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Multilinear almost diagonal estimates
and applications

by

Árpád Bényi and Nikolaos Tzirakis (Amherst, MA)

Abstract. We prove that an almost diagonal condition on the (m+ 1)-linear tensor
associated to an m-linear operator implies boundedness of the operator on products of
classical function spaces. We then provide applications to the study of certain singular
integral operators.

1. Introduction. The study of multilinear operators has been moti-
vated by their natural appearance in many aspects of harmonic analysis
and partial differential equations. The multilinear point of view in the study
of certain singular integrals, such as Calderón commutators, paraproducts
or pseudodifferential operators, was pioneered and extensively pursued by
Coifman and Meyer in the 1970s. Their ideas have had far reaching conse-
quences and have led to an important development of the multilinear theory.
We refer the reader to the work by Grafakos and Torres [8] and the refer-
ences therein for more details about the more recent progress experienced
in this theory.

One of the core ideas intensively used in the study of operators is to
discretize them by decomposing the functions on which they act into el-
ementary pieces. The study of the infinite-dimensional matrices obtained
in this way usually yields information about the associated operators. This
approach was carried out in the bilinear setting in [7]. There, the authors
have quantified sufficient almost diagonal conditions on the corresponding
trilinear discrete tensors that imply boundedness of the bilinear operators
on two-folds of Lebesgue and other function spaces. The main results were
then used to study the boundedness of certain bilinear pseudodifferential
operators.
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The methods in [7] were inspired by the earlier work of Frazier and Jaw-
erth [4] in the linear case. We wish to point out, however, that the bilinear
almost diagonal estimates in [7] cannot be recovered from the linear ones
by a mere freezing of one of the variables argument. As a simple mean to
check the rather intricate bilinear almost diagonal estimates, the authors
of [7] have introduced the notion of bilinear smooth molecule. Relying on
this concept and certain atomic decomposition techniques, as well as a new
notion of bilinear weak boundedness, Bényi has obtained in [1] a charac-
terization of bilinear Calderón–Zygmund operators as being precisely those
singular integral operators which map pairs of atoms into bilinear molecules.
Using this fact, he has then established a reduced bilinear T1 theorem in
the context of Triebel–Lizorkin spaces.

Motivated by the previous works, we asked the following natural question
in the m-linear setting, m ≥ 1:

Are there any sufficient conditions on the (m+ 1)-linear discrete tensor
associated to an m-linear operator that imply continuity results on appro-
priate products of function spaces?

We answer this question in the affirmative in Theorem 1. Our approach
is to first appropriately extend the definition of smooth molecules to the
general m-linear setting, and then infer the corresponding m-linear version
of the almost diagonal estimates on the tensor. These in turn will guar-
antee the boundedness of the operator defining the tensor. Our arguments
will follow closely those in [7]. Nevertheless, in this general setting, some
additional technical difficulties need to be overcome. In particular, a care-
ful management of the combinatorics of the problem becomes very impor-
tant.

In the last section we outline some applications of our results to the study
of certain multilinear pseudodifferential operators, and discuss a reduced
m-linear T1 theorem in the context of Triebel–Lizorkin spaces.

2. General notation and preliminaries. We summarize here the
common core of the notation used throughout this work, as well as some
preliminary results. We will define the rest of the mathematical notation
needed as it is introduced.

We will be working on the n-dimensional space Rn. We let D = D(Rn)
and S = S(Rn) be, respectively, the subspaces of C∞ = C∞(Rn) of com-
pactly supported functions and of Schwartz rapidly decreasing functions,
with their usual topologies. Their duals are D′ = D′(Rn), the set of all dis-
tributions on Rn, and S ′ = S ′(Rn), the set of all tempered distributions
on Rn.
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The Fourier transform of a tempered distribution f in n-dimensional
euclidean space is defined as

f̂(ξ) =
�

Rn
f(x)e−ix·ξ dx.

The inverse Fourier transform is given by f̌(ξ) = f̂(−ξ).
We denote by Lp = Lp(Rn) the classical Lebesgue spaces of measurable

functions whose modulus to the pth power is integrable, with the usual
modification when p = ∞. For 0 < p, s ≤ ∞ and arbitrary real α, the
homogeneous Triebel–Lizorkin spaces Ḟα,sp are defined by the quasi-norms

‖f‖Ḟα,sp
=
∥∥∥
(∑

ν∈Z
(2να|f ∗ φν |)s

)1/s∥∥∥
Lp(Rn)

,

where φ ∈ S is a fixed function such that φ̂(ξ) is supported in the annulus
1/2 ≤ |ξ| ≤ 2 and φ̂(ξ) is bounded away from zero on the smaller annulus
3/5 ≤ |ξ| ≤ 5/3. Here φν(x) = 2νnφ(2νx). In particular, for α = 0 and s = 2,
we recover the Lp spaces, Lp ≈ Ḟ 0,2

p .
For ν ∈ Z and k = (k1, . . . , kn) ∈ Zn, let Qνk be the dyadic cube having

the lower left corner xνk = 2−νk and side-length l(Qνk) = 2−ν ,

Qνk = {(x1, . . . , xn) ∈ Rn : 2−νki ≤ xi < 2−ν(ki + 1), 1 ≤ i ≤ n}.
We let χQνk denote the characteristic function of the dyadic cube and χ̃Qνk =
2νn/2χQνk its L2 normalization. Define also

φνk(x) = 2νn/2φ(2νx− k).

