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On the Rogosinski radius for holomorphic mappings
and some of its applications

by

Lev Aizenberg (Ramat-Gan), Mark Elin (Karmiel) and
David Shoikhet (Karmiel)

Abstract. The well known theorem of Rogosinski asserts that if the modulus of the
sum of a power series is less than 1 in the open unit disk: |∑∞n=0 anz

n| < 1, |z| < 1, then
all its partial sums are less than 1 in the disk of radius 1/2:

∣∣∣
k∑

n=0

anz
n
∣∣∣ < 1, |z| < 1

2
,

and this radius is sharp.
We present a generalization of this theorem to holomorphic mappings of the open

unit ball into an arbitrary convex domain. Other multidimensional analogs of Rogosinski’s
theorem as well as some applications to dynamical systems are considered.

1. Preliminaries. Let Ω be a domain in Cn. By Hol(Ω,C) we denote
the space of holomorphic functions in Ω with the topology of uniform con-
vergence on compact sets. Let {φk(z)}∞k=0 be a given basis in Hol(Ω,C).

Definition 1.1. The Bohr radius B(Ω, {φk}) is the largest number
r > 0 such that if f ∈ Hol(Ω) has the expansion

∞∑

k=0

ckφk(z) = f(z)

and if |f(z)| < 1 in Ω, then
∞∑

k=0

|ckφk(z)| < 1

in Ωr = rΩ, homothety of Ω.

Definition 1.2. The Rogosinski radius R(Ω, {φk}) is the largest num-
ber r > 0 such that, under the conditions of the previous definition, the
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partial sums

Sm(z) =
m∑

k=0

ckφk(z)

satisfy the inequality |Sm(z)| < 1 in Ωr for all m = 0, 1, 2, . . . .

Since

|Sm(z)| ≤
m∑

k=0

|ckφk(z)| ≤
∞∑

k=0

|ckφk(z)|,

it is clear that B(Ω, {φk}) ≤ R(Ω, {φk}).
In the particular case when the domain Ω is the open unit disk ∆ =

{z1 : |z1| < 1} in C1, and {φk(z)}∞k=0 is the usual power basis {zk}∞k=0, we
denote the Bohr radius and the Rogosinski radius by B and R respectively.
The following two classical results are well known.

Theorem 1.1 (Bohr, [12] see also [14]). B = 1/3.

Theorem 1.2 (Rogosinski [17], see also [14, 18]). R = 1/2.

Recently, there has been much research activity on the Bohr radius in
the multidimensional case. Let us recall some of the results.

Let Un = {z ∈ Cn : |zj| < 1, j = 1, . . . , n} be the open unit polydisk.

Theorem 1.3 (see [11]). If {zα} is the power basis in Hol(Un,C), then
for all n > 1,

1

3
√
n
< B(Un, {zα}) <

2
√

logn√
n

.(1.1)

For the open unit hypercone D1
n = {z ∈ Cn : |z1| + · · · + |zn| < 1} the

following theorem gives sharp estimates for the Bohr radius.

Theorem 1.4 (see [2]).

1

3 3
√
e
< B(D1

n, {zα}) ≤
1

3
.

Furthermore, for the domain

Dp
n = {z ∈ Cn : |z1|p + · · ·+ |zn|p < 1},

there are generalizations of this estimate in [10] for 1 ≤ p < ∞, and in [4]
for 0 < p < 1.

It was shown in [6] that the Bohr radius exists if the basis {φk(z)}∞k=0
has the following two properties:

1) one of its functions is constant, for instance, φ0(z) = 1,
2) there is a point z0 ∈ Ω such that φk(z0) = 0, k ≥ 1. This fact also

holds for complex manifolds.
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Observe finally that for the space of solutions of second order elliptic
equations with C∞-coefficients one can define an analogue of the Bohr radius
whose existence was proved in [9]. Other results on the Bohr radius can be
found in [3, 5, 7, 8, 13].

