The Lebesgue constants for the Franklin orthogonal system

by
\section*{Z. Ciesielski and A. Kamont (Sopot)}

Abstract

To each set of knots $t_{i}=i / 2 n$ for $i=0, \ldots, 2 \nu$ and $t_{i}=(i-\nu) / n$ for $i=2 \nu+1, \ldots, n+\nu$, with $1 \leq \nu \leq n$, there corresponds the space $\mathcal{S}_{\nu, n}$ of all piecewise linear and continuous functions on $I=[0,1]$ with knots t_{i} and the orthogonal projection $P_{\nu, n}$ of $L^{2}(I)$ onto $\mathcal{S}_{\nu, n}$. The main result is $$
\lim _{(n-\nu) \wedge \nu \rightarrow \infty}\left\|P_{\nu, n}\right\|_{1}=\sup _{\nu, n: 1 \leq \nu \leq n}\left\|P_{\nu, n}\right\|_{1}=2+(2-\sqrt{3})^{2} .
$$

This shows that the Lebesgue constant for the Franklin orthogonal system is $2+(2-\sqrt{3})^{2}$.

1. Introduction. Fourier expansions with respect to a complete orthonormal system in $L^{2}[0,1]$ can be used to approximate functions e.g. in $L^{p}[0,1], 1 \leq p<\infty$, or in $C[0,1]$ in case $p=\infty$. Suppose that $\left(g_{n}: n \geq 0\right)$ is such an orthonormal system. We introduce the partial sums

$$
G_{n}(f)=\sum_{k=0}^{n}\left(f, g_{k}\right) g_{k}
$$

and the subspaces

$$
\mathcal{G}_{n}=\operatorname{span}\left\{g_{k}: k=0, \ldots, n\right\}
$$

Clearly, each $G_{n}: L^{p}[0,1] \rightarrow \mathcal{G}_{n}$ is a projection (it is orthogonal in case $p=2$) and its L^{1} norm is equal to

$$
L_{n}=\underset{[0,1]}{\operatorname{ess} \sup } \int_{0}^{1}\left|K_{n}(\cdot, s)\right| d s
$$

where the Dirichlet kernel K_{n} is given by

$$
K_{n}(t, s)=\sum_{k=0}^{n} f_{k}(t) f_{k}(s), \quad t, s \in[0,1]
$$

The Lebesgue constant is now defined as

$$
L=\sup _{n \geq 0} L_{n} .
$$

For finite p, by Hölder's inequality, the L^{p} norm of G_{n} satisfies

$$
\left\|G_{n}\right\|_{p} \leq L_{n} \leq L,
$$

where L may be infinite. For the best approximation of $f \in L^{p}[0,1]$ by \mathcal{G}_{n} we introduce the customary notation

$$
E_{n, p}(f)=\inf _{g \in \mathcal{G}_{n}}\|f-g\|_{p}
$$

It is elementary to see that

$$
E_{n, p}(f) \leq\left\|f-G_{n}(f)\right\|_{p} \leq\left(1+L_{n}\right) E_{n, p}(f) \leq(1+L) E_{n, p}(f) .
$$

It follows from the results of A. M. Olevskiĭ [9] or S. V. Bochkarev [2] that for any uniformly bounded orthonormal system we have $L=\infty$. In such cases the asymptotic behaviour of L_{n} may be important. In case $L<\infty$ the numerical value of L is important.

In particular, we may consider a family of orthonormal complete systems on $[0,1]$ indexed by sequences of simple knots $\mathcal{T}=\left(t_{n}: n \geq 0\right)$ dense in $[0,1]$ with $t_{0}=0, t_{1}=1$ and $t_{n} \in(0,1)$ for $n>1$. For $n \geq 1$, the space of piecewise linear and continuous functions on $[0,1]$ with knots at t_{0}, \ldots, t_{n} is denoted by $S_{n}(\mathcal{T})$. Now the general orthonormal Franklin system $\left(f_{n}\right)$ is defined as follows: $f_{0}=1, f_{1}(t)=\sqrt{3}(2 t-1)$ and for $n \geq 2$ the function f_{n} is uniquely determined by the following conditions: $f_{n} \in S_{n}(\mathcal{T}), f_{n} \perp S_{n-1}(\mathcal{T})$, $\left\|f_{n}\right\|_{2}=1$ and $f_{n}\left(t_{n}\right)>0$. It follows from the results of Z. Ciesielski [3] that for the corresponding Lebesgue constant we have $L=L(\mathcal{T}) \leq 3$. Moreover, it was shown in K. Oskolkov [10] and P. Oswald [11] that the upper bound 3 is the best possible, i.e. $\sup _{\mathcal{T}} L(\mathcal{T})=3$. It is also immediate that $L(\mathcal{T}) \geq 5 / 3$ with strict inequality for each \mathcal{T} with simple knots, and with equality for \mathcal{T} with all knots of multiplicity 2 , or if the set of interior knots of \mathcal{T} is empty.

We prove that for the classical Franklin orthonormal system corresponding to the dyadic knots in $[0,1]$ we have $L=2+(2-\sqrt{3})^{2}$. This result was suggested by numerical results presented in Z. Ciesielski and E. Niedźwiecka [7]. In one case the problem was settled in Z. Ciesielski [5]: If there are $n+1$ equally spaced knots in $[0,1]$ and P_{n} denotes the (orthogonal) projection onto the corresponding space of continuous piecewise linear functions, then $\left\|P_{n}\right\|_{1}<2$ and $\left\|P_{n}\right\|_{1} \rightarrow 2$ as $n \rightarrow \infty$. It was also shown in P. Bechler [1] that for the Franklin-Strömberg wavelet (Franklin system on \mathbb{R}) the Lebesgue constant is $2+(2-\sqrt{3})^{2}$. It turns out that this result can also be obtained from our result on $[0,1]$.

Finally, we mention that for higher order splines, of order k, according to A. Yu. Shadrin [12], the general spline orthogonal systems corresponding to \mathcal{T} have finite Lebesgue constants $L(\mathcal{T}, k)$ bounded uniformly in \mathcal{T}, i.e. for each $k \geq 1$,

$$
L_{k}=\sup _{\mathcal{T}} L(\mathcal{T}, k)<\infty
$$

2. Preliminaries. For $n \geq 1$ let $\pi=\left(t_{i}: i=-1,0, \ldots, n, n+1\right)$ be a given sequence of knots in $I=[0,1]: t_{i}<t_{i+1}$ for $i=0, \ldots, n-1$ and $t_{-1}=t_{0}=0, t_{n}=t_{n+1}=1$. Set $I_{i}=\left(t_{i-1}, t_{i}\right)$ and $\delta_{i}=\left|I_{i}\right|=t_{i}-t_{i-1}$. The diameter of the partition π is $|\pi|=\sup \left\{\delta_{i}: i=1, \ldots, n\right\}$. Let \mathcal{S}_{π} be the space of continuous, real-valued functions defined on I and linear on each interval $I_{i}, i=1, \ldots, n$.

The space \mathcal{S}_{π} has a natural basis $N_{i}, i=0, \ldots, n$, where

$$
N_{i}(t)= \begin{cases}\left(t-t_{i-1}\right) / \delta_{i} & \text { for } t_{i-1} \leq t \leq t_{i} \tag{2.1}\\ \left(t_{i+1}-t\right) / \delta_{i+1} & \text { for } t_{i} \leq t \leq t_{i+1} \\ 0 & \text { for } t \leq t_{i-1} \text { or } t \geq t_{i+1}\end{cases}
$$

Note that $\operatorname{supp} N_{i}=\left[t_{i-1}, t_{i+1}\right]$; therefore, for any reals $\left(a_{0}, \ldots, a_{n}\right)$, the sum

$$
\sum_{i=0}^{n} a_{i} N_{i}(t)
$$

is in \mathcal{S}_{π} and for each $t \in I$ it contains at most two non-zero terms. Moreover,

$$
\sum_{i=0}^{n} N_{i}(t)=1 \quad \text { for } t \in I
$$

Set $\nu_{i}=\left(1, N_{i}\right)$ and $b_{i, j}=\left(N_{i}, N_{j}\right)$, where $(f, g)=\int_{I} f(t) g(t) d t$. Observe that for $i, k=0, \ldots, n$ we get $\nu_{i}=\left(\delta_{i}+\delta_{i+1}\right) / 2$ and

$$
b_{i, k}= \begin{cases}0 & \text { for }|i-k|>1 \tag{2.2}\\ \delta_{i} / 6 & \text { for } k=i-1 \\ \left(\delta_{i}+\delta_{i+1}\right) / 3 & \text { for } k=i \\ \delta_{i+1} / 6 & \text { for } k=i+1\end{cases}
$$