The Triebel–Lizorkin spaces admit almost orthogonal wavelet decompo-
sitions, that is, one can select a function φ such that for f ∈ Ḟα,sp ,
1 < p, s <∞, we have

f =
∑

ν,k

〈f, φνk〉φνk.(1)

The convergence of the series above is in Ḟα,sp . Furthermore, the coefficients
involved in the series (1) belong to appropriate spaces of sequences that
characterize the Triebel–Lizorkin norm of f . More precisely (see [5, Ch. 5]),

‖f‖Ḟα,sp
≈ ‖{〈f, φνk〉}‖ḟα,sp

,

where ḟα,sp are spaces of sequences {sνk} with norms given by

‖{sνk}‖ḟα,sp
=
∥∥∥
(∑

ν

(∑

k

|sνk|2ναχ̃Qνk
)s)1/s∥∥∥

Lp(Rn)
.(2)

The bilinear form 〈·, ·〉 is the pairing between a distribution and a test
function. The symbol ≈ refers to two positive quantities that have compa-
rable size with constants independent of the parameters involved.
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The Triebel–Lizorkin spaces can also be characterized in terms of other
basic objects, such as smooth atoms or molecules. For further details about
Triebel–Lizorkin spaces as well as their relation to other classical function
spaces, see Triebel’s monograph [10], or the book of Frazier, Jawerth, and
Weiss [5].

In this work we study m-linear operators T : S × · · · × S → S ′ and
their continuous extensions to various products of function spaces. These
operators are linear in each entry and therefore have m formal transposes.
The jth transpose T ∗j of T is defined via

〈T ∗j(f1, . . . , fm), g〉 = 〈T (f1, . . . , fj−1, g, fj+1, . . . , fm), fj〉
for all f1, . . . , fm, g in S.

Let T be a continuousm-linear operator from S×· · ·×S into S ′. A version
of the Schwartz kernel theorem shows that any such T must be given in the
form

(3) T (f1, . . . , fm)(x)

=
�

(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dy1 · · · dym,

where K(x, y1, . . . , ym) is a tempered distribution on (Rn)m+1 and the inte-
gral in (3) is interpreted in the sense of distributions, i.e.,

〈T (f1, . . . , fm), g〉 = 〈K, g ⊗ f1 ⊗ · · · ⊗ fm〉.(4)

Here g ⊗ f1 ⊗ · · · ⊗ fm denotes the function

(x, y1, . . . , ym) 7→ g(x)f1(y1) · · · fm(ym).

One can easily check that if T has the kernel K then its jth formal transpose
T ∗j has the kernel K∗j given by

K∗j(x, y1, . . . , ym) = K(yj , y1, . . . , yj−1, x, yj+1, . . . , ym).

We will be interested in finding sufficient conditions to extend m-linear
operators T defined a priori on products of test functions to products of
Triebel–Lizorkin spaces. We will do so in our main results, Theorem 1 and
Theorem 2. In the proofs we will make use of the so-called vector-valued
maximal theorem of Fefferman and Stein [3] that we state below.

Theorem A. Let M denote the Hardy–Littlewood maximal operator
on Rn. Then, for 1 < p < ∞ and 1 < s ≤ ∞, there exists a constant C
such that for all sequences {fj} of locally integrable functions,

∥∥∥
(∑

j

M(fj)s
)1/s∥∥∥

Lp(Rn)
≤ C

∥∥∥
(∑

j

|fj|s
)1/s∥∥∥

Lp(Rn)
.
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3. Multilinear molecules and almost diagonal conditions. Given
an m-linear operator T (f1, . . . , fm), the associated (m + 1)-linear discrete
tensor τ(T ) = {τ(ν1, l1, . . . , νm+1, lm+1)} is the infinite array of numbers

τ(ν1, l1, . . . , νm+1, lm+1) = 〈T (φν1l1 , . . . , φνmlm), φνm+1lm+1〉,(5)

where {φνl} is a fixed family of almost orthogonal wavelets, νi ∈ Z, and
li ∈ Zn for i = 1, . . . ,m+ 1. Conversely, an (m+ 1)-linear discrete tensor τ
defines an m-linear operator

