃2)Al2) (t, t̃) dt
∥∥∥
p′

ds̃1 ds̃2 dt̃

=
�

G′

�

T

�

T

∥∥∥
�

G

∑

l1,l2

Tgl1,l2(t) exp(is̃1(l1 + Al2)) exp(is̃2Al2) (t, t̃) dt
∥∥∥
p′

ds̃1 ds̃2 dt̃

=
�

T

�

G′

�

T

∥∥∥
�

G

∑

l1,l2

T (gl1,l2(t) exp(is̃2Al2)) exp(is̃1(l1+Al2)) (t, t̃) dt
∥∥∥
p′

ds̃1 dt̃ ds̃2.
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Since (l1, l2) 7→ l1 +Al2 is a one-to-one correspondence, the above equals
�

T

∥∥∥[FZ×G, T ]
( ∑

l1+Al2

(gl1,l2(t) exp(is̃2Al2)
)
χ{l1+Al2}

∥∥∥
p′

ds̃2

≤
�

T

[
‖T |FT Z×Gp ‖p′

( �

G

∑

l1+Al2

‖gl1,l2(t) exp(is̃2Al2)‖p dt
)p′/p]

ds̃2

= ‖T |FT Z×Gp ‖p′
( �

G

∑

l1+Al2

‖gl1,l2(t)‖p dt
)p′/p

= ‖T |FT Z×Gp ‖p′
( �

G

∑

l1,l2

‖gl1,l2(t)‖p dt
)p′/p

= ‖T |FT Z×Gp ‖p′‖f |Lp(Z2 ×G,X)‖p′ by (3),

so it follows that ‖T |FT Z2×G
p ‖ ≤ ‖T |FT Z×Gp ‖.

Remark 1. In fact, every dissipative group A has the property that
‖T |FT An×Gp ‖ = ‖T |FT A×Gp ‖ for any positive integer n and for any LCA
group G. The definition and properties of dissipative groups are found in [4].

Corollary 6. ‖T |FT Tn×Gp ‖ = ‖T |FT T×Gp ‖ and so FT Tn×Gp = FT T×Gp .

Proof. This follows from Lemma 5 and a duality argument.

Proposition 7. Let H be R, Z or T, and G be an LCA group. Then
FT Hn×Gp = FT Z×Gp for any integer n ≥ 1. In particular , FT Hnp = FT Zp .

Proof. It follows from Corollary 4 and Lemma 5 that FT Hn×Gp =FT Z×Gp .
And if G is the trivial group then we have FT Hnp = FT Zp .

Notation: From now on, when H is R, Z or T we denote FT Hp by FT p.

Corollary 8. FT Ra×Zb×Tcp = FT p for any nonnegative integers a, b, c
with a+ b+ c ≥ 1.

Proof. Without loss of generality we assume a, b, c > 0. By applying
Proposition 7, we have

FT Ra×Zb×Tcp = FT Zb+1×Tc
p = FT Z×Tcp = FT Z2

p = FT Zp .

Theorem 9. Let G be an LCA group. Then FT Ra×Zb×Tc×Gp = FT Z×Gp

for any nonnegative integers a, b, c with a+ b+ c ≥ 1.

Proof. By Proposition 7 we have

FT Ra×Zb×Tc×Gp = FT Z1+b×Tc×G
p = FT Z2+b×G

p = FT Z×Gp .
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3. Search for G satisfying FT Gp = FT Zp and further classification.
We notice that to solve the problem of deciding whether FT Gp depends
on G, we should solve that problem for the compact abelian groups since
any compactly generated LCA group is a product of a finite number of R’s
and Z’s and a compact group [5]. The dual group of a compact group has
the discrete topology [13]. Moreover if G is a compact abelian group then G
is connected iff G′ is torsion-free [5]. This fact gives a clue to the results in
this section.

First, we introduce Weil’s formula which factorizes integration on G into
double integration on a closed subgroup and its factor group.

Theorem 10 ([12]). Let G be an LCA group and H a closed subgroup.
Then there are Haar measures µG, µH and µG/H such that

�

G
f(s) dµG(s) =

�

G/H

( �

H
f(s+ h) dµH(h)

)
dµG/H(s+H)(4)

whenever f is a compactly supported continuous Banach space-valued func-
tion or a nonnegative lower semicontinuous function on G.

