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Projective representations of
spaces of quasianalytic functionals

by

José Bonet (Valencia), Reinhold Meise (Düsseldorf) and
Sergĕı N. Melikhov (Rostov on Don)

Abstract. The weighted inductive limit of Fréchet spaces of entire functions in N
variables which is obtained as the Fourier–Laplace transform of the space of analytic func-
tionals on an open convex subset of RN can be described algebraically as the intersection
of a family of weighted Banach spaces of entire functions. The corresponding result for
the spaces of quasianalytic functionals is also derived.

1. Introduction. Let A(G) denote the space of all real-analytic func-
tions on an open convex subset G of RN with complex values. Its strong
dual A(G)′b is isomorphic to an (LF)-space FA′(G) of entire functions on
CN via the Fourier–Laplace transform. Each step space of this (LF)-space is
a Fréchet space whose topology is given by weighted sup-norms. Ehrenpreis
[8] showed that the topology of FA′(RN ) cannot be described by weighted
sup-seminorms. Similar questions on the projective description were later
investigated by various authors (see Bierstedt [1]). For weighted inductive
limits in which the steps are defined by weighted sup-seminorms, one asso-
ciates a projective hull which is an intersection of weighted Banach spaces.
In the projective hull it is possible to perform direct computations and
estimates with sup-seminorms. The question whether the projective hull co-
incides algebraically or topologically with the given inductive limit depends
heavily on the properties of the inductive limit.

The first main result of this article is Theorem 3.4, in which we show
that the (LF)-space FA′(G) of entire functions coincides with its projective
hull algebraically, and has a strictly finer topology. The assertion about the
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topology was already proved in Bonet and Meise [4, Theorem 3.1]. The proof
of Theorem 3.4 is based on a result about weighted (LB)-spaces of holomor-
phic functions due to Bierstedt, Meise and Summers [2, Theorem 1.6] and
a theorem of Ronkin [18, Theorem 2] about plurisubharmonic functions of
at most normal type with respect to order one. The present research also
complements our investigations in [5].

The second main result is Theorem 4.6, which shows that Theorem 3.4
can be extended to the spaces E ′{ω}(G) of quasianalytic functionals, where
E{ω}(G) denotes the space of all ω-ultradifferentiable functions of Roumieu
type on G for a given (quasianalytic) weight function ω (see 2.1). More
precisely, we prove that the (LF)-space FE ′{ω}(G) of entire functions on Cn

which arise as the Fourier–Laplace transforms of the elements of E{ω}(G)′b co-
incides algebraically with its projective hull and has a strictly finer topology.
The latter assertion follows again from Bonet and Meise [4, Theorem 3.1].
The corresponding result for non-quasianalytic classes E{ω}(G) was already
obtained by Bonet and Meise [3, Theorem 1]. However, its proof cannot be
extended to the present case since the non-quasianalyticity of ω is applied
twice in an essential way. Firstly, it is used to get many functions in E{ω}(G)
with compact support. Secondly, it implies the existence of the harmonic
extension of ω to the upper half-plane which is needed for an application of
the global Phragmén–Lindelöf Theorem. In the present (quasianalytic) case
we apply a classical estimate of the harmonic measure for the half-disk to-
gether with Theorem 3.4 and a recent result of Heinrich and Meise [9] which
shows that a theorem of Hörmander [10] on the supports of quasianalytic
functionals in CL(RN )′ also holds for elements in E ′{ω}(RN ).

2. Preliminaries. In this preliminary section we introduce the notation
that will be used throughout the paper. By |·| we denote the Euclidean norm
on CN , N ∈ N, while for a ∈ CN and r > 0 we let B(a, r) := {z ∈ CN :
|z − a| < r}.

2.1. Weight functions. A function ω : R → [0,∞[ is called a weight
function if it is continuous, even, increasing on [0,∞[, and if it satisfies
ω(0) = 0 and also the following conditions:

(α) ω(2t) = O(ω(t)) as t tends to infinity.
(β) ω(t) = O(t) as t tends to infinity.

(γ)
∞�

1

ω(t)
t2

dt =∞.

(δ) ϕ : t 7→ ω(et) is convex on [0,∞[.