There is an essential difference between the Rogosinski radius and the
Bohr radius. The results mentioned above imply that the multidimensional
Bohr radius (with respect to the power basis) depends on the form of the
Reinhardt domain Ω considered. Boas and Khavinson’s result (Theorem
1.3), for example, implies that the Bohr radius for the polydisk depends on
the dimension and tends to zero as n→∞.

We will see below that in contrast to the Bohr radius, the Rogosinski
radius in a sufficiently general situation does not depend on the structure
of the domain nor the dimension of the space.

Therefore, it is natural to conjecture that in an infinite-dimensional Ba-
nach space there is a domain with an appropriate basis such that the Bohr
radius does not exist while the Rogosinski radius does.

In this paper we present some results on a generalization of the Rogosin-
ski radius and its multidimensional analogs.

2. A generalized theorem of Rogosinski. Denote by N0 the set of all
non-negative integers: N0 := {0, 1, 2, . . .} and by Nn0 = {α = (α1, . . . , αn) :
αi ∈ N0} the set of all non-negative multi-indices.

The following theorem is a natural generalization of Theorem 1.2 to
holomorphic functions on a complete Reinhardt domain in Cn.

Theorem 2.1. Let Ω ⊂ Cn be a bounded complete Reinhardt domain,
and let D ⊂ C1 be a convex domain. Suppose that f ∈ Hol(Ω,D) is a
holomorphic function on Ω with values in D, and

f(z) =
∑

α∈Nn0

cαz
α

is its Taylor series. Then for all m1, . . . ,mn ∈ Nn0 the partial sum Sm1,...,mn ,

Sm1,...,mn(z) :=
∑

α1≤m1,...,αn≤mn
cαz

α,(2.2)

maps 1
2Ω into D.

For holomorphic mappings between two complex Banach spaces X and
Y a generalization of the Rogosinski Theorem can be formulated. Recall
that the mapping f : Ω → Y, Ω ⊂ X, is called holomorphic in Ω if f is
Fréchet differentiable at each point z ∈ Ω, i.e., there exists a bounded linear
operator A (= A(z)) such that
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lim
‖v‖→0

‖f(z + v)− f(z)− Av‖
‖v‖ = 0.

The set of all holomorphic mappings in Ω taking values in a domain D ⊂ Y
is denoted by Hol(Ω,D). Furthermore, any mapping f holomorphic in a
complete circular (balanced) domain admits there a series representation

f(z) =
∞∑

k=0

Pk(z),(2.3)

where Pk is a homogeneous polynomial of degree k.

Theorem 2.2. Let X and Y be complex Banach spaces. Let Ω ⊂ X
be a bounded , complete, circular domain and D ⊂ Y be a convex domain.
Suppose f ∈ Hol(Ω,D) is a holomorphic mapping represented by a series of
homogeneous polynomials (2.3). Then for each n ∈ N the partial sum Sn,

Sn(z) :=
n∑

k=0

Pk(z),(2.4)

maps 1
2Ω into D.

Note that Theorem 2.2 does not cover Theorem 2.1 because the sums
(2.2) are not of the form (2.4).

The main result of this paper (Theorem 2.3 below) yields both Theo-
rem 2.1 and Theorem 2.2. To formulate it we need some additional notions
and notations.

Let X1, . . . ,Xn be complex Banach spaces equipped with the norms
‖ · ‖1, . . . , ‖ · ‖n, respectively. We say that a domain Ω ⊂ X1 × · · · ×Xn is a
generalized complete Reinhardt domain if x = (x1, . . . , xn) ∈ Ω implies that
y ∈ Ω for each y = (y1, . . . , yn) with ‖y1‖1 ≤ ‖x1‖1, . . . , ‖yn‖n ≤ ‖xn‖n. It
is easy to see that any mapping f ∈ Hol(Ω,Y ) holomorphic in Ω and taking
values in another Banach space Y can be represented by the series

f(z) =
∑

α∈Nn0

Pα(z) =
∑

α∈Nn0

Pα1,...,αn(z1, . . . , zn),(2.5)

where Pα1,...,αn(z1, . . . , zn) is a Y -valued polynomial αi-homogeneous with
respect to zi ∈ Xi.