T (f1, . . . , fm)

=
∑

νi,li

τ(ν1, l1, . . . , νm+1, lm+1)〈f1, φν1l1〉 · · · 〈fm, φνmlm〉φνm+1lm+1

for which the corresponding tensor is τ(T ) = τ . It is important to observe
that the wavelet representation (1) reduces the study of m-linear operators
T on products of Triebel–Lizorkin spaces Ḟα1,s1

p1 ×· · ·× Ḟαm,smpm to the study
of tensors τ(T ) on products of spaces of sequences ḟα1,s1

p1 × · · · × ḟαm,smpm .
We now introduce the notion of m-linear smooth molecule by extending

the definition given in [7] in the case m = 2.
Let K ∈ Z+. A collection of functions {ψµ1,l1,...,µm,lm} = {ψ(µi,li)}, where

µi ∈ Z and li ∈ Zn for i = 1, . . . ,m, is called a family of m-linear K-smooth
molecules if for all integers N > n and all multi-indices γ with |γ| ≤ K,
there exist constants CN,γ such that

|Dγψ(µi,li)(x)| ≤ CN,γ
2(n/2)

∑
i µi maxi 2µi|γ|∏

i(1 + 2µi |x− 2−µi li|)N
(6)

and �
ψ(µi,li)(x) dx = 0(7)

for all µi, li, i = 1, . . . ,m.
To emphasize the importance of this concept for our discussion, we re-

call that bilinear operators that map pairs of wavelets into bilinear smooth
molecules are known to be bounded. The following theorem was proved
in [7].

Theorem B. Let T be a bilinear operator so that for a wavelet
family {φµl} the three families {T (φµ1l1 , φµ2l2)}, {T ∗1(φµ1l1 , φµ2l2)}, and
{T ∗2(φµ1l1 , φµ2l2)} are families of bilinear 1-smooth molecules. Then T can
be extended as a bounded operator from Ḟ 0,s1

p × Ḟ 0,s2
q into Ḟ 0,s3

r , where
1 < p, q, r < ∞, 1/p + 1/q = 1/r, 1 < s1, s2 ≤ ∞, 1 ≤ s3 < ∞ and
1/s1 + 1/s2 = 1/s3.

Theorem B is implied by a more general result, which states that a
bilinear operator is bounded provided that certain bilinear almost diagonal
conditions on the associated trilinear discrete tensor hold. We have (see [7]):
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Theorem C. Suppose that the tensor {τ(µ1, l1;µ2, l2;µ3, l3)} associated
to a bilinear operator T satisfies the almost diagonal estimates

|τ(µ1, l1, µ2, l2, µ3, l3)|

≤ C · 2−(maxi µi−mini µi)ε2−(n/2) maxi µi2(n/2) medi µi2(n/2) mini µi

(P (µ1, l1, µ2, l2, µ3, l3))N

for some C > 0, N > n and ε > 0, where

P (µ1, l1, µ2, l2, µ3, l3) = (1 + 2min(µ1,µ2)|2−µ1l1 − 2−µ2l2|)
× (1 + 2min(µ2,µ3)|2−µ2l2 − 2−µ3l3|)(1 + 2min(µ3,µ1)|2−µ3l3 − 2−µ1l1|).

Then the corresponding operator T can be extended to be bounded from
Ḟ 0,s1
p × Ḟ 0,s2

q into Ḟ 0,s3
r , where 1 < p, q, r < ∞, 1/p + 1/q = 1/r,

1 < s1, s2 ≤ ∞, 1 ≤ s3 <∞ and 1/s1 + 1/s2 = 1/s3.

For three real numbers a, b, c such that a ≤ b ≤ c, the medium number
is defined as

med(a, b, c) = b.

Under the hypothesis of Theorem B, it is easy to check that the associated
tensor τ satisfies the bilinear almost diagonal estimates in Theorem C and
the conclusion of the former theorem follows immediately.

Let us make some further comments about the statements of the theo-
rems above. Granted one agrees to our definition of a multilinear smooth
molecule, generalizing the statement of Theorem B is an easy task. However,
one should not forget that Theorem B is a consequence of Theorem C, and
we do not know just yet what the m-linear versions of the almost diagonal
estimates look like. Moreover, it is not completely obvious how to generalize
the bilinear estimates to get, say, the trilinear ones. By this we mean that
the statement in the case m = 2 solely is not conclusive about the outlook
of the general estimates. For example, should one worry about defining the
medium number of four or more real numbers? Or, how many terms are
needed in general when dealing with the multilinear version of the product
P above? It seems reasonable to believe that to extend the previous results
properly one should examine more closely how the bilinear almost diagonal
conditions arise in the first place. The goal of the three lemmas below is to
provide an explanation of the following

Claim. The proper m-linear almost diagonal estimates satisfied by the
(m+1)-linear discrete tensor associated with an m-linear operator T should
be of the following form:

(8) |τ(µ1, l1, . . . , µm+1, lm+1)|

≤ C · 2−(maxi µi−mini µi)ε2−(n/2) maxi µi2(n/2)
∑
i6=i0 µi

∏
1≤i<j≤m+1(1 + 2min(µi,µj)|2−µili − 2−µj lj |)N
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for some C > 0, N > n, ε > 0, where i0 denotes the index for which
µi0 = maxi µi.