The radial extension ω̃ of a weight function ω is defined as

ω̃ : Cn → [0,∞[, ω̃(z) := ω(|z|).
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It will also be denoted by ω in what follows, by abuse of notation. The Young
conjugate of the function ϕ = ϕω, which appears in (δ), is defined as

ϕ∗(x) := sup{xy − ϕ(y) : y > 0}, x ≥ 0.

2.2. Example. The following functions are easily seen to be weight
functions:

(1) ω(t) := |t|(log(1 + |t|))−α, 0 < α ≤ 1.
(2) ω(t) := |t|.
2.3. Spaces of ultradifferentiable functions. Let ω be a given weight

function. For a compact subset K of RN and m ∈ N denote by C∞(K)
the space of all C∞-Whitney jets on K and define

Em{ω}(K) :=
{
f ∈ C∞(K) :

‖f‖K,m := sup
x∈K

sup
α∈NN0

|f (α)(x)| exp
(
− 1
m
ϕ∗(m|α|)

)
<∞

}
.

For an open set G in RN , define the space of all ω-ultradifferentiable func-
tions of Roumieu type on G as

E{ω}(G) := {f ∈ C∞(G) : for each K ⊂ G compact there is m ∈ N
so that ‖f‖K,m <∞}.

It is endowed with the topology given by the representation

E{ω}(G) = proj←K indm→ Em{ω}(K),

where K runs over all compact subsets of G.
Note that E{ω}(G) is a countable projective limit of (DFN)-spaces which

is complete. If G is convex, it follows from Rösner [19, Satz 3.25] and
Vogt [21, Theorem 3.4] that E{ω}(G) is ultrabornological and reflexive. By
E{ω}(G)′ we denote the strong dual of E{ω}(G). The elements of E{ω}(G)
are called quasianalytic functions and the elements of E{ω}(G)′ are called
quasianalytic functionals on G.

2.4. Remark. If ω is the weight function ω(t) = |t|, then the space
E{ω}(G) coincides with the space A(G) of all real-analytic functions on G.
Note that the topology of A(G) can also be described as the projective limit
of the (LB)-spaces A(K), where K runs through all compact subsets of G
and A(K) denotes the space of germs of all holomorphic functions on K
endowed with its natural inductive limit topology. Martineau [14] proved
that A(G) is ultrabornological.

2.5. Support functions. (a) For a compact set K in RN , K 6= ∅, the
support function hK of K is defined as

hK : RN → R, hK(ξ) := sup
x∈K
〈x, ξ〉,



94 J. Bonet et al.

where 〈z, w〉 :=
∑N

j=1 zjwj for z, w ∈ CN . Obviously, hK is a convex function
which is positively homogeneous.

(b) For a compact set K in CN we define

HK : CN → R, HK(z) := sup
w∈K

Re〈z, w〉.

2.6. Weighted spaces of holomorphic functions. Let ω be a weight func-
tion and G an open convex subset of RN which contains the origin. Choose
an increasing sequence (Kn)n∈N of compact subsets of G which satisfy the
following conditions: 0 ∈ K̊1, Kn ⊂ K̊n+1 and

⋃
n∈NKn = G. For n ∈ N

denote by hn the support function of Kn and for n, k ∈ N define the weights
vn,k ∈ C(CN ) by

vn,k(z) := exp
(
−hn(Im z)− 1

k
ω(z)

)
.(2.1)

The family (vn,k)n,k∈N is denoted by Vω,G. Next denote by H(CN ) the space
of all holomorphic functions on CN and, for a given non-negative upper
semicontinuous function v on CN , define the weighted seminormed space

Hv := {f ∈ H(CN ) : ‖f‖v := sup
z∈CN

|f(z)|v(z) <∞}.

Then the weighted (LF)-space of entire functions associated with ω and G
is defined as

Vω,GH := indn→ proj←kHvn,k.

2.7. Fourier–Laplace transform. Let ω be a weight function and G a
convex open set in RN . It is easy to check that for each µ ∈ E{ω}(G)′, the
Fourier–Laplace transform µ̂ of µ, defined by

µ̂(z) := µx(exp(−i〈x, z〉)),
is in Vω,GH. In fact, the Fourier–Laplace transform

F : E{ω}(G)′b → Vω,GH, F(µ) := µ̂,

is a linear topological isomorphism. This was shown by Meyer [16] when
N = 1 and in general by Rösner [19, Satz 2.19]. For a simpler proof we refer
to Heinrich and Meise [9, Theorem 4.12].

