
STUDIA MATHEMATICA 168 (2) (2005)

A characterization of F -algebras with all
one-sided ideals closed

by

W. Żelazko (Warszawa)

Abstract. We prove that a real or complex F -algebra has all left and right ideals
closed if and only if it is noetherian.

A topological algebra is a real or complex algebra A which is a topological
vector space (t.v.s.) and the multiplication (x, y) 7→ xy is a jointly continu-
ous map from A2 to A. In terms of neighbourhoods of zero this means that
for each such neighbourhood U there is a neighbourhood V with

(1) V 2 ⊂ U.
A unital topological algebra A is called a Q-algebra if the set (group)

G(A) of all invertible elements of A is open. It is known ([7, Lemma I.6.4,
pp. 43–44]) that A is a Q-algebra if and only if its unity element e has a
neighbourhood consisting of invertible elements.

An F -algebra is a topological algebra which is an F -space, i.e. a complete
metrizable t.v.s. The topology of an F -space X can be given by means of
an F -norm, i.e. a map x 7→ ‖x‖ from X to the non-negative real numbers
such that

(i) ‖x‖ ≥ 0 for all x ∈ X, and ‖x‖ = 0 iff x = 0,
(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ X,
(iii) the map (λ, x) 7→ ‖λx‖ is jointly continuous, λ ∈ K (K = R or C),

x ∈ X.

For further information on F -spaces and F -norms the reader is referred to
[1] and [8].

A topological algebra is said to be multiplicatively convex (briefly m-
convex ) if its topology can be given by means of a family of submultiplicative
(algebra) seminorms. An m-convex algebra which is also an F -algebra is
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called an m-convex B0-algebra. More information about topological algebras
can be found in [7] or [10].

We say that an algebra A is noetherian if it satisfies the ascending chain
condition, i.e. whenever

I1 ⊆ I2 ⊆ · · ·
is a sequence of left (or right) ideals in A, then there is an index n0 such
that In = In0 for all n ≥ n0. If A is unital, then it is noetherian if and only
if every proper one-sided ideal I of A is of the form

I = x1A+ · · ·+ xnA, xi ∈ I,
in the case of a right ideal, and

I = Ax1 + · · ·+Axn, xi ∈ I,
in the case of a left ideal.

The noetherian topological algebras were first considered by Grauert
and Remmert in the context of commutative Banach algebras. They showed
in [6] that a commutative noetherian Banach algebra is necessarily finite-
dimensional. This result was extended to the non-commutative case by Sin-
clair and Tullo [9]. Ferreira and Tomassini studied in [5] the noetherian
m-convex algebras and showed, among other results, that a noetherian com-
mutative complex unital m-convex B0-algebra has all ideals closed (Theorem
2.6 of [5]). They also observed that there exist such infinite-dimensional alge-
bras (the algebras of all power series in one or a finite number of variables).

Motivated by the work of Ferreira and Tomassini, Carboni and Laro-
tonda ([2], [3]) constructed highly non-trivial examples of commutative semi-
simple noetherian m-convexB0-algebras (the examples considered in [5] were
radical algebras), which are principal ideal domains. Further, independently,
Choukri and El Kinani in [4] and the author in [12] proved that a commuta-
tive F -algebra is noetherian if and only if it has all ideals closed. The aim of
this paper is to extend this result to the non-commutative case (this solves
a problem explicitly posed in [12]).

Our result reads as follows.

Theorem. Let A be a real or complex F -algebra. Then A has all one-
sided ideals closed if and only if it is noetherian.

In the proof we shall make use of the following result ([13, Corollary]).

Lemma 1. Let A be a real or complex F -algebra with unity e.

(i) Let (xn) be a sequence of elements of A tending to e. Then there is a
subsequence (ai) ⊂ (xn) such that for all natural k the products

(2) uk = lim
i
ak+iak+i−1 · · · ak
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and

(3) vk = lim
i
akak+1 · · · ak+i

are convergent , with

(4) lim
k
uk = lim

k
vk = e.

(ii) If A is not a Q-algebra, then there is a sequence (ai) of non-invertible
elements in A tending to e such that either Il =

⋃
k Avk is a proper

dense left ideal , or Ir =
⋃
k ukA is a proper dense right ideal.

