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Joint subnormality of n-tuples and
C0-semigroups of composition operators on L2-spaces, II

by

Piotr Budzyński and Jan Stochel (Kraków)

Abstract. In the previous paper, we have characterized (joint) subnormality of a
C0-semigroup of composition operators on L2-space by positive definiteness of the Radon–
Nikodym derivatives attached to it at each rational point. In the present paper, we show
that in the case of C0-groups of composition operators on L2-space the positive definite-
ness requirement can be replaced by a kind of consistency condition which seems to be
simpler to work with. It turns out that the consistency condition also characterizes sub-
normality of C0-semigroups of composition operators on L2-space induced by injective
and bimeasurable transformations. The consistency condition, when formulated in the
language of the Laplace transform, takes a multiplicative form. The paper concludes with
some examples.

1. Introduction. The notion of a subnormal operator was introduced
into Hilbert space operator theory by Halmos [18], who himself gave a two-
condition characterization of it. This characterization was successively sim-
plified by Bram [3], Embry [11] and Lambert [22]. Itô [21] extended the
notion (as well as Bram’s characterization) of subnormality to the context of
commutative families of bounded operators. Embry’s and Lambert’s criteria
for subnormality were adapted to the context of families of operators by Lu-
bin [26]. Itô [21] proved that a C0-semigroup of subnormal operators is auto-
matically jointly subnormal and as such has an extension to a C0-semigroup
of normal operators. As noted below, this is still true for C0-groups of sub-
normal operators (cf. Proposition 2.1). Itô’s theorem enabled Nussbaum [29]
to prove the subnormality of the infinitesimal generator of a C0-semigroup of
subnormal operators. The interested reader is referred to the monograph [7]
for the foundations of the theory of subnormal operators.

Composition operators, which play an essential role in ergodic theory,
turn out to be interesting objects of operator theory. The questions of bound-

2000 Mathematics Subject Classification: Primary 47B20, 47B33; Secondary 47D03,
20M20.
Key words and phrases: composition operator on L2-space, C0-semigroup, C0-group, sub-
normal operator, joint subnormality.

DOI: 10.4064/sm193-1-2 [29] c© Instytut Matematyczny PAN, 2009



30 P. Budzyński and J. Stochel

edness, normality, quasinormality, subnormality, hyponormality etc. of such
operators are the subject of intensive research (cf. [10, 35, 28, 42, 37, 36,
20, 39, 23, 24, 25, 9, 6, 14, 15, 41, 30, 31, 32, 5]; see also [12, 13, 27, 40, 8]
for particular classes of composition operators). Our main goal here is to
continue the study of (joint) subnormality of C0-semigroups of composition
operators on L2-space initiated in [4]. The main result of the paper, Theorem
6.5, offers a new criterion for subnormality of C0-semigroups of composition
operators on L2-space induced by injective and bimeasurable transforma-
tions; it enables us to replace positive definiteness requirements appearing in
[4, Lemma 4.4] by the consistency condition (b∗). As shown in Theorem 8.4,
the consistency condition characterizes subnormality of general C0-groups
of composition operators on L2-space; the injectivity and bimeasurability
assumption is then superfluous. Another possibility of employing the consis-
tency condition is elucidated in Propositions 7.3 and 8.5, where the Laplace
transform approach is exploited. We conclude the paper with examples of
C0-semigroups and C0-groups illustrating our considerations.

In a subsequent paper we will continue the study of subnormality of C0-
semigroups of composition operators on L2-space paying special attention to
the case of C0-groups.

2. Preliminaries. In what follows, C (respectively, R, R+, Q+) stands
for the set of all complex (respectively, real, nonnegative real, nonnega-
tive rational) numbers. We also use the notation N = {1, 2, . . .} and Z+ =
{0, 1, 2, . . .}.

We say that a sequence {tn}∞n=0 of real numbers is a Stieltjes moment
sequence if there exists a positive Borel measure µ on R+ such that

tn =
�

R+

sn dµ(s), n = 0, 1, . . . ;

such a µ is called a representing measure of {tn}∞n=0. Note that a Stieltjes
moment sequence which has a representing measure with compact support is
determinate, i.e. the representing measure is uniquely determined (within the
class of all Borel measures not necessarily compactly supported, cf. [2, 17]).

A bounded linear operator S on a complex Hilbert space H is called
subnormal [18, 7] if there exists a complex Hilbert space K ⊇ H (isometric
embedding) and a bounded normal operator N on K such that S ⊆ N (i.e.
Sh = Nh for all h ∈ H). A family {Sω : ω ∈ Ω} of bounded linear operators
on H is said to be jointly subnormal if there exists a complex Hilbert space
K ⊇ H (isometric embedding) and a family {Nω : ω ∈ Ω} of commuting
bounded normal operators on K such that Sω ⊆ Nω for all ω ∈ Ω.

According to the Itô theorem (cf. [21, Theorem 4]), a C0-semigroup
{St}t∈R+ of bounded linear operators on H is jointly subnormal if and only
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if each operator St is subnormal. Because of this, we shall abbreviate the
expression “a C0-semigroup is jointly subnormal” to “a C0-semigroup is sub-
normal”.

We now state a C0-group counterpart of [21, Theorem 4].

Proposition 2.1. Suppose that {St}t∈R is a C0-group of bounded linear
operators on a complex Hilbert space H. Then the following conditions are
equivalent :

(i) the C0-group {St}t∈R is jointly subnormal ,
(ii) each operator St, t ∈ R, is subnormal ,
(iii) the C0-semigroup {St}t∈R+ is jointly subnormal ,
(iv) each operator S1/k, k ∈ N, is subnormal.

Moreover , if (i) holds, then there exists a C0-group {Nt}t∈R of bounded
normal operators on a complex Hilbert space K ⊇ H such that Su ⊆ Nu for
every u ∈ R.

Proof. The implications (i)⇒(ii), (i)⇒(iii), (ii)⇒(iv) and (iii)⇒(iv) are
obvious.

(iv)⇒(i). Arguing as in the proof of [21, Lemma 5], we see that
n∑

i,j=1

〈Stihj , Stjhi〉 ≥ 0, t1, . . . , tn ∈ R+, h1, . . . , hn ∈ H, n ∈ N.(2.1)

Take finite sequences r1, . . . , rn ∈ R and g1, . . . , gn ∈ H. Then there exists
u ∈ R such that tj := rj + u ≥ 0 for all j = 1, . . . , n. Set hj = S−ugj for
j = 1, . . . , n. Then gj = Suhj for j = 1, . . . , n. Hence, by (2.1) we have

n∑
i,j=1

〈Srigj , Srjgi〉 =
n∑

i,j=1

〈Stihj , Stjhi〉 ≥ 0.

An application of [21, Theorem 1] gives (i).
The “moreover” part can be proved just as [21, Theorem 4].

Because of Proposition 2.1, we shall abbreviate the expression “a C0-
group is jointly subnormal” to “a C0-group is subnormal”.

Remark 2.2. It is easily seen that if {St}t∈R is a group of bounded linear
operators on a Banach space X (i.e. Su+v = SuSv for all u, v ∈ R and S0 is
the identity operator on X ) and its restriction {St}t∈R+ is a C0-semigroup,
then {St}t∈R is a C0-group.