Let A be a (finite or infinite) lattice in Nn0 . We say that A is admissible
if it can be represented as follows:

A = {α ∈ Nn0 : m1jα1 +m2jα2 + · · ·+mnjαn ≤ mj , j = 1, . . . , l},(2.6)

where for each j all numbers m1j,m2j , . . . ,mnj,mj belong to N0 and have
no common divisor.
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Theorem 2.3. Let X1, . . . ,Xn and Y be complex Banach spaces, let
Ω ⊂ X1 × · · · × Xn be a generalized complete Reinhardt domain, and let
D ⊂ Y be a convex domain. Suppose that f ∈ Hol(Ω,D) is represented by
the series

f(z) =
∑

α∈Nn0

Pα(z).

Let A be an admissible lattice in Nn0 ⊂ Zn which is defined by (2.6). Then
the value of the polynomial

PA(w) :=
∑

α∈A
Pα(w)(2.7)

is in D whenever w belongs to the domain ΩA defined as follows:
{
w ∈ X1 × · · · ×Xn :

(
w1∏l

j=1(rmj )
m1j

, . . . ,
wn∏l

j=1(rmj )
mnj

)
∈ Ω

}
,(2.8)

where r1 = 1/2, r2 =
√

3/8 and for m ≥ 3 the number rm is the unique
positive solution of the equation

1− r − 2rm+1 = 0.(2.9)

Moreover ,

1− lnm

m
< rm < 1− 1

m
, m ≥ 3.(2.10)

Thus rm → 1 as m tends to infinity.

Proof. We prove the theorem step by step. First, we prove

Step 1. For any m ∈ N, m ≥ 3, the equation (2.9) has a unique positive
solution rm which satisfies the inequality (2.10).

Since the function y1(r) = 1 − r is decreasing on R+ := (0,∞) and
the function y2(r) = 2rm+1 is increasing, the equation (2.9) has a unique
solution rm ∈ (0, 1). The right-hand inequality of (2.10) follows because
y2(1− 1/m) ≥ y1(1− 1/m). To show that the left inequality of (2.10) holds,
one verifies that

y1

(
1− lnm

m

)
≥ y2

(
1− lnm

m

)
,

or, equivalently,

1

2
≥ m

lnm

(
1− lnm

m

)m+1

.

Substituting for m a continuous variable t and setting x = t/ln t, we consider

the function y(x) = x(1− 1/x)t(x)+1. Direct calculation yields for t = 3 the
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value x0 = 3/ln 3. Hence y(x0) ≈ 0.4406 < 1/2. Now we show that y(x)
decreases when t ≥ 3. Indeed,

y′(x)

y(x)
=

1

x
+ t′x ln

(
1− 1

x

)
+

t+ 1

x2 − x

≤ 1

x
− t′x

(
1

x
+

1

2x2

)
+

t+ 1

x2 − x =
2x(x+ t)− t′x(2x+ 1)(x− 1)

2(x3 − x2)

=

2t2

ln2 t
+

2t2

ln t
− ln2 t

ln t− 1

(
2t

ln t
+ 1

)(
t

ln t
− 1

)

2(x3 − x2)

=
t ln3 t+ ln4 t− 2t2

2 ln2 t(ln t− 1)(x3 − x2)

=
(t ln3 t− (2− 16

e4
)t2) + (ln4 t− 16

e4
t2)

2 ln2 t (ln t− 1)(x3 − x2)
< 0,

because each summand in brackets is less than zero. Thus y is a decreasing
function, and this completes the proof of the first step.

Step 2. Let gm,r(z) =
∑m

k=0 r
kzk, z ∈ ∆, r ∈ R. Then

Re gm,r(z) ≥ 1

2

for all z ∈ ∆ and r ∈ (0, rm), where r1 = 1/2, r2 =
√

3/8, and rm for
m ≥ 3 is the unique positive solution of the equation (2.9) on the interval
(0, 1).

Indeed, by the maximum principle we have to show that

Re 2gm,r(z)− 1 > 0 for any z ∈ ∂∆.

