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Combinatorial inequalities and subspaces of L1

by

Joscha Prochno and Carsten Schütt (Kiel)

Abstract. Let M1 and M2 be N-functions. We establish some combinatorial inequal-
ities and show that the product spaces `nM1

(`nM2
) are uniformly isomorphic to subspaces

of L1 if M1 and M2 are “separated” by a function tr, 1 < r < 2.

1. Introduction. The structure and variety of subspaces of L1 is very
rich. Over the years, tremendous effort has been put in characterizing sub-
spaces of L1. Although there are a number of sophisticated criteria at hand
now, it might turn out to be nontrivial to decide for a specific Banach space
whether it is isomorphic to a subspace of L1.

Using the theorem of de Finetti it was shown in [3] that every Orlicz
space with a 2-concave Orlicz function embeds into L1. Consequently, all
spaces whose norms are averages of 2-concave Orlicz norms embed into L1.
In fact, this characterizes all subspaces of L1 with a symmetric basis. The
corresponding finite-dimensional version of this result was proved in [7],
using combinatorial and probabilistic tools.

Although this characterization gives a complete picture of which spaces
with a symmetric basis embed into L1, it might not be easy to apply. This
becomes apparent when one considers Lorentz spaces [12] (see also [11]).

Here we study matrix subspaces of L1, i.e., spaces E(F ) where E and
F have a 1-symmetric basis (ei)

n
i=1 and (fj)

n
j=1, and where for all matrices

(xij)i,j ,

‖(xij)i,j‖E(F ) =
∥∥∥ n∑
i=1

∥∥∥ n∑
j=1

xijfj

∥∥∥
F
ei

∥∥∥
E
.
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Our main result is the following:

Theorem 1.1. Let 1 < p < r < 2 and M and N be N -functions with
M(t)/tp pseudo-decreasing, N(t)/tr pseudo-increasing and N(t)/t2 pseudo-
decreasing. Then there is a constant C > 0 such that for all n ∈ N there is
a subspace E of L1 with dim(E) = n2 and

d(E, `nM (`nN )) ≤ C.
Here, d denotes the Banach–Mazur distance. A function f : [0,∞) →

[0,∞) is pseudo-increasing if there is a constant c > 0 such that for all s < t
we have f(s) ≤ cf(t). A pseudo-decreasing function is also defined in this
way.

As far as the hypothesis of Theorem 1.1 is concerned, by a regularization
([4, Theorem 1.6], [5] and [10]) we can pass to N -functions M̃ and Ñ such
that M̃(t)/tp is decreasing, Ñ(t)/tr increasing and Ñ(t)/t2 decreasing.

To prove Theorem 1.1 we first show that `nM (`nr ) are uniformly isomorphic
to subspaces of L1. To do this, we develop some technical combinatorial re-
sults related to Orlicz norms and use techniques first developed in [7] and [8].
These combinatorial inequalities, used to embed finite-dimensional Banach
spaces into L1, are interesting in themselves. Using a result of Bretagnolle
and Dacunha-Castelle [3], that `N is a subspace of Lr if N(t)/tr is increasing
and N(t)/t2 decreasing, we obtain our main result.

In some sense the conditions that M(t)/tp is decreasing, N(t)/tr is in-
creasing and N(t)/t2 is decreasing, are sharp. This is a consequence of [8,
Corollary 3.3]. Kwapień and Schütt proved that

1

5
√

2
‖Id‖ ≤ d (E(F ), G) ,

where Id ∈ L(E,F ) is the natural identity map, i.e., Id(
∑n

i=1 aiei) =∑n
j=1 ajfj , and E, F are n-dimensional spaces with a 1-symmetric and

1-unconditional basis respectively. For 1 ≤ p < r ≤ 2 they find that for
any n2-dimensional subspace G of L1,

d(`nr (`np ), G) ≥ 1

5
√

2
n1/p−1/r.

Therefore, the conditions are sharp.
The technical difficulties that occur are that in general, Orlicz functions

are not homogeneous for some p, i.e., M(λt) 6= λpM(t).
Furthermore, since our results are of a very technical nature in many

places, we tried to make this paper as self-contained as possible and therefore
easily accessible.

2. Preliminaries and combinatorial inequalities. A convex func-
tion M : [0,∞)→ [0,∞) with M(0) = 0 and M(t) > 0 for t > 0 is called an
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Orlicz function. An Orlicz function (as we define it) is bijective and contin-
uous on [0,∞). We define the Orlicz space `nM to be Rn equipped with the
norm

‖x‖M = inf
{
ρ > 0 :

n∑
i=1

M(|xi|/ρ) ≤ 1
}
.

Given an Orlicz function M , we define its conjugate function M∗ by the
Legendre transform, i.e.,

M∗(x) = sup
t∈[0,∞)

(xt−M(t)).

An N -function M is an Orlicz function with

lim
t→0

M(t)

t
= 0 and lim

t→∞

M(t)

t
=∞.

The conjugate function of an N -function is again an N -function. For all
N -functions M and for all 0 ≤ t <∞ we have

(2.1) t ≤M−1(t)M∗−1(t) ≤ 2t.

See [1] and [2, formula (6)]. We say that two Orlicz functions M and N are
equivalent if there are positive constants a and b such that for all t ≥ 0,

M(at) ≤ N(t) ≤M(bt).