3. Composition operators modulo their symbols. Suppose that
(X,Σ, µ) is a σ-finite measure space. Put

Σµ = {σ ∈ Σ : µ(σ) <∞}.
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Denote by L2(µ) the complex Hilbert space of all square integrable complex
functions on X. Let φ : X → X be a Σ-measurable transformation of X.
Denote by µ ◦ φ−1 the measure on Σ defined by µ ◦ φ−1(σ) = µ(φ−1(σ))
for σ ∈ Σ. If µ ◦ φ−1 is absolutely continuous with respect to µ (briefly,
µ ◦ φ−1 � µ), then the operator Cφ : L2(µ) ⊇ D(Cφ)→ L2(µ) given by

D(Cφ) = {f ∈ L2(µ) : f ◦ φ ∈ L2(µ)}, Cφf = f ◦ φ for f ∈ D(Cφ),

is well-defined and linear. Such an operator is called a composition operator
induced by φ; we also say that φ is the symbol of Cφ. Set

(3.1) hφn =
dµ ◦ (φn)−1

dµ
, n ∈ Z+,

where φn denotes the n-fold composition of φ with itself for n ∈ N and
φ0 = IX = the identity transformation of X (as usual, dν/ dµ stands for
the Radon–Nikodym derivative of a measure ν with respect to a measure µ).
Note that hφ0 = 1 a.e. [µ]. Since D(Cφ) equipped with the graph norm of Cφ
coincides with the Hilbert space L2((1 + hφ1 ) dµ), we see that the operator
Cφ is closed. Recall that Cφ is bounded on L2(µ) if and only if hφ1 ∈ L∞(µ).
If ψ is a Σ-measurable transformation of X such that the mapping L2(µ) 3
f 7→ f ◦ ψ ∈ L2(µ) is well-defined, then µ ◦ ψ−1 � µ and

‖Cψ‖ = ‖hψ1 ‖
1/2
∞ ,(3.2)

where ‖ · ‖∞ stands for the L∞(µ)-norm. The interested reader is referred to
[10], [28] and [38] for further information on composition operators.

If Y is a nonempty set and f, g : X → Y are arbitrary functions, then
“f = g a.e. [µ]” (or “f(x) = g(x) for µ-a.e. x ∈ X”) means that there exists
a set σ ∈ Σ such that µ(X \ σ) = 0 and f(x) = g(x) for all x ∈ σ.

Henceforth by a Σ-bimeasurable transformation of X we mean a Σ-
measurable transformation φ : X → X such that φ(σ) ∈ Σ for every σ ∈ Σ.
Note that if φ is an injective Σ-bimeasurable transformation of X, then the
mapping Σ 3 σ 7→ µ(φ(σ)) ∈ [0,∞], denoted by µ ◦ φ, is a measure. The
following simple lemma is stated without proof.

Lemma 3.1. Suppose that φ : X → X is a Σ-measurable transformation,
Y is a nonempty set and f, g : X → Y are arbitrary functions.

(i) If µ ◦ φ−1 � µ and f = g a.e. [µ], then f ◦ φ = g ◦ φ a.e. [µ].
(ii) If φ is injective and Σ-bimeasurable, µ ◦ φ � µ, µ(X \ φ(X)) = 0

and f ◦ φ = g ◦ φ a.e. [µ], then f = g a.e. [µ].

We now investigate under what conditions on φ and ψ the equality
Cφ = Cψ holds. Recall that it is not true in general that Cφ = Cψ implies
φ = ψ a.e. [µ]; note also that the set {x ∈ X : φ(x) 6= ψ(x)} may not belong
to Σ though φ and ψ are Σ-measurable (cf. [4, Example 3.2]).
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Lemma 3.2. Suppose that φ, φ′, ψ, ψ′ : X → X are Σ-measurable trans-
formations of X.

(i) If φ = ψ a.e. [µ], then µ ◦ φ−1 = µ ◦ ψ−1.
(ii) If φ = ψ a.e. [µ], φ′ = ψ′ a.e. [µ] and µ ◦ φ−1 � µ (equivalently ,

µ ◦ ψ−1 � µ), then φ′ ◦ φ = ψ′ ◦ ψ a.e. [µ].
(iii) If φ = ψ a.e. [µ] and µ ◦φ−1 � µ, then µ ◦ψ−1 � µ and Cφ = Cψ;

moreover , φn = ψn a.e. [µ], µ ◦ (φn)−1 = µ ◦ (ψn)−1 and hφn = hψn
a.e. [µ] for every n ∈ Z+.

Proof. (i) Suppose that φ = ψ on Y , where Y ∈ Σ and µ(X \ Y ) = 0.
Then

µ(φ−1(σ)) = µ(Y ∩ φ−1(σ)) = µ(Y ∩ ψ−1(σ)) = µ(ψ−1(σ)), σ ∈ Σ.

(ii) If φ′ = ψ′ on Z, where Z ∈ Σ and µ(X \Z) = 0, then φ′ ◦ φ = ψ′ ◦ψ
on Y ∩ φ−1(Z). Since µ ◦ φ−1 � µ, we get φ′ ◦ φ = ψ′ ◦ ψ a.e. [µ].

(iii) By (i), µ ◦ ψ−1 � µ and Cφ = Cψ (because f ◦ φ = f ◦ ψ on Y for
all f ∈ CX). It follows from (ii) that φn = ψn a.e. [µ] for all n ∈ Z+. By (i),
this completes the proof.

The following useful fact extends [4, Lemma 3.1]. Below, M stands for
symmetric difference of sets.

Lemma 3.3. Suppose that φ and ψ are Σ-measurable transformations of
X inducing bounded composition operators on L2(µ).

(i) If Cφ = Cψ, then µ ◦ (φn)−1 = µ ◦ (ψn)−1 and hφn = hψn a.e. [µ] for
every n ∈ Z+.

(ii) Cφ 6= Cψ if and only if there exist Y,Z ∈ Σ such that Y ∩ Z = ∅
and µ(φ−1(Y ) ∩ ψ−1(Z)) > 0.

(iii) Cφ = Cψ if and only if µ(φ−1(σ) M ψ−1(σ)) = 0 for every σ ∈ Σµ,
or equivalently if µ(φ−1(σ) ∩ τ) = µ(ψ−1(σ) ∩ τ) for all σ, τ ∈ Σµ.

(iv) Cφ = Cψ if and only if for every Σ-measurable function g : X → C,

g ◦ φ = g ◦ ψ a.e. [µ].(3.3)

Proof. (i) and (ii) follow from [4, Lemma 3.1].
(iii) If Cφ = Cψ, then the characteristic function χσ of every σ ∈ Σµ is

in L2(µ) and χσ ◦ φ = χσ ◦ ψ a.e. [µ]. Hence

µ(φ−1(σ) M ψ−1(σ)) =
�

X

|χσ ◦ φ− χσ ◦ ψ|2 dµ = 0, σ ∈ Σµ.(3.4)

Conversely, if (3.4) holds, then Cφ = Cψ on a dense subset of L2(µ) consisting
of simple functions and consequently Cφ = Cψ. Since Cφ = Cψ if and only
if 〈Cφχσ, χτ 〉 = 〈Cψχσ, χτ 〉 for all σ, τ ∈ Σµ, we get (iii).
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(iv) It is enough to show that Cφ = Cψ implies (3.3). Since µ is σ-
finite, for each Σ-measurable function g : X → C, there exists a sequence
{gn}∞n=1 ⊆ L2(µ) such that limn→∞ gn(x) = g(x) for every x ∈ X (e.g.
gn := g ·χYn , where Yn = σn ∩ {x ∈ X : |g(x)| ≤ n} and {σk}∞k=1 ⊆ Σµ is an
ascending sequence such that X =

⋃∞
k=1 σk). As Cφ = Cψ, for each n ∈ N

there exists Zn ∈ Σ such that

µ(X \ Zn) = 0 and gn(φ(x)) = gn(ψ(x)) for all x ∈ Zn.
Letting n tend to∞, we get g(φ(x)) = g(ψ(x)) for every x ∈ Z :=

⋂∞
n=1 Zn.

Since Z ∈ Σ and µ(X \ Z) = 0, the proof is finished.