In Theorem 10 if any two of µG, µH and µG/H are given then the third
can be determined so that the statement holds.

Andersson [1] obtained the inequality ‖IX |FT Hp ‖ ≤ ‖IX |FT Gp ‖, where
H is an open subgroup of an LCA group G and IX is the identity operator
on a Banach space X. By replacing IX with a bounded linear operator
T : X → Y in the proof of [1], we have the following:

Proposition 11. Let H be an open subgroup of an LCA group G. Then

‖T |FT Hp ‖ ≤ ‖T |FT Gp ‖.(5)

Now we consider torsion-free LCA groups with the discrete topology.

Corollary 12. For any nontrivial torsion-free LCA group E with the
discrete topology ,

‖T |FT Ep‖ = ‖T |FT Zp‖.(6)

Proof. The proof is similar to that of FTEp = FTZp in [1]: Since Z is
isomorphic to an open subgroup of E, by applying (5) we have ‖T |FT Zp‖ ≤
‖T |FT Ep‖. On the other hand, for any X-valued simple function f defined
on E which has finite Lp-norm, f is nonzero only on a subset of an open
subgroup which is isomorphic to Zk for some positive integer k. Therefore
we have

‖[FE, T ]f‖p′
‖f |Lp(E)‖ =

‖[FZk , T ]f‖p′
‖f |Lp(Zk)‖

≤ ‖T |FT Zkp ‖
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and hence

‖T |FT Ep‖ ≤ sup
k
‖T |FT Zkp ‖ = ‖T |FT Zp‖.

Thus equality (6) follows.

Lemma 13. Let H be a closed subgroup of an LCA group G such that
G/H is finite. If n is the cardinality of G/H then

‖T |FT Hp ‖ ≤ ‖T |FT Gp ‖ ≤ n1/p′‖T |FT Hp ‖,(7)

and hence FT Gp = FT Hp .

Proof. Since G/H is finite, H is open and by (5) we have the left inequal-
ity. The proof of the right one is as follows. Choose s1, . . . , sn in G such that
G/H = {s1+H, . . . , sn+H}. The measure ofG/H is the Haar measure of unit
mass. By applying Weil’s formula, for any compactly supported continuous
X-valued function f on G we have

�

G
‖f(s)‖p dµG(s) =

�

G/H

( �

H
‖f(s+ h)‖p dµH(h)

)
dµG/H(s+H)(8)

=
n∑

i=1

1
n

�

H
‖f(si + h)‖p dµH(h)

and

[FG, T ]f(σ) =
n∑

i=1

1
n

( �

H
T f(si + h)σ(si + h) dµH(h)

)
(9)

=
n∑

i=1

σ(si)
n

( �

H
T f(si + h)σ(h) dµH(h)

)

for σ ∈ G′. The dual group of G/H is isomorphic to the closed subgroup
H⊥ = {χ ∈ G′ | χ(h) = 1 for all h ∈ H}, and G′/H⊥ is isomorphic to H′.
Here the cardinality of H⊥ is n, the measure of H⊥ is the counting measure,
and we write H⊥ as {η̃1, . . . , η̃n}. Now [FG, T ](f) belongs to [C0(G′), Y ], so
the Y -norm of [FG, T ](f) is continuous and by Weil’s formula we have

‖[FG, T ]f‖

=
( �

H′

n∑

j=1

∥∥∥∥
1
n

n∑

i=1

σ(si)ηj(si)
�

H
T f(si + h)σ(h) dµH(h)

∥∥∥∥
p′

dµH′ (σ +H⊥)
)1/p′

≤
[( �

H′

n∑

j=1

( n∑

i=1

1
n

∥∥∥
�

H
T f(si + h)σ(h) dµH(h)

∥∥∥
p
)p′/p

dµH′ (σ +H⊥)
)p/p′]1/p
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≤
[ n∑

i=1

1
n

( �

H′

n∑

j=1

∥∥∥
�

H
T f(si + h)σ(h) dµH(h)

∥∥∥
p′

dµH′ (σ +H⊥)
)p/p′]1/p

=
[ n∑

i=1

1
n
np/p

′
( �

H′

∥∥∥
�

H
T f(si + h)σ(h) dµH(h)

∥∥∥
p′

dµH′ (σ +H⊥)
)p/p′]1/p

≤
[ n∑

i=1

1
n
np/p

′‖T |FT Hp ‖p
( �

H
‖f(si + h)‖p dµH(h)

)]1/p

= n1/p′‖T |FT Hp ‖ ‖f |Lp(G)‖.
We have used Minkowski’s inequality in the third inequality above.