For N -functions M and N this is equivalent to

aN−1(t) ≤M−1(t) ≤ bN−1(t).

If two Orlicz functions are equivalent so are their norms. Notice that it is
enough for the functions M and N to be equivalent in a neighborhood of 0
for the corresponding sequence spaces `M and `N to coincide [9].

Let X and Y be isomorphic Banach spaces. We say that they are C-
isomorphic if there is an isomorphism I : X → Y with ‖I‖ ‖I−1‖ ≤ C. We
define the Banach–Mazur distance of X and Y by

d(X,Y ) = inf
{
‖T‖ ‖T−1‖ : T ∈ L(X,Y ) an isomorphism

}
.

Let (Xn)n be a sequence of n-dimensional normed spaces and let Z be also a
normed space. If there exists a constant C > 0 such that for all n ∈ N there
exists a normed space Yn ⊆ Z with dim(Yn) = n and d(Xn, Yn) ≤ C, then
we say that (Xn)n embeds uniformly into Z or for short, Xn embeds into Z.
For a detailed introduction to the concept of Banach–Mazur distance, see
for example [13].

We will write a ∼ b to mean that there exist positive absolute constants
c1, c2 such that c1a ≤ b ≤ c2a and similarly use a . b or a & b.

We need the following two results by Kwapień and Schütt [7, 8].

Lemma 2.1 ([7, Lemma 2.1]). Let n,m ∈ N with n ≤ m and let y ∈ Rm
with y1 ≥ · · · ≥ ym > 0. Furthermore, let M be an N-function such that for
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all k = 1, . . . ,m,

(2.2) M∗
( k∑
i=1

yi

)
=

k

m
.

Define ‖·‖y by

‖x‖y = max∑n
i=1 ki=m

n∑
i=1

( ki∑
j=1

yj

)
|xi|.

Then, for all x ∈ Rn,

1

2
‖x‖y ≤ ‖x‖M ≤ 2‖x‖y.

Note that there is always an N -function M satisfying (2.2): We extend
M∗ affinely between the given values. Moreover, M∗ is extended in a neigh-
borhood of 0 and beyond the last point by a quadratic function. Then M∗ is
finite everywhere and takes the value 0 only at 0. So, M∗ is an N -function.
Its conjugate function is the desired M .

Lemma 2.2 ([8, Lemma 2.5]). Let M be an N -function. Then, for all
x ∈ Rn,

1

2

(
1

2
− 1

n− 1

)
‖x‖M

≤ 1

n!

∑
π

max
1≤i≤n

∣∣∣∣xin · (M∗−1

(
π(i)

n

)
−M∗−1

(
π(i)− 1

n

))∣∣∣∣ ≤ 2‖x‖M ,

where the sum is over all permutations π ∈ Sn.

Lemma 2.3 ([8, Corollary 1.7]). For all n ∈ N and all nonnegative num-
bers B(i, k, `), 1 ≤ i, k, ` ≤ n,

1

16n2

n2∑
α=1

s(α) ≤ 1

(n!)2

∑
π,σ∈Sn

max
1≤i≤n

B(i, π(i), σ(i)) ≤ 4

n2

n2∑
α=1

s(α),

where s(1), . . . , s(n3) is the decreasing rearrangement of the numbers
B(i, k, `), 1 ≤ i, k, ` ≤ n.

From Lemmas 2.1, 2.2 and 2.3 we obtain the following result.

Lemma 2.4. Let a ∈ Rn with a1 ≥ · · · ≥ an > 0 and let M be an
N -function. Furthermore, let N be an N -function whose conjugate function
N∗ satisfies, for all ` = 1, . . . , n2,

N∗−1

(
`

n2

)
=

1

n2

∑̀
k=1

s(k),
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where s(1), . . . , s(n2) is the decreasing rearrangement of

ain

(
M∗−1

(
j

n

)
−M∗−1

(
j − 1

n

))
, i, j = 1, . . . , n.

Then, for all x ∈ Rn,

c‖x‖N ≤
1

n!

∑
π

‖(xiaπ(i))
n
i=1‖M ≤ 2‖x‖N ,

where c > 0 is an absolute constant.
Furthermore, one can choose N so that N∗−1 is an affine function be-

tween the values `/n2, ` = 1, . . . , n2.

Proof. From Lemma 2.2, we know

c‖x‖M ≤
1

n!

∑
σ

max
1≤i≤n

∣∣∣∣xin(M∗−1

(
σ(i)

n

)
−M∗−1

(
σ(i)− 1

n

))∣∣∣∣ ≤ 2‖x‖M .

Thus

c
1

n!

∑
π

‖(xiaπ(i))
n
i=1‖M

≤ 1

n!2

∑
σ,π

max
1≤i≤n

∣∣∣∣xiaπ(i)n

(
M∗−1

(
σ(i)

n

)
−M∗−1

(
σ(i)− 1

n

))∣∣∣∣
≤ 2

1

n!

∑
π

‖(xiaπ(i))
n
i=1‖M .

Applying Lemmas 2.1 and 2.3 yields the desired result.

Now we are able to develop the combinatorial ingredients that we need
to prove Proposition 3.1. These results are extensions of the results proved
in [7] and [8] respectively.

