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The Schroeder–Bernstein index for Banach spaces

by

Elói Medina Galego (São Paulo)

Abstract. In relation to some Banach spaces recently constructed by W. T. Gowers
and B. Maurey, we introduce the notion of Schroeder–Bernstein index SBi(X) for every
Banach spaceX. This index is related to complemented subspaces ofX which contain some
complemented copy of X. Then we establish the existence of a Banach space E which is
not isomorphic to En for every n ∈ N, n ≥ 2, but has a complemented subspace isomorphic
to E2. In particular, SBi(E) is uncountable. The construction of E follows the approach
given in 1996 by W. T. Gowers to obtain the first solution to the Schroeder–Bernstein
Problem for Banach spaces.

1. Introduction. Let X and Y be Banach spaces. We write X
c
↪→ Y if

X is isomorphic to a complemented subspace of Y , X ∼ Y if X is isomorphic
to Y , and X 6∼ Y when X is not isomorphic to Y . If n ∈ N = {1, 2, . . .},
then Xn denotes the sum of n copies of X. The first infinite cardinal number
will be denoted by ℵ0 and the first uncountable cardinal by ℵ1.

In 1996 W. T. Gowers [6] presented the first solution to the Schroeder–
Bernstein Problem for Banach spaces, that is, he constructed Banach spaces
X1 and X2 such that

(1.1) X1
c
↪→ X2, X2

c
↪→ X1, X1 6∼ X2.

Afterwards, in 1997, for each p ∈ N, p ≥ 2, W. T. Gowers and B. Maurey
[8, p. 563] defined a finite sequence of Banach spaces X1, . . . ,Xp such that
for all m,n ≤ p, we have

(1.2) Xm
c
↪→ Xn, Xm 6∼ Xn for m 6= n.

Such sequences show that the structure of the complemented subspaces of
a Banach space X which contain some complemented copy of X may be
complicated. To examine this structure more closely it is natural to introduce
the following definition:
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Definition 1.1. Let κ be a cardinal number, κ ≥ 2. We say that a
Banach space X has the κ-Schroeder–Bernstein Property (κ-SBP) if for each
family (Xξ)ξ∈κ of Banach spaces of cardinality κ which satisfies

(a) X ∼ X1;
(b) Xξ

c
↪→ Xγ , ∀ξ, γ ∈ κ;

(c) Xξ 6∼ Xγ , ∀ξ, γ ∈ κ with ξ 6= 1, γ 6= 1 and ξ 6= γ,

we have X1 ∼ Xξ for some ξ ∈ κ, ξ 6= 1.

The Schroeder–Bernstein index SBi(X) of X is defined by

SBi(X) = inf{κ : X has the κ-SBP}.
Observe that this index is clearly well defined, and SBi(X) = 2 if and only
if X has the Schroeder–Bernstein Property (see [1]).

It follows directly from the definition that the Banach space X1 in (1.1)
satisfies SBi(X1) > 2; see also [2]–[4] for more examples of such spaces.
Furthermore, the space X1 in (1.2) satisfies SBi(X1) > p.

The aim of this paper is to provide a Banach space E with SBi(E) > ℵ0.
In fact, we will show how to construct a Banach space E with the prop-
erties announced in the abstract. Then Lemma 3.5 implies that SBi(E) is
uncountable, because defining Xn = En for n ∈ N, we have

Xm
c
↪→ Xn, Xm 6∼ Xn for m 6= n.

The construction of E is inspired by the papers [5] and [6]. In the first
one, Gowers defined Banach spaces X1 and X2 such that X1

c
↪→ X2 and

X1
c
↪→ X2, but Xm

1 6∼ Xn
2 , for all m,n ∈ N (see [3]). In the second, he

exhibited the first Banach space X satisfying X ∼ X3 and X 6∼ X2.

2. Preliminaries. As in [5] (see also [3]), we begin by fixing two totally
incomparable Banach spaces X and Y from the class of sequence spaces
constructed in [7]. We recall that the support of a vector x = (xn)n∈N in a
sequence space, written supp(x), is {n ∈ N : xn 6= 0}. We will write x < y
to mean i < j for every i ∈ supp(x) and j ∈ supp(y). If x1 < · · · < xm, we
will say that the vectors x1, . . . , xm are successive.