4. Injectivity. Proposition 4.1 below is folklore. For the reader’s conve-
nience we sketch its proof.

Proposition 4.1. Assume that φ is a Σ-measurable transformation
of X inducing a bounded composition operator Cφ on L2(µ). Set Zφ =
{x ∈ X : hφ1 (x) = 0} and Σ(Zφ) = {σ ∈ Σ : σ ⊆ X \ Zφ}. Then:

(i) µ ◦ φ−1 � µ and µ|Σ(Zφ) � µ ◦ φ−1|Σ(Zφ),
(ii) N (Cφ) = χZφ · L2(µ), where N (Cφ) stands for the kernel of Cφ,
(iii) N (Cφ) = {0} if and only if the measures µ◦φ−1 and µ are mutually

absolutely continuous, or equivalently if hφ1 > 0 a.e. [µ],
(iv) if φ(X) ∈ Σ, then hφ1 = 0 on X \ φ(X) a.e. [µ],
(v) if φ is injective and Σ-bimeasurable, then Cφ(L2(µ)) is dense in

L2(µ),
(vi) if φ is injective and Σ-bimeasurable, and µ ◦ φ� µ, then

(4.1) hφ−1 ◦ φ
−1 · hφ1 = 1 on φ(X) a.e. [µ],

where hφ−1 = dµ ◦ φ/ dµ,
(vii) if φ is injective and Σ-bimeasurable, µ◦φ� µ and µ(X\φ(X)) = 0,

then N (Cφ) = {0}, the operator C−1
φ is closed and densely defined ,

and C−1
φ = Cφ−1 .

Note that the set Zφ (and hence Σ(Zφ)) is determined up to a.e. [µ]
equivalence.

Proof of Proposition 4.1. The conditions (1) (i)–(iii) can be deduced from
the definition of hφ1 and the well-known equality (which in turn is a conse-
quence of the measure transport theorem [19, Theorem C, p. 163])

‖Cφf‖2 =
�

X

|f |2hφ1 dµ, f ∈ L2(µ).

(1) The condition (iii) also follows from [38, Theorem 2.2.2].
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(iv) is a consequence of the equalities

0 = µ(φ−1(X \ φ(X))) =
�

X\φ(X)

hφ1 dµ.

(v) According to [20, p. 126] (see also [38, Theorem 2.2.6]), the closure of
the range of Cφ consists of all φ−1(Σ)-measurable members of L2(µ). This
fact combined with the equality f = f ◦ φ−1 ◦ φ, which is valid for every
f ∈ L2(µ), gives the conclusion of (v).

(vi) It follows from the measure transport theorem that

µ(σ) = µ(φ(φ−1(σ))) =
�

X

χσ ◦ φ · hφ−1 ◦ φ
−1 ◦ φdµ

=
�

φ(X)

χσ · hφ−1 ◦ φ
−1 dµ ◦ φ−1

=
�

σ

hφ−1 ◦ φ
−1 · hφ1 dµ, σ ∈ Σ, σ ⊆ φ(X).

By σ-finiteness of µ this implies (4.1).
(vii) Injectivity of Cφ is a direct consequence of Lemma 3.1(ii). Since Cφ

is closed so is its inverse. The operator C−1
φ is densely defined due to (v).

In turn, because µ(X \ φ(X)) = 0 and µ ◦ φ� µ, the composition operator
Cφ−1 is well-defined. Finally, the equality C−1

φ = Cφ−1 can be proved in a
standard way.

It follows from Proposition 4.1(iii) that a bounded composition operator
Cφ on L2(µ), which is induced by a bijective and Σ-bimeasurable trans-
formation φ, is injective if and only if µ ◦ φ � µ; moreover, if this is
the case, then, by Lemma 3.1(i) and Proposition 4.1(vi), (vii), we see that
hφ−1 = 1/hφ1 ◦ φ a.e. [µ], the operator C−1

φ is closed and densely defined, and
C−1
φ = Cφ−1 .

Example 4.2. Let X be an infinite countable set. Decompose it into
a disjoint countable union X =

⊔∞
n=−1Xn of infinite sets. Consider a

bijection φ : X → X such that φ(X−1) = X−1 ∪ X0 and φ(Xn) = Xn+1

for all n ≥ 0. Put Σ = 2X . Let µ : Σ → R+ be a measure such that
µ(X−1) = 0 and µ({x}) > 0 for all x ∈ X \ X−1. Then φ is Σ-bimeas-
urable, µ ◦ φ−1 � µ, µ ◦ φ �/ µ, hφ1 (x) = 0 for x ∈ X0 and hφ1 (x) =
µ(φ−1({x}))/µ({x}) > 0 for x ∈ X \ (X−1 ∪ X0). Assume that φ induces
a bounded composition operator on L2(µ) (by (3.2) this assumption has
no influence on whether µ is finite or not). Clearly µ(Zφ) > 0. In view of
Proposition 4.1(ii), dimN (Cφ) =∞. By Proposition 4.1(v), the range of Cφ
is dense in L2(µ).
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5. Subnormality and almost surjectivity. Suppose that

(5.1) (X,Σ, µ) is a σ-finite measure space with µ 6= 0 and φ = {φt}t∈R+ is
a family of Σ-measurable transformations ofX such that every φt in-
duces a bounded composition operator Cφt on L2(µ), and {Cφt}t∈R+

is a C0-semigroup.

Set

hφ
t =

dµ ◦ φ−1
t

dµ
, t ∈ R+.(5.2)

Note that (cf. [4, Section 4])

hφ
0 = 1 a.e. [µ], hφtn = hφ

nt a.e. [µ] for all t ∈ R+ and n ∈ Z+.(5.3)

It is clear that for each t ∈ R+ the function hφ
t can be redefined on a set of

measure zero (depending on t) without affecting the validity of (5.2), which
may improve the properties of the function t 7→ hφ

t (x) (cf. [4, Theorem 4.5]).
By (5.3) and Lambert’s criterion (cf. [24]), the operator Cφt (with t fixed)

is subnormal if and only if for µ-a.e. x ∈ X, there exists a unique probability
Borel measure ϑtx on R+ such that

hφ
nt(x) =

∞�

0

sn dϑtx(s), n ∈ Z+.(5.4)

In fact, for µ-a.e. x ∈ X, the closed support of ϑtx is contained in [0, ‖Cφt‖2].
Moreover, according to (5.3) and (5.4), for µ-a.e. x ∈ X the closed support
of ϑ0

x equals {1}. If the C0-semigroup {Cφs}s∈R+ is subnormal, then by [4,
Lemma 4.4] we have

ϑsx({0}) = 0 for µ-a.e. x ∈ X and for all s ∈ R+.(5.5)

We now show that under certain circumstances the family {φt(X)}t∈R+

may have a kind of monotonicity property. Below, µ∗ stands for the inner
measure induced by µ, i.e.

µ∗(τ) = sup{µ(σ) : σ ∈ Σ, σ ⊆ τ}, τ ⊆ X.

Proposition 5.1. If (5.1) holds, t ∈ R+ and µ(φt(σ)) = 0 for every
σ ∈ Σ such that φt(σ) ∈ Σ and µ(σ) = 0, then

µ∗(φt(X) \ φs(X)) = 0, 0 ≤ s ≤ t.(5.6)

Proof. Take σ ∈ Σµ such that σ ⊆ φt(X) \φs(X). Then χσ ∈ L2(µ) and

‖Cφs(χσ)‖2 = µ(φ−1
s (σ)) = 0,

which implies that

µ(φ−1
t (σ)) = ‖Cφt(χσ)‖2 = ‖Cφt−s(Cφs(χσ))‖2 = 0.(5.7)
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Since σ ⊆ φt(X), we get σ = φt(φ−1
t (σ)). Hence (5.7) and our assumption

on µ imply that µ(σ) = 0. Thus, by σ-finiteness of µ, the proof of (5.6) is
finished.

In the case when the operator Cφt is subnormal for some t > 0, all the
transformations φu, u ∈ R+, have to be “almost surjective”.

Proposition 5.2. Suppose that (5.1) holds. Then

µ∗(X \ φ0(X)) = 0.