2.8. The projective hull HV ω,G. For ω, G, and Vω,G as in 2.6, we define
the system V ω,G of weights associated with Vω,G according to Bierstedt,
Meise and Summers [2] as

(2.2) V ω,G := {v : CN → [0,∞[ : v is upper semicontinuous and

for each n ∈ N there exist αn > 0 and k(n) ∈ N such that v ≤ αnvn,k(n)}.
Then the projective hull HV ω,G of Vω,GH is defined as

HV ω,G := proj←v∈V ω,G Hv.
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It is easy to check that HV ω,G is a complete locally convex space and that
Vω,GH ⊂ HV ω,G with continuous inclusion.

3. Analytic functionals. In this section we will show that the space
of Fourier–Laplace transforms of analytic functionals on each convex open
set G in RN coincides algebraically with its projective hull.

3.1. Lemma. Let ω be a weight function and G ⊂ RN be an open and
convex set. Then for each f ∈ HV ω,G the following holds:

(a) For each k ∈ N there exists Ak > 0 such that

|f(x)| ≤ Ak exp
(

1
k
ω(x)

)
, x ∈ RN .

(b) There exist n ∈ N and B > 0 such that

|f(z)| ≤ B exp(n|Im z|+ nω(z)), z ∈ CN .
Proof. (a) For k ∈ N define wk : CN → [0,∞[ by

wk(z) := 0 if Im z 6= 0, wk(z) := exp
(
−1
k
ω(z)

)
, z ∈ RN .

Then for all n, k ∈ N we have wk ≤ vn,k. Hence wk belongs to V ω,G, which
implies, for each f ∈ HV ω,G,

sup
x∈RN

|f(x)| exp
(
−1
k
ω(x)

)
= sup

z∈CN
|f(z)|wk(z) = ‖f‖wk <∞.

(b) Using the notation introduced in 2.6, choose an increasing sequence
(rn)n∈N in N such that Kn ⊂ B(0, rn) for each n ∈ N. Then define the weight
system W = (wn)n∈N by wn(z) := exp(−rn|Im z| − nω(z)) and denote the
associated weight system according to 2.8 by W . If w ∈ W then for each
n ∈ N there exists αn > 0 such that

w(z) ≤ αnwn(z) = αn exp(−rn|Im z| − nω(z))

≤ αn exp(−hn(Im z)− ω(z)) = αnvn,1(z), z ∈ CN .
This shows that w ∈ HV ω,G and consequently HV ω,G ⊂ HW . Now note
that by Bierstedt, Meise and Summers [2, Theorem 1.6], we have HW =
WH, which implies (b).

3.2. Lemma. Let Ω ⊂ CN be an open convex set and let G := Ω ∩RN .
Then for each f ∈ HV ω,G there exist a compact convex set L ⊂ Ω and
C > 0 such that

|f(z)| ≤ C exp(HL(−iz)), z ∈ CN .
Proof. Choose a fundamental sequence (Ln)n∈N of compact convex sets

for Ω in such a way that for the given fundamental sequence (Kn)n∈N of
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compact convex subsets for G used in the definition of the weight system
Vω,G, we have Kn ⊂ L̊n and Ln ⊂ L̊n+1 for each n ∈ N. Then choose
k(n) ∈ N so that

Kn +B

(
0,

1
k(n)

)
⊂ Ln, n ∈ N.

It is easy to check that this choice implies

HKn(z) +
|z|
k(n)

≤ HLn(z), z ∈ CN , n ∈ N.

Next note that

hn(Im z) = hKn(Im z) = sup
y∈Kn

〈Im z, y〉 = sup
y∈Kn

Re〈Im z − iRe z, y〉

= sup
y∈Kn

Re〈−i(Re z + i Im z), y〉 = HKn(−iz).