Lemma 2.5. (i) Let 1 < r <∞ and a1 ≥ · · · ≥ an > 0. Then there exists
an N -function N whose conjugate function N∗ satisfies, for all ` = 1, . . . , n,

N∗−1

(
`

n

)
≤ Cr

(
1

n

∑̀
i=1

ai +

(
`

n

)1/r∗( 1

n

n∑
i=`+1

|ai|r
)1/r)

(2.3)

≤ 8N∗−1

(
`

n

)
,

N∗−1

(
`

n2

)
≤ Cr

1

n

(
`

n

)1/r∗(∑̀
i=1

|ai|r
)1/r

≤ 2N∗−1

(
`

n2

)
,(2.4)

where Cr = r1/r(r∗)1/r∗. Furthermore, for all x ∈ Rn,

c‖x‖N ≤
1

n!

∑
π

( n∑
i=1

|xiaπ(i)|r
)1/r

≤ 2‖x‖N .
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(ii) Let 1 < r < ∞. There exists n0 ∈ N such that for all n ≥ n0, all
a1 ≥ · · · ≥ an > 0 and all Orlicz functions N̄ satisfying, for all ` = 1, . . . , n,

N̄∗−1

(
`

n

)
≤ Cr

(
1

n

∑̀
i=1

ai +

(
`

n

)1/r∗( 1

n

n∑
i=`+1

|ai|r
)1/r)

(2.5)

≤ 8N̄∗−1

(
`

n

)
and affine on the intervals [`/n, (`+ 1)/n], ` = 0, . . . , n− 1, we have, for all
x ∈ Rn,

ar‖x‖N̄ ≤
1

n!

∑
π

( n∑
i=1

|xiaπ(i)|r
)1/r

≤ br‖x‖N̄ ,

where ar and br just depend on r and Cr as in (i).

By part (i) there is indeed an Orlicz function as specified in (ii): The
N -function of (i) can be modified so that it is affine on the intervals
[`/n, (`+ 1)/n], ` = 0, . . . , n− 1.

Proof. (i) From Lemma 2.4 we obtain

c‖x‖N ≤
1

n!

∑
π

‖(x(i)aπ(i))
n
i=1‖M ≤ 2‖x‖N ,

where M(t) = tr,

N∗
(

1

n2

∑̀
k=1

s(k)

)
=

`

n2
, ` = 1, . . . , n2,

and s(1), . . . , s(n2) is the decreasing rearrangement of the numbers

ain

(
M∗−1

(
j

n

)
−M∗−1

(
j − 1

n

))
, 1 ≤ i, j ≤ n.

Obviously M∗(s) = (1/r)1/r(1/r∗)1/r∗sr
∗

and M∗−1(t) = r1/r(r∗)1/r∗t1/r
∗
.

We choose Cr := r1/r(r∗)1/r∗ . For all ` ≤ n2 we have

1

n2

∑̀
k=1

s(k) = max∑n
i=1 `i=`
`i≤n

1

n2

n∑
i=1

ai

`i∑
j=1

n

(
M∗−1

(
j

n

)
−M∗−1

(
j − 1

n

))
(2.6)

= max∑n
i=1 `i=`
`i≤n

1

n2

n∑
i=1

ainM
∗−1

(
`i
n

)

= max∑n
i=1 `i=`
`i≤n

Cr
1

n

n∑
i=1

ai

∣∣∣∣`in
∣∣∣∣1/r∗ .



Combinatorial inequalities and subspaces of L1 27

We now show the right inequality of (2.3). We consider the case ` = mn,
1 ≤ m ≤ n. Then

N∗−1

(
m

n

)
=

1

n2

nm∑
k=1

s(k),

and by (2.6),

N∗−1

(
m

n

)
= Cr max∑n

i=1 `i=mn
`i≤n

1

n

n∑
i=1

ai

∣∣∣∣`in
∣∣∣∣1/r∗ .

For m = 1 we deduce from Lemma 2.1 that N∗−1(1/n) is of the order ‖a‖r.
Now we consider m ≥ 2. We choose `1 = · · · = `m = n and `m+1 = · · · =
`n = 0 to obtain

(2.7) N∗−1

(
m

n

)
≥ Cr

1

n

m∑
i=1

ai.

We consider

yj = M∗−1

(
j

nm

)
−M∗−1

(
j − 1

nm

)
, 1 ≤ j ≤ nm.

From Lemma 2.1 we get

1

2
‖a‖r ≤ ‖a‖y = max∑n

i=1 `i=mn

n∑
i=1

ai

( li∑
j=1

yj

)
= Cr max∑n

i=1 `i=mn

n∑
i=1

ai

∣∣∣∣ `imn
∣∣∣∣1/r∗ .

This holds if and only if

1

2
m1/r∗‖a‖r ≤ Cr max∑n

i=1 `i=mn

n∑
i=1

ai

∣∣∣∣`in
∣∣∣∣1/r∗ .

The inequality also holds for the modified vector ã with ã1 = · · · = ãm = am
and ãi = ai for i = m+ 1, . . . , n, i.e.

(2.8)
1

2
m1/r∗‖ã‖r ≤ Cr max∑n

i=1 `i=mn

n∑
i=1

ãi

∣∣∣∣`in
∣∣∣∣1/r∗ .