The easier part of our theorem follows from the following result, extend-
ing Lemma 2 of [12] to the non-commutative situation.

Lemma 2. Let A be a real or complex F -algebra with all ideals closed.
Then A is noetherian.

Proof. Let I be a proper right ideal in A (for left ideals the reasoning is
analogous) and choose a non-zero x1 ∈ I so that I1 = x1A ⊂ I. If I = I1 we
are done. If not, there is an x2 ∈ I \ I1 and so I2 = I1 + x2A is a subideal
of I. Again either I2 = I and in this case we are done, or the process can
be continued. If it does not finish, we obtain a sequence I1 ⊂ I2 ⊂ · · · ⊂ I
of closed right ideals and all imbeddings are proper. Setting J =

⋃
i≥1 Ii we

obtain a proper right ideal in A (J ⊂ I) which is not closed as the union
of an increasing sequence of closed subspaces. This gives a contradiction
showing that I = In for some n, and the conclusion follows.

It remains to show that if A is noetherian, then it has all left and right
ideals closed. We obtain this result through Lemmas 3–7; first we need the
concept of a topologically invertible element.

Definition. Let A be a unital F -algebra. An element u in A is said to
be topologically right (resp. left) invertible if there is a sequence (zi) ⊂ A
with limi uzi = e (resp. limi ziu = e). An element u is said to be topologically
invertible if it is both left and right topologically invertible. This concept
can be extended to an arbitrary topological algebra A, but then sequences
have to be replaced by nets in case A is non-metrizable.

Let us recall the following simple lemma ([13, Lemma 1]); its proof follows
immediately from the joint continuity of multiplication in A.

Lemma 3. Let A be a real or complex F -algebra with unity e. Then for
any u, v ∈ A and ε > 0 there is a δ = δ(ε, u, v) > 0 such that

(5) ‖x− e‖ < δ implies ‖uxv − uv‖ < ε

for all x in A.
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Taking in (5) a smaller positive ε, we can replace ‖x− e‖ < δ by ‖x− e‖
≤ δ, and in this form Lemma 3 will be used in the proof of Lemma 5.

Lemma 4. A finite product of topologically left (resp. right) invertible
elements is topologically left (resp. right) invertible.

Proof. First we show that the product of two topologically left invertible
elements a, b is again topologically invertible (for topologically right inver-
tible elements the proof is the same). We have to show that for any ε > 0
there is a z ∈ A with

(6) ‖zab− e‖ < ε.

Since b is topologically left invertible, there is a z1 ∈ A such that

(7) ‖z1b− e‖ < ε/2.

By Lemma 3 (setting u = z1, v = b and replacing ε by ε/2), there is a δ > 0
such that

(8) ‖z1xb− z1b‖ < ε/2

whenever ‖x−e‖ < δ. Finally, by the left topological invertibility of a, there
is a z2 ∈ A such that ‖z2a− e‖ < δ.

Consequently, setting in (8) x = z2a, we obtain

‖z1z2ab− z1b‖ < ε/2,

which together with (7) gives (6). By an easy induction, any finite product
of topologically left invertible elements is topologically left invertible. The
conclusion follows.

In the proof of the following lemma we shall use a reasoning similar to
the proof of Proposition 1 in [12] or Lemma 2 in [13].

Lemma 5. Let A be a unital F -algebra, and (xi) a sequence of topo-
logically left (resp. right) invertible elements tending to the unity e of A.
Then there is a subsequence (ai) ⊂ (xi) such that the products uk given by
(2) (resp. vk given by (3)), k = 1, 2, . . . , are topologically left (resp. right)
invertible.

Proof. We assume that the xi are topologically left invertible. For topo-
logically right invertible elements the proof is analogous. The sequence (ai)
will be chosen inductively. First choose xj1 so that ‖e−xj1‖ < 1, put a1 = xj1
and choose z0,1 in A so that ‖z0,1a1−e‖ < 1/2; this is possible because a1 is
topologically left invertible. Using Lemma 3, we choose a δ1 > 0 such that
‖z0,1xa1 − z0,1a1‖ < 1/2 whenever ‖x− e‖ ≤ δ1. Put also δ0 = 1.