Obviously, these estimates imply

−HLn(−iz) ≤ −hn(Im z)− |z|
k(n)

, z ∈ CN , n ∈ N.(3.1)

Now define the weight system U := (un)n∈N, where

un(z) := exp(−HLn(−iz)), z ∈ CN ,
and denote by U the associated weight system, according to 2.8. If we fix
u ∈ U then for each n ∈ N there exists αn > 0 such that u ≤ αnun. Since ω
satisfies condition 2.1(β), we can choose D ≥ 1 such that ω(t) ≤ D|t| + D
for all t ∈ R. Then it follows from (3.1) that for each n ∈ N we have

u(z) ≤ αnun(z) ≤ αn exp
(
−hn(Im z)− |z|

k(n)

)

≤ αn exp
(
−hn(Im z)− ω(z)

Dk(n)
+

1
k(n)

)
≤ eαnvn,Dk(n)(z).

This implies u ∈ V ω,G. Hence |f |u is bounded on CN for each f ∈ HV ω,G.
Now note that for each n ∈ N there exists εn > 0 such that Ln +B(0, εn) ⊂
Ln+1. This implies HLn+1(z) ≥ HLn(z) + εn|z| and consequently −HLn+1(z)
+HLn(z) ≤ −εn|z|, z ∈ CN . By the definition of U , this shows that we can
apply Bierstedt, Meise, and Summers [2, Theorem 1.3(d)] to get UH = HU .
This implies that for each f ∈ HV ω,G ⊂ HU there is n ∈ N such that |f |un
is bounded on CN . By the definition of un, this completes the proof of the
lemma.

To apply Lemmas 3.1 and 3.2 we need a result about plurisubharmonic
functions u defined on CN . Recall that u is said to be of at most normal
type with respect to order 1 if there are constants A,B > 0 such that

u(z) ≤ A|z|+B, z ∈ CN .
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The following theorem was proved by Ronkin [18, Theorem 2] (a similar
result was obtained by Napalkov [17, Theorem 15.21]).

3.3. Theorem. Let u be a plurisubharmonic function of at most normal
type with respect to order 1 and let α be a continuous function on RN which
is positively homogeneous with real values. If for each ε > 0 there exist
C

(1)
ε , C

(2)
ε > 0 such that

u(x) ≤ ε|x|+ C(1)
ε , x ∈ RN , u(iy) ≤ α(y) + ε|y|+ C(2)

ε , y ∈ RN ,
then for each ε > 0 there exists C(3)

ε > 0 such that

u(x+ iy) ≤ α(y) + ε(|x|+ |y|) + C(3)
ε , x, y ∈ RN .

3.4. Theorem. For each open convex set G ⊂ RN and ω(t) = |t| for
t ∈ R, we have Vω,GH = HV ω,G, while the topology of Vω,GH is strictly
finer than the one of HV ω,G.

Proof. Since Vω,GH ⊂ HV ω,G we only have to prove the converse inclu-
sion. To do so it is no restriction to assume 0 ∈ G. Then fix f ∈ HV ω,G and
note that by Lemma 3.1(b), f is of exponential type. Next let Ω := G+iRN .
By Lemma 3.2 there exists a compact set L in Ω and C > 0 such that

|f(z)| ≤ C exp(HL(−iz)), z ∈ CN .
Obviously, we can choose m ∈ N so that L ⊂ Km + iRN . This implies
HL(y) ≤ hm(y) for each y ∈ RN and consequently

|f(iy)| ≤ C exp(HL(y)) ≤ C exp(hm(y)), y ∈ RN .
Now note that by 3.1(a), for each ε > 0 there exists B > 0 such that

|f(x)| ≤ B exp(ε|x|), x ∈ RN .
Hence the function u : CN → [−∞,∞[, u(z) := log |f(z)|, satisfies the
hypotheses of Theorem 3.3. Therefore, this theorem implies that for each
ε > 0 there is Bε > 0 such that

|f(z)| ≤ Bε exp(hm(Im z) + ε|z|), z ∈ CN .
Obviously, this estimate implies f ∈ Vω,GH and hence HV ω,G ⊂ Vω,GH.

The second assertion of the theorem was proved in [4, Theorem 3.1].

4. Quasianalytic functionals. In this section we show that Theorem
3.4 extends to arbitrary weight functions ω. To achieve this we use a lemma
which follows from estimates of the harmonic measure of the upper half-disk,
as stated in Braun, Meise, and Vogt [7, Lemma 4.1].