We know that X and Y contain normalized sequences x1 < x2 < · · · and
y1 < y2 < · · · respectively such that if T : X → X and L : Y → Y are any
bounded linear operators then there exist λ and µ such that T (xn)−λxn → 0
and L(yn) − µyn → 0 as n→∞ (see [7, Lemma 22]). Moreover, we can
prove in a way similar to the proof of [7, Lemma 23] that if U : X → Y
and V : Y → X are any bounded linear operators, then U(xn) → 0 and
V (xn)→ 0 as n→∞.

Let (x∗n)n∈N and (y∗n)n∈N be sequences of support functionals for (xn)n∈N
and (yn)n∈N respectively.
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We also fix two sequences (Xn)n∈N and (Yn)n∈N of isometric copies of
X and Y respectively. Let Zn = (Xn ⊕ Yn)∞ be the sum of the Banach
spaces Xn and Yn, with the supremum norm. We denote by Pn and Qn the
canonical projections of Zn onto Xn and Yn respectively.

Let V denote the vector space of all sequences v = (z1, z2, z3, . . .) such
that zn ∈ Zn for all n ∈ N and zn 6= 0 for only finitely many n. We identify
each Zn with the subspace of V given by {(0, . . . , zn, 0, . . .) : zn ∈ Zn}.

By xij and yij , for i, j ∈ N, we denote the elements in V given respec-
tively by

zl =
{

(xi, 0) if l = j,

0 if l 6= j;
zl =

{
(0, yi) if l = j,

0 if l 6= j.

The functionals x∗ij , y
∗
ij and w∗ij are defined by

x∗ij(v) = x∗i (P j(zj)), y∗ij(v) = y∗i (Qj(zj)),

w∗ij(v) = x∗i (P j(zj))− y∗i (Qj(zj)),

for v ∈ V , v = (z1, z2, z3, . . .), i, j ∈ N.
Let us fix three disjoint infinite subsets N1,N2 and N3 of N. Now we

introduce a convenient norm in V . If v ∈ V , v = (z1, z2, z3, . . .), then ‖v‖ is
the maximum of the following three numbers:





sup{‖zi‖ : i ∈ N};

sup
{( ∞∑

j=1

(|x∗ij(v)|4 + |y∗ij(v)|4)
)1/4

: i ∈ N2

}
;

sup
{( ∞∑

j=1

|w∗ij(v)|2
)1/2

: i ∈ N3

}
.

Let Z be the completion of (V, ‖ . . . ‖).
Note that Zn is closed in Z, because ‖zn‖ ≤ ‖(0, . . . , zn, 0, . . .)‖ ≤

21/2‖zn‖ for all zn ∈ Zn. Moreover, Z is equal to the closed subspace gener-
ated by (Zn)n∈N in Z, and ‖∑n

i=1 zi‖ ≤ ‖
∑n+m
i=1 zi‖ for every zi ∈ Zi and

m,n ∈ N. Therefore [10, Theorem 15.5] implies that (Zn)n∈N is a Schauder
decomposition of Z. We will write

Z = Z1 ⊕ Z2 ⊕ Z3 ⊕ · · · .
It is easy to see that this sum is symmetric, that is, the norm of an element
(zn)n∈N of this sum is not affected by changing the order of the terms or by
multiplying some of them by −1. Thus

Z ∼ Z1 ⊕ Z3 ⊕ Z5 ⊕ · · · , Z ∼ Z2 ⊕ Z4 ⊕ Z6 ⊕ · · ·
and

Z ∼ (Z1 ⊕ Z3 ⊕ Z5 ⊕ · · ·)⊕ (Z2 ⊕ Z4 ⊕ Z6 ⊕ · · ·).



32 E. M. Galego

Consequently,

(2.1) Z ∼ Z2.