We use the notation $a \vee b=\max (a, b), a \wedge b=\min (a, b)$. The Gram matrix $\mathbf{B}=\left[b_{i, j}: i, j=0, \ldots, n\right]$ is a three-diagonal band matrix. Its inverse $\mathbf{A}=$ $\mathbf{B}^{-1}=\left[a_{i, j}: i, j=0, \ldots, n\right]$ has a number of important properties (cf. [8]):

$$
\begin{gather*}
a_{i, j}=a_{j, i}, \quad a_{i, j}=(-1)^{i+j}\left|a_{i, j}\right| \tag{2.3}\\
2\left|a_{i-1, j}\right| \leq\left|a_{i, j}\right| \quad \text { for } i \leq j \tag{2.4}\\
\left|a_{i, j}\right| \geq 2\left|a_{i+1, j}\right| \quad \text { for } j \leq i \tag{2.5}\\
\left|a_{i, j}\right| \leq \frac{2}{2^{|i-j|}} \cdot \frac{1}{\nu_{i} \vee \nu_{j}} \tag{2.6}\\
\sum_{i} \nu_{i}\left|a_{i, j}\right|=3 \tag{2.7}
\end{gather*}
$$

Now, let

$$
\begin{equation*}
K_{\pi}(t, s)=\sum_{i, j=0}^{n} a_{i, j} N_{i}(t) N_{j}(s) \quad \text { for } t, s \in I \tag{2.8}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
a_{i, j}=K_{\pi}\left(t_{i}, t_{j}\right) \quad \text { for } i, j=0, \ldots, n \tag{2.9}
\end{equation*}
$$

The operator P_{π} defined by

$$
\begin{equation*}
P_{\pi} f(t)=\int_{I} K_{\pi}(t, s) f(s) d s \tag{2.10}
\end{equation*}
$$

is the orthogonal projection of $L^{2}(I)$ onto \mathcal{S}_{π}. It can be seen that for its L^{1} norm we have the formula

$$
\begin{equation*}
\left\|P_{\pi}\right\|_{1}=\sup _{0 \leq k \leq n} \int_{I}\left|K_{\pi}\left(t_{k}, s\right)\right| d s \tag{2.11}
\end{equation*}
$$

and, since $\operatorname{sgn} a_{i, k}=-\operatorname{sgn} a_{i-1, k}$,

$$
\begin{equation*}
\int_{I}\left|K_{\pi}\left(t_{k}, s\right)\right| d s=\frac{1}{2} \sum_{i=1}^{n} \delta_{i} \frac{\left|a_{i-1, k}\right|^{2}+\left|a_{i, k}\right|^{2}}{\left|a_{i-1, k}\right|+\left|a_{i, k}\right|} \tag{2.12}
\end{equation*}
$$

Formula (2.12) can be rewritten as a mean value with respect to the weights

$$
\begin{equation*}
p_{i, k}=\frac{\delta_{i}}{6}\left(\left|a_{i, k}\right|+\left|a_{i-1, k}\right|\right) \quad \text { for } i=1, \ldots, n \tag{2.13}
\end{equation*}
$$

which by (2.7) satisfy

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i, k}=1 \tag{2.14}
\end{equation*}
$$

Now, if $\phi(t)=3\left(1+t^{2}\right) /(1+t)^{2}$, then

$$
\begin{equation*}
\int_{I}\left|K_{\pi}\left(t_{k}, s\right)\right| d s=\sum_{i=1}^{n} p_{i, k} \phi\left(\frac{\left|a_{i, k}\right|}{\left|a_{i-1, k}\right|}\right) . \tag{2.15}
\end{equation*}
$$

Since the rational function $\phi(t)$ is important for the rest of the paper, its properties are collected in

Lemma 2.1. The function $\phi(t)=3\left(1+t^{2}\right) /(1+t)^{2}$ has the following properties:

$$
\phi(t)=\phi(1 / t) \quad \text { for } t>0
$$

ϕ is increasing on $[1, \infty)$ and

$$
\phi(1)=3 / 2<\phi(2)=5 / 3<\phi(2+\sqrt{3})=2<\phi(\infty)=3
$$

Moreover,
(2.16) $2 u+\sqrt{3}(u-1)<\phi(2-\sqrt{3} u)<2 u \quad$ for $\sqrt{3} / 2<u<1$,
and for $u<1$ and close to 1 we have

$$
\begin{equation*}
\phi(2-\sqrt{3} u)=2 u+o(1) \tag{2.17}
\end{equation*}
$$

Since $3>\phi(t) \geq 5 / 3$ for $t \in[2, \infty)$ it follows from (2.15) by (2.4) and (2.5) that

$$
\begin{equation*}
5 / 3 \leq\left\|P_{\pi}\right\|_{1}<3 \tag{2.18}
\end{equation*}
$$

and it is known that the constants $5 / 3$ and 3 are the best possible (see [10] and [11]). The constant $5 / 3$ is attained for knots of multiplicity 2 each or for $n=1$, and 3 can be approached by knots distributed geometrically.

Our aim is to prove that the Lebesgue constant for the classical orthogonal Franklin system is $2+(2-\sqrt{3})^{2}$. For this, we need delicate numerical estimates for (2.15) in the case of dyadic knots.

3. The norms of orthogonal projections on $[0,1]$

3.1. The case of equally spaced knots. In this section we assume that $n \geq 1$ and consider the particular knots $\pi_{n}=\left(t_{i}: i=-1, \ldots, n+1\right)$ with $t_{i}=i / n$ for $i=0, \ldots, n$, i.e. $\delta_{i}=1 / n$ for $i=1, \ldots, n$. For $\mathcal{S}_{\pi_{n}}$ and $P_{\pi_{n}}$ we simply write \mathcal{S}_{n} and P_{n}, respectively. Moreover, $\nu_{0}=\nu_{n}=1 / 2 n$ and $\nu_{i}=$ $1 / n$ for $0<i<n$. In this case we have a fairly simple formula for the inverse matrix \mathbf{A}. To write the formula for its entries it is convenient to introduce two sequences of integers: $(A(n): n=0,1, \ldots)$ and $(B(n): n=0,1, \ldots)$ defined by the following recurrence relations:

$$
\begin{cases}A(n+1)=2 A(n)+3 B(n) & \text { with } A(0)=1 \tag{3.1}\\ B(n+1)=A(n)+2 B(n) & \text { with } B(0)=0\end{cases}
$$

In particular, $A(1)=2, A(2)=7, A(3)=26, B(1)=1$ and $B(2)=4$. Explicit formulas for $A(n)$ and $B(n)$ are sometimes helpful: if α is the positive solution to the equation $\cosh \alpha=2$, then $A(n)=\cosh (n \alpha)$ and $\sqrt{3} B(n)=\sinh (n \alpha)$. Note that $\exp (\alpha)=2+\sqrt{3}$ and $\exp (-\alpha)=2-\sqrt{3}$; the notation $q=2+\sqrt{3}$ will occasionally be used later on as well.