4.1. Lemma. Let µ, a, b,R > 0, let z ∈ C with |Im z| ≤ R, and let ϕ be
subharmonic in a neighborhood of D = {ζ ∈ C : |ζ − Re z| ≤ R} satisfying

(1) ϕ(ζ) ≤ µ|Im ζ|+ aR for all ζ ∈ D.
(2) ϕ(ξ) ≤ bR for all ξ ∈ D ∩ R.
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Then ϕ satisfies

(3) ϕ(z) ≤ 4
π

(µ+ a)|Im z|+ bR.

4.2. Lemma. Let ω be a weight function and G an open convex set in
RN with 0 ∈ G. Then for each f ∈ HV ω,G there exists m ∈ N such that for
each k ∈ N there exists Ak > 0 such that

|f(z)| ≤ Ak exp
(
m|Im z|+ 1

k
ω(z)

)
, z ∈ CN .

Proof. Fix f ∈ HV ω,G. By Lemma 3.1(a),

log |f(x)| = o(ω(x)), x ∈ RN , as |x| → ∞.
We apply Braun, Meise, and Taylor [6, 1.7 and 1.8(a)] to find a weight σ
such that σ = o(ω) and A′ > 0 with

|f(x)| ≤ A′ exp(σ(x)), x ∈ RN .
Now, by Lemma 3.1(b), there are n ∈ N and B > 0 with

|f(z)| ≤ B exp(n|Im z|+ nω(z)), z ∈ CN .
Fix A > max(B,A′, 1). The function ϕ defined by ϕ(z) := log |f(z)| − logA
is plurisubharmonic on CN and satisfies the inequalities

ϕ(z) ≤ n|Im z|+ nω(z), z ∈ CN ,(4.1)

ϕ(x) ≤ σ(x), x ∈ RN .(4.2)

Select C, t0 > 0 such that for each t ≥ t0 we have

ω(2t) ≤ Cω(t), σ(2t) ≤ Cσ(t), ω(t) ≤ Ct, σ(t) ≤ Ct,
(4.3)

ω(t) ≤ C|t|+ C for all t ∈ R.
We fix ζ ∈ CN and distinguish three cases.

Case (A). Suppose that |Im ζ| ≥ |Re ζ|. Then |ζ| ≤ 2|Im ζ| and, by (4.1)
and by (4.3),

ϕ(ζ) ≤ n|Im ζ|+ nω(ζ) ≤ n|Im ζ|+ nC|ζ|+ nC

≤ n|Im ζ|+ 2nC|Im ζ|+ nC.

Case (B). Suppose that |Im ζ| < |Re ζ| ≤ t0. Now |ζ| ≤ |Im ζ|+|Re ζ| ≤
2|Re ζ| ≤ 2t0 and

ϕ(ζ) ≤ n|Im ζ|+ nω(ζ) ≤ n|Im ζ|+ nω(2t0).

Case (C). Suppose that |Im ζ| < |Re ζ| and |Re ζ| > t0. We set x :=
Re ζ, y := Im ζ and Ω := {ϑ ∈ CN : |ϑ− x| ≤ |x|}. Since |ζ − x| = |y| < |x|
we have ζ ∈ Ω. If ϑ ∈ Ω then

|ϑ| ≤ |ϑ− x|+ |x| ≤ 2|x|
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and, by (4.3),
ω(ϑ) = ω(|ϑ|) ≤ ω(2|x|) ≤ Cω(x).

We apply (4.1) to conclude that

ϕ(ϑ) ≤ n|Imϑ|+ nω(ϑ) ≤ n|Imϑ|+ nCω(x).(4.4)

On the other hand, if ξ ∈ RN ∩Ω, we deduce from (4.2) that

ϕ(ξ) ≤ σ(ξ) = σ(|ξ|) ≤ σ(2|x|) ≤ Cσ(x).(4.5)

For ζ ∈ C with Im ζ 6= 0 define the plurisubharmonic function

ψ(u) := ϕ

(
x+ u

Im ζ

|Im ζ|

)
, u ∈ C.