If Cφt is subnormal for some real t > 0 and ϑtx({0}) = 0 for µ-a.e. x ∈ X,
then

µ∗(X \ φu(X)) = 0, u ∈ R+.(5.8)

In particular , (5.8) holds if the C0-semigroup {Cφs}s∈R+ is subnormal.

Proof. Clearly, Cφ0 , being the identity on L2(µ), is subnormal and
ϑ0
x({0}) = 0 for µ-a.e. x ∈ X. Thus, the proof reduces to showing that

(5.8) holds for each u ∈ R+ of the form u = st, where s, t ∈ R+, Cφt is
subnormal and ϑtx({0}) = 0 for µ-a.e. x ∈ X.

Take σ ∈ Σµ such that σ ⊆ X \ φst(X). Then

‖Cφst(χσ)‖2 = µ(φ−1
st (σ)) = 0.(5.9)

Let n be an integer with n ≥ s. Then (5.9) leads to�

σ

hφ
nt dµ = ‖Cφnt(χσ)‖2 = ‖Cφ(n−s)t(Cφst(χσ))‖

2 = 0.

This in turn implies that

hφ
nt(x) = 0 for all integers n ≥ s and for µ-a.e. x ∈ σ.

Hence, by (5.4), ϑtx((0,∞)) = 0 for µ-a.e. x ∈ σ. Since ϑtx({0}) = 0 for µ-a.e.
x ∈ X, we see that ϑtx(R+) = 0 for µ-a.e. x ∈ σ. As ϑtx(R+) = 1 for µ-a.e.
x ∈ X, we conclude that µ(σ) = 0. Hence the σ-finiteness of µ implies (5.8).
Because each subnormal C0-semigroup {Cφs}s∈R+ satisfies condition (5.5),
the proof is complete.

Corollary 5.3. Suppose that (5.1) holds and that the C0-semigroup
{Cφt}t∈R+ is subnormal. Assume moreover that

(i) φs+t(X) = φs(φt(X)) for all s, t ∈ R+,
(ii) φn(X) ∈ Σ for all n ∈ N.

Then
⋂
t∈R+

φt(X) ∈ Σ and µ(X \
⋂
t∈R+

φt(X)) = 0.

Proof. By (i), φt(X) ⊆ φs(X) for all s, t ∈ R+ such that s ≤ t. Hence
(ii) implies that ⋂

t∈R+

φt(X) =
∞⋂
n=1

φn(X) ∈ Σ.(5.10)
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By Proposition 5.2, µ(X \ φn(X)) = 0 for all n ∈ N. Thus, (5.10) yields

µ
(
X \

⋂
t∈R+

φt(X)
)

= µ
( ∞⋃
n=1

(X \ φn(X))
)

= 0.

Example 5.4. Let X = R+, Σ be the σ-algebra of all Borel subsets
of R+, µ be the Lebesgue measure on R+ and φt(s) = s + t for s, t ∈ R+.
Then {Cφt}t∈R+ is a contractive C0-semigroup of composition operators.
By Corollary 5.3, it is not subnormal. Moreover, for every t ∈ R+, the
transformation φt is injective and Σ-bimeasurable, and µ ◦ φt � µ.

6. The bimeasurable case. The reader should be aware that if (5.1)
is valid, then for every u ∈ R+, the density function hφ

u is determined up to
a.e. [µ] equivalence. Since µ ◦ φ−1

t � µ and µ ◦ φ−1
s ◦ φ−1

t � µ, also hφ
u ◦ φt

and hφ
u ◦φt ◦φs are determined up to a.e. [µ] equivalence for all s, t, u ∈ R+.

The same holds for x 7→ ϑux, x 7→ ϑuφt(x) and x 7→ ϑuφt(φs(x)). These facts will
be used without further comments throughout the paper.

We begin by showing a kind of semigroup property for {φt}t∈R+ .

Lemma 6.1. Suppose that (5.1) holds and s, t, u ∈ R+. Then

hφ
u ◦ φs ◦ φt = hφ

u ◦ φs+t a.e. [µ].(6.1)

Moreover , if the composition operator Cφ1 is subnormal , then

ϑ1
φs(φt(x))

= ϑ1
φs+t(x)

for µ-a.e. x ∈ X.(6.2)

Proof. Since Cφs◦φt = CφtCφs = Cφs+t , we infer (6.1) from Lem-
ma 3.3(iv). If Cφ1 is subnormal, then (6.1) yields

hφ
m(φs(φt(x))) = hφ

m(φs+t(x)) for all m ∈ Z+ and µ-a.e. x ∈ X.

Together with (5.4), this implies that for µ-a.e. x ∈ X,
∞�

0

rm dϑ1
φs(φt(x))

(r) =
∞�

0

rm dϑ1
φs+t(x)

(r) for all m ∈ Z+.(6.3)

Since for µ-a.e. x ∈ X, the Borel measures ϑ1
φs(φt(x))

and ϑ1
φs+t(x)

are com-
pactly supported, we infer (6.2) from (6.3). This completes the proof.

Next we describe the relationship between hφ
s+t, h

φ
t and hφ

s .

Lemma 6.2. Suppose that (5.1) holds and t ∈ R+. If the transformation
φt is injective and Σ-bimeasurable, then for every s ∈ R+,

(6.4) hφ
s+t(φt(x)) = hφ

t (φt(x)) · hφ
s (x) for µ-a.e. x ∈ X.
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Proof. Fix s ∈ R+. Applying Lemma 3.3(i) to the equalities Cφt◦φs =
CφsCφt = Cφs+t , we get

µ(φ−1
s+t(σ)) = µ(φ−1

s (φ−1
t (σ))), σ ∈ Σ.(6.5)

According to our assumption, φt(X) ∈ Σ and φt : X → φt(X) is a bijective
Σ-bimeasurable transformation. Hence the measure transport theorem yields�

σ

hφ
s+t ◦ φt dµ =

�

φt(X)

χσ ◦ φ−1
t hφ

s+t dµ ◦ φ
−1
t

=
�

φt(X)

χσ ◦ φ−1
t hφ

s+th
φ
t dµ =

�

φt(X)

χσ ◦ φ−1
t hφ

t dµ ◦ φ
−1
s+t

(6.5)
=

�

φt(X)

χσ ◦ φ−1
t hφ

t dµ ◦ φ−1
s ◦ φ−1

t =
�

σ

hφ
t ◦ φt dµ ◦ φ−1

s

=
�

σ

hφ
t ◦ φt hφ

s dµ, σ ∈ Σ,

which, together with σ-finiteness of µ, completes the proof.

We now distinguish two necessary conditions for a C0-semigroup of com-
position operators to be subnormal. As will be shown in Theorem 6.5, they
are also sufficient provided the C0-semigroup in question is more regular.

For t ∈ R+, we define the function ξt : R+ → R+ by

ξt(s) = st, s ∈ R+ (with 00 = 1).

Lemma 6.3. Assume that (5.1) holds and the C0-semigroup {Cφs}s∈R+

is subnormal. Then

(a) ϑ1
x({0}) = 0 for µ-a.e. x ∈ X.

Moreover , if t ∈ R+ and the transformation φt is injective and Σ-bimeasur-
able, then

(b) ξt dϑ1
φt(x)

= hφ
t (φt(x)) dϑ1

x for µ-a.e. x ∈ X.

Proof. (a) Apply [4, Lemma 4.4(v)].
(b) It follows from [4, Lemma 4.4(vii)] that

hφ
r (x) =

∞�

0

sr dϑ1
x(s) for µ-a.e. x ∈ X and every r ∈ R+.(6.6)

Hence Lemma 3.1(i) implies that for µ-a.e. x ∈ X,
∞�

0

smhφ
t (φt(x)) dϑ1

x(s)
(6.6)
= hφ

m(x)hφ
t (φt(x))

(6.4)
= hφ

m+t(φt(x)(6.7)

(6.6)
=
∞�

0

smξt(s) dϑ1
φt(x)

(s), m ∈ Z+.
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Since for µ-a.e. x ∈ X, the measures dϑ1
x and ξt dϑ1

φt(x)
are finite and com-

pactly supported, we can infer (b) from (6.7).