Proposition 3.1 ([4]). If $n \geq 1$, then for $i, k=0, \ldots, n$,

$$
\begin{equation*}
a_{i, k}=\frac{2 n}{B(n)}(-1)^{i+k} A(i \wedge k) A(n-i \vee k) \tag{3.2}
\end{equation*}
$$

This result can be used to prove
Corollary 3.2 ([5]). For each $n \geq 1$ we have $\left\|P_{n}\right\|_{1}<2$. Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{n}\right\|_{1}=2 \tag{3.3}
\end{equation*}
$$

For completeness, we present the proof of Corollary 3.2, given in [6] (cf. the proof of Theorem 5.2 in [6]): $\phi(t)=\phi(1 / t), \phi(2+\sqrt{3})=2$ and $\phi(t)<2$ for $2-\sqrt{3}<t<2+\sqrt{3}$. Moreover, for $0 \leq k \leq n$ we have

$$
\phi\left(\frac{\left|a_{i, k}\right|}{\left|a_{i-1, k}\right|}\right)= \begin{cases}\phi\left(\frac{A(i)}{A(i-1)}\right) & \text { for } 1 \leq i \leq k \tag{3.4}\\ \phi\left(\frac{A(n-i+1)}{A(n-i)}\right) & \text { for } k<i \leq n\end{cases}
$$

But, according to (3.1),

$$
\begin{equation*}
2 \leq \frac{A(m+1)}{A(m)}=2+\sqrt{3} \tanh (\alpha m) \quad \text { for } m \geq 0 \tag{3.5}
\end{equation*}
$$

These inequalities and formula (2.15) imply the first part of the statement of Corollary 3.2. For the proof of (3.3) let us fix m and take k, n such that $m<k \leq n-m$. Then

$$
\begin{aligned}
\left\|P_{n}\right\|_{1} \geq & \sum_{i=m+1}^{k} p_{i, k} \phi(2+\sqrt{3} \tanh (\alpha(i-1))) \\
& +\sum_{i=k+1}^{n-m} p_{i, k} \phi(2+\sqrt{3} \tanh (\alpha(n-i))) \\
\geq & \phi(2+\sqrt{3} \tanh (\alpha m)) \times \sum_{i=m+1}^{n-m} p_{i, k} \\
\geq & \phi(2+\sqrt{3} \tanh (\alpha m)) \times\left(1-\left(\sum_{i=1}^{m}+\sum_{i=n-m+1}^{n}\right) p_{i, k}\right)
\end{aligned}
$$

Now, choosing $k=\lfloor n / 2\rfloor$ and using (2.13) and (3.2) we find that

$$
\left(\sum_{i=1}^{m}+\sum_{i=n-m+1}^{n}\right) p_{i, k} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

whence

$$
\liminf _{n \rightarrow \infty}\left\|P_{n}\right\|_{1} \geq \phi(2+\sqrt{3} \tanh (\alpha m))
$$

Now, letting $m \rightarrow \infty$ and applying the first part of Corollary 3.2 completes the proof.
3.2. Partially equally spaced knots. The set of knots $\pi_{\nu, n}=\left(t_{i}: i=\right.$ $-1, \ldots, n+1$) is determined by the two integer parameters $n \geq 1$ and $1 \leq \nu \leq n$ and it is defined as follows: $t_{-1}=0, t_{n+1}=1$ and

$$
t_{i}= \begin{cases}i / 2 n & \text { for } i=0, \ldots, 2 \nu \tag{3.6}\\ (i-\nu) / n & \text { for } i=2 \nu+1, \ldots, N\end{cases}
$$

where $N=n+\nu$ and $1 \leq \nu \leq n$. These knots are obtained as follows: we take a uniform partition $\pi_{n}=\{0,1 / n, 2 / n, \ldots,(n-1) / n, 1\}$, and add to it middle points of the first ν intervals, i.e. the points $\{1 / 2 n, 3 / 2 n, \ldots,(2 \nu-1) / 2 n\}$. Note that the case $n=\nu$ corresponds to the equally spaced knots $\pi_{2 n}$. As this case was treated separately, it is assumed in what follows, if necessary, that $\nu<n$. We call knots of this kind partially equally spaced. For simplicity the orthogonal projection $P_{\pi_{\nu, n}}$ is denoted by $P_{N}=P_{\nu, n}$ and the space $\mathcal{S}_{\pi_{\nu, n}}$ by $\mathcal{S}_{N}=\mathcal{S}_{\nu, n}$. To any such partially equally spaced knots corresponds the
inverse matrix $\mathbf{A}=\mathbf{A}_{N}=\mathbf{A}_{\nu, n}$ and in what follows the dependence on $\{\nu, n\}$ will be suppressed in notation.

Our main goal is to prove
Theorem 3.3. For each integer $n \geq 1$,

$$
\begin{equation*}
\sup _{\nu: 1 \leq \nu \leq n}\left\|P_{\nu, n}\right\|_{1}<D=2+(2-\sqrt{3})^{2} \tag{3.7}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\lim _{(n-\nu) \wedge \nu \rightarrow \infty}\left\|P_{\nu, n}\right\|_{1}=D \tag{3.8}
\end{equation*}
$$

Before starting the proof of Theorem 3.3 some auxiliary results need to be recalled or established. For the matrix \mathbf{A} we have an explicit formula (see [4]):

Proposition 3.4. If $N=n+\nu$ with $1 \leq \nu \leq n$, then

$$
\begin{equation*}
a_{i, k}=\frac{2 n}{C(N)}(-1)^{i+k} \varepsilon_{i, k} \tag{3.9}
\end{equation*}
$$

where $C(N)=B(N)+B(N-2 \nu) A(2 \nu)$ and for $0 \leq i, k \leq N$,

$$
\varepsilon_{i, k}= \begin{cases}2 A(i \wedge k) \cdot K & \text { if } i \vee k \leq 2 \nu \tag{3.10}\\ A(N-i \vee k) \cdot L & \text { if } i \wedge k>2 \nu \\ 2 A(i \wedge k) A(N-i \vee k) & \text { if } i \wedge k \leq 2 \nu<i \vee k\end{cases}
$$

where $K=A(N-i \vee k)+3 B(N-2 \nu) B(2 \nu-i \vee k)$ and $L=A(i \wedge k)+$ $A(2 \nu) A(i \wedge k-2 \nu)$.

Lemma 3.5. Let

$$
\alpha(s, t)=A(s+t)+3 B(s) B(t), \quad \beta(s, t)=\alpha(s, t+1) / \alpha(s, t)
$$

Then

$$
\begin{align*}
& \quad 2 \alpha(s, t)=3 A(s+t)-A(s-t) \tag{3.11}\\
& \beta(s, t) \geq \beta(s, t+1)>1 \tag{3.12}\\
& 1<\beta(s, t) \leq \beta(s+1, t) \tag{3.13}\\
& \text { for } s \geq 1, t \geq 0 \\
& \text { for } s \geq 1, t \geq 0
\end{align*}
$$

Lemma 3.6. Let $\phi(t)=3\left(1+t^{2}\right) /(1+t)^{2}$ for $t>0$. Then

$$
\begin{gather*}
\beta(s, 0) \nearrow \beta_{0}=2+2 \sqrt{3} \quad \text { as } s \nearrow \infty \tag{3.14}\\
\phi\left(\beta_{0}\right)=D+2(2-\sqrt{3})^{2} \tag{3.15}\\
\beta(s, 1) \nearrow \beta_{1}=\frac{7+8 \sqrt{3}}{2+2 \sqrt{3}} \quad \text { as } s \nearrow \infty \tag{3.16}\\
\phi\left(\beta_{1}\right)=\frac{257+120 \sqrt{3}}{127+60 \sqrt{3}}<D \tag{3.17}
\end{gather*}
$$

Lemma 3.7. For $s>0$ and $t>0$ we have

$$
\begin{equation*}
1<\frac{A(s+t+1)+A(s) A(t+1)}{A(s+t)+A(s) A(t)} \leq 2+\sqrt{3} \tag{3.18}
\end{equation*}
$$

The elementary proofs of Lemmas $3.5,3.6$ and 3.7 will be omitted. To simplify notation we introduce

$$
\begin{equation*}
\gamma_{i, k}=\frac{\varepsilon_{i, k}}{\varepsilon_{i-1, k}} \quad \text { for } i=1, \ldots, N \text { and } k=0, \ldots, N \tag{3.19}
\end{equation*}
$$

where the $\varepsilon_{i, k}$ are as in (3.10), and

$$
\begin{equation*}
D_{k, N}=\sum_{i=1}^{N} p_{i, k} \phi\left(\gamma_{i, k}\right) \quad \text { for } k=0, \ldots, N \tag{3.20}
\end{equation*}
$$

Now, using (2.11), (2.12) and (2.15) we find that

$$
\begin{equation*}
\left\|P_{N}\right\|_{1}=\left\|P_{N}\right\|_{\infty}=\sup _{0 \leq k \leq N} D_{k, N} \tag{3.21}
\end{equation*}
$$

In the proof of Theorem 3.3 the following Lemmas 3.8 and 3.9 are crucial.
Lemma 3.8. Let $N=n+\nu$ with $1 \leq \nu<n$. Then

$$
\begin{equation*}
D_{2 \nu-1, N}<D \tag{3.22}
\end{equation*}
$$

Proof. We split the sum (3.20) with $k=2 \nu-1$ into three pieces:

$$
\begin{equation*}
D_{2 \nu-1, N}=\left(\sum_{i=1}^{2 \nu-1}+\sum_{i=2 \nu}+\sum_{i=2 \nu+1}^{N}\right) p_{i, 2 \nu-1} \phi\left(\gamma_{i, 2 \nu-1}\right) \tag{3.23}
\end{equation*}
$$