For every n ∈ N, we define

Wn = Zn+1 ⊕ Zn+2 ⊕ Zn+3 ⊕ · · · .
Let S denote the shift operator defined by S(v) = (0, z1, z2, . . .) for v ∈ Z,
v = (z1, z2, z3, . . .). It is clear from the definition of Z that Sn is an isometry
from Z onto Wn for every n ∈ N. So, for every n ∈ N, we have

(2.2) Z ∼Wn.

Now we put E = X ⊕ Z. Hence E contains a complemented subspace iso-
morphic to its square E2. Indeed, by (2.1) and (2.2) we get

E2 ∼ X2 ⊕ Z2 ∼ X2 ⊕W2 ∼ X1 ⊕X2 ⊕W2
c
↪→ Z

c
↪→ E.

To obtain more information about the finite sums of E, Ep, for every p ∈ N,
p ≥ 2, it will be useful to define the Banach spaces

Gp = X1 ⊕X2 ⊕ · · · ⊕Xp−1 ⊕Wp−1.

We observe that E = X ⊕Z ∼ X1⊕W1 = G2 and again by (2.1) and (2.2),

Ep ∼ Xp ⊕ Zp ∼ Xp ⊕Wp ∼ Gp+1.

Hence to prove that E 6∼ Ep for every p ∈ N, p ≥ 2, it suffices to show that

(2.3) G2 6∼ Gp+1.

We will verify (2.3) by proving that Y ⊕G2 6∼ Y ⊕Gp+1, that is,

(2.4) Z 6∼ Gp
for every p ∈ N, p ≥ 2 (see Theorem 3.4).

For this purpose we need some more definitions. For any j ∈ N we let Pj
and Qj be the canonical projections of Z onto Xj and Yj respectively.

Let T be a bounded linear operator from Z to Gp. For any i, j ∈ N let
Tij : Xi → Xj be the restriction of PjT to Xi. Similarly, let Uij : Xi → Yj ,
Lij : Yi → Yj and Vij : Yi → Xj be the restrictions of QjT to Xi, QjT to
Yi and PjT to Yi respectively.

As we have already said, we can associate scalars λji with each Tij and
µji with each Lij , so that

Tij(xni)− λjixnj → 0, Lij(yni)− µjiynj → 0,

Uij(xni)→ 0, Vij(yni)→ 0,

as n→∞, for all i, j ∈ N. In particular, we have defined two infinite matrices

Λ = (λij)∞i,j=1 and M = (µij)∞i,j=1.
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S stands for the space of all sequences of scalars. Let a = (an)n∈N in S,
x ∈ X and y ∈ Y . We define

a	 x = (a1x, 0, a2x, 0, a3x, 0, . . .), a	 y = (0, a1y, 0, a2y, 0, a3y, 0, . . .).

Let c00 be the space of sequences of scalars all but finitely many of which
are zero. Set Λa = (

∑∞
i=1 λniai)n∈N for a = (an)n∈N in c00.

Denote by Z the vector space of sequences u = (z1, z2, z3, . . .) such
that zj ∈ Zj for all j ∈ N, and define Pj(z1, z2, z3, . . .) = P j(zj) and
Qj(z1, z2, z3, . . .) = Qj(zj), for (z1, z2, z3, . . .) ∈ Z and j ∈ N.

Finally, we will consider Z as a vector subspace of Z. In particular,
Pj(u) = Pj(u) and Qj(u) = Qj(u) for all u ∈ Z and j ∈ N.

3. The results. We are now prepared to obtain results similar to those
in [5] for the spaces Z and Gp.

Lemma 3.1. Let T be a bounded linear operator from Z to Gp, p ≥ 2,
and a ∈ c00. Then for all j ∈ N, as n→∞,

(a) Pj(T (a	 xn))− Pj(Λa	 xn)→ 0.
(b) Qj(T (a	 xn))→ 0.
(c) Qj(T (a	 yn))−Qj(Λa	 yn)→ 0.
(d) Pj(T (a	 xn))→ 0.

Proof. By symmetry it suffices to prove (a) and (b).
(a) We have

Pj(T (a	 xn)) = Pj

( ∞∑

i=1

aiT (xni)
)

=
∞∑

i=1

aiTij(xni).