We show that without loss of generality, `i ≤ n, i ≤ n. We have `1 ≥ · · · ≥
`m ≥ · · · ≥ `n ≥ 0. Obviously, `i ≤ n for all i = m, . . . , n, as otherwise∑m

i=1 `i > mn, which cannot occur. Therefore, it suffices to show that we

can choose `1, . . . , `m ≤ n. To do this, we construct ˜̀
i, i ≤ m, such that

˜̀
i ≤ n, and such that the maximum in (2.8) is attained up to an absolute

constant (we take ˜̀
i = `i for i = m + 1, . . . , n). Now, let `1, . . . , `n be such
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that the maximum in (2.8) is attained. Then we define, for i ≤ m,

˜̀
i :=

⌊
1

m

m∑
j=1

`j

⌋
.

(bxc is the greatest integer smaller than x.) We may assume⌊
1

m

m∑
j=1

`j

⌋
≥ 2,

because from bm−1
∑m

j=1 `jc < 2 we deduce immediately that `m+1, . . . , `n
≤ 1, and therefore mn =

∑n
j=1 `j < 2m + (n −m) = n + m. Since m ≥ 2

and we may assume that n ≥ 3 we get a contradiction. Hence, for all i ≤ m,

˜̀
i ≥

1

m

m∑
j=1

`j − 1 ≥ 1

2

1

m

m∑
j=1

`j .

Now we have
m∑
i=1

ãi

∣∣∣∣ ˜̀in
∣∣∣∣1/r∗ ≥ m∑

i=1

am
1

21/r∗

(
1

n

1

m

m∑
j=1

`j

)1/r∗

= amm
1/r 1

21/r∗

(
1

n

m∑
j=1

`j

)1/r∗

.

From Hölder’s inequality we get
m∑
i=1

ãi

∣∣∣∣`in
∣∣∣∣1/r∗ = am

m∑
i=1

∣∣∣∣`in
∣∣∣∣1/r∗ ≤ amm1/r

(
1

n

m∑
i=1

`i

)1/r∗

.

Thus
m∑
i=1

ãi

∣∣∣∣ ˜̀in
∣∣∣∣1/r∗ ≥ 1

21/r∗

m∑
i=1

ãi

∣∣∣∣`in
∣∣∣∣1/r∗ ,

and therefore
n∑
i=1

ãi

∣∣∣∣ ˜̀in
∣∣∣∣1/r∗ ≥ 1

21/r∗

n∑
i=1

ãi

∣∣∣∣`in
∣∣∣∣1/r∗ .

Inequality (2.8) gives us

Cr

n∑
i=1

ãi

∣∣∣∣ ˜̀in
∣∣∣∣1/r∗ ≥ 1

21/r∗
1

2
m1/r∗‖ã‖r.

So we have

1

21/r∗
1

2
m1/r∗‖ã‖r ≤ Cr max∑n

i=1
˜̀
i=mn

˜̀
i≤n

n∑
i=1

ãi

∣∣∣∣ ˜̀in
∣∣∣∣1/r∗ = nN∗−1

(
m

n

)
,
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i.e.,

N∗−1

(
m

n

)
≥ 1

21/r∗
1

2

m1/r∗

n
‖ã‖r,

and because of ( n∑
i=m+1

|ai|r
)1/r

≤ ‖ã‖r

and (2.7) we obtain the right inequality of (2.3).

Now we estimate the left hand side of (2.3). By (2.6), for a suitable choice
of `i,

1

n2

mn∑
k=1

s(k) = Cr
1

n

n∑
i=1

ai

∣∣∣∣`in
∣∣∣∣1/r∗ .

Since `i ≤ n, we obtain

1

n2

mn∑
k=1

s(k) ≤ Crn−1/r∗−1
( m∑
i=1

ain
1/r∗ +

n∑
i=m+1

ai`
1/r∗

i

)
.

Hölder’s inequality implies

1

n2

mn∑
k=1

s(k) ≤ Cr
1

n

{ m∑
i=1

ai + n−1/r∗
( n∑
i=m+1

|ai|r
)1/r( n∑

i=m+1

`i

)1/r∗}
,

and with
∑n

i=1 `i = mn,

1

n2

mn∑
k=1

s(k) ≤ Cr
1

n

( m∑
i=1

ai +m1/r∗
( n∑
i=m+1

|ai|r
)1/r)

.

Therefore, we obtain the left inequality of (2.3), i.e.

N∗−1

(
m

n

)
≤ Cr

(
1

n

m∑
i=1

ai +

(
m

n

)1/r∗( 1

n

n∑
i=m+1

|ai|r
)1/r)

.

Now we prove (2.4). Because m ≤ n, from (2.6) we get

1

n2

m∑
k=1

s(k) = max∑n
i=1 `i=m

Cr
1

n

n∑
i=1

ai

∣∣∣∣`in
∣∣∣∣1/r∗

= Cr
1

n

(
m

n

)1/r∗

max∑m
i=1 `i=m

n∑
i=1

ai

∣∣∣∣ `im
∣∣∣∣1/r∗ .

Form = 1, . . . , n, using Hölder’s inequality, we get the left inequality of (2.4),

N∗−1

(
m

n2

)
=

1

n2

m∑
k=1

s(k) ≤ Cr
1

n

(
m

n

)1/r∗( n∑
i=1

|ai|r
)1/r

.
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From Lemma 2.1 we obtain for m = 1, . . . , n the right inequality of (2.4),

1

n

(
m

n

)1/r∗( n∑
i=1

|ai|r
)1/r

≤ 2

Cr
N∗−1

(
m

n2

)
.