Proposition 14. If F is an infinite, compact and connected LCA group
then for any nonnegative integers a, b, there exist c(a, b), C(a, b) > 0 such
that

c(a, b)‖T |FT Tp‖ ≤ ‖T |FT R
a×Zb×F
p ‖ ≤ C(a, b)‖T |FT Tp‖.

Therefore FT Ra×Zb×Fp = FT p.
Proof. If a = b = 0 then by applying (6) we have ‖T ′|FT F′p ‖=‖T ′|FT Zp‖,

where F′ is the dual group of F and hence a nontrivial torsion-free group
with the discrete topology. It follows that

‖T |FT Fp‖ = ‖T ′|FT Zp‖ = ‖T |FT Tp‖ and FT Fp = FT p.(10)

If a+ b ≥ 1 then by applying Theorem 9 and Corollary 4, we have

FT Ra×Zb×Fp = FT T×Fp

and in fact

c(a, b)‖T |FT T×Fp ‖ ≤ ‖T |FT Ra×Zb×Fp ‖ ≤ C(a, b)‖T |FT T×Fp ‖
for some positive reals c(a, b), C(a, b). Here c(a, b) = (2/π)ab, C(a, b) = 1.
Note that T× F is connected and compact. Thus we again have

‖T |FT T×Fp ‖ = ‖T |FT Tp‖ by (10).

If F has only finitely many components and F0 is the component (maxi-
mal connected set) of the identity element (briefly, the identity component),
then F/F0 is finite and we have the following result.

Theorem 15. Let F be an infinite compact LCA group with n compo-
nents. Then for any nonnegative integers a, b, there exist c(a, b), C(a, b) > 0
such that

c(a, b)‖T |FT Tp‖ ≤ ‖T |FT R
a×Zb×F
p ‖ ≤ n1/p′C(a, b)‖T |FT Tp‖,

and therefore FT Ra×Zb×Fp = FT p.
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Proof. Let F0 be the identity component of F. Then the factor group
(Ra × Zb × F)/(Ra × Zb × F0) is a finite group with n elements. Thus by
Lemma 13,

‖T |FT Ra×Zb×F0
p ‖ ≤ ‖T |FT Ra×Zb×F0

p ‖ ≤ n1/p′‖T |FT Ra×Zb×Fp ‖
and

FT Ra×Zb×Fp = FT Ra×Zb×F0
p .

Then the statement follows from Proposition 14.

This theorem cannot say anything about the case when F has infinitely
many components, because of the factor n1/p′ .

Theorem 15 can be extended beyond the scope of compactly generated
LCA groups.

Theorem 16. Let E be a nontrivial torsion-free group with the discrete
topology and F an infinite, compact and connected LCA group. Then for
any LCA group G,

‖T |FT E×Gp ‖ = ‖T |FT Z×Gp ‖, ‖T |FT F×Gp ‖ = ‖T |FT T×Gp ‖.
If F̃ is a compact LCA group with n components then for any nonnegative

integer k there exist c(k), C(k) such that

c(k)‖T |FT T×Gp ‖ ≤ ‖T |FT Rk×El×F̃m×Gp ‖ ≤ nm/p′C(k)‖T |FT T×Gp ‖,
and hence

FT Rk×El×F̃m×Gp = FT T×Gp ,

where l,m = 0 or 1 and k+ l+m ≥ 1. In particular if G is the trivial group
then

FT Rk×El×F̃mp = FT p.
Proof. First, Z is isomorphic to an open subgroup of E, and so Z × G

is an open subgroup of E × G. By applying (5) we have ‖T |FT Z×Gp ‖ ≤
‖T |FT E×Gp ‖. Conversely, for any simple X-valued function f which is de-
fined on E × G and has finite Lp-norm, the support of f is a subset of
Za ×G for some positive integer a. Therefore Lemma 5 yields ‖T |FT E×Gp ‖ ≤
supa ‖T |FT Z

a×G
p ‖ = ‖T |FT Z×Gp ‖.