The terms of these sums can be handled with the help of formulae (2.13), (3.9), (3.10) and (3.19). In particular for $1 \leq i \leq 2 \nu-1$ we get

$$
\begin{align*}
& C(N) p_{i, 2 \nu-1} \phi\left(\gamma_{i, 2 \nu-1}\right)=\frac{1}{6}\left(\varepsilon_{i-1,2 \nu-1}+\varepsilon_{i, 2 \nu-1}\right) \phi\left(\gamma_{i, 2 \nu-1}\right) \tag{3.24}\\
& =(A(N-2 \nu+1)+3 B(N-2 \nu)) \phi\left(\frac{A(i)}{A(i-1)}\right) \frac{A(i-1)+A(i)}{3} \\
& <(A(N-2 \nu+1)+3 B(N-2 \nu)) \phi\left(\frac{A(2 \nu-1)}{A(2 \nu-2)}\right)(B(i)-B(i-1)) .
\end{align*}
$$

The last inequality follows from the monotonicity of $A(m+1) / A(m)(c f$. (3.5)) and the identity $A(i-1)+A(i)=3(B(i)-B(i-1)$), which in turn can be obtained from (3.1). Now, Lemma 2.1 gives in particular

$$
\begin{equation*}
\phi\left(\frac{A(m)}{A(m-1)}\right)<2 \frac{\sqrt{3} B(m)}{A(m)} \quad \text { for } m \geq 1 \tag{3.25}
\end{equation*}
$$

The combination of (3.25) and (3.24) gives the upper bound for the first
sum of (3.23):

$$
\begin{align*}
\Sigma_{1} & =\sum_{i=1}^{2 \nu-1} p_{i, 2 \nu-1} \phi\left(\gamma_{i, 2 \nu-1}\right) \tag{3.26}\\
& <4 \sqrt{3} \cdot \frac{A(N-2 \nu)+3 B(N-2 \nu)}{C(N)} \cdot \frac{B(2 \nu-1)^{2}}{A(2 \nu-1)}
\end{align*}
$$

For the second sum in (3.23) we have, by Proposition 3.4,

$$
\begin{align*}
\Sigma_{2} & =p_{2 \nu, 2 \nu-1} \phi\left(\gamma_{2 \nu, 2 \nu-1}\right)=\frac{1}{2 C(N)} \cdot \frac{\varepsilon_{2 \nu-1,2 \nu}^{2}+\varepsilon_{2 \nu-1,2 \nu-1}^{2}}{\varepsilon_{2 \nu-1,2 \nu}+\varepsilon_{2 \nu-1,2 \nu-1}} \tag{3.27}\\
& =\frac{A(2 \nu-1)}{C(N)} \cdot \frac{4(A(N-2 \nu)+3 B(N-2 \nu))^{2}+A(N-2 \nu)^{2}}{3(A(N-2 \nu)+2 B(N-2 \nu))}
\end{align*}
$$

To obtain the estimate for the third sum of (3.23) we proceed very much like in the first case:

$$
\begin{align*}
\Sigma_{3} & =\sum_{i=2 \nu+1}^{N} p_{i, 2 \nu-1} \phi\left(\gamma_{i, 2 \nu-1}\right)=\frac{1}{3} \sum_{i=2 \nu+1}^{N}\left(\varepsilon_{i-1,2 \nu-1}+\varepsilon_{i, 2 \nu-1}\right) \phi\left(\gamma_{i, 2 \nu-1}\right) \tag{3.28}\\
& <4 \sqrt{3} \cdot \frac{A(2 \nu-1) B(N-2 \nu)^{2}}{C(N) A(N-2 \nu)}
\end{align*}
$$

Moreover,

$$
\begin{align*}
C(N)= & A(2 \nu-1) A(N-2 \nu)+2 B(2 \nu-1) A(N-2 \nu) \tag{3.29}\\
& +4 A(2 \nu-1) B(N-2 \nu)+6 B(2 \nu-1) B(N-2 \nu)
\end{align*}
$$

To continue the proof we introduce new variables $s=2 \nu-1, t=N-2 \nu$, $x=A(t), y=B(t), u=A(s)$ and $z=B(s)$. Now,

$$
C(N) \Sigma_{1}<\frac{f_{1}(x, y, u, z)}{f_{2}(x, y, u, z)}
$$

where

$$
f_{1}(x, y, u, z)=4 \sqrt{3}(x+3 y) z^{2}, \quad f_{2}(x, y, u, z)=u
$$

moreover,

$$
C(N) \Sigma_{2}<\frac{g_{1}(x, y, u, z)}{g_{2}(x, y, u, z)}
$$

where

$$
g_{1}(x, y, u, z)=u\left(x^{2}+4(x+3 y)^{2}\right), \quad g_{2}(x, y, u, z)=3(x+2 y)
$$

and finally,

$$
C(N) \Sigma_{3}<\frac{h_{1}(x, y, u, z)}{h_{2}(x, y, u, z)}
$$

where

$$
h_{1}(x, y, u, z)=4 \sqrt{3} u y^{2}, \quad h_{2}(x, y, u, z)=x
$$

In addition we have

$$
C(N)=C(x, y, u, z)=x u+2 x z+4 u y+6 z y
$$

Moreover, let us introduce the function $m=m(x, y, u, z)$ defined as

$$
m=(9-4 \sqrt{3}) \cdot C \cdot f_{2} \cdot g_{2} \cdot h_{2}-f_{1} \cdot g_{2} \cdot h_{2}-f_{2} \cdot g_{1} \cdot h_{2}-f_{2} \cdot g_{2} \cdot h_{1}
$$

Now, to prove (3.22) it is enough to show the positivity of the rational function

$$
r(a, b)=m\left(\frac{a+1 / a}{2}, \frac{a-1 / a}{2 \sqrt{3}}, \frac{b+1 / b}{2}, \frac{b-1 / b}{2 \sqrt{3}}\right)
$$

for $a=(2+\sqrt{3})^{t} \geq 2+\sqrt{3}$ and $b=(2+\sqrt{3})^{s} \geq 2+\sqrt{3}$, or of the function $w(a, b)=r(a+2+\sqrt{3}, b+2+\sqrt{3})$ for $a \geq 0$ and $b \geq 0$. However, with the help of MATHEMATICA we find that the numerator of the rational function $w(a, b)$ is equal to

$$
\begin{aligned}
& 555776+320768 \sqrt{3}+784320 a+452800 \sqrt{3} a+463872 a^{2}+267776 \sqrt{3} a^{2} \\
& +148640 a^{3}+85856 \sqrt{3} a^{3}+27528 a^{4}+15928 \sqrt{3} a^{4}+2832 a^{5}+1632 \sqrt{3} a^{5} \\
& +128 a^{6}+72 \sqrt{3} a^{6}+406016 b+234368 \sqrt{3} b+547008 a b+315808 \sqrt{3} a b \\
& +306768 a^{2} b+177104 \sqrt{3} a^{2} b+93056 a^{3} b+53744 \sqrt{3} a^{3} b+16440 a^{4} b \\
& +9508 \sqrt{3} a^{4} b+1644 a^{5} b+948 \sqrt{3} a^{5} b+74 a^{6} b+42 \sqrt{3} a^{6} b+104128 b^{2} \\
& +60032 \sqrt{3} b^{2}+127888 a b^{2}+73824 \sqrt{3} a b^{2}+63416 a^{2} b^{2}+36600 \sqrt{3} a^{2} b^{2} \\
& +16456 a^{3} b^{2}+9536 \sqrt{3} a^{3} b^{2}+2446 a^{4} b^{2}+1444 \sqrt{3} a^{4} b^{2}+222 a^{5} b^{2} \\
& +126 \sqrt{3} a^{5} b^{2}+11 a^{6} b^{2}+5 \sqrt{3} a^{6} b^{2}+13312 b^{3}+7680 \sqrt{3} b^{3} \\
& +14624 a b^{3}+8448 \sqrt{3} a b^{3}+5968 a^{2} b^{3}+3456 \sqrt{3} a^{2} b^{3}+1072 a^{3} b^{3} \\
& +624 \sqrt{3} a^{3} b^{3}+68 a^{4} b^{3}+44 \sqrt{3} a^{4} b^{3}+896 b^{4}+512 \sqrt{3} b^{4} \\
& +976 a b^{4}+568 \sqrt{3} a b^{4}+392 a^{2} b^{4}+236 \sqrt{3} a^{2} b^{4}+68 a^{3} b^{4} \\
& +44 \sqrt{3} a^{3} b^{4}+a^{4} b^{4}+5 \sqrt{3} a^{4} b^{4},
\end{aligned}
$$

and its denominator is equal to

$$
8(2+\sqrt{3}+a)^{3}(2+\sqrt{3}+b)^{2}
$$

Consequently, $w(a, b)$ is positive for $a, b \geq 0$, which completes the proof of (3.22).