Remark 6.4. Regarding Lemmata 6.2 and 6.3, note that if (5.1) holds
and the C0-semigroup {Cφu}u∈R+ is subnormal, then for every t ∈ R+, the
following two conditions are equivalent (we do not assume that the transfor-
mation φt is injective and Σ-bimeasurable):

(i) ξt dϑ1
φt(x)

= hφ
t (φt(x)) dϑ1

x for µ-a.e. x ∈ X,

(ii) hφ
s+t(φt(x)) = hφ

t (φt(x)) · hφ
s (x) for µ-a.e. x ∈ X and for every s ∈

R+.

For the idea of the proof see Lemma 7.1. That (ii) implies (i) is essentially
shown in the proof of Lemma 6.3(b).

We are now in a position to state a new criterion for subnormality of C0-
semigroups of composition operators induced by injective Σ-bimeasurable
transformations. It seems to be simpler to use (though less general) than the
criterion given in [4, Lemma 4.4]. The reason is that we do not impose any
requirement of moment type on the operators {Cφ1/k

}∞k=2, assuming instead
a kind of consistency condition.

Theorem 6.5. Assume that (5.1) holds and for every k ∈ N, the trans-
formation φ1/k is injective and Σ-bimeasurable, and µ ◦ φ1/k � µ. Then
the C0-semigroup {Cφt}t∈R+ is subnormal if and only if the operator Cφ1 is
subnormal , condition (a) of Lemma 6.3 is satisfied and

(b∗) ξ1/k dϑ1
φ1/k(x)

= hφ
1/k(φ1/k(x)) dϑ1

x for µ-a.e. x ∈ X and every k ∈ N.

Proof. In view of Lemma 6.3, it is enough to prove the “if” part. We split
the proof into three steps.

Step 1: There is no loss of generality in assuming that for every t ∈ Q+,
the transformation φt is injective and Σ-bimeasurable, µ ◦ φt � µ and
φ0 = IX .

Indeed, if this is not the case, then we define a new family {φ̃t}t∈R+ of
Σ-measurable transformations of X by

φ̃t =


IX for t = 0,
(φ1/k)j for t = j/k where j, k ∈ N are relatively prime,
φt for t ∈ R+ \Q+.

(6.8)

Note that φ̃1/k = φ1/k for all k ∈ N. It is easily seen that for every t ∈ Q+,
the transformation φ̃t is injective and Σ-bimeasurable, and µ ◦ φ̃t � µ.
According to (6.8) and (5.1), we have

Ceφj/k = C(φ1/k)
j = Cjφ1/k

= Cφj/k for all j, k ∈ N relatively prime,
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which, together with Lemma 3.3(i), implies hφ
t = h

eφ
t a.e. [µ] for all t ∈ R+.

This means that the C0-semigroup {Ceφt}t∈R+ has all the desired properties.
We now strengthen condition (b∗).

Step 2: ξj/k dϑ1
φj/k(x)

= hφ
j/k(φj/k(x)) dϑ

1
x for µ-a.e. x ∈ X and all

j ∈ Z+ and k ∈ N.
Indeed, fix k ∈ N. Since the case j = 0 follows from Step 1 and (5.3),

we can assume that j ≥ 1. In view of Lemma 3.1(i), we see that for µ-a.e.
x ∈ X,

ξj/k dϑ
1
φj/k(x)

(6.2)
= ξ(j−1)/k(ξ1/k dϑ

1
φ1/k(φ(j−1)/k(x))

)

(b∗)
= ξ(j−1)/k(h

φ
1/k(φ1/k(φ(j−1)/k(x))) dϑ

1
φ(j−1)/k(x)

)

(6.1)
= hφ

1/k(φj/k(x))(ξ(j−1)/k dϑ
1
φ(j−1)/k(x)

).

Iterating the above procedure, we deduce that

ξj/k dϑ
1
φj/k(x)

= hφ
1/k(φj/k(x))h

φ
1/k(φ(j−1)/k(x)) · · ·h

φ
1/k(φ1/k(x)) dϑ

1
x(6.9)

for µ-a.e. x ∈ X. We now use an induction argument on j to prove that
∆j(x)︷ ︸︸ ︷

hφ
1/k(φj/k(x))h

φ
1/k(φ(j−1)/k(x)) · · ·h

φ
1/k(φ1/k(x)) = hφ

j/k(φj/k(x))(6.10)

for µ-a.e. x ∈ X. Clearly (6.10) is true for j = 1. If (6.10) holds for a fixed
j ≥ 1, then by Lemma 3.1(i) we see that for µ-a.e. x ∈ X,

∆j+1(x) = hφ
1/k(φ(j+1)/k(x))∆j(x)

(6.1)&(6.10)
= hφ

1/k(φ1/k(φj/k(x)))h
φ
j/k(φj/k(x))

(6.4)
= hφ

(j+1)/k(φ1/k(φj/k(x)))
(6.1)
= hφ

(j+1)/k(φ(j+1)/k(x)),

which completes the induction argument. Therefore Step 2 follows from (6.9)
and (6.10).

Step 3: Fix k ∈ N. If n ∈ Z+, then there are j,m ∈ Z+ such that
n = mk + j and 0 ≤ j < k. Employing Step 1 and the measure transport
theorem, we see that for µ-a.e. y ∈ X,

hφ
n/k(φj/k(y)) = hφ

m+j/k(φj/k(y))
(6.4)
= hφ

j/k(φj/k(y))h
φ
m(y)(6.11)

(5.4)
=
∞�

0

smhφ
j/k(φj/k(y)) dϑ

1
y(s)

Step 2
=

∞�

0

sn/k dϑ1
φj/k(y)

(s)

=
∞�

0

sn d(ϑ1
φj/k(y)

◦ ξk)(s).
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It follows from condition (a) of Lemma 6.3, Step 1 and Proposition 5.2 (with
t = 1) that µ(X \ φj/k(X)) = 0. Step 1 and (6.11), when combined with
Lemma 3.1(ii), now lead to

hφ
n/k(x) =

∞�

0

sn d(ϑ1
x ◦ ξk)(s) for all n ∈ Z+ and µ-a.e. x ∈ X.

Summarizing, we have shown that for µ-a.e. x ∈ X and each k ∈ N, the
sequence {hφ

n/k(x)}
∞
n=0 is a Stieltjes moment sequence. Therefore, by [4,

Lemma 4.3], the C0-semigroup {Cφt}t∈R+ is subnormal.

Remark 6.6. It is worth noticing that under the assumptions of The-
orem 6.5, if the C0-semigroup {Cφu}u∈R+ is subnormal, then each operator
Cφt is injective and has dense range. Indeed, in view of Steps 1 and 3 of the
proof of Theorem 6.5 we can assume that for every s ∈ Q+, the transforma-
tion φs is injective and Σ-bimeasurable, µ ◦ φs � µ and µ(X \ φs(X)) = 0.
It follows from Proposition 4.1(vii) that

Cφs is injective and has dense range for all s ∈ Q+.(6.12)

In turn, the semigroup property of {Cφu}u∈R+ implies that

if 0 ≤ t ≤ s, then N (Cφt) ⊆ N (Cφs) and R(Cφs) ⊆ R(Cφt),(6.13)

whereN (Cφu) andR(Cφu) stand for the kernel and range of Cφu respectively.
Combining (6.12) and (6.13) completes the proof.

7. The Laplace transform approach. Our next goal is to show how
condition (b) of Lemma 6.3 can be translated into the language of the Laplace
transform. Given a finite positive Borel measure ζ on R+, we define the
function L(ζ) : R+ → R+, called the Laplace transform of ζ, by

L(ζ)(t) =
∞�

0

e−ts dζ(s), t ∈ R+.