A first convincing indication that our claim is correct is provided by the
estimates on integrals of products of m+ 1 wavelets. We have:

Lemma 1. Suppose that the functions φµi defined on Rn satisfy , for all
x ∈ Rn, N > n, and some xµi and CN > 0, the following estimates:

|φµi(x)| ≤ CN
2(n/2)µi

(1 + 2µi |x− xµi |)N
, i = 1, . . . ,m+ 1.(9)

Then

�

Rn

m+1∏

i=1

|φµi(x)| dx ≤ CN · 2−(n/2) maxi µi2(n/2)
∑
i6=i0 µi

∏
1≤i<j≤m+1(1 + 2min(µi,µj)|xµi − xµj |)N

.(10)

Proof. The proof is adapted from its bilinear counterpart in [7]. For
the sake of completeness, we outline the main points of the argument here.
Due to symmetry and a suitable change of variables we may assume that
µ1 ≥ · · · ≥ µm ≥ µm+1 = 0 and xµm+1 = 0. In this case, we can bound
the integral on the left hand side of (10) by a suitable constant times the
integral

I =
�

Rn

m∏

i=1

2(n/2)µi

(1 + 2µi |x− xµi |)M
· 1

(1 + |x|)M dx,

where M is some integer larger than mN . A convenient choice of M will be
given later. Note that

I = 2(n/2)
∑m
i=1 µi

m∑

i=1

∞∑

ti=0

2−M
∑m
i=1 ti

�

Rt1,...,tm

1
(1 + |x|)M dx.(11)

Here, the region Rt1,...,tm of integration is given by

Rt1,...,tm = {x ∈ Rn : |x− xµi | ∼ 2ti−µi for all 1 ≤ i ≤ m},
and |x − xµ| ∼ 2t−µ means 2t−µ ≤ |x − xµ| ≤ 2t+1−µ for t ≥ 1, and
|x−xµ| ≤ 2−µ for t = 0. Next, observe that, as long as Rt1,...,tm is nonempty,
for 1 ≤ i < j ≤ m we have

1 + 2µi |xµi − xµj | ≤ 8 max(2ti , 2tj ),(12)

while for 2 ≤ i ≤ m we can write

1 + |xµi | ≤ 8(1 + |xµ1|) max(2t1 , 2ti).(13)

Due to the choice of M , and the estimates (12) and (13) above, from
Lemma 1 in [7] we get the following sequence of inequalities:
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�

Rt1,...,tm

1
(1 + |x|)M dx ≤ C max(2(t1−µ1)n, 2(t1−µ1)mN )

(1 + |xµ1 |)mN

≤ C max(2(t1−µ1)n, 2(t1−µ1)mN )∏m
i=1(1 + |xµi |)N

m∏

i=2

(max(2t1 , 2ti))N

≤
C max(2(t1−µ1)n, 2(t1−µ1)mN )

∏
1≤i<j≤m(max(2ti , 2tj ))l(i)N

∏m
i=1(1 + |xµi |)N

∏
1≤i<j≤m(1 + 2min(µi,µj)|xµi − xµj |)N

,

where l(i) = 2 if i = 1, and l(i) = 1 if 2 ≤ i ≤ m. Going back to the
integral I, we note that we can bound it by

I ≤ C · 2(n/2)
∑m
i=1 µi

m∑

i=1

∞∑

ti=0

2−M
∑m
i=1 ti

×
max(2(t1−µ1)n, 2(t1−µ1)mN )

∏
1≤i<j≤m(max(2ti , 2tj ))l(i)N

∏m
i=1(1 + |xµi |)N

∏
1≤i<j≤m(1 + 2min(µi,µj)|xµi − xµj |)N

.

If we now choose M = (3m− 1)N and the constant C = CN appropriately,
then the last geometric series converges and we can estimate I by

CN · 2−(n/2)µ12(n/2)
∑m
i=2 µi

∏m
i=1(1 + |xµi |)N

∏
1≤i<j≤m(1 + 2min(µi,µj)|xµi − xµj |)N

,

which proves (10).