Lemma 3.9. Let $1 \leq \nu<n$ and $k<2 \nu-1$. Then

$$
\begin{equation*}
p_{2 \nu-1, k} \phi\left(\beta_{1}\right)+p_{2 \nu, k} \phi\left(\beta_{0}\right) \leq D\left(p_{2 \nu-1, k}+p_{2 \nu, k}\right) \tag{3.30}
\end{equation*}
$$

where β_{0} and β_{1} are as in Lemma 3.6.

Proof. It follows by (2.13), Proposition 3.4, (3.6) and (3.1) that for $k<$ $2 \nu-1$,

$$
\begin{align*}
p_{2 \nu-1, k} & =\frac{A(k)}{3 C(N)}(2 A(N-2 \nu)+6 B(N-2 \nu)), \tag{3.31}\\
p_{2 \nu, k} & =\frac{A(k)}{3 C(N)} A(N-2 \nu) \tag{3.32}\\
p_{2 \nu-1, k}+p_{2 \nu, k} & =\frac{A(k)}{3 C(N)}(3 A(N-2 \nu)+6 B(N-2 \nu)) .
\end{align*}
$$

Thus (3.30) is equivalent to

$$
\begin{align*}
(2 A(N-2 \nu)+6 B(N-2 \nu)) & \phi\left(\beta_{1}\right)+A(N-2 \nu) \phi\left(\beta_{0}\right) \tag{3.34}\\
& <D(3 A(N-2 \nu)+6 B(N-2 \nu))
\end{align*}
$$

Since $t=N-2 \nu \geq 1$ and $\tanh (\alpha t)=\sqrt{3} B(t) / A(t)$, we get in particular $\tanh (\alpha)=\sqrt{3} B(1) / A(1)=\sqrt{3} / 2$. Thus, inequality (3.34) is equivalent to

$$
\begin{equation*}
(2+2 \sqrt{3} \tanh (\alpha t)) \phi\left(\beta_{1}\right)+\phi\left(\beta_{0}\right)<D(3+2 \sqrt{3} \tanh (\alpha t)) \tag{3.35}
\end{equation*}
$$

Introducing the new variable $y=2+2 \sqrt{3} \tanh (\alpha t)$ we get an equivalent inequality

$$
\begin{equation*}
y\left(D-\phi\left(\beta_{1}\right)\right)>\phi\left(\beta_{0}\right)-D \quad \text { for } y \geq 5 \tag{3.36}
\end{equation*}
$$

which, by (3.17), is equivalent to

$$
\begin{equation*}
\frac{5}{6} \phi\left(\beta_{1}\right)+\frac{1}{6} \phi\left(\beta_{0}\right)<D \tag{3.37}
\end{equation*}
$$

Now, by Lemma 3.6, it follows that

$$
\frac{5}{6} \phi\left(\beta_{1}\right)+\frac{1}{6} \phi\left(\beta_{0}\right)=3 \frac{341+76 \sqrt{3}}{(9+10 \sqrt{3})^{2}}<D=9-4 \sqrt{3}
$$

and the proof is complete.
Proof of Theorem 3.3. Since $P_{2 n}=P_{n, n}$, we may assume by Corollary 3.2 that $1 \leq \nu<n$ or equivalently that $1<2 \nu<N$. Moreover, according to (2.11), (2.12), (3.20) and by Lemma 3.8 we need to check for fixed N and $0 \leq k \leq N$ that

$$
\begin{equation*}
D_{k, N}<D \quad \text { for } k \neq 2 \nu-1 \tag{3.38}
\end{equation*}
$$

Consider the following cases: (A) $k \leq 2 \nu$ and (B) $k>2 \nu$. In case (A) the set of indices $E=\{0, \ldots, N\}$ in the sum (3.20) can be split as $E=E_{1} \cup E_{2} \cup E_{3}$, where
$E_{1}=\{i \in E: i \leq k\}, \quad E_{2}=\{i \in E: k<i \leq 2 \nu\}, \quad E_{3}=\{i \in E: i>2 \nu\}$.
Since we are in case (A), it follows from (3.10) that

$$
\gamma_{i, k}= \begin{cases}A(i) / A(i-1) & \text { for } i \in E_{1} \\ A(N-i) / A(N-i+1) & \text { for } i \in E_{3}\end{cases}
$$

this implies $2-\sqrt{3}<\gamma_{i, k}<2+\sqrt{3}$, whence

$$
\begin{equation*}
\phi\left(\gamma_{i, k}\right)<2 \quad \text { for } i \in E_{1} \cup E_{3} \tag{3.39}
\end{equation*}
$$

In particular, if in case (A) the set E_{2} is empty, i.e. $k=2 \nu$, then the proof is complete. Now, since $2 \nu<N$ we get $s=N-2 \nu \geq 1$ and for $i \in E_{2}$ we have $t=2 \nu-i \geq 0$. Thus, for $i \in E_{2}$ we deduce from (3.10) that

$$
\begin{equation*}
\phi\left(\gamma_{i, k}\right)=\phi(\beta(s, t)) \tag{3.40}
\end{equation*}
$$

where $\beta(s, t)$ is as in Lemma 3.5. Applying Lemma 3.6 we find that for $k<i \leq 2 \nu-1$,

$$
\begin{align*}
& \phi\left(\gamma_{i, k}\right) \leq \phi(\beta(s, 1)) \nearrow \phi\left(\beta_{1}\right)<D \quad \text { as } s \nearrow \infty \tag{3.41}\\
& \phi\left(\gamma_{2 \nu, k}\right)=\phi(\beta(s, 0)) \nearrow \phi\left(\beta_{0}\right)=D+2(2-\sqrt{3})^{2} \quad \text { as } s \nearrow \infty \tag{3.42}
\end{align*}
$$

Now, (3.39) gives

$$
\begin{equation*}
\sum_{i \in E_{1} \cup E_{3}} \phi\left(\gamma_{i, k}\right) p_{i, k} \leq 2 \sum_{i \in E_{1} \cup E_{3}} p_{i, k} \tag{3.43}
\end{equation*}
$$

Moreover, (3.41), (3.42) and Lemma 3.9 imply

$$
\begin{align*}
& \sum_{i \in E_{2}} \phi\left(\gamma_{i, k}\right) p_{i, k}=\sum_{i=k+1}^{2 \nu-2} \phi\left(\gamma_{i, k}\right) p_{i, k}+\phi\left(\gamma_{2 \nu-1, k}\right) p_{2 \nu-1, k}+\phi\left(\gamma_{2 \nu, k}\right) p_{2 \nu, k} \tag{3.44}\\
& \quad \leq \phi\left(\beta_{1}\right) \sum_{i=k+1}^{2 \nu-2} p_{i, k}+\phi\left(\beta_{1}\right) p_{2 \nu-1, k}+\phi\left(\beta_{0}\right) p_{2 \nu, k} \leq D \sum_{i \in E_{2}} p_{i, k}
\end{align*}
$$

Adding inequalities (3.43) and (3.44) we obtain $D_{k, N}<D$, which completes the proof in case (A). In case (B) we find that

$$
\gamma_{i, k}= \begin{cases}\frac{A(i)}{A(i-1)} & \text { for } i \leq 2 \nu \\ \frac{A(i)+A(2 \nu) A(i-2 \nu)}{A(i-1)+A(2 \nu) A(i-1-2 \nu)} & \text { for } 2 \nu<i \leq k \\ \frac{A(N-i)}{A(N-i+1)} & \text { for } i>k\end{cases}
$$

according to Lemma 3.7 we get $2-\sqrt{3}<\gamma_{i, k}<2+\sqrt{3}$ and consequently $\phi\left(\gamma_{i, k}\right)<2$ for all $i \in E$. Thus, $D_{k, N}<2$ for $k>2 \nu$ and the proof of (3.7) is complete.