So by the definition of λji,

Pj(T (a	 xn))−
( ∞∑

i=1

aiλji

)
xnj → 0 as n→∞.

But the second term in the above expression is Pj(Λa	 xn).
(b) It suffices to note that Qj(T (a	 xn)) =

∑∞
i=1 aiUij(xni).

Lemma 3.2. If (vi)
q
i=1 are successive elements of Z, then

∥∥∥
q∑

i=1

vi

∥∥∥ ≤
( q∑

i=1

‖vi‖2
)1/2

.

Proof. This follows from the definition of the norm in Z.

In order to prove the next lemma, we recall that c0, `∞, `2 and `4 denote
the classical Banach sequence spaces, and {en : n ∈ N} are their unit vectors.
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Lemma 3.3. If T is an isomorphism from Z onto Gp, p ≥ 2, then Λ is
the matrix of an isomorphism from c0 onto c0, while M is the matrix of an
isomorphism between c0 and its subspace c(p−1)

0 generated by {en : n ≥ p}.
Proof. Let C ∈ R be such that max{‖T‖, ‖T−1‖} ≤ C. First we show

that Λ represents a bounded linear operator from c0 to `∞. If this were not
the case, then there would exist a ∈ c00 such that ‖a‖∞ = 1 and ‖Λa‖∞ ≥
4C. Set b = Λa and let j ∈ N be such that |bj | ≥ 3C. By Lemma 3.1,
Pj(T (a	 xn))−Pj(b	 xn)→ 0 as n→∞. Since Pj(b	 xn) = bjxn we can
pick n ∈ N1 such that ‖PjT (a 	 xn)‖ ≥ 2C, therefore ‖T (a 	 xn)‖ ≥ 2C.
However, since n ∈ N1, we have ‖a	xn‖ = sup{‖aixn‖ : i ∈ N} = ‖a‖∞ = 1,
which is a contradiction.

A similar argument shows that Λ is the matrix of a bounded linear op-
erator from `4 to `4. Indeed, otherwise we could find a ∈ c00 such that
‖a‖4 = 1, ‖b‖4 ≥ 4C, where b = Λa. Again, Lemma 3.1 implies that
Pj(T (a 	 xn)) − Pj(b 	 xn) → 0 as n→∞. Choose q ∈ N such that
(
∑q
l=1 |bl|4)1/4 ≥ 3C.
Now, by Lemma 3.1, we can choose n ∈ N2 such that

|x∗n(Pj(T (a	 xn))− bjxn)| ≤ C/2j , ∀j ≤ q.
By the definition of the norm in Gp we have

‖T (a	 xn)‖ ≥
( q∑

j=1

|x∗nj(T (a	 xn))|4
)1/4

≥
( q∑

j=1

|bj |4
)1/4

− C ≥ 2C.

Since n ∈ N2, we have ‖a	 xn‖ ≤ ‖a‖4 = 1, again giving a contradicition.
This shows in particular that the image of any element in c0 under Λ is

in c0. Hence Λ represents a bounded linear operator from c0 to c0.
Note that the preceding arguments also show that Λ(T−1) (the matrix

obtained from T−1) represents a bounded linear operator from c0 to c0.
We will complete the proof by showing that both Λ(T−1)Λ(T ) and

Λ(T )Λ(T−1) are the identity on c0.
Given any n ∈ N1 and a ∈ c0, ‖a‖ = 1, it follows from the definition of

the norm in Z that Λa 	 xn ∈ Gp. So, by Lemma 3.1 and the continuity
of T and Λ, we can write

(3.1) T (a	 xn) = Λa	 xn + vn

with

(3.2) vn ∈ Gp, Pj(vn)→ 0 as n→∞, ∀j ∈ N.
Setting Λ′ = Λ(T−1), again by the analogue of Lemma 3.1 for T−1, we can
write

(3.3) T−1(Λa	 xn) = Λ′(Λa)	 xn + un
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with

(3.4) un ∈ Z, Pj(un)→ 0 as n→∞, ∀j ∈ N.
Therefore, by using (3.1) and (3.3), we deduce that

(3.5) a	 xn = Λ′(Λa)	 xn + un + T−1(vn).