Remark 1. If we pick xµi = 2−µili and φµi = φµili with φ as in the
almost orthogonal wavelet decomposition (1), then it is easy to see that
condition (9) is satisfied. Moreover, we have

|Dγφµili | ≤ CN,γ
2(n/2)µi2|γ|µi

(1 + 2µi |x− 2−µili|)N
,(14)

for all multiindices γ and all positive integers N . Note also that in this case
there is a strong resemblance of the right hand sides of the inequalities (8)
and (10).

The estimate of the integral of a product of wavelets does not explain,
however, the appearance of the term 2−(maxi µi−mini µi)ε in (8). Let us as-
sume for the moment that if a multilinear operator T maps wavelets into
multilinear molecules,

T (φµ1l1 , . . . , φµmlm) = ψ(µi,li),

then an estimate like (8) holds on the tensor τ defined by (5). This suggests
that, before moving any further, one should examine the interaction between
a wavelet and a multilinear molecule. This analysis yields the results out-
lined in the following two lemmas. It shows, in particular, why our previous
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assumption is true. For a proof of these lemmas in the case m = 2, see [7].
The details of the proof in the general case are left to the interested reader.

Lemma 2. Let φµm+1lm+1 be a wavelet and ψµ1,l1,...,µm,lm an m-linear
0-smooth molecule such that max1≤i≤m µi ≥ µm+1. Then for all positive
integers N > n there exists a positive constant CN such that

|〈ψµ1,l1,...,µm,lm , φµm+1lm+1〉|

≤ CN · 2−(max1≤i≤m µi−µm+1)2−(n/2) max1≤i≤m µi2(n/2)
∑m+1
i=1, i6=i0 µi

∏
1≤i<j≤m+1(1 + 2min(µi,µj)|2−µili − 2−µj lj |)N

,

where i0 denotes the index for which µi0 = max1≤i≤m µi.

Lemma 3. Let φµm+1lm+1 be a wavelet and ψµ1,l1,...,µm,lm an m-linear
1-smooth molecule such that max1≤i≤m µi ≤ µm+1. Then for all positive
integers N > n there exists a positive constant CN such that

|〈ψµ1,l1,...,µm,lm , φµm+1lm+1〉|

≤ CN · 2−(µm+1−max1≤i≤m µi)2−(n/2)µm+12(n/2)
∑m
i=1 µi

∏
1≤i<j≤m+1(1 + 2min(µi,µj)|2−µili − 2−µj lj |)N

.

4. Boundedness of multilinear operators. The main results are
stated and proved below.

Theorem 1. Suppose that the (m+1)-linear discrete tensor {τ(µ1, l1, . . .
. . . , µm+1, lm+1)} associated to an m-linear operator T satisfies the almost
diagonal estimates (8). Then T can be extended as a bounded operator from
Ḟ 0,s1
p1 × · · · × Ḟ 0,sm

pm into Ḟ 0,s
p for 1 < p, p1, . . . , pm < ∞, 1/p1 + · · · + 1/pm

= 1/p, 1 ≤ s <∞, 1 < s1, . . . , sm ≤ ∞ and 1/s1 + · · ·+ 1/sm = 1/s.

Proof. If {φµl} is a fixed family of wavelets, for f1, . . . , fm ∈ S we can
write

T (f1, . . . , fm)

=
∑

µi,li

τ(µ1, l1, . . . , µm+1, lm+1)〈f1, φµ1l1〉 · · · 〈fm, φµmlm〉φµm+1lm+1

=
∑

µm+1,lm+1

Sµm+1lm+1φµm+1lm+1 ,

where

Sµm+1lm+1 =
∑

µi,li, i6=m+1

τ(µ1, l1, . . . , µm+1, lm+1)〈f1, φµ1l1〉 · · · 〈fm, φµmlm〉.
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Let vµili = 〈fi, φµili〉. Note that

|Sµm+1lm+1 | ≤
∑

π∈Pm+1

|S(π)
µm+1lm+1

|,

where Pm+1 denotes the set of all permutations of {1, . . . ,m+ 1} and

S
(π)
µm+1lm+1

=
∑

µπ(1)≤···≤µπ(m+1)
li, 1≤i≤m

τ(µ1, l1, . . . , µm+1, lm+1)vµ1l1 · · · vµmlm .

Furthermore, using the wavelet characterization of Triebel–Lizorkin
spaces (2), we have
(15) ‖T (f1, . . . , fm)‖

Ḟ 0,s
p

≤ C
∑

π∈Pm+1

∥∥∥
( ∑

µm+1

(∑

lm+1

|S(π)
µm+1lm+1

|χ̃Qµm+1lm+1

)s)1/s∥∥∥
Lp
.

Our goal is to estimate the sums inside the Lp norms on the right hand
side of (15). In order to do so, we will first estimate appropriately the terms
S

(π)
µm+1lm+1

and then use the vector-valued maximal inequality stated in The-
orem A.