Suppose now that we have already chosen elements a1, . . . , an, ai = xji ,
ji < ji+1, elements zi,k in A, 1 ≤ k+ i ≤ n, and positive numbers δ1, . . . , δn
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in such a way that

‖ak+i+1ak+i · · · ak − ak+i · · · ak‖ < 2−(k+i+1)(9)

for 1 ≤ k ≤ k + i < n (i ≥ 0),

‖ak+i · · · ak − e‖ < min{δk−1, k
−1} for 1 ≤ k + i ≤ n,(10)

‖zi,kak+i · · · ak − e‖ <
1

2(k + i)
for 1 ≤ k + i ≤ n,(11)

‖zi,kxak+i · · · ak − zi,kak+i · · · ak‖ <
1

2(k + i)
for 1 ≤ k + i ≤ n,(12)

provided
‖x− e‖ ≤ δk+i.

We shall show that it is possible to find elements an+1 ∈ (xi), zi,n+1−i
in A, 0 ≤ i ≤ n, and a positive number δn+1, so that (9)–(12) are satisfied
with n replaced by n+ 1. Let ε > 0. Since xi → e, we can find an index i(ε)
such that

(13) ‖an · · · ak − xian · · · ak‖ < ε for 1 ≤ k ≤ n,
whenever i ≥ i(ε). There is also an index j such that

(14) ‖xi − e‖ < min{δn, (n+ 1)−1} whenever i ≥ j.
Put

sk = min{min{δk−1, k
−1} − ‖ak+i · · · ak − e‖ : 1 ≤ k ≤ k + i ≤ n}.

By (10) all sk are positive, and hence so is r = min{sk : 1 ≤ k ≤ n}.
Take now any ε satisfying 0 < ε < min{r, 2−(n+1)}, put in+1 = max{in + 1,
j, i(ε)}, and an+1 = xin+1 . Relation (13) implies (9) with n replaced by n+1,
and also

‖an+1an · · · ak − an · · · ak‖ < r ≤ sk ≤ min{δk−1, k
−1} − ‖an · · · ak − e‖

for 1 ≤ k ≤ n, and so

‖an+1 · · · ak − e‖ ≤ ‖an+1 · · · ak − an · · · ak‖+ ‖an · · · ak − e‖
< min{δk−1, k

−1}.
Thus (10) holds true for 1 ≤ k + 1 ≤ n + 1, provided k ≤ n. The case
k = n + 1 is covered by (14), so that (10) is satisfied with n replaced by
n+ 1.

By the previous lemma the elements an+1 · · · ak are topologically left
invertible, so there are zi,k, i+ k = n+ 1, such that relations (11) hold true
with n replaced by n+ 1. Finally, for the newly obtained elements zi,n+1−i
we can find, by Lemma 3, the desired δn+1 > 0 so that (12) is satisfied. The
induction step is complete.
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Relations (9) imply

‖am+n · · · ak − an · · · ak‖ ≤ ‖am+n · · · ak − am+n−1 · · · ak‖+ · · ·
+ ‖an+1 · · · ak − an · · · ak‖

≤ 2−(m+n+1) + · · ·+ 2−(n+1) < 2−n

for all natural m,n and k ≤ n. This shows the convergence of the products
uk given by (2) for all natural k. Relations (10) imply

(15) ‖uk+1 − e‖ ≤ δk
for all natural k. Fix such a k. By (11) and (12) we have

‖zi,kxak+i · · · ak − e‖ <
1

k + i

for ‖x − e‖ ≤ δk+i. Setting now x = uk+i+1 and taking into account the
equality uk = uk+i+1ak+i · · · ak, we obtain, by (15),

‖zi,kuk − e‖ <
1

k + i
.

Letting i→∞, we see that uk is topologically left invertible. The conclusion
follows.

We now pass to our crucial lemma.

Lemma 6. Let A be a unital real or complex F -algebra which is noethe-
rian. Then A is a Q-algebra.

Proof. Assume that A is not a Q-algebra. By Lemma 1(ii), there is a
sequence (ai) of non-invertible elements in A tending to the unity e such
that either Ir =

⋃∞
k=1 ukA is a proper dense right ideal, or Il =

⋃∞
k=1 Avk is

a proper dense left ideal. We can assume that J = Ir is a proper ideal (the
case of Il can be treated in an analogous way, or reduced to the former by
considering A with the reverse multiplication x ◦ y = yx).