Since |z| = 1 one can write, for r > 0,

Re 2gm,r(z)− 1 = Re
1− 2rm+1zm+1 + rz

1− rz
=

1

|1− rz|2 Re{(1− 2rm+1zm+1 + rz)(1− rz)}

=
1

|1− rz|2 Re{1− 2rm+1zm+1 + 2rm+2zm − r2}.

In particular, for m = 1 and m = 2 using standard calculus one can find the
minimal values of the function 1− 2rm+1zm+1 + 2rm+2zm − r2 on the unit
circle |z| = 1, and then we find that Re 2g1,r(z)− 1 > 0 whenever r < 1/2,

as well as Re 2g2,r(z)− 1 > 0 whenever r <
√

3/8.
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For m ≥ 3 we have

Re 2gm,r(z)− 1 ≥ 1

|1− rz|2 {1− 2rm+1 − 2rm+2 − r2}

=
1 + r

|1− rz|2 (1− r − 2rm+1).

Therefore, our claim follows by the first step.

Step 3. Let X1, . . . ,Xn and Y be complex Banach spaces, Ω ⊂ X1 ×
· · ·×Xn be a generalized complete Reinhardt domain, and D ⊂ Y be a convex
domain. Then for any mapping f ∈ Hol(Ω,D) represented by the series

f(z) =
∑

α∈Nn0

Pα(z),

for each z ∈ Ω and for all numbers m1,m2, . . . ,mn,m ∈ N0,

(2.11)
�

|ζ|=1

f(ζm1z1, . . . , ζ
mnzn)

(
1 + 2 Re

m∑

k=1

rkζk
) dζ

2πiζ

=
∑

α :m1α1+···+mnαn≤m
Pα1,...,αn(rm1z1, . . . , r

mnzn).

To prove this we just calculate:

�

|ζ|=1

f(ζm1z1, . . . , ζ
mnzn)

(
1 + 2 Re

m∑

k=1

rkζk
) dζ

2πiζ

=
�

|ζ|=1

( ∑

α∈Nn0

ζm1α1+···+mnαnPα(z)
)(

1 +
m∑

k=1

rkζk +
m∑

k=1

rkζ
k
) dζ

2πiζ

=
∑

α∈Nn0

Pα(z)
�

|ζ|=1

ζm1α1+···+mnαn ·
m∑

k=0

rkζ
k dζ

2πiζ

=
m∑

k=0

rk
∑

α:m1α1+···+mnαn=k

Pα(z)

=
∑

α:m1α1+···+mnαn≤m
Pα(rm1z1, . . . , r

mnzn).

Step 4. By Step 2,

1 + 2 Re
m∑

k=1

rkζk ≥ 0
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for all ζ ∈ ∂∆ when r ≤ rm. So, for each natural number m,

(
1 + 2 Re

m∑

k=1

(rm)kζk
) dζ

2πiζ

is a probability measure on the unit circle ∂∆. Therefore for all z ∈ Ω and
for each j = 1, . . . , l the integral

�

|ζ|=1

f(ζm1jz1, . . . , ζ
mnjzn)

(
1 + 2 Re

mj∑

k=1

(rmj )
kζk
) dζ

2πiζ

takes values in D. By Step 3 we have

�

|ζ|=1

f(ζm11z1, . . . , ζ
mn1zn)

(
1 + 2 Re

m1∑

k=1

(rm1)kζk
) dζ

2πiζ

=
∑

α :m11α1+···+mn1αn≤m1

Pα1,...,αn((rm1)m11z1, . . . , (rm1)mn1zn)

=
∑

α :m11α1+···+mn1αn≤m1

Pα(w
[1]
1 , . . . , w[1]

n ),

where w[1] = (w
[1]
1 , . . . , w

[1]
n ) with w

[1]
i = (rm1)mi1zi. In other words,

z =

(
w

[1]
1

(rm1)m11
, . . . ,

w
[1]
n

(rm1)mn1

)
∈ Ω.