Let us consider first the term S
(π)
µm+1lm+1

in which π = Id represents the
identity permutation, π(i) = i, 1 ≤ i ≤ m+ 1; that is, we would like to find
a bound on

S
(Id)
µm+1lm+1

=
∑

µ1≤···≤µm+1
l1,...,lm

τ(µ1, l1, . . . , µm+1, lm+1)vµ1l1 · · · vµmlm .

The almost diagonal condition (8) implies

(16) |τ(µ1, l1, . . . , µm+1, lm+1)|

≤ CN · 2−(µm+1−µ1)ε2−(n/2)µm+12(n/2)
∑m
i=1 µi

∏
1≤i<j≤m+1(1 + 2min(µi,µj)|2−µili − 2−µj lj |)N

.

From (16) we immediately obtain the following bound on S
(Id)
µm+1lm+1

:

(17) CN
∑

µ1≤···≤µm+1

m∑

k=1

∞∑

ik=0

∑

l1,...,lm

× 2−(µm+1−µ1)ε2−(n/2)µm+12(n/2)
∑m
i=1 µi

∏m
k=1 2−ikN∏

1≤i<j≤m(1 + 2min(µi,µj)|2−µili − 2−µj lj |)N
m∏

i=1

|vµili |,

where the indices ik, 1 ≤ k ≤ m, range over the sets in Zn for which
2µk |2−µk lk − 2−µm+1lm+1| ∼ 2ik . Let

Mµi = M
(∑

li

|vµili |χ̃Qµili
)
,(18)

where M denotes the Hardy–Littlewood maximal function.
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If we now use (17), a similar argument to one in [7] will show that we
can bound S

(Id)
µm+1lm+1

by a constant (depending on N) multiple of

∑

µ1≤···≤µm+1

m∑

k=1

∞∑

ik=0

2−(µm+1−µ1)ε2−(n/2)µm+12(n/2)
∑m
i=1 µi

×
m∏

k=1

2−ikN2(n/2)µk
m∏

k=1

2(ik−µk)nMµk(x)

for all x ∈ Qµm+1lm+1 (for the definition of these dyadic cubes and the rest
of the notation, see again Section 2). By choosing N > n conveniently (so
that we can sum the infinite series over the indices ik, 1 ≤ k ≤ m), we see
that the latter inequality implies

|S(Id)
µm+1lm+1

χ̃Qµm+1lm+1
| ≤ C

∑

µ1≤···≤µm+1

2−(µm+1−µ1)ε
m∏

k=1

Mµk .

This immediately yields the following sequence of inequalities:

(19)
( ∑

µm+1

(∑

lm+1

|S(Id)
µm+1lm+1

|χ̃Qµm+1lm+1

)s)1/s

≤ C
( ∑

µm+1

( ∑

µm≤µm+1

· · ·
∑

µ1≤µ2

m+1∏

j=2

2−(µj−µ1)ε/m
m∏

k=1

Mµk
)s)1/s

= C
∥∥∥

∑

µm≤µm+1

· · ·
∑

µ1≤µ2

m+1∏

j=2

2−(µj−µ1)ε/m
m∏

k=1

Mµk
∥∥∥
ls(µm+1)

≤ C
∥∥∥

m∏

j=2

2−(µj−µ1)ε/mχ{µj−1≤µj}

m∏

k=1

Mµk
∥∥∥
ls(µ1,...,µm)

≤ C
m∏

k=1

‖{Mµk}‖lsk (µk).

In the transition from the third to the fourth line we used the fact that the
operator in question is of convolution type with the l1 kernel

K(µm+1, µ1, . . . , µm) = 2−(µm+1−µ1)ε/m
m∏

j=2

χ{µj−1≤µj}.

In the transition from the fourth to the last line we used Hölder’s inequality
with 1/s1 + · · ·+ 1/sm = 1/s.

Take Lp norms in (19) and apply Hölder’s inequality with 1/p = 1/p1 +
· · ·+ 1/pm to obtain
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(20)
∥∥∥
( ∑

µm+1

(∑

lm+1

|S(Id)
µm+1lm+1

|χ̃Qµm+1lm+1

)s)1/s∥∥∥
Lp

≤ C
m∏

k=1

∥∥∥
(∑

µk

(Mµk)sk
)1/sk∥∥∥

Lpk
.

If we recall the definition (18) ofMµk , and use Theorem A and once again the
wavelet characterization of Triebel–Lizorkin spaces, we conclude from (20)
that

(21)
∥∥∥
( ∑

µm+1

(∑

lm+1

|S(Id)
µm+1lm+1

|χ̃Qµm+1lm+1

)s)1/s∥∥∥
Lp

≤ C
m∏

k=1

‖{〈fk, φµklk〉}‖ḟ0,sk
pk

≤ C
m∏

k=1

‖fk‖Ḟ 0,sk
pk

.