Since A is noetherian, there are y1, . . . , yn ∈ J such that

J = y1A+ · · ·+ ynA.

Let Ik = ukA, so that Ik is a right ideal contained in J . Since uk = uk+1ak we
have Ik = uk+1akA ⊂ Ik+1 and J =

⋃
k Ik. Thus there is the smallest index

k0 such that all elements y1, . . . , yn are in Ik0 . Consequently, J = Ik0 = Ik
for all k ≥ k0. Since J is dense in A, for each k ≥ k0 there is a sequence
(z(k)
i )∞i=1 of elements of A such that

(16) lim
i
ukz

(k)
i = e for all k ≥ k0.

This means that all elements uk, k ≥ k0, are topologically right invertible.
We now show that they cannot be left invertible. Otherwise there are

ck ∈ A such that ckuk = e, k ≥ k0, and (16) implies ck = limi ckukz
(k)
i =
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limi z
(k)
i , so that ukck = limi ukz

(k)
i = e. Thus all uk, k ≥ k0, are invertible

with inverses ck. Writing uk = uk+1ak, k ≥ k0, we obtain ak = u−1
k+1uk, so

that all ak, k ≥ k0, are invertible, contrary to assumption. Consequently,
the elements uk, k ≥ k0, are not left invertible.

Setting xi = uk0+i−1 we obtain a sequence of elements of A which
are topologically right invertible and not left invertible, and tend to e. By
Lemma 5 there is a subsequence (bk) ⊂ (xi) such that the elements vk given
by (3) with ai replaced by bi are topologically right invertible and tend to e.
A reasoning similar to the first part of the proof shows that the elements vk
are not left invertible. Consequently, all I ′k = Avk are proper left ideals, and
so is J ′ =

⋃
k Avk. Since vk → e, the ideal J ′ is dense. As before, we find

an index k1 such that J ′ = I ′k1
= I ′k for k ≥ k1. The relation Avk = Avk+1,

k ≥ k1, implies vk+1 ∈ Avk, and so there is a dk ∈ A with vk+1 = dkvk. But
vk = bkvk+1 and so vk+1 = dkbkvk+1, or

(17) (e− dkbk)vk+1 = 0.

Since the elements vk, k ≥ k1, are topologically right invertible, there are
sequences (w(k)

i )∞i=1, k ≥ k1, with limi vkw
(k)
i = e. Fixing a k ≥ k1, multiply-

ing (17) from the right by w(k+1)
i and passing to the limit with respect to i,

we obtain dkbk = e, i.e. bk is left invertible. This is the desired contradiction
and the conclusion follows.

The main idea of the next lemma is due to Grauert and Remmert ([6,
Chapter I, Remark 2 in the Appendix to §5]); they needed it to prove that
a commutative noetherian Banach algebra is necessarily finite-dimensional.
Here we give a modification of the proof of a similar lemma proved in [12]
in the commutative case. Similarly to [12] we shall use neighbourhoods of
the origin instead of F -norms.

Lemma 7. Let A be a real or complex unital F -algebra which is also a
Q-algebra. Let I be a proper left (resp. right) ideal in A whose closure I is
a finitely generated ideal. Then I is closed.

Proof. We shall give the proof for a right ideal. The other case is analo-
gous. Since A is a Q-algebra, I is a proper ideal in A and, by assumption,

I = x1A+ · · ·+ xnA with x1, . . . , xn ∈ I.
Put

Φ(u1, . . . , un) = x1u1 + · · ·+ xnun;

this is a continuous linear map from An to A. Since An is also an F -space
(with the product topology), and Φ is onto, the Banach theorem (see [1] or
[8]) says that Φ is open, and so, for every neighbourhood V of zero in A, the
set S(V ) = Φ(V, . . . , V ) = x1V + · · ·+ xnV is also a neighbourhood of zero
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in I. Since I is dense in I we have

(18) I + S(V ) = I

for each such V . Since xi ∈ I, (18) implies that for any neighbourhood
V of zero in A there are uk,i in V and yi in I, 1 ≤ i, k ≤ n, such that
xk = yk +

∑n
i=1 xiuk,i, or

(19) yk = xk −
n∑

i=1

xiuk,i, k = 1, . . . , n.