(ii) Let N be an N -function as given by (i). We will show that for all t
with 1/4r

∗
n ≤ t ≤ 1,

(2.9)
1

8 · 4r∗
N∗−1(t) ≤ N̄∗−1(t) ≤ 32 · 4r∗N∗−1(t).

From this it will follow that for all x,

(2.10)
1

32 · 4r∗
‖x‖N ≤ ‖x‖N̄ ≤ (48 · 4r∗ + 16)‖x‖N .

We show (2.9) first for 1/n ≤ t ≤ 1, and then for 1/4r
∗
n ≤ t ≤ 1/n.

For 1/n ≤ t ≤ 1, we have

(2.11)
1

16
N∗−1(t) ≤ N̄∗−1(t) ≤ 16N∗−1(t).

Indeed, there exists an ` ∈ {1, . . . , n− 1} such that `/n ≤ t ≤ (`+ 1)/n. By
(2.3) and (2.5),

N∗−1(t) ≤ N∗−1

(
`+ 1

n

)
≤ Cr

{
1

n

`+1∑
i=1

ai +

(
`+ 1

n

)1/r∗( 1

n

n∑
i=`+2

|ai|r
)1/r}

≤ 2Cr

{
1

n

∑̀
i=1

ai +

(
`

n

)1/r∗( 1

n

n∑
i=`+1

|ai|r
)1/r}

≤ 16N̄∗−1

(
`

n

)
≤ 16N̄∗−1(t).

The inverse estimate is obtained in the same way.

Now, we show that for all t with 1/4r
∗
n ≤ t ≤ 1/n,

(2.12)
1

8 · 4r∗
N∗−1(t) ≤ N̄∗−1(t) ≤ 32 · 4r∗N∗−1(t).

By (2.3) for ` = 1,

N∗−1

(
1

n

)
≤ Cr

(
a1

n
+

(
1

n

)1/r∗( 1

n

n∑
i=2

|ai|r
)1/r)

.



Combinatorial inequalities and subspaces of L1 31

For n with n ≥ 2 · 4r∗ we have 2 · 4r∗ [n/4r
∗
] ≥ n. By Hölder’s inequality,

N∗−1

(
1

n

)
≤ 21/r∗Cr

1

n

( n∑
i=1

|ai|r
)1/r

(2.13)

≤ Cr21/r∗2 · 4r∗ 1

n

([n/4r
∗

]∑
i=1

|ai|r
)1/r

≤ Cr21/r∗2 · 4r∗N∗−1

(
[n/4r

∗
]

n2

)
≤ Cr21/r∗2 · 4r∗N∗−1

(
1

4r∗n

)
≤ Cr21/r∗2 · 4r∗N∗−1(t).

The function N̄∗−1 takes the values N̄∗−1(t) = tnN̄∗−1(1/n) on the interval
[0, 1/n]. Hence, for all t with 1/4r

∗
n ≤ t ≤ 1/n,

N̄∗−1

(
1

4r∗n

)
≤ N̄∗−1(t) = tnN̄∗−1

(
1

n

)
≤ N̄∗−1

(
1

n

)
= 4r

∗
N̄∗−1

(
1

4r∗n

)
.

Thus, we have

N∗−1(t) ≤ N∗−1

(
1

n

)
≤ Cr

(
a1/n+

(
1

n

)1/r∗( 1

n

n∑
i=2

|ai|r
)1/r)

≤ 8N̄∗−1

(
1

n

)
≤ 8 · 4r∗N̄∗−1(t)

and

N̄∗−1(t) ≤ N̄∗−1

(
1

n

)
≤ Cr

(
a1

n
+

(
1

n

)1/r∗( 1

n

n∑
i=2

|ai|r
)1/r)

≤ 8N∗−1

(
1

n

)
≤ Cr21/r∗16 · 4r∗N∗−1(t).

Hence, (2.12) follows.

Furthermore, we have

(2.14) N∗−1

(
1

4r∗n

)
≤ 2

3
N∗−1

(
1

n

)
and N̄∗−1

(
1

4r∗n

)
=

1

4r∗
N̄∗−1

(
1

n

)
.

Indeed, the equality is obvious. We show the inequality. By (2.4) we get, for
` = [n/4r

∗
],
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1

Cr
N∗−1

(
1

4r∗n

)
≤ 1

Cr
N∗−1

(
[n/4r

∗
] + 1

n2

)

≤ 1

n

(
[n/4r

∗
] + 1

n

)1/r∗([n/4r
∗

]+1∑
i=1

|ai|r
)1/r

.

By (2.4), for ` = n and sufficiently large n we get

1

Cr
N∗−1

(
1

4r∗n

)
≤ 1

3n

( n∑
i=1

|ai|r
)1/r

≤ 2

3Cr
N∗−1

(
1

n

)
.

Now we show (2.10). Let x ∈ Rn with ‖x‖N∗ = 1 and x1 ≥ · · · ≥ xn ≥ 0.
Furthermore, let t ∈ Rn be such that xi = N∗−1(ti). Let i0 be such that

t1 ≥ · · · ≥ ti0 ≥
1

4r∗n
> ti0+1 ≥ · · · ≥ tn.