To finish up the proof, we use (21) to bound all the sums appearing
on the right hand side of (15). We start by observing that if a tensor τ is
bounded from ḟ0,s1

p1 × · · · × ḟ0,sm
pm into ḟ0,s

p with 1/p1 + · · · + 1/pm = 1/p,
1/s1 + · · ·+ 1/sm = 1/s, then the jth formal transpose τ ∗j is bounded from

ḟ0,s1
p1 ×· · ·× ḟ

0,sj−1
pj−1 × ḟ0,s′

p′ × ḟ
0,sj+1
pj+1 ×· · ·× ḟ0,sm

pm into ḟ
0,s′j
p′j

, where the indices

now satisfy 1/p1 + · · · + 1/pj−1 + 1/p′ + 1/pj+1 + · · · + 1/pm = 1/p′j and
1/s1 + · · ·+1/sj−1 +1/s′+1/sj+1 + · · ·+1/sm = 1/sj . By interchanging the
roles of the indices µ1, . . . , µm (that is, by looking at all the permutations
in Pm as elements of Pm+1 with the last component fixed) we obtain the
same bound as in (21) for a number of m! of these sums. The same argument
applied to each of the m formal transposes of the tensor τ (which amounts
to composing permutations in Pm with transpositions in Pm+1) gives us the
bounds for another m ·m! of the sums, to a total of m! +m ·m! = (m+ 1)!
distinct sums of the form S

(π)
µm+1lm+1

, π ∈ Pm+1. Since the cardinality of
Pm+1 is precisely (m+ 1)!, we are done.

Theorem 2. Let T be an m-linear operator so that for a wavelet fam-
ily {φµl} the families {T (φµ1l1 , . . . , φµmlm)} and {T ∗i(φµ1l1 , . . . , φµmlm)},
i = 1, . . . ,m, are families of m-linear 1-smooth molecules. Then T can
be extended as a bounded operator from Ḟ 0,s1

p1 ×· · ·× Ḟ 0,sm
pm into Ḟ 0,s

p for 1 <
p, p1, . . . , pm <∞, 1/p1 + · · ·+1/pm = 1/p, 1 ≤ s <∞, 1 < s1, . . . , sm ≤ ∞
and 1/s1 + · · ·+ 1/sm = 1/s.

Proof. This follows immediately from Theorem 1 and Lemmas 2 and 3.

Remark 2. If we let si = 2 for all 1 ≤ i ≤ m, we see that under the
hypothesis of either Theorem 1 or Theorem 2, them-linear operator T can be
extended to be bounded from Lp1×· · ·×Lpm into Ḟ 0,2/m

p . But Ḟ 0,2/m
p ↪→ Ḟ 0,2

p

for m ≥ 1, hence we also get the boundedness of T from Lp1 × · · · × Lpm
into Lp as long as 1 < p, p1, . . . , pm <∞, 1/p1 + · · ·+ 1/pm = 1/p.
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Remark 3. Trivial embeddings between Triebel–Lizorkin spaces allow us
to sharpen the main results to obtain boundedness from Ḟ 0,s1

p1 × · · · × Ḟ 0,sm
pm

into Ḟ 0,min(s1,...,sm)
p , where 1 < p, p1, . . . , pm <∞, 1/p1 + · · ·+ 1/pm = 1/p,

and 1 < s1, . . . , sm ≤ ∞.

5. Applications

I. Let us consider the class of m-linear multiplier operators (a priori
defined on products of Schwartz function spaces)

Tσ(f1, . . . , fm)(x)

=
�

(Rn)m

σ(ξ1, . . . , ξm)f̂(ξ1) · · · f̂(ξm)eix·(ξ1+···+ξm) dξ1 · · · dξm,

with Fourier multipliers σ(ξ1, . . . , ξm) satisfying Marcinkiewicz type esti-
mates

|∂β1
ξ1
· · ·∂βmξm σ(ξ1, . . . , ξm)| ≤ Cβ1...βm |ξ1|−|β1| · · · |ξm|−|βm|(22)

for all nonzero ξ1, . . . , ξm in Rn and all multiindices β1, . . . , βm. A result
of Grafakos and Kalton [6] shows that, in general, Marcinkiewicz multilin-
ear multipliers do not give rise to bounded operators on products of, say,
Lebesgue spaces.