We can treat (19) as a system of linear equations with given yk ∈ I and
uk,i ∈ V , and by solving it for suitably chosen V , we show that the elements
xi must belong to I.

Grauert and Remmert solved this system by the use of the classical Cra-
mer formulas. Since we are in the non-commutative situation, and using
determinants of non-commuting elements would be troublesome, we shall
solve the system by induction with respect to the number of variables. By
solving this system, for a suitable neighbourhood V , we shall show that the
elements xi are in I, which implies I ⊂ I, as required. In each step of the
induction we shall modify the neighbourhood V . Let n = 1 and denote by
V1 a neighbourhood of the origin in A so that e − V1 ⊂ G(A). Such a V1

exists, since A is a Q-algebra. The system (19) is now of the form

y1 = x1 − x1u1,1

with y1 ∈ I, u1,1 ∈ V1 and x1 ∈ I. Thus y1 = x1(e − u1,1), so that x1 =
y1(e− u1,1)−1 and x1 ∈ I since I is a right ideal and e− u1,1 is invertible.

Suppose now that for a given natural m and for all natural k with 1 ≤
k < m there are neighbourhoods Vk of zero in A, with Vj ⊂ Vj−1 for
1 < j ≤ k, such that whenever y1, . . . , yk ∈ I and uk,i ∈ Vk for 1 ≤ i ≤ k,
then there are unique x1, . . . , xk satisfying (19), and these elements are in I.
We are now looking for a suitable Vm ⊂ Vm−1 so that the above holds with
k = m. Consider (19) with n = m and take into account the last equation

(20) ym = xm(e− um,m)−
m−1∑

i=1

xium,i.

Since we demand Vm ⊂ Vm−1 ⊂ V1, and um,m ∈ Vm, the element e− um,m
is invertible and relation (20) can be replaced by

ym(e− um,m)−1 = xm −
m−1∑

i=1

xium,i(e− um,m)−1.

Hence

(21) xm = ym(e− um,m)−1 +
m−1∑

i=1

xium,i(e− um,m)−1
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and substituting this to the first m − 1 equations in (19) with n = m, we
have

yk = xk −
m−1∑

i=1

xiuk,i −
[
ym(e− um,m)−1

+
m−1∑

i=1

xium,i(e− um,m)−1
]
um,m for k = 1 . . . ,m− 1,

or

(22) yk + ym(e− um,m)−1um,m

= xk −
m−1∑

i=1

xi[uk,i + um,i(e− um,m)−1um,m] for k = 1 . . . ,m− 1.

Clearly, yk+ym(e−um,m)−1um,m belongs to I for each choice of Vm ⊂ V1,
so in order to make the induction step, we have to find Vm so that

(23) uk,i + um,i(e− um,m)−1um,m ∈ Vm−1

whenever uk,i ∈ Vm. Note that the elements in (23) are the coefficients of
x1, . . . , xm−1 in (22).

To this end first choose a neighbourhood U1 of the origin so that U1 +
U1 ⊂ Vm−1, and a neighbourhood U2 with U2 + U2 ⊂ U1.

We now find a neighbourhood U3 of zero so that both U2
3 and U3

3 are
contained in U2, and a neighbourhood U4 ⊂ V1 so that x ∈ e + U4 implies
(e − x)−1 ∈ e + U3. The possibility of choosing U4 follows from the fact
that x 7→ x−1 is continuous on Q-algebras of type F (taking the inverse is
continuous in an F -algebra if and only if the set G(A) is a Gδ-set, see [7] or
[10]), so in particular it is continuous at x = e. We now put

Vm = U1 ∩ U2 ∩ U3 ∩ U4.

If all the um,i, 1 ≤ i ≤ m, are in Vm, then (e− um,m)−1 ∈ U3, and so

um,i(e− um,m)−1um,m ∈ U3(e+ U3)U3 ⊂ U2
3 + U3

3 ⊂ U2 + U2 ⊂ U1.

Consequently, the left hand side of (23) is in U1 + U1 ⊂ Vm−1 and we are
done. By the inductive assumption, x1, . . . , xm−1 are in I. Consequently,
by (21), we also have xm ∈ I, completing the induction step. Thus the
conclusion follows.