Then
∑n

i=1 ti = 1. We choose

t̃ = (t1, . . . , ti0 , 0, . . . , 0), ˜̃t = (0, . . . , 0, ti0+1, . . . , tn),

x̃ = (x1, . . . , xi0 , 0, . . . , 0), ˜̃x = (0, . . . , 0, xi0+1, . . . , xn).

We will prove that ‖˜̃x‖N∗ ≤ 2/3 and

(2.15)
1

32 · 4r∗
‖x‖N∗ ≤ ‖x̃‖N̄∗ ≤ 48 · 4r∗‖x̃‖N∗ .

Indeed, we have

‖˜̃x‖N∗ = inf

{
ρ > 0

∣∣∣∣ n∑
i=i0+1

N∗
(
N∗−1(ti)

ρ

)
≤ 1

}
.

By (2.14),
n∑

i=i0+1

N∗
(
N∗−1(ti)

ρ

)
≤ nN∗

(
N∗−1(1/4r

∗
n)

ρ

)
≤ nN∗

(
2N∗−1(1/n)

3ρ

)
,

and thus
‖˜̃x‖N∗ ≤ 2/3.

Therefore, ‖x̃‖N∗ ≥ 1/3. From (2.12) it follows that

i0∑
i=1

N̄∗
(
N∗−1(ti)

ρ

)
≤

i0∑
i=1

N̄∗
(

16 · 4r∗N̄∗−1(ti)

ρ

)
.

Thus, we have
‖x̃‖N̄∗ ≤ 16 · 4r∗ .

Using this and ‖x̃‖N∗ ≥ 1/3 we obtain

‖x̃‖N̄∗ ≤ 48 · 4r∗‖x̃‖N∗ .

Hence, the right inequality of (2.15) is proved.
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Now we show the left one. By (2.9),

i0∑
i=1

N̄∗
(
N∗−1(ti)

ρ

)
≥

i0∑
i=1

N̄∗
(
N̄∗−1(ti)

32 · 4r∗ρ

)
.

Thus ‖x̃‖N̄∗ ≥ 1/32 · 4r∗ . Using ‖x‖N∗ = 1, we obtain the left inequality of
(2.15):

‖x̃‖N̄∗ ≥
1

32 · 4r∗
‖x‖N∗ .

Now, the left inequality of (2.15) implies the left inequality of (2.10).
The right inequality of (2.15) implies

‖x‖N̄∗ ≤ ‖x̃‖N̄∗ + ‖˜̃x‖N̄∗ ≤ 48 · 4r∗‖x̃‖N∗ + ‖˜̃x‖N̄∗ .

It is left to estimate the second summand. By (2.11),

n∑
i=i0+1

N̄∗
(
N∗−1(ti)

ρ

)
≤ nN̄∗

(
N∗−1(1/n)

ρ

)
≤ nN̄∗

(
16N̄∗−1(1/n)

ρ

)
.

Hence, ‖˜̃x‖N̄∗ ≤ 16 and

‖x‖N̄∗ ≤ (48 · 4r∗ + 16)‖x‖N∗ .

Lemma 2.6. Let 1 ≤ p < r < ∞ and a ∈ Rn with a1 ≥ · · · ≥ an > 0.
Then there exists an N -function N whose conjugate function N∗ satisfies,
for all ` = 1, . . . , n,

(2.16)
1

2
N∗−1

(
`

n

)
≤ Cr

{(
`

n

)1/p∗( 1

n

∑̀
i=1

|ai|p
)1/p

+

(
`

n

)1/r∗( 1

n

n∑
i=`+1

|ai|r
)1/r}

≤ 2−1/p8N∗−1

(
`

n

)
,

and for all x ∈ Rn we have

αr,p‖x‖N ≤
(

1

n!

∑
π

( n∑
i=1

(|x(i)aπ(i)|r
)p/r)1/p

≤ βr,p‖x‖N ,

where αr,p and βr,p are constants, just depending on r and p.

Proof. For all x ∈ Rn,

1

n!

∑
π

‖(x(i)aπ(i))
n
i=1‖pr =

1

n!

∑
π

( n∑
i=1

(|x(i)|p|aπ(i)|p)r/p
)p/r

.
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Using Lemma 2.5, we get the existence of an N -function M with

ar/p‖(|x(i)|p)ni=1‖M ≤
1

n!

∑
π

( n∑
i=1

(|x(i)|p|aπ(i)|p)r/p
)p/r

≤ br/p‖(|x(i)|p)ni=1‖M

and

M∗−1

(
`

n

)
≤ Cr

{
1

n

∑̀
i=1

|ai|p +

(
`

n

)1−p/r( 1

n

n∑
i=`+1

|ai|r
)p/r}

(2.17)

≤ 4M∗−1

(
`

n

)
.

It follows that

(ar/p)
1/p‖(|x(i)|p)ni=1‖

1/p
M ≤

(
1

n!

∑
π

( n∑
i=1

(|x(i)|p|aπ(i)|p)r/p
)p/r)1/p

≤ (br/p)
1/p‖(|x(i)|p)ni=1‖

1/p
M .