For the lower estimate we have, for given natural m and for large enough $(n-\nu) \wedge \nu$,

$$
\begin{equation*}
D_{2 \nu-1, N} \geq \sum_{i=m+1}^{N-m} p_{i, 2 \nu-1} \phi\left(\gamma_{i, 2 \nu-1}\right) \tag{3.45}
\end{equation*}
$$

where according to (3.10),

$$
\gamma_{i, 2 \nu-1}= \begin{cases}A(i) / A(i-1) & \text { for } i=1, \ldots, 2 \nu-1, \\ A(n+\nu-i) / A(n+\nu+1-i) & \text { for } i=2 \nu+1, \ldots, n+\nu .\end{cases}
$$

Now,

$$
\begin{gathered}
\sum_{i=m+1}^{2 \nu-1} p_{i, 2 \nu-1} \phi\left(\gamma_{i, 2 \nu-1}\right) \geq \phi\left(\frac{A(m+1)}{A(m)}\right) \sum_{i=m+1}^{2 \nu-1} p_{i, 2 \nu-1}, \\
\sum_{i=2 \nu+1}^{N-m} p_{i, 2 \nu-1} \phi\left(\gamma_{i, 2 \nu-1}\right) \geq \phi\left(\frac{A(n+\nu-m)}{A(n+\nu-m-1)}\right) \sum_{i=2 \nu+1}^{n+\nu-m} p_{i, 2 \nu-1}, \\
p_{2 \nu, 2 \nu-1}=\frac{A(2 \nu-1) B(n-\nu+1)}{B(n+\nu)+B(n-\nu) A(2 \nu)} \rightarrow \frac{1}{3} \quad \text { as }(n-\nu) \wedge \nu \rightarrow \infty \\
\phi\left(\gamma_{2 \nu, 2 \nu-1}\right)=\phi(\beta(n-\nu, 0)) \nearrow \phi\left(\beta_{0}\right)=D+2(2-\sqrt{3})^{3} \quad \text { as }(n-\nu) \wedge \nu \rightarrow \infty
\end{gathered}
$$

Moreover, we have identity (2.14). In addition for fixed m there is a K_{m} such that

$$
\max _{1 \leq i \leq m} p_{i, 2 \nu-1} \leq K_{m}(2-\sqrt{3})^{2 \nu} \quad \text { for } 2 \nu>m
$$

Thus,

$$
\sum_{i=1}^{m} p_{i, 2 \nu-1} \leq m K_{m}(2-\sqrt{3})^{2 \nu} \quad \text { for } 2 \nu>m
$$

Similarly,

$$
\sum_{i=N-m+1}^{N} p_{i, 2 \nu-1} \leq m K_{m}(2-\sqrt{3})^{n-\nu} \quad \text { for } n-\nu>m
$$

It now follows from (3.45) and Lemma 2.1 that with some $\eta_{k}=o(1)$ for large k we get

$$
\begin{aligned}
D_{2 \nu-1, N} \geq & \left(\phi\left(\gamma_{2 \nu, 2 \nu-1}\right)-\left(2-\eta_{m+1} \vee \eta_{n+\nu-m}\right)\right) p_{2 \nu, 2 \nu-1} \\
& +\left(2-\eta_{m+1} \vee \eta_{n+\nu-m}\right) \sum_{i=m+1}^{N-m} p_{i, 2 \nu-1} \\
\geq & \left(\phi\left(\gamma_{2 \nu, 2 \nu-1}\right)-\left(2-\eta_{m+1} \vee \eta_{n+\nu-m}\right)\right) p_{2 \nu, 2 \nu-1} \\
& \quad+\left(2-\eta_{m+1} \vee \eta_{n+\nu-m}\right)-4 m K_{m}(2-\sqrt{3})^{(n-\nu) \wedge \nu}
\end{aligned}
$$

Letting $(n-\nu) \wedge \nu \rightarrow \infty$ while m remains fixed we obtain

$$
\liminf _{(n-\nu) \wedge \nu \rightarrow \infty} D_{2 \nu-1, N} \geq\left(\phi\left(\beta_{0}\right)-\left(2-\eta_{m+1}\right)\right) \frac{1}{3}+\left(2-\eta_{m+1}\right)=D-\frac{2}{3} \eta_{m+1}
$$

and this completes the proof.
4. The norms of orthogonal projections on \mathbb{R}. P. Bechler [1] has proved that the norm of the orthogonal projection onto piecewise linear functions on \mathbb{R} with integer knots is 2 , and that the Lebesgue constant for the Franklin-Strömberg wavelet is $2+(2-\sqrt{3})^{2}$. The aim of this section is to show how these results on \mathbb{R} can be obtained from the result on $[0,1]$. Namely, the entries of the inverse to the corresponding Gram matrix on \mathbb{R} are obtained as limits of the corresponding entries on $[0,1]$ (cf. Propositions 4.1 and 4.4).
4.1. Equally spaced knots on \mathbb{R}. In this section we consider the set of integer knots $\left\{t_{i}=i: i \in \mathbb{Z}\right\}$. The corresponding piecewise linear continuous B-splines in this case have a simple formula

$$
N_{i}(t)=N_{0}(t-i) \quad \text { for } i \in \mathbb{Z}, t \in \mathbb{R}
$$

where

$$
\begin{equation*}
N_{0}(t)=(1-|t|) \vee 0 \quad \text { for } t \in \mathbb{R} \tag{4.1}
\end{equation*}
$$

Let $\mathcal{S}^{p}=\operatorname{span}\left[N_{i}: i \in \mathbb{Z}\right] \cap L^{p}(\mathbb{R})$, where $1 \leq p \leq \infty$. The orthogonal projection of $L^{1}(\mathbb{R})$ onto \mathcal{S}^{1} will be obtained as a weak limit of properly transformed corresponding orthogonal projections on the interval $I=[0,1]$. The affine map $s=n \cdot(2 t-1)$ takes the interval $I=[0,1]$ onto $I_{n}=[-n, n]$ and the knots $(i / 2 n: i=0, \ldots, 2 n)$ onto the knots $(k=-n, \ldots, n)$. The relation of the new B-splines, corresponding to I_{n}, and old ones, corresponding to I, is as follows:

$$
N_{k, n}(s)=N_{i}\left(\frac{s+n}{2 n}\right) \quad \text { with } k=i-n, s, k \in I_{n}
$$

For the entries of the Gram matrix of the new B-splines we have

$$
\begin{aligned}
\left(N_{k, n}, N_{k^{\prime}, n}\right)_{I_{n}} & =\int_{I_{n}} N_{i}\left(\frac{s+n}{2 n}\right) N_{i^{\prime}}\left(\frac{s+n}{2 n}\right) d s \\
& =2 n \int_{I} N_{i}(t) N_{i^{\prime}}(t) d t=\left(N_{i}, N_{i^{\prime}}\right)_{I} \quad \text { with } i=k+n, i^{\prime}=k^{\prime}+n
\end{aligned}
$$

Thus, the Gram matrix $\mathbf{B}=\left[b_{i, i^{\prime}}: i, i^{\prime}=0, \ldots, 2 n\right]$ for $\left(N_{i}: i=0, \ldots, 2 n\right)$ and the Gram matrix $\mathbf{B}^{(n)}=\left[b_{k, k^{\prime}}^{(n)}: k, k^{\prime} \in I_{n}\right]$ for $\left(N_{k, n}: k \in I_{n}\right)$ differ by a factor of $2 n$, i.e. $\mathbf{B}^{(n)}=2 n \mathbf{B}$. More explicitly, according to formula (2.2),

$$
\begin{equation*}
b_{k, k^{\prime}}^{(n)}=b_{\left|k-k^{\prime}\right|}^{(\infty)} \quad \text { for } n>|k| \vee\left|k^{\prime}\right| \tag{4.2}
\end{equation*}
$$

where $b_{i}^{(\infty)}=b_{-i}^{(\infty)}$ and

$$
b_{i}^{(\infty)}= \begin{cases}2 / 3 & \text { for } i=0 \tag{4.3}\\ 1 / 6 & \text { for } i=1 \\ 0 & \text { for } i>1\end{cases}
$$

However, we are interested in the inverse $\mathbf{A}^{(n)}=\left(\mathbf{B}^{(n)}\right)^{-1}=\frac{1}{2 n} \mathbf{A}$ and after replacing n by $2 n$ in (3.2) we find the following formula for the entries of $\mathbf{A}^{(n)}$:

$$
\begin{equation*}
a_{k, k^{\prime}}^{(n)}=2 \cdot(-1)^{k+k^{\prime}} \frac{A\left(n+k \wedge k^{\prime}\right) A\left(n-k \vee k^{\prime}\right)}{B(2 n)} \tag{4.4}
\end{equation*}
$$