Proof of the Theorem. Assume first that A is unital. In view of Lemma 2,
we have to show that if A is noetherian, then its ideals are all closed. By
Lemma 6, A is a Q-algebra. Let now I be a left ideal in A (for right ideals the
proof is analogous). Since A is a Q-algebra, the closure I is a proper ideal,
finitely generated by assumption. Lemma 7 now implies that I is closed.

For a non-unital F -algebra A, denote by Ae its unitization, i.e. the di-
rect sum K⊕A, where K = C or R, with coordinatewise addition and scalar
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multiplication, and with the multiplication given by (λe + a)(µe + b) =
λµe+λb+µa+ab, where λe+b = (λ, b). It is a unital F -algebra with F -norm
‖λe+a‖ = |λ|+‖a‖ and with the unity e. Clearly Ae contains A as a closed
two-sided ideal. The proof in the non-unital case now follows from the fact
that A is noetherian if and only if Ae is, and from the following proposition.

Proposition. Let A be a real or complex non-unital algebra of type F .
Then A has all one-sided ideals closed if and only if the same holds for its
unitization Ae.

Proof. We give the proof for left ideals. (For right ideals it is analogous.)
Observe first that if I is a left ideal in A, then it is also a left ideal in Ae
(we have AeI = (Ke+ A)I ⊂ I + AI ⊂ I). Thus if all left ideals are closed
in Ae, they are also closed in A. Conversely, suppose that all left ideals are
closed in A and let J be a proper left ideal in Ae. Put I = J ∩ A. This is a
left ideal in A, for if x ∈ A and y ∈ I, then xy is both in J and in A, so it is
in I. We are already done if J ⊂ A, so assume there is an element u0 in J of
the form u0 = e+ a0, a0 ∈ A. We cannot have a0 ∈ I, since otherwise e ∈ J
and J is not proper. Let now u be an arbitrary element in J , so u = λe+ a
with a ∈ A. We claim that u = λu0 + b with b ∈ A. In fact,

u− λu0 = a− λa0,

so this difference is both in A and in J and hence in I. Denoting it by b,
we obtain u = λu0 + b. Thus, J = K⊕ I. This implies that J is closed. For
if λnu0 + bn → v, v ∈ Ae, then the sequence of scalars (λn) is bounded.
Otherwise, passing to a subsequence if necessary, we can assume λn → ∞,
so that u0 + bn/λn → 0 and u0 ∈ I, since bn ∈ I and I is closed. This
gives a contradiction, and so, passing again to a subsequence, we can as-
sume that (λn) is convergent, say to λ0. Consequently, an → v − λ0u0, so
that v − λ0u0 ∈ I and hence v is in J . Thus J is closed and the conclusion
follows.

It was shown in [12, Example 6] that there exists a complete commutative
locally convex non-metrizable algebra which has all ideals closed, but is not
noetherian. One can also give an easy example of such a non-commutative
algebra. To this end consider a real or complex free algebra A in countably
many variables t1, t2, . . . , provided with the maximal locally convex topology
τLC
max (it is given by all seminorms on A, and its linear subspaces are all

closed). It is shown in [11] that A is a topological algebra. Clearly all one-
sided ideals in A are closed, but it is non-noetherian. To see this, let I be
the linear span of all monomials of degree at least two. It is a two-sided
ideal in A and it is neither left nor right finitely generated. For, if x1, . . . , xn
were such generators, then they would contain only finitely many variables,
say t1, . . . , tk, and each element of I would contain at least one of those
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variables. But t2k+1 is in I and does not contain any of those variables and
so our claim follows.

Thus our result does not extend to the non-metrizable case. However,
we do not know whether there is a complete topological algebra which is
noetherian but has a non-closed one-sided ideal; the answer is not known
even in the commutative case (in [12] we gave an example of an incomplete
normed noetherian commutative algebra which has non-closed ideals).

We do not know either whether there exists an F -algebra with all left
ideals closed but with some right ideals non-closed (1). Nor do we know
whether left noetherian F -algebras coincide with such algebras with all left
ideals closed (our Lemma 2 says, in fact, that if all left ideals of an F -algebra
A are closed then A is left noetherian, but we do not know whether the
converse is true).
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(1) Added in proof : The author has constructed such an m-convex B0-algebra. The
construction will be published elsewhere.