The bounds of ‖Λ‖∞, ‖Λ′‖∞ and ‖T‖ yield ‖vn‖ ≤ 5C and ‖un‖ ≤ 30C2.
Suppose that there exists a ∈ c0 with ‖a‖∞ = 1 such that Λ′(Λa)=c 6= a,

so (a − c) 	 xn = un + T−1(vn). By using (3.2) and (3.4) we can find an
infinite subsetN of N1, a sequence (u′n)n∈N of successive elements in Z and a
sequence (v′n)n∈N of successive elements in Gp such that ‖u′n−un‖ ≤ 100−n

and ‖v′n − vn‖ ≤ 100−n for all n ∈ N .
Now, we pick n1, . . . , nt from N . Then by (3.5),

(3.6)
t∑

i=1

(a− c)	 xni =
t∑

i=1

u′ni + T−1
( t∑

i=1

v′ni

)
+ u(t),

where

(3.7) u(t) ∈ Gp, ‖u(t)‖ ≤ (1 + C)
t∑

i=1

100−ni .

But for a suitable j ∈ N we have

(3.8)
∥∥∥

t∑

i=1

(a− c)	 xni
∥∥∥ = ‖(a− c)‖∞

∥∥∥
t∑

i=1

xnij

∥∥∥.

However, since the vectors xn1 , . . . , xnt are successive and normalized in X,
it follows from the definition of the norm in X [7, p. 863] that

(3.9)
∥∥∥

t∑

i=1

xni

∥∥∥ ≥ t

log2(t+ 1)
.

On the other hand, by Lemma 3.2,

(3.10)
∥∥∥

t∑

i=1

u′ni

∥∥∥ ≤
( t∑

i=1

‖u′ni‖2
)1/2

≤ 30t1/2C2 +
( t∑

i=1

100−2ni
)1/2

.

We also have, by Lemma 3.2,
∥∥∥T−1

( t∑

i=1

v′ni

)∥∥∥ ≤ C
( t∑

i=1

‖v′ni‖2
)1/2

(3.11)

≤ 5t1/2 C2 + C
( t∑

i=1

100−2ni
)1/2

.

Hence, by (3.7), (3.10) and (3.11), the right hand side of (3.6) has norm at
most 35t1/2C2+(1+C)(

∑t
i=1 100−ni+(

∑t
i=1 100−2ni)1/2). This contradicts

(3.9) and (3.6) when t is large enough.
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A similar proof shows that ΛΛ′ is the identity on c0, and finally a similar
argument to the whole of this proof shows that M is an isomorphism from
c0 onto c(p−1)

0 .

Theorem 3.4. Z is isomorphic to Gp for no p ∈ N, p ≥ 2.

Proof. Suppose that T is an isomorphism from Z onto Gp. Then Lem-
ma 3.3 implies that Λ : c0 → c0 is Fredholm with index 0, and M is Fredholm
with index p − 1. We know that Λ − M cannot be strictly singular (see
[9, Proposition 2.c.10]). In particular, we can find δ > 0 and a sequence
a1 < a2 < · · · of elements in c00 of norm one such that ‖(Λ−M)(an)‖ ≥ δ
for every n ∈ N.

Let C ∈ R be such that max{‖T‖, ‖T−1‖} ≤ C and choose q > (4C/δ)2,
q ∈ N.

Since (Λan)i → 0 and (Man)i → 0 as n→∞ for all i ∈ N, we can obtain
integers 0 = n0 < n1 < · · · < nq and q elements of {an : n ∈ N} such that
after relabelling these elements as a1, . . . , aq, we have

(3.12) sup
i6∈[nl−1+1,nl]

|(Λ(al))i| <
δ

8q
, l = 1, . . . , q,

and

(3.13) sup
i6∈[nl−1+1,nl]

|(M(al))i| <
δ

8q
, l = 1, . . . , q.

Let jl with nl−1 + 1 ≤ jl < nl be such that

(3.14) |((Λ−M)(al))jl | ≥ δ, l = 1, . . . , q.