Second, from the duality argument it follows that

‖T |FT F×Gp ‖ = ‖T ′|FT F′×G′p ‖ = ‖T ′|FT Z×G′p ‖ = ‖T |FT T×Gp ‖.
The rest follows by applying the above two results, Propositions 1, 2 and

Lemma 13.

Remark 2. If G is an LCA group and G0 is the identity component of
G then G0 is a closed normal subgroup of G and the factor group G/G0 is
totally disconnected and Hausdorff. From (24.45) of [5], if G0 is open then
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G is isomorphic to G0 × (G/G0). In particular G0 is open when G is locally
connected. Hence to answer the question, denoted by (P), whether ‖T |FT Gp ‖
is equivalent to ‖T |FT Tp‖ or not, it is useful to find G0 and G/G0. Since
G0 is isomorphic to Rn × K, where n is a nonnegative integer and K is a
compact connected group (see Theorem 9.14 of [5]), the answer to (P) is
affirmative when G/G0 is good.

Theorem 17. Let G be an LCA group with n components. Then there
are positive real numbers c and C such that

c‖T |FT Tp‖ ≤ ‖T |FT Gp ‖ ≤ n1/p′C‖T |FT Tp‖,(11)

and hence FT Gp = FT p.
Proof. Let G0 be the identity component of G. Then G/G0 is a fi-

nite LCA group. Hence by Lemma 13 we have ‖T |FT G0
p ‖ ≤ ‖T |FT Gp ‖ ≤

n1/p′‖T |FT G0
p ‖. Moreover, G0 is isomorphic to Rk × K, where k is a non-

negative integer and K is a compact connected group. Now, K is trivial or
infinite. If K is trivial then from Proposition 2 it follows that

c‖T |FT Tkp ‖ ≤ ‖T |FT G0
p ‖ ≤ C‖T |FT T

k

p ‖

for some c, C > 0. Moreover, by (10), ‖T |FT Tkp ‖ = ‖T |FT Tp‖. Thus we have

c‖T |FT Tp‖ ≤ ‖T |FT G0
p ‖ ≤ C‖T |FT Tp‖.(12)

If K is infinite, we also have (12) by Proposition 14. Therefore the inequality
(11) follows, and FT Gp = FT p.

Theorem 18. If G0 is the identity component of an LCA group G and
G/G0 is the direct sum of a nontrivial discrete torsion-free group and a finite
group with cardinality n, then ‖T |FT G0

p ‖ ≤ ‖T |FT Gp ‖ ≤ n1/p′‖T |FT G0×Z
p ‖

and FT Gp = FT p.
Proof. G is isomorphic to G0×G/G0 because G0 is open. The direct sum

of a nontrivial discrete torsion-free group and a finite group is isomorphic
to the direct product of the two. We can apply Proposition 11, Lemma 13
and Theorem 16 to obtain the assertion.

As for the class of Banach spaces which have Fourier type p for an infinite
LCA group, we have the following:

Corollary 19. (i) Under the assumptions of Theorem 16,

FTR
k×El×F̃m
p = FTp.

(ii) Under the assumptions of Theorem 18,

FTGp = FTp.
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Hinrichs and Lee in [6], by combining the results of Propositions 1, 2
and Lemma 5 of this paper with the structure of LCA groups, prove that
FT Gp = FT G′p for any LCA group G and 1 < p ≤ 2. They derive the general
statement:

Let G1, G2 and H be LCA groups and 1 < p ≤ 2. If there exists
a constant c such that ‖T |FT G1

p ‖ ≤ c‖T |FT G2
p ‖ for all opera-

tors T ∈ FT G2
p then also ‖T |FT G1×H

p ‖ ≤ c‖T |FT G2×H
p ‖ for all

operators T ∈ FT G2×H
p .

This statement, combined with the inequalities

‖T |FT Rp ‖ ≤ ‖T |FT Fp‖ = ‖T |FT Zp‖ ≤
π

2
‖T |FT Rp ‖,

where F is a torsion-free group, implies Propositions 1, 2 and Lemma 5.
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