Therefore, to achieve boundedness one needs to impose further condi-
tions on the symbol. For example, a slight logarithmic modification of con-
dition (22) as in [6] will do. A different approach to the problem is via
almost diagonal estimates [7]. A simple argument using integration by parts
implies that, for any family of wavelets {φµl}, {Tσ(φµ1l1 , . . . , φµmlm)} satis-
fies the size and smoothness conditions (6) needed to make it a family of
m-linear ∞-smooth molecules. Hence, if we further impose the cancellation
condition (7), that is,

�

Rn
Tσ(φµ1l1 , . . . , φµmlm)(x) dx = 0,

we do obtain a family ofm-linear∞-smooth molecules. An easy computation
shows that the cancellation condition above is equivalent to

σ(ξ1, . . . , ξm) = 0

for all (ξ1, . . . , ξm) in the hyperplane Γ := {(ξ1, . . . , ξm) : ξ1 + · · ·+ξm = 0}.
Recall that the multiplier of the jth formal transpose T ∗jσ is given by
σ∗j(ξ1, . . . , ξm) = σ(ξ1, . . . , ξj−1,−ξ1 − · · · − ξm, ξj+1, . . . , ξm). Therefore,
m additional appropriate cancelation conditions on σ are required in or-
der to make all the families {T ∗j(φµ1l1 , . . . , φµmlm)} into families of m-linear
∞-smooth molecules. If we combine all these facts with Theorem 2 we obtain
the following
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Proposition 1. Assume that the Fourier multipliers σ, σ∗1, . . . , σ∗m

satisfy condition (22) and the following cancellation conditions:
σ(ξ1, . . . , ξm) = 0, (ξ1, . . . , ξm) ∈ Γ,

and
σ(ξ1, . . . , ξj−1, 0, ξj+1, . . . , ξm) = 0 ∀j, ξj.

Then Tσ can be extended as a bounded operator from Ḟ 0,s1
p1 × · · · × Ḟ 0,sm

pm

into Ḟ 0,s
p for 1 < p, p1, . . . , pm < ∞, 1/p1 + · · · + 1/pm = 1/p, 1 ≤ s < ∞,

1 < s1, . . . , sm ≤ ∞ and 1/s1 + · · ·+ 1/sm = 1/s.

II. The previous application suggests that one might be able to prove a re-
duced T1 theorem in the context of Triebel–Lizorkin spaces for a larger class
of operators. Indeed, employing certain atomic decomposition techniques, it
was proved in [1] that this is the case for bilinear Calderón–Zygmund opera-
tors. For different versions of multilinear T1 theorems for Lp spaces, see the
works of Christ and Journé [2] and Grafakos and Torres [8]. Let us consider
the class of m-linear Calderón–Zygmund operators, that is,

T (f1, . . . , fm)(x) =
�

(Rn)m

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dy1 · · · dym

whenever f1, . . . , fm ∈ D(Rn) and x 6∈ ⋂m
j=1 supp(fj), and where the kernel

K is some C∞ function defined away from the diagonal x = y1 = . . . = ym
that satisfies the size and smoothness estimates

|DγK(x, y1, . . . , ym)| ≤ Cγ

(|x− y1|+ · · ·+ |x− ym|)mn+|γ|

for all multiindices γ = (γ1, . . . , γm+1) ∈ (Zn)m+1 and all (x, y1, . . . , ym)
with x 6= yj for some j. One could replace the estimates above with more
general Lipschitz type conditions on K; see, for example, [8].

Let N be a fixed positive integer (the exact value of N is not relevant
and will not be made explicit in what follows). Following Stein [9], we say
that a C∞ function φ supported in the unit ball B1(0) of Rn and satisfying

‖Dαφ‖L∞ ≤ 1,

for all multi-indices |α| ≤ N , is a normalized bump. If f and F are functions
defined in Rn and Rn × · · · × Rn respectively, we let

fw,t(x) = f

(
x− w
t

)
, Fw,t(x1, . . . , xm) = F

(
x1 − w

t
, . . . ,

xm − w
t

)
.

We say that a continuous m-linear operator T : D × · · · × D → D′ satisfies
the Multilinear Weak Boundedness Property , or (MWBP), if there exists a
positive constant C such that for any m normalized bumps f1, . . . , fm and
any g ∈ D supported in B1(0), all w ∈ Rn and all t > 0,

|〈T ∗i(fw,t1 , . . . , fw,tm ), gw,t〉| ≤ Ctn‖g‖L∞, i = 1, . . . ,m.
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By using similar methods to the ones outlined in [1], it should be pos-
sible to extend the main results there and obtain a reduced multilinear T1
theorem for Calderón–Zygmund operators of the form:

If T is an m-linear Calderón–Zygmund operator satisfying (MWBP) and
some appropriate first order cancellation conditions, then T can be extended
as a bounded operator Ḟ 0,s1

p1 × · · · × Ḟ 0,sm
pm → Ḟ 0,s

p .

The details of the proof of this claim are left to the interested reader.
We also remark that variants of the results above on more general Triebel–
Lizorkin spaces Ḟα,sp are possible if we allow for higher order cancellations.
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