According to Lemma 3.1, we know that

(3.15)
∥∥∥T
( q∑

n=1

(an	xk+an	yk)
)∥∥∥ =

∥∥∥
q∑

n=1

(Λan	xk+Man	yk)+uk
∥∥∥,

where

(3.16) uk ∈ Z, Pj(uk)→ 0, Qj(uk)→ 0 as k →∞, ∀j ∈ N.
Fix m with 1 ≤ m ≤ q and k ∈ N sufficiently large such that ‖Pjm(uk)‖ <
δ/8 and ‖Qjm(uk)‖ < δ/8. Then
∣∣∣w∗kjm

( q∑

n=1

(Λan 	 xk +Man 	 yk) + uk

)∣∣∣

= |((Λ−M)(a1))jm + · · ·+ ((Λ−M)(am))jm + · · ·+ ((Λ−M)(aq))jm
+ x∗k(Pjm(uk))− y∗k(Qjm(uk))|

≥ δ − 2(q − 1)
δ

8q
− δ

4
≥ δ

2
.
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So, by the definition of the norm in Z, for sufficiently large k ∈ N3 we obtain

(3.17)
∥∥∥

q∑

n=1

(Λan 	 xk +Man 	 yk) + uk

∥∥∥ ≥ δ

2
√
q.

On the other hand the action of each w∗kj is zero on every vector of the form
a 	 xk + a 	 yk with a ∈ c00. Thus, again by the definition of the norm in
Z we have ‖∑q

n=1(an 	 xk + an 	 yk)‖ = 1. Therefore by (3.15) and (3.17)
we conclude that ‖T‖ ≥ δ

√
q/2. Since we have chosen q to be greater than

(4C/δ)2, we have shown that ‖T‖ > C. This contradiction completes the
proof.

Lemma 3.5. Let X be a Banach space such that X2 c
↪→ X. If Xp ∼ Xq

for some p, q ∈ N with p < q, then X ∼ Xq−p+1.

Proof. Since X2 c
↪→ X, it follows that Xp c

↪→ X. Therefore there exists
a Banach space B such that X ∼ Xp ⊕B. Thus

Xq−p+1 ∼ Xq−p ⊕X ∼ Xq−p ⊕Xp ⊕B ∼ Xq ⊕B ∼ Xp ⊕B ∼ X.

4. Remarks and problems. The existence of the Banach space E con-
structed in this paper leads in the natural way to some problems related to
the structure of complemented subspaces in Banach spaces. We now mention
some of them.

Problem 4.1. Does there exist a Banach space X with SBi(X) = ℵ1?

Let X be a Banach space with an unconditional basis. An unsolved
problem is whether SBi(X) = 2 (see [8]). In fact, we do not even know the
answer to

Problem 4.2. Let X be a Banach space with an unconditional basis.
Is it true that SBi(X) < ℵ0?

Now we state some natural problems concerning the Schroeder–Bernstein
index. In [2] a Banach space X with 2 = SBi(X∗) < SBi(X) was exhibited,
where X∗ is the dual space of X. Nevertheless Problems 4.3 and 4.4 below
are still open even in the case where SBi(X) = 2 and SBi(Y ) = 2 (see [1]).

Problem 4.3. Is it true that SBi(X∗) ≤ SBi(X) for every Banach
space X?

Problem 4.4. Is it true that SBi(X ⊕ Y ) ≤ sup{SBi(X),SBi(Y )} for
any Banach spaces X and Y ?

Finally, let X represent the complex Banach space constructed by
W. T. Gowers and B. Maurey in [8, Section 4.3]. Then X is isomorphic
to its subspaces of even codimension while not being isomorphic to those
of odd codimension [8, Theorem 19]. In particular, X ⊕ C c

↪→ X and X
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is not isomorphic to X ⊕ C. Hence SBi(X) ≥ 3. Furthermore, if Y is any
infinite-dimensional complemented subspace of X, then either Y ∼ X or
Y ∼ X ⊕ C (see remarks after [8, Theorem 19]), thus SBi(X) = 3.
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