The second integration gives
�

|ζ|=1

( ∑

α :m11α1+···+mn1αn≤m1

Pα(ζm12w
[1]
1 , . . . , ζmn2w[1]

n )
)

×
(

1 + 2 Re

m2∑

k=1

(rm2)kζk
) dζ

2πiζ

=
∑

α:
{
m11α1+···+mn1αn≤m1
m12α1+···+mn2αn≤m2

Pα((rm2)m12w
[1]
1 , . . . , (rm2)mn2w[1]

n )

=
∑

α:
{
m11α1+···+mn1αn≤m1
m12α1+···+mn2αn≤m2

Pα(w
[2]
1 , . . . , w[2]

n ),

where w[2] = (w
[2]
1 , . . . , w

[2]
n ) with w

[2]
i = (rm2)mi2w

[1]
i . In other words,

z =

(
w

[2]
1

(rm1)m11(rm2)m12
, . . . ,

w
[2]
n

(rm1)mn1(rm2)mn2

)
∈ Ω.

Integrating l times we achieve the polynomial PA and the domain ΩA.
The proof of the theorem is complete.
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In the following corollaries we consider some of the most important sit-
uations. In the first one we consider lattices of the form

A = {α ∈ Nn0 : αj ≤ mj, j = 1, . . . , n}.
Corollary 2.1. Let X1, . . . ,Xn and Y be complex Banach spaces, let

Ω ⊂ X1 × · · · × Xn be a generalized complete Reinhardt domain, and let
D ⊂ Y be a convex domain. Suppose that f ∈ Hol(Ω,D) is represented by
the series

f(z) =
∑

α∈Nn0

Pα(z).

Then
Pm1,...,mn(w) :=

∑

αj≤mj
Pα(w)

is in D whenever w belongs to the domain

Ωm1,...,mn =

{
w ∈ X1 × · · · ×Xn :

(
w1

rm1

, . . . ,
wn
rmn

)
∈ Ω

}
,(2.12)

where r1 = 1/2, r2 =
√

3/8 and for m ≥ 3 the number rm is the unique
positive solution of (2.9).

Remark. The domain Ωm1,...,mn defined by (2.12) may be considered a
“norm ellipsoid”. For example, if Ω ⊂ Cn is the unit ball, Ω = {z ∈ Cn :∑n

j=1 |zj|2 < 1}, then (2.12) is the Euclidean ellipsoid

Ωm1,...,mn =
{
z ∈ Cn :

n∑

j=1

|zj|2/(rmj )2 < 1
}
.

Furthermore, if Ω ⊂ Cn is the unit polydisk, Ω = {z ∈ Cn : |zj| < 1}, then
the domain (2.12) is also a polydisk: Ωm1,...,mn = {z ∈ Cn : |zj| < rj}.

In the following assertion we set n = 1. Then any admissible lattice has
the form

A = {α ∈ N0 : α ≤ m}.
Corollary 2.2. Let X and Y be complex Banach spaces. Let Ω ⊂ X

be a complete circular (balanced) domain and D ⊂ Y be a convex domain.
Suppose that f ∈ Hol(Ω,D) is a holomorphic mapping and

f(z) =
∞∑

k=0

Pk(z)

is its series of homogeneous polynomials. Then for each m ∈ N the partial
sum Sm defined by

Sm(z) :=
m∑

k=0

Pk(z)
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maps rmΩ into D, where r1 = 1/2, r2 =
√

3/8 and rm,m ≥ 3, is the unique
positive solution of (2.9).

Thus, Theorem 2.1 follows. If, in particular, we let in Corollary 2.2 the
Banach spaces be one-dimensional, X = Y = C1, Ω = ∆ and D = Π :=
{λ ∈ C : Reλ > 0} be the right-half plane in the complex plane C, then
we obtain the following one-dimensional result, which will be used in what
follows.

Corollary 2.3. Let f ∈ Hol(∆,Π). Denote by f(λ) =
∑∞

k=0 akλ
k

its Taylor series. Then for each partial sum Sm(λ) =
∑m

k=0 akλ
k we have

Sm(rmλ) ∈ Π for all λ with |λ| < 1, where rm is the unique positive solution
of (2.9).