Denote by B(R+) the σ-algebra of all Borel subsets of R+. If (5.1) holds and
the C0-semigroup {Cφt}t∈R+ is subnormal, then by [4, Theorem 4.5] there
exists a function P : X ×B(R+)→ [0, 1] such that:

1o for every x ∈ X, P (x, ·) is a probability Borel measure on R+,
2o for every σ ∈ B(R+), P (·, σ) is Σ-measurable,
3o for every t ∈ R+, the function X 3 x 7→ L(P (x, ·))(t) ∈ R+ is

Σ-measurable,
4o for µ-a.e. x ∈ X and every t ∈ R+, h

φ
t (x) = eδtL(P (x, ·))(t), where

δ := 2 log ‖Cφ1‖.
Since L2(µ) 6= {0}, Proposition 1 of [29] implies that δ ∈ R and eδt = ‖Cφt‖2
for all t ∈ R+.
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Lemma 7.1. Assume that (5.1) holds and the C0-semigroup {Cφu}u∈R+

is subnormal. Let P : X ×B(R+) → [0, 1] satisfy conditions 1o to 4o. Then
for every t ∈ R+, the following conditions are equivalent :

(i) L(χσP (φt(x), ·))(t) = L(P (φt(x), ·))(t)P (x, σ) for all σ ∈ B(R+)
and µ-a.e. x ∈ X,

(ii) hφ
s+t(φt(x)) = hφ

t (φt(x)) · hφ
s (x) for all s ∈ R+ and µ-a.e. x ∈ X.

Proof. Set Hφ
u (x) = eδuL(P (x, ·))(u) for x ∈ X and u ∈ R+. Fix

t ∈ R+. Denote by νL
x (σ) (respectively, νR

x (σ)) the left-hand (respectively,
right-hand) side of the equality in (i). Clearly, νL

x and νR
x are finite positive

Borel measures on R+.
(i)⇒(ii). Let X0 ∈ Σ be a set of full µ-measure such that hφ

u (x) =
Hφ
u (x) and νL

x = νR
x for all u ∈ R+ and x ∈ X0. Integrating the functions

R+ 3 u 7→ e−su ∈ R+, s ∈ R+, with respect to νL
x and νR

x , we see that
Hφ
s+t(φt(x)) = Hφ

t (φt(x)) ·Hφ
s (x) for all s ∈ R+ and x ∈ X0. This implies

that hφ
s+t(φt(x)) = hφ

t (φt(x)) · hφ
s (x) for all s ∈ R+ and x ∈ X0 ∩ φ−1

t (X0).
Since µ ◦ φ−1

t � µ, we deduce that X0 ∩ φ−1
t (X0) is a set of full µ-measure.

Summarizing, we have shown that (ii) holds.
(ii)⇒(i). LetX0 ∈ Σ be a set of full µ-measure such that hφ

s (x) = Hφ
s (x)

and hφ
s+t(φt(x)) = hφ

t (φt(x)) · hφ
s (x) for all s ∈ R+ and x ∈ X0. Then

Hφ
s+t(φt(x)) = Hφ

t (φt(x))·Hφ
s (x) for all s ∈ R+ and x ∈ Y0 := X0∩φ−1

t (X0).
This implies that eδtL(νL

x ) = L(Hφ
t (φt(x))P (x, ·)) for every x ∈ Y0. Conse-

quently, eδtνL
x = Hφ

t (φt(x))P (x, ·) for every x ∈ Y0 (cf. [43]). Since Y0 is a
set of full µ-measure, the proof is finished.

Now we rewrite condition (b) of Lemma 6.3 in terms of the Laplace
transform. The reader should be aware of the difference between conditions
(6.4) and (7.2), which lies in the order of the quantifiers “for every s ∈ R+”
and “for µ-a.e. x ∈ X”.

Proposition 7.2. Assume that (5.1) holds, the C0-semigroup {Cφt}t∈R+

is subnormal and each transformation φt is injective and Σ-bimeasurable.
Let P : X×B(R+)→ [0, 1] satisfy conditions 1o to 4o preceding Lemma 7.1.
Then for every t ∈ R+ and µ-a.e. x ∈ X,

L(χσP (φt(x), ·))(t) = L(P (φt(x), ·))(t)P (x, σ), σ ∈ B(R+),(7.1)

hφ
s+t(φt(x)) = hφ

t (φt(x)) · hφ
s (x), s ∈ R+.(7.2)

Proof. First we justify (7.1). By [4, Theorem 4.5], we have for µ-a.e.
x ∈ X,

P (x, σ) = ϑ1
x(ω
−1(σ)), σ ∈ B(R+),(7.3)
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where ω : (0, eδ] → [0,∞) is defined by ω(s) = δ − log s. Fix t ∈ R+.
Lemma 3.1(i), the measure transport theorem and Lemma 6.3(b) imply that
for µ-a.e. x ∈ X,

L(χσP (φt(x), ·))(t)
(7.3)
=
∞�

0

χσ(s)e−ts d (ϑ1
φt(x)

◦ ω−1)(s)

= e−δt
�

(0,eδ]

χσ ◦ ω · ξt dϑ1
φt(x)

(b)
= e−δthφ

t (φt(x))
�

(0,eδ]

χσ ◦ ω dϑ1
x

(7.3)
= L(P (φt(x), ·))(t)P (x, σ), σ ∈ B(R+).

Applying Lemma 7.1 completes the proof.

Motivated by Lemma 7.1 and Proposition 7.2, we propose yet another
criterion for subnormality of C0-semigroups of composition operators written
in terms of the Laplace transform.

Proposition 7.3. Assume that (5.1) holds and for every k ∈ N, the
transformation φ1/k is injective and Σ-bimeasurable, and µ ◦ φ1/k � µ.
Suppose also that µ(X \ φ1(X)) = 0 and there exists δ ∈ R and a family
{ζx}x∈X of probability Borel measures on R+ satisfying the following two
conditions for µ-a.e. x ∈ X:

(i) hφ
1/k(x) = eδ/kL(ζx)(1/k) for all k ∈ N,

(ii) L(χσζφ1/k(x))(1/k) = L(ζφ1/k(x))(1/k) ·ζx(σ) for all σ ∈ B(R+) and
k ∈ N.

Then the C0-semigroup {Cφt}t∈R+ is subnormal.

Proof. Set Hφ
u (x) = eδuL(ζx)(u) for x ∈ X and u ∈ R+. By (i), we have

hφ
1/k = Hφ

1/k a.e. [µ], k ∈ N.(7.4)

As in the proof of Lemma 7.1, we infer from (ii) that

Hφ
s+1/k ◦ φ1/k = Hφ

1/k ◦ φ1/k ·Hφ
s a.e. [µ], k ∈ N, s ∈ R+.(7.5)

We now show that for all k ∈ N and n ∈ Z+,

(7.6) (µ(X \ φ1/k(X)) = 0 ∧ hφ
n/k = Hφ

n/k a.e. [µ])

⇒ hφ
(n+1)/k = Hφ

(n+1)/k a.e. [µ].
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Indeed, by Lemma 3.1(i), we have

hφ
(n+1)/k ◦ φ1/k

(6.4)
= hφ

1/k ◦ φ1/k · h
φ
n/k

(7.4)
= Hφ

1/k ◦ φ1/k ·H
φ
n/k

(7.5)
= Hφ

(n+1)/k ◦ φ1/k a.e. [µ].