Furthermore, we have

‖(|x(i)|p)ni=1‖
1/p
M = ‖x‖M◦tp ,

since

‖(|x(i)|p)ni=1‖
1/p
M =

{
ρ1/p > 0

∣∣∣∣ n∑
i=1

M

(
|x(i)|p

ρ

)
≤ 1

}

=

{
η > 0

∣∣∣∣ n∑
i=1

M

(∣∣∣∣x(i)

η

∣∣∣∣p) ≤ 1

}
.

We choose N = M ◦ tp. Then

(ar/p)
1/p‖x‖N ≤

(
1

n!

∑
π

( n∑
i=1

(|x(i)|p|aπ(i)|p)r/p
)p/r)1/p

≤ (br/p)
1/p‖x‖N .

Inequality (2.1) gives, for all u ≥ 0,

u ≤M−1(u)M∗−1(u) ≤ 2u.

Hence

N∗−1(t) ≥ t

N−1(t)
=

t

(M−1(t))1/p
≥ 2−1/pt1−1/p(M∗−1(t))1/p,

1

2
N∗−1(t) ≤ t

N−1(t)
=

t

(M−1(t))1/p
≤ t1−1/p(M∗−1(t))1/p.
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Using (2.17), we get

1

2
N∗−1

(
`

n

)
≤ Cr

{(
`

n

)1/p∗( 1

n

∑̀
i=1

|ai|p
)1/p

+

(
`

n

)1/r∗( 1

n

n∑
i=`+1

|ai|r
)1/r}

≤ 2−1/pN∗−1

(
`

n

)
.

The vector (ai)
n
i=1 = (n/i)1/p (1 < p < 2) generates the `p-norm, i.e., for

all x ∈ Rn we have

(2.18) c‖x‖p ≤ Ave
π

( n∑
i=1

|xiaπ(i)|2
)1/2

≤ C‖x‖p,

where c, C > 0 are absolute constants just depending on p. This follows from
Lemma 2.6.

3. Embedding of `nM (`nN ) into L1. To embed `nM (`nr ) into L1 we have to
extend the combinatorial expressions by another average over permutations.
We use the term

(3.1) Ave
π,σ,η

( n∑
i,j=1

|aijxπ(i)yσ(j)zη(j)|2
)1/2

,

which is, as we will show, under appropriate choices of x, y, z ∈ Rn, equiva-
lent to ∥∥(‖(aij)ni=1‖r)nj=1

∥∥
M
.

Since (3.1) is equivalent to the L1-norm, we obtain an embedding into L1.
Using z = ((n/j)1/p)nj=1, 1 < p < r < 2, we “pass through” an `p space to
obtain the result.

Proposition 3.1. Let 1 < p < r < 2. Let y ∈ Rn \ {0} with y1 ≥ · · · ≥
yn > 0, (xi)

n
i=1 = ((n/i)1/r)ni=1 and (zj)

n
j=1 = ((n/j)1/p)nj=1. Then, for all

matrices a = (aij)
n
i,j=1,

ar,p
∥∥(‖(aij)ni=1‖r)nj=1

∥∥
My
≤ 1

(n!)3

∑
π,σ,η

( n∑
i,j=1

|aijxπ(i)yσ(j)zη(j)|2
)1/2

(3.2)

≤ br,p
∥∥(‖(aij)ni=1‖r)nj=1

∥∥
My
,

where

My

(
`

n

)
∼ 1

n

∑̀
i=1

yi +

(
`

n

)1/p∗( 1

n

n∑
i=`+1

|yi|p
)1/p

.

In particular, `nMy
(`nr ) is isomorphic to a subspace of L1.
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Proof. We start with the upper bound. By (2.18), z generates the `p-
norm. Thus

(3.3)

Ave
π,σ,η

( n∑
i,j=1

|aijxπ(i)yσ(j)zη(j)|2
)1/2

∼ Ave
π,σ

( n∑
j=1

ypσ(j)

( n∑
i=1

|aijxπ(i)|2
)p/2)1/p

.

By Jensen’s inequality,

Ave
π,σ

( n∑
j=1

ypσ(j)

( n∑
i=1

|aijxπ(i)|2
)p/2)1/p

≤ Ave
σ

( n∑
j=1

ypσ(j)Ave
π

( n∑
i=1

|aijxπ(i)|2
)p/2)1/p

.

By Lemma 2.6, for all j ≤ n,(
Ave
π

( n∑
i=1

|aijxπ(i)|2
)p/2)1/p

∼ ‖(aij)ni=1‖N ,

where

N∗−1

(
`

n

)
∼
(
`

n

)1/p∗( 1

n

∑̀
i=1

|xi|p
)1/p

+

(
`

n

)1/2( 1

n

n∑
i=`+1

|xi|2
)1/2

∼
(
`

n

)1/p∗( 1

n

∑̀
i=1

(
n

i

)p/r)1/p

+

(
`

n

)1/2( 1

n

n∑
i=`+1

(
n

i

)2/r)1/2

.

Since p < r < 2,

N∗−1(`/n) ∼ (`/n)1/r∗ ,

which means that the N -norm is equivalent to the `r-norm. Hence, we have
shown the upper estimate of (3.2), where My is the N -function as specified
in Lemma 2.6.

For the lower bound, we obtain

Ave
π,σ,η

( n∑
i,j=1

|aijxπ(i)yσ(j)zη(j)|2
)1/2

∼ Ave
π,σ

( n∑
j=1

ypσ(j)

( n∑
i=1

|aijxπ(i)|2
)p/2)1/p

.