Now, (4.3), (4.4) and the asymptotic formulae

$$
2 A(m) \simeq(2+\sqrt{3})^{m}, \quad 2 \sqrt{3} B(m) \simeq(2+\sqrt{3})^{m}
$$

for large m imply
Proposition 4.1. For fixed $k, k^{\prime} \in \mathbb{Z}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{k, k^{\prime}}^{(n)}=b_{\left|k-k^{\prime}\right|}^{(\infty)} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{k, k^{\prime}}^{(n)}=a_{\left|k-k^{\prime}\right|}^{(\infty)}=\sqrt{3} \cdot(-1)^{k+k^{\prime}}(2-\sqrt{3})^{\left|k-k^{\prime}\right|}=\sqrt{3} \cdot(\sqrt{3}-2)^{\left|k-k^{\prime}\right|} \tag{4.6}
\end{equation*}
$$

Corollary 4.2. For $i, k \in \mathbb{Z}$ we have

$$
\sum_{m \in \mathbb{Z}} a_{|i-m|}^{(\infty)} b_{|m-k|}^{(\infty)}=\delta_{i, k}
$$

We may now define the dual basis in \mathcal{S}^{1} to the B-splines $\left(N_{i}(\cdot): i \in \mathbb{Z}\right)$, i.e.

$$
\begin{equation*}
N_{i}^{*}(s)=\sum_{k \in \mathbb{Z}} a_{|i-k|}^{(\infty)} N_{i}(s) \quad \text { for } i \in \mathbb{Z}, s \in \mathbb{R} \tag{4.7}
\end{equation*}
$$

The duality relation $\left(N_{i}^{*}, N_{k}\right)=\delta_{i, k}$ for $i, k \in \mathbb{Z}$, with respect to the scalar product $(f, g)=\int_{\mathbb{R}} f(s) g(s) d s$ follows from Corollary 4.2. Let us take a look at the operator $P^{(1)}: L^{1}(\mathbb{R}) \rightarrow \mathcal{S}^{1}$ defined by

$$
\begin{equation*}
P^{(1)}(f)=\sum_{i \in \mathbb{Z}}\left(f, N_{i}^{*}\right) N_{i} \quad \text { for } f \in L^{1}(\mathbb{R}) \tag{4.8}
\end{equation*}
$$

Since $\phi(t) \leq 3$, the formula analogous to (2.15) for knots on \mathbb{R} implies that

$$
\begin{equation*}
\left\|P^{(1)}(f)\right\|_{1} \leq 3\|f\|_{1} \quad \text { for } f \in L^{1}(\mathbb{R}) \tag{4.9}
\end{equation*}
$$

and that $P^{(1)}$ is the orthogonal projection onto \mathcal{S}^{1} i.e.

$$
\begin{equation*}
\left(f-P^{(1)} f, g\right)=0 \quad \text { for } f \in L^{1}(\mathbb{R}), g \in \mathcal{S}^{\infty} \tag{4.10}
\end{equation*}
$$

Lemma 4.3. For the $L^{1}(\mathbb{R})$ norm of $P^{(1)}$ we have $\left\|P^{(1)}\right\|_{1}=2$. Consequently, $\lim _{n \rightarrow \infty}\left\|P_{n, n}\right\|_{1}=\left\|P^{(1)}\right\|_{1}$, where $P_{n, n}$ is as in Section 3.2.

Proof. Formulae (2.11) and (2.12) extended to equally spaced knots on \mathbb{R} give

$$
\left\|P^{(1)}\right\|_{1}=\frac{1}{2} \sum_{i \in \mathbb{Z}} \frac{\left|a_{i-1-k}^{(\infty)}\right|^{2}+\left|a_{i-k}^{(\infty)}\right|^{2}}{\left|a_{i-1-k}^{(\infty)}\right|+\left|a_{i-k}^{(\infty)}\right|} \quad \text { for } k \in \mathbb{Z}
$$

Using the notation of Section 2 and formula (4.6) we find that

$$
\frac{1}{2} \sum_{i \in \mathbb{Z}} \frac{\left|a_{i-1-k}^{(\infty)}\right|^{2}+\left|a_{i-k}^{(\infty)}\right|^{2}}{\left|a_{i-1-k}^{(\infty)}\right|+\left|a_{i-k}^{(\infty)}\right|}=\sum_{i \in \mathbb{Z}} p_{i, 0} \phi(2-\sqrt{3})=2
$$

since the weights $\left(p_{i, 0}: i \in \mathbb{Z}\right)$ add to 1 and since according to Lemma 2.1 we also have $\phi(2-\sqrt{3})=2$. Combining these equalities and Corollary 3.2 completes the proof.
4.2. Partially equally spaced knots on \mathbb{R}. Let us start with given $N=$ $n+\nu, n \geq 1$ and $1 \leq \nu \leq n$. Now the affine $\operatorname{map} \psi_{N}(t)=2(n t-\nu)$ transfers the knots (3.6) from $I=[0,1]$ to the knots

$$
\psi_{N}\left(t_{i}\right)= \begin{cases}i-2 \nu & \text { for } i=0, \ldots, 2 \nu \tag{4.11}\\ 2(i-2 \nu) & \text { for } i=2 \nu+1, \ldots, N\end{cases}
$$

After reindexing we get the set of knots

$$
t_{i, N}= \begin{cases}i & \text { for } i=-2 \nu, \ldots, 0 \tag{4.12}\\ 2 i & \text { for } i=1, \ldots, N-2 \nu\end{cases}
$$

Let $\left.I_{N}=\left[t_{-2 \nu, N}, t_{N-2 \nu, N}\right]=[-2 \nu, 2(N-2 \nu))\right]$ and $(f, g)_{I_{N}}=\int_{I_{N}} f g$. The limiting set of knots (4.12) as $N \rightarrow \infty$ with $\nu \wedge(n-\nu) \rightarrow \infty$ is

$$
t_{i}= \begin{cases}i & \text { for } i \leq 0 \tag{4.13}\\ 2 i & \text { for } i>0\end{cases}
$$

For the B-splines $\left(B_{i}: i \in \mathbb{Z}\right)$ corresponding to the knots (4.13) we have for $t \in \mathbb{R}$ the formulae

$$
B_{i}(t)= \begin{cases}N_{0}(t-i) & \text { for } i \leq-1 \tag{4.14}\\ N_{0}(t)+\frac{1}{2} N_{0}(t-1) & \text { for } i=0 \\ N_{0}(t / 2-i) & \text { for } i \geq 1\end{cases}
$$

where $N_{0}(t)$ is as in (4.1). Now, for each integer N we have the Gram matrix $\mathbf{B}^{(N)}=\left[b_{i, k}^{(N)}: i, k \in I_{N}\right]$ with $b_{i, k}^{(N)}=\left(B_{i, N}, B_{k, N}\right)_{I_{N}}$ for $i, k \in I_{N}$. It is useful to introduce now the infinite matrix \mathbf{B} with the entries

$$
\begin{equation*}
b_{i, k}=\lim _{\nu \wedge(n-\nu) \rightarrow \infty} b_{i, k}^{(N)}=\left(B_{i}, B_{k}\right)_{\mathbb{R}} \quad \text { for } i, k \in \mathbb{Z} \tag{4.15}
\end{equation*}
$$

Each $\mathbf{B}^{(N)}$ has an inverse $\mathbf{A}^{(N)}=\left[a_{i, k}^{(N)}: i, k \in I_{N}\right]$. For its entries, after transforming the knots from I to I_{N} and reindexing them, we get, from Proposition 3.4,

$$
\begin{equation*}
a_{i, k}^{(N)}=\frac{(-1)^{i+k}}{C(N)} \varepsilon_{i+2 \nu, k+2 \nu} \quad \text { for } i, k=-2 \nu, \ldots, N-2 \nu \tag{4.16}
\end{equation*}
$$

with the ε_{\cdot}, as in (3.10). Clearly, $a_{i, k}^{(N)}$ depends on $N=n+\nu=2 \nu+(n-\nu)$.