Applying µ(X \φ1/k(X)) = 0 and Lemma 3.1(ii), we get hφ
(n+1)/k = Hφ

(n+1)/k

a.e. [µ].
It follows from (7.4) and (7.6) via an induction argument that

hφ
n = Hφ

n a.e. [µ], n ∈ Z+,(7.7)

the case n = 0 being covered by (5.3). Thus, by the measure transport
theorem, we have

hφ
n (x) =

∞�

0

(eδ−s)n dζx(s)(7.8)

=
�

(0,eδ]

tn d (ζx ◦ Φ−1)(t) a.e. [µ], n ∈ Z+,

where Φ : R+ → (0, eδ] is given by Φ(s) = eδ−s for s ∈ R+. This means that
for µ-a.e. x ∈ X, the sequence {hφ

n (x)}∞n=0 is a Stieltjes moment sequence
whose representing measure ζx ◦ Φ−1 has compact support. Hence, by Lam-
bert’s criterion, the operator Cφ1 is subnormal and ϑ1

x = ζx ◦ Φ−1 for µ-a.e.
x ∈ X. This in turn implies that ϑ1

x({0}) = 0 for µ-a.e. x ∈ X, which, when
combined with Proposition 5.2, leads to

µ(X \ φ1/k(X)) = 0, k ∈ N.(7.9)

Using again induction, (7.7), (7.6) and (7.9), we obtain

hφ
n/k = Hφ

n/k a.e. [µ], k ∈ N, n ∈ Z+.(7.10)

Analogously to (7.8), we infer from (7.10) that for µ-a.e. x ∈ X and all
k ∈ N, the sequence {hφ

n/k(x)}
∞
n=0 is a Stieltjes moment sequence (with

the representing measure ζx ◦ Φ−1
k , where Φk : R+ → (0, eδ/k] is given by

Φk(s) = e(δ−s)/k). Hence, by [4, Lemma 4.3], the C0-semigroup {Cφt}t∈R+ is
subnormal.

Yet another way of proving Proposition 7.3 is to first establish subnor-
mality of Cφ1 and equality ϑ1

x = ζx ◦ Φ−1 a.e. [µ] (as in the proof above),
and then to apply Theorem 6.5.

8. C0-groups. In this section we investigate subnormality of C0-groups
of composition operators on L2(µ). It turns out that the criterion for subnor-
mality of C0-semigroups given in Theorem 6.5 (as well as the other results
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of Section 6) remains valid for C0-groups without assuming that the trans-
formations φ1/k are injective and Σ-bimeasurable, and that µ ◦ φ1/k � µ.

Consider the following general situation:
(8.1) (X,Σ, µ) is a σ-finite measure space with µ 6= 0 and φ = {φt}t∈R is

a family of Σ-measurable transformations of X such that every φt
induces a bounded composition operator Cφt on L2(µ) and {Cφt}t∈R
is a C0-group.

As in (5.2), we define

hφ
t =

dµ ◦ φ−1
t

dµ
, t ∈ R.

Since Cφ0 = CIX and Cφnt = Cnφt = C(φt)n for n ∈ Z+, Lemma 3.3(i) leads
to

hφ
0 = 1 a.e. [µ], hφtn = hφ

nt a.e. [µ] for all t ∈ R and n ∈ Z+.(8.2)

Let us formulate C0-group analogs of Lemmata 6.1, 6.2 and 6.3.

Lemma 8.1. Suppose that (8.1) holds and s, t, u ∈ R. Then

hφ
u (φs(φt(x))) = hφ

u (φs+t(x)) and hφ
u (φ0(x)) = hφ

u (x) for µ-a.e. x ∈ X.
Moreover , if the composition operator Cφ1 is subnormal , then

ϑ1
φs(φt(x))

= ϑ1
φs+t(x)

and ϑ1
φ0(x) = ϑ1

x for µ-a.e. x ∈ X.(8.3)

Proof. Argue as in the proof of Lemma 6.1.

Lemma 8.2. Suppose that (8.1) holds. If s, t ∈ R and n ∈ Z+, then for
µ-a.e. x ∈ X,

hφ
s+t(x) = hφ

t (x) · hφ
s (φ−t(x)),(8.4)

hφ
s+t(φt(x)) = hφ

t (φt(x)) · hφ
s (x),(8.5)

1 = hφ
−t(x) · h

φ
t (φt(x)),(8.6)

hφ
−n(x) =

1

hφ
n (φn(x))

.(8.7)

Proof. We argue essentially as in the proof of Lemma 6.2. As there, we
see that (6.5) is valid for all s, t ∈ R. Fix s, t ∈ R. Since Cφ−t◦φt = CφtCφ−t =
CIX , we infer from Lemma 3.3(iv) that

hφ
s ◦ φ−t ◦ φt = hφ

s a.e. [µ].(8.8)

Thus, the measure transport theorem yields
�

σ

hφ
s+t dµ =

�

X

χσ dµ ◦ φ−1
s+t

(6.5)
=

�

X

χσ dµ ◦ φ−1
s ◦ φ−1

t

=
�

X

χσ ◦ φt dµ ◦ φ−1
s =

�

X

χσ ◦ φt hφ
s dµ
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(8.8)
=

�

X

χσ ◦ φt hφ
s ◦ φ−t ◦ φt dµ =

�

σ

hφ
s ◦ φ−t dµ ◦ φ−1

t

=
�

σ

hφ
t h

φ
s ◦ φ−t dµ, σ ∈ Σ,

which, together with σ-finiteness of µ, gives (8.4). The equality (8.5) fol-
lows from (8.4) via Lemma 3.1(i) and (8.8). In turn, the equality (8.6) is a
consequence of (8.2) and (8.4). Finally, (8.7) follows from (8.6).

Lemma 8.3. If (8.1) holds and the C0-group {Cφt}t∈R is subnormal ,
then

(a) ϑ1
x({0}) = 0 for µ-a.e. x ∈ X,

(b) ξt dϑ1
φt(x)

= hφ
t (φt(x)) dϑ1

x for µ-a.e. x ∈ X and every t ∈ R+.

Proof. Argue as in the proof of Lemma 6.3 using Lemma 8.2 in place of
Lemma 6.2.

We are now in a position to prove a C0-group analog of Theorem 6.5.

Theorem 8.4. Assume that (8.1) holds. Then the C0-group {Cφt}t∈R is
subnormal if and only if the operator Cφ1 is subnormal and

(b∗) ξ1/k dϑ1
φ1/k(x)

= hφ
1/k(φ1/k(x)) dϑ1

x for µ-a.e. x ∈ X and every k ∈ N.

Proof. According to Lemma 8.3, it is enough to prove the “if” part of
the conclusion. We preserve the notation from the proof of Theorem 6.5.
Arguing exactly as there (skipping Step 1) and employing Lemma 8.2 in
place of Lemma 6.2, we see that for µ-a.e. y ∈ X,

hφ
n/k(φj/k(y)) =

∞�

0

sn d(ϑ1
φj/k(y)

◦ ξk)(s),

where n = mk+ j (the case j = 0 follows from (5.4) and Lemma 3.1(i)). By
Lemmas 3.1(i) and 8.1 this implies that for µ-a.e. x ∈ X,

hφ
n/k(x) = hφ

n/k(φj/k(φ−j/k(x))) =
∞�

0

sn d(ϑ1
φj/k(φ−j/k(x))

◦ ξk)(s)

=
∞�

0

sn d(ϑ1
x ◦ ξk)(s).

Summarizing, we have proved that for µ-a.e. x ∈ X and every k ∈ N, the
sequence {hφ

n/k(x)}
∞
n=0 is a Stieltjes moment sequence. Thus, by [4, Lem-

ma 4.3], the C0-semigroup {Cφt}t∈R+ is subnormal. An application of Propo-
sition 2.1 completes the proof.

The next result is a C0-group analogue of Proposition 7.3. Its proof is
shorter, even though we assume much less about the transformations φ1/k.
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Proposition 8.5. Assume that (8.1) holds and there exists δ ∈ R and a
family {ζx}x∈X of probability Borel measure on R+ satisfying the following
two conditions for µ-a.e. x ∈ X:

(i) hφ
1/k(x) = eδ/kL(ζx)(1/k) for all k ∈ N,

(ii) L(χσ ζx)(1/k) = L(ζx)(1/k) · ζφ−1/k(x)(σ) for all σ ∈ B(R+) and
k ∈ N.