Now we use the triangle inequality to get

Ave
π,σ

( n∑
j=1

ypσ(j)

( n∑
i=1

|aijxπ(i)|2
)p/2)1/p

≥ Ave
σ

( n∑
j=1

ypσ(j)

∣∣∣Ave
π

( n∑
i=1

|aijxπ(i)|2
)1/2∣∣∣p)1/p

.
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We know that for all j ≤ n,

Ave
π

( n∑
i=1

|aijxπ(i)|2
)1/2

∼ ‖(aij)ni=1‖r,

since (xi)
n
i=1 = ((n/i)1/r)ni=1. Hence, by Lemma 2.6 we get the lower estimate

of (3.2),

Ave
π,σ,η

( n∑
i,j=1

|aijxπ(i)yσ(j)zη(j)|2
)1/2

&
∥∥(‖(aij)ni=1‖r)nj=1

∥∥
My
.

Let now ε and δ denote sequences of signs ±1. Using (3.2) and Khinchin’s
inequality one can easily show that

Ψn : `nM (`nr )→ Ln!322n

1 , (aij)
n
i,j=1 7→

( n∑
i,j=1

aijxπ(i)yσ(j)zη(j)εiδj

)
π,σ,η,δ,ε

,

embeds `nM (`nr ) into L1.

Corollary 3.2. Let 1 < r < 2 and 1 < p < r. Furthermore, let M
be an α-convex N -function with 1 < α < p. Define (xi)

n
i=1 = ((n/i)1/r)ni=1,

(yj)
n
j=1 = (1/M−1(j/n))nj=1 and (zj)

n
j=1 = ((n/j)1/p)nj=1. Then, for all ma-

trices a = (aij)
n
i,j=1,

Ave
π,σ,η

( n∑
i,j=1

|aijxπ(i)yσ(j)zη(j)|2
)1/2

∼
∥∥(‖(aij)ni=1‖r)nj=1

∥∥
M
.

In particular, `nM (`nr ) is isomorphic to a subspace of L1.

Proof. We apply Proposition 3.1. We have to verify that the N -function
My of Proposition 3.1 is equivalent to M . We have, for all ` ≤ n,

(3.4)
1

n

∑̀
i=1

1

M−1(i/n)
.
`

n

1

M−1(`/n)

(2.1)∼ M∗−1

(
`

n

)
and

(3.5)

(
`

n

)1/p∗( 1

n

n∑
i=`+1

∣∣∣∣ 1

M−1(i/n)

∣∣∣∣p)1/p (2.1)

. M∗−1

(
`

n

)
,

since M is α-convex and therefore (M−1)α is concave, i.e., for all ` ≤ n,

M∗−1
y

(
`

n

)
∼ 1

n

∑̀
i=1

yi +

(
`

n

)1/p∗( 1

n

n∑
i=`+1

|yi|p
)1/p

.M∗−1

(
`

n

)
.

The lower bound is trivial, since M∗−1 is an increasing function.
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We will now prove Theorem 1.1.

Proof of Theorem 1.1. It is enough to show the case N(t) = tr. Indeed,
by [3], `N is a subspace of Lr if N(t)/tr is increasing and N(t)/t2 is decreas-
ing.

We apply Proposition 3.1. We choose yi, i = 1, . . . , n, such that

M∗−1

(
`

n

)
=

1

n

∑̀
i=1

yi.

We will show that M∗ and M∗−1
y of Proposition 3.1 are equivalent. For all `,

we have

M∗−1

(
`

n

)
≥ `

n
y`.

Since
t ≤M−1(t)M∗−1(t) ≤ 2t,

we get

y` ≤
M∗−1(`/n)

`/n
≤ 2

M−1(`/n)
.

Therefore,

1

n

n∑
i=`+1

|yi|p ≤ 2p
1

n

n∑
i=`+1

1

|M−1(i/n)|p
= 2p

1

n

n∑
i=`+1

|i/n|p/r

|M−1(i/n)|p

∣∣∣∣ni
∣∣∣∣p/r.

Since M(t)/tr is decreasing, s/|M−1(s)|r is decreasing. Therefore, since
r < p, ∣∣∣∣ t

|M−1(t)|r

∣∣∣∣p/r =
tp/r

|M−1(t)|p

is also decreasing. Thus

1

n

n∑
i=`+1

|yi|p ≤ 2p
|`/n|p/r

|M−1(`/n)|p
1

n

n∑
i=`+1

∣∣∣∣ni
∣∣∣∣p/r ≤ 2p

|`|p/r

|M−1(`/n)|p
1

n

n∑
i=`+1

i−p/r

∼ 2p
|`|p/r

|M−1(`/n)|p
1

n
`1−p/r = 2p

`

n

1

|M−1(`/n)|p
.

Altogether,

M∗−1

(
`

n

)
≤ 1

n

∑̀
i=1

yi +

(
`

n

)1/p∗( 1

n

n∑
i=`+1

|yi|p
)1/p

≤M∗−1

(
`

n

)
+

(
`

n

)1/p∗(
2p
`

n

1

|M−1(`/n)|p
)1/p

= M∗−1

(
`

n

)
+ 2

`

n

1

|M−1(`/n)|
≤ 3M∗−1

(
`

n

)
.
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