Proposition 4.4. Let $i, k \in \mathbb{Z}$ be fixed. Then

$$
\begin{equation*}
\lim _{\nu \wedge(n-\nu) \rightarrow \infty} a_{i, k}^{(N)}=a_{i, k}=(-1)^{i+k} \lambda_{i, k} \cdot(2-\sqrt{3})^{|i-k|} \tag{4.17}
\end{equation*}
$$

where $\lambda_{i, k}$ is uniformly bounded and

$$
\lambda_{i, k}= \begin{cases}\frac{2}{\sqrt{3}} & \text { if } i \vee k>0 \geq i \wedge k \tag{4.18}\\ \frac{1}{2 \sqrt{3}}\left[3+(2-\sqrt{3})^{2(i \wedge k)}\right] & \text { if } i \wedge k>0 \\ \frac{1}{\sqrt{3}}\left[3-(2-\sqrt{3})^{-2(i \vee k)}\right] & \text { if } i \vee k \leq 0\end{cases}
$$

Proof. Use (4.16).
Corollary 4.5. For the infinite matrices \mathbf{B} and \mathbf{A} we have

$$
\sum_{j \in \mathbb{Z}} a_{i, j} b_{j, k}=\delta_{i, k} \quad \text { for } i, k \in \mathbb{Z}
$$

As in the equally spaced case on \mathbb{R} we define the biorthogonal system

$$
\begin{equation*}
B_{i}^{*}=\sum_{k \in \mathbb{Z}} a_{i, k} B_{k} \tag{4.19}
\end{equation*}
$$

and the orthogonal projection

$$
P_{0} f=\sum_{i \in \mathbb{Z}}\left(f, B_{i}^{*}\right)_{\mathbb{R}} B_{i} \quad \text { for } f \in L^{1}(\mathbb{R})
$$

Applying the argument standard by now we find that

$$
\left\|P_{0} f\right\|_{L^{1}(\mathbb{R})} \leq 3\|f\|_{L^{1}(\mathbb{R})} \quad \text { for } f \in L^{1}(\mathbb{R})
$$

Moreover,

$$
\left(f-P_{0} f, g\right)_{\mathbb{R}}=0 \quad \text { for } g \in \operatorname{span}\left[B_{i}: i \in \mathbb{Z}\right] \cap L^{\infty}(\mathbb{R})
$$

Now, if $P_{0}^{(N)}$ is the orthogonal projection corresponding to $N=n+\nu$ and to the interval I_{N}, then

$$
\left\|P_{0}^{(N)}\right\|_{L^{1}\left(I_{N}\right)}=\left\|P_{\nu, n}\right\|_{L^{1}(I)} \quad \text { for } N \geq 2
$$

where $P_{\nu, n}$ is as in Section 3.2. Using (2.12) and Proposition 4.4 we can show that

$$
\lim _{\nu \wedge(n-\nu) \rightarrow \infty}\left\|P_{0}^{(N)}\right\|_{L^{1}\left(I_{N}\right)} \geq\left\|P_{0}\right\|_{L^{1}(\mathbb{R})}
$$

Let $\gamma_{i, k}=\left|a_{i, k}\right| /\left|a_{i-1, k}\right|$ and $\delta_{i}=t_{i}-t_{i-1}$. Then

$$
\left\|P_{0}\right\|_{L^{1}(\mathbb{R})} \geq \sum_{i \in \mathbb{Z}} p_{i, k} \phi\left(\gamma_{i, k}\right) \quad \text { for } k \in \mathbb{Z}
$$

where $p_{i, k}=\left(\delta_{i} / 6\right)\left(\left|a_{i, k}\right|+\left|a_{i-1, k}\right|\right)$ and $\sum_{i \in \mathbb{Z}} p_{i, k}=1$ for each $k \in \mathbb{Z}$. In particular, for $k=-1$ we infer from (4.18) that

$$
\lambda_{i,-1}= \begin{cases}\frac{2}{\sqrt{3}} & \text { for } i \geq 0 \\ 4\left(1-\frac{1}{\sqrt{3}}\right) & \text { for } i \leq-1\end{cases}
$$

Thus,

$$
\gamma_{i,-1}= \begin{cases}2-\sqrt{3} & \text { for } i \geq 1 \\ \frac{\sqrt{3}-1}{4} & \text { for } i=0 \\ 2+\sqrt{3} & \text { for } i \leq-1\end{cases}
$$

Consequently, $p_{0,-1}=1 / 3, \gamma_{0,-1}=(\sqrt{3}-1) / 4$ and since $\phi(2 \pm \sqrt{3})=2$ we obtain

$$
\begin{aligned}
\sum_{i \in Z} p_{i,-1} \phi\left(\gamma_{i,-1}\right) & =p_{0,-1} \phi\left(\gamma_{0,-1}\right)+2 \sum_{i \neq 0} p_{i,-1} \\
& =2+p_{0,-1}\left(\phi\left(\gamma_{0,-1}\right)-2\right)=2+(2-\sqrt{3})^{2}=D
\end{aligned}
$$

whence we infer
Corollary 4.6. $\left\|P_{0}\right\|_{L^{1}(\mathbb{R})}=D$.
Remark. Note that if we knew that for each $N=n+\nu$ and $-2 \nu \leq$ $i, k \leq N-2 \nu$,

$$
\begin{equation*}
\delta_{i} \frac{\left|a_{i-1, k}\right|^{2}+\left|a_{i, k}\right|^{2}}{\left|a_{i-1, k}\right|+\left|a_{i, k}\right|} \geq \delta_{i} \frac{\left|a_{i-1, k}^{(N)}\right|^{2}+\left|a_{i, k}^{(N)}\right|^{2}}{\left|a_{i-1, k}^{(N)}\right|+\left|a_{i, k}^{(N)}\right|} \tag{4.20}
\end{equation*}
$$

then the estimate on $[0,1]$ would be a simple consequence of the result on \mathbb{R}. However, inequality (4.20) is not true in general. For example, for $i=-1$ and $k=1$, and with $s=2 \nu, t=N-2 \nu,(4.20)$ takes the form

$$
\begin{equation*}
\frac{4(2-\sqrt{3})}{3} \geq \frac{A(t)+3 B(t)}{A(t) B(s)+2 B(t) A(s)} \cdot \frac{A(s-1)^{2}+A(s-2)^{2}}{A(s-1)+A(s-2)} \tag{4.21}
\end{equation*}
$$

It is easy to see that this inequality fails e.g. for $s=2$ and $t=1$. In addition, one can find infinite sequences of t, s (e.g. with $s=t+2$) for which (4.21) fails to hold.

References

[1] P. Bechler, Lebesgue constant for the Strömberg wavelet, J. Approx. Theory 122 (2003), 13-23.
[2] S. V. Bochkarev, A Fourier series divergent on a set of positive measure for an arbitrary bounded orthonormal system, Mat. Sb. 98 (140) (1975), 436-449 (in Russian).
[3] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), 141-157.
[4] -, Properties of the orthonormal Franklin system, II, ibid. 27 (1966), 289-323.
[5] -, The $C(I)$ norms of orthogonal projections onto subspaces of polygonals, Trudy Mat. Inst. Steklova 134 (1975), 366-369.
[6] Z. Ciesielski and A. Kamont, Survey on the orthogonal Franklin system, in: Approximation Theory. A volume dedicated to B. Sendov, B. Bojanov (ed.), DARBA, Sofia, 2002, 84-132.
[7] Z. Ciesielski and E. Niedźwiecka, A conversation with the Odra 1204 computer about approximation by polygonal functions, Wiadomości Mat. 20 (1977), 29-34 (in Polish).
[8] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (in Russian).
[9] A. M. Olevskiŭ, Fourier series and Lebesgue functions, Uspekhi Mat. Nauk 22 (1967), no. 3, 237-239 (in Russian).
[10] K. Oskolkov, The upper bound of the norms of orthogonal projections onto subspaces of polygonals, in: Approximation Theory, Banach Center Publ. 4, PWN, Warszawa, 1979, 177-183.
[11] P. Oswald, The norm in C of orthoprojections onto subspaces of piecewise linear functions, Mat. Zametki 21 (1977), 495-502 (in Russian).
[12] A. Yu. Shadrin, The L_{∞}-norm of the L_{2} spline projector is bounded independently of the knot sequence: a proof of de Boor's conjecture, Acta Math. 187 (2001), 59-137.

Institute of Mathematics
Polish Academy of Sciences
Abrahama 18
81-825 Sopot, Poland
E-mail: zc@impan.gda.pl
ak@impan.gda.pl

Received September 11, 2003
Revised version December 23, 2003