Then the C0-group {Cφt}t∈R is subnormal.

Proof. As in the proof of Proposition 7.3, we see that (7.4) holds and

Hφ
s+1/k = Hφ

1/k ·H
φ
s ◦ φ−1/k a.e. [µ], k ∈ N, s ∈ R+.(8.9)

Using induction on n, we now show that (7.10) holds. Indeed, the case n = 0
is obvious. If (7.10) is valid for a fixed n ∈ Z+, then by Lemma 3.1(i) and
the induction hypothesis, we have

hφ
(n+1)/k

(8.4)
= hφ

1/k · h
φ
n/k ◦ φ−1/k

(7.4)
= Hφ

1/k ·H
φ
n/k ◦ φ−1/k

(8.9)
= Hφ

(n+1)/k a.e. [µ], k ∈ N,

which completes the induction argument. As in the proof of Proposition 7.3,
we deduce from (7.10) that the C0-semigroup {Cφt}t∈R+ is subnormal. We
finish the proof by applying Proposition 2.1.

Below we show that conditions (i) and (ii) of Proposition 8.5 are always
satisfied by a measurable family {P (x, ·)}x∈X of probability Borel measures
attached to a subnormal C0-group {Cφt}t∈R via conditions 1o to 4o preceding
Lemma 7.1.

Proposition 8.6. Assume that (8.1) holds and the C0-group {Cφt}t∈R is
subnormal. Let P : X ×B(R+)→ [0, 1] satisfy conditions 1o to 4o preceding
Lemma 7.1. Then for every t ∈ R+ and µ-a.e. x ∈ X,

L(χσP (x, ·))(t) = L(P (x, ·))(t)P (φ−t(x), σ), σ ∈ B(R+),(8.10)

hφ
s+t(x) = hφ

t (x) · hφ
s (φ−t(x)), s ∈ R+.(8.11)

Proof. Fix t ∈ R+. First note that (7.1) holds in the present context
(the proof follows that of Proposition 7.2, with Lemma 6.3 replaced by
Lemma 8.3). Using (7.3), (8.3) and Lemma 3.1(i), we see that

P (φt(φ−t(x)), ·) = P (x, ·) for µ-a.e. x ∈ X.

Making the substitution x  φ−t(x) in (7.1) for µ-a.e. x ∈ X (which is
possible due to Lemma 3.1(i)), we get (8.10). Then, arguing as in the proof
of the implication (i)⇒(ii) of Lemma 7.1, we infer (8.11) from (8.10).
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9. Examples. In what follows, K stands for either R or C. Let ‖ · ‖ be
a norm on Kκ (κ ∈ N) induced by an inner product (accordingly, real or
complex). Denote by R‖·‖ the class of all (density) functions % : Kκ → [0,∞)
of the form

%(x) =
∞∑
m=0

am‖x‖2m, x ∈ Kκ,

where the am are nonnegative real numbers and ak > 0 for some k ≥ 1. A
function % ∈ R‖·‖ is said to be of polynomial type if there exists k ≥ 2 such
that am = 0 for all m ≥ k. Denote by νK

κ the Lebesgue measure on Kκ. Note
that νC

κ = νR
2κ.

We begin by characterizing subnormality of C0-semigroups of composi-
tion operators on L2(% dνK

κ) induced by C0-semigroups of linear transforma-
tions of Kκ.

Theorem 9.1. Let ‖ · ‖ be a norm on Kκ induced by an inner prod-
uct , % be a member of R‖·‖, and A be a linear transformation of Kκ such
that for every t ∈ R+, the composition operator CetA is bounded on
L2(% dνK

κ) (respectively , on L2((1/%) dνK
κ)). Then {CetA}t∈R+ and {C∗

etA
}t∈R+

are C0-semigroups. Moreover , the C0-semigroup {CetA}t∈R+ (respectively ,
{C∗

etA
}t∈R+) is subnormal if and only if A is a normal operator in (Kκ, ‖·‖).

Proof. By [4, Corollary 5.2 and Remark 5.3], {CetA}t∈R+ is a C0-semi-
group. Together with [33, Corollary 1.10.6], this implies that the family
{C∗

etA
}t∈R+ is a C0-semigroup as well. In view of [40, Theorem 2.5 and Sec-

tion 3], the C0-semigroup {CetA}t∈R+ (respectively, {C∗
etA
}t∈R+) is subnormal

if and only if etA is a normal operator in (Kκ, ‖ · ‖) for every t ∈ R+. The
latter holds if and only if A is a normal operator in (Kκ, ‖ · ‖) (this is a very
particular case of the Stone theorem [34, Theorem 13.37]).

Our next goal is to determine when {CetA}t∈R is a C0-group on L2(% dνK
κ)

(respectively, on L2((1/%) dνK
κ)).

Proposition 9.2. Let ‖·‖ be a norm on Kκ induced by an inner product ,
% be a member of R‖·‖, and A be a linear transformation of Kκ. Denote by
µ any of the measures % dνK

κ or (1/%) dνK
κ.

(i) If % is of polynomial type, then {CetA}t∈R is a C0-group of bounded
operators on L2(µ).

(ii) If % is not of polynomial type, then {CetA}t∈R is a C0-group of
bounded operators on L2(µ) if and only if A+A∗ = 0 (A∗ is defined
in (Kκ, ‖ · ‖)), or equivalently if {CetA}t∈R is a C0-group of unitary
operators on L2(µ).

Proof. (i) Apply [40, Proposition 2.2 and Section 3], [4, Corollary 5.2 and
Remark 5.3] and Remark 2.2.
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(ii) As in (i), we see that {CetA}t∈R is a C0-group of bounded operators
on L2(µ) if and only if

‖etA‖ ≤ 1, t ∈ R.(9.1)

If (9.1) holds then

‖x‖ = ‖e−tAetAx‖ ≤ ‖etAx‖ ≤ ‖x‖, x ∈ Kκ, t ∈ R,

which implies that etA is a unitary operator in (Kκ, ‖ · ‖) for every t ∈ R
(equivalently, A+A∗ = 0, cf. [16, Section I.3.15]). It is now a routine matter
to verify that {CetA}t∈R is a C0-group of unitary operators on L2(µ).

Example 9.3. Let | · | be the Euclidean norm on Kκ, % be a member
of R|·|, and A be a linear transformation of Kκ. Consider first the case
when the density function % is not of polynomial type. If A is given by a
nonzero diagonal matrix with nonnegative real entries, then ‖e−tA‖ ≤ 1
for all t ∈ R+ and ‖e−tA‖ > 1 for all real t < 0. Hence, by [40, Propo-
sition 2.2 and Section 3], [4, Corollary 5.2 and Remark 5.3] and Theo-
rem 9.1, {CetA}t∈R+ is a subnormal C0-semigroup of bounded operators on
L2(% dνK

κ) and CetA = C−1
e−tA

is an unbounded closed densely defined operator
in L2(% dνK

κ) for all real t < 0 (use Proposition 4.1(vii)). In turn, if κ = 2
and A is given by the matrix

[
0 −1
1 0

]
, then by Proposition 9.2(ii), {CetA}t∈R

is a C0-group of unitary operators on L2(% dνK
κ).

Assume now that % is of polynomial type (A is still an arbitrary linear
transformation of Kκ). It follows from Proposition 9.2(i) that {CetA}t∈R is a
C0-group of bounded operators on L2(% dνK

κ). By Theorem 9.1, this C0-group
is subnormal if and only if A is a normal operator in (Kκ, | · |). If K = C,
κ = 2 and A is given by the matrix π

[
i 1
0 −i

]
, then the C0-group {CetA}t∈R

is not subnormal, though CeA is a unitary operator (because eA = − [ 1 0
0 1 ]).

This example (which is based on an example due to R. Mathias, cf. [1]) was
discussed in [4, Example 5.4].
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