3. Applications. LetX be a complex Banach space, andΩ be a domain
inX. For a given holomorphic mapping f ∈ Hol(Ω,X) consider the following
Cauchy problem: 



∂F (t, z)

∂t
+ f(F (t, z)) = 0,

F (0, z) = z, z ∈ Ω.
(3.13)

It is clear that for any initial point z ∈ Ω the problem (3.13) has a local
solution.

Definition 3.1. The mapping f ∈ Hol(Ω,X) is said to be a generator
in Ω if for any point z0 ∈ Ω, the Cauchy problem (3.13) has a unique
solution {F (t, z)} ⊂ Ω defined on R+ ×Ω.

In this situation the solution F (t, ·) is a semigroup of holomorphic self-
mappings of the domain Ω ⊂ X. The family of all holomorphic generators
on Ω will be denoted by G(Ω). This set is a real cone in Hol(Ω,X) (see
[16]).

In what follows Ω will be the open unit ball in X. One of the standard
tools of investigation of differential equations and approximation of its solu-
tions is to replace the mapping f in (3.13) by its Taylor polynomials. Let, as
above, Sn be the partial sum of the series of homogeneous polynomials for f
(see (2.4)). In addition to (3.13), consider the approximate Cauchy problem



∂Fn(t, z)

∂t
+ Sn(Fn(t, z)) = 0,

Fn(0, z) = z, z ∈ Ω.
(3.14)

The following questions arise naturally: Does there exist a number r > 0
such that for each n ≥ 1, the mapping Sn is a generator on rΩ? As we
shall see below, if f(0) = 0 then the answer is affirmative. Moreover, the
maximal number r such that each Sn, n = 1, 2, . . . , is a generator on rΩ is
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r = 1/2. Note that, in general, the mapping f itself may not be a generator
on balls rΩ.

Theorem 3.1. Let X be a complex Banach space, and let Ω ⊂ X be
the open unit ball in X. Suppose that f ∈ G(Ω) is a holomorphic generator
on Ω with f(0) = 0. Then for each n ∈ N we have Sn+1 ∈ G(rnΩ), where
rn is the unique solution of (2.9) in (0, 1).

Proof. For z ∈ X \ {0} denote by J(z) the so-called duality set :

J(z) := {z∗ ∈ X ′ : Re 〈z, z∗〉 = ‖z‖2 = ‖z∗‖2}.
The following criterion for f to belong to G(Ω) has been proved in [1]:

Re 〈f(z), z∗〉 ≥ Re 〈f(0), z∗〉(1− ‖z‖2) for all z ∈ Ω, z∗ ∈ J(z),

and is called the flow invariance condition. In the case f(0) = 0 this in-
equality reads

Re 〈f(z), z∗〉 ≥ 0 for all z ∈ Ω, z∗ ∈ J(z).(3.15)

For a fixed z ∈ Ω define a holomorphic function p ∈ Hol(∆,C) by

p(λ) :=
1

λ
〈f(λz), z∗〉 =

∞∑

k=0

〈Pk+1(z), z∗〉λk.

(This function is well defined on Ω because f(0) = 0.) For all λ with |λ| = 1,
by (3.15) we have

Re p(λ) = Reλ〈f(λz), z∗〉 = Re 〈f(λz), (λz)∗〉 ≥ 0.

Thus, Re p(λ) ≥ 0 for all λ ∈ ∆. Denote by pn the Taylor polynomial of p:

pn(λ) =
n∑

k=0

〈Pk+1(z), z∗〉λk.

By Corollary 2.1 and the continuity of p we get

Re pn(rn) ≥ 0.

Now we note that

〈Sn+1(rnz), (rnz)∗〉 =
n∑

k=0

〈Pk+1(rnz), (rnz)∗〉

=
n∑

k=0

〈Pk+1(z), z∗〉rk+2
n = pn(rn)r2

n.

Since z ∈ Ω is arbitrary, the last two inequalities imply that

Re〈Sn+1(z), (z)∗〉 ≥ 0 for all z ∈ rnΩ.
Then, by a result of Martin [15], we conclude that Sn+1 ∈ G(rnΩ).
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