We will apply Lemma 4.1 to the function ψ on D := {u ∈ C : |u| ≤ |x|}. If
u ∈ D we have x + u Im ζ/|Im ζ| ∈ Ω. From |Im ζ| < |Re ζ| = |x| it follows
that u0 := i|Im ζ| ∈ D. In addition x+u0 Im ζ/|Im ζ| = x+ i Im ζ = ζ. From
(4.4) we get

ψ(u) = ϕ

(
x+ u

Im ζ

|Im ζ|

)
≤ n

∣∣∣∣Im
(
x+ u

Im ζ

|Im ζ|

)∣∣∣∣+ nCω(x)

= n|Imu|+ nCω(x), u ∈ D.
From (4.5) we conclude that

ψ(u) = ϕ

(
x+ u

Im ζ

|Im ζ|

)
≤ Cσ(x), u ∈ D ∩ R.

By Lemma 4.1 with µ := n, R := |x|, a := nCω(x)/|x|, b := Cσ(x)/|x|, z :=
u0, and by (4.3), we have

ψ(u0) ≤ 4
π

(
n+nC

ω(x)
|x|

)
|Imu0|+Cσ(x) ≤ 4

π
(n+nC2)|Im ζ|+Cσ(Re ζ).

Hence

ϕ(ζ) ≤ 4
π

(n+ nC2)|Im ζ|+ Cσ(ζ).

Summarizing Cases (A), (B) and (C), and setting m ≥ max
(
2nC + n,

4
π (n+ nC2)

)
, T ≥ max(nC, nω(2t0)) we conclude

|ϕ(ζ)| ≤ m|Im ζ|+ Cσ(ζ) + T, ζ ∈ CN ,
therefore

|f(ζ)| ≤ AeT exp(m|Im ζ|+ Cσ(ζ)), ζ ∈ CN .
Since σ = o(ω), this implies that for each k ∈ N there exists Ak > 0 such
that

|f(z)| ≤ Ak exp
(
m|Im z|+ 1

k
ω(z)

)
, z ∈ CN .
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4.3. Analytic functionals with real carrier. For a compact set K in CN
the space A′(K) is defined as the set of all u ∈ H(CN )′ which have the
property that for each open neighborhood G of K in CN there exists CG > 0
such that

|u(f)| ≤ CG sup
z∈G
|f(z)|, f ∈ H(CN ).

The elements of A′(K) are called analytic functionals carried by K. It is well
known that in general there is no minimal carrier for a given u ∈ A′(K).
However, if we let

A′(RN ) :=
⋃
{A′(K) : K ⊂ RN compact}

then for each u ∈ A′(RN ) there is a smallest compact set K ⊂ RN such that
u ∈ A′(K) (see Schapira [20, Theorem 111] or Hörmander [11, Theorem
9.1.6]). This set K is called the support of u. From Hörmander [12, Theorem
15.1.5], it follows that for a compact convex set K in RN , an entire function
f ∈ H(CN ) is the Fourier–Laplace transform of some u ∈ A′(K) if and only
if f satisfies the following estimate: For each ε > 0 there exists Cε > 0 such
that

|f(z)| ≤ Cε exp(hK(Im z) + ε|z|), z ∈ CN .(4.6)

4.4. Lemma. For each weight function ω and each open convex set G ⊂
RN the restriction map % : H(CN ) → E{ω}(G) is linear , continuous, and
has dense range. Hence %t : E{ω}(G)′b → H(CN )′b is injective and im %t ⊂
A′(RN ).

Proof. Since ω satisfies condition 2.1(β), one can check that A(G) is con-
tinuously embedded into E{ω}(G). Since % factors through A(G), the conti-
nuity of % follows. By the result of Rösner stated in 2.7, the set {fz : z ∈ CN},
where fz is defined by fz(x) := exp(−i〈x, z〉), is dense in E{ω}(G). Hence
%(H(CN )) is dense in E{ω}(G) and consequently %t is injective. Obviously,
the continuity estimate for u implies that %t(u) is in A′(RN ).

To prove the main theorem of this section we will use the following result
of Heinrich and Meise [9] which shows that Theorem 3.4 of Hörmander [10]
on the supports of quasianalytic functionals also holds for the spaces E{ω}(G)
considered here.

4.5. Theorem. Let ω be a weight function, let u ∈ E ′{ω}(RN ), and let

Ω be an open subset of RN . If the support of %t(u) is contained in Ω then
there exists a unique element U ∈ E ′{ω}(Ω) which satisfies U |E{ω}(RN ) = u.

4.6. Theorem. For each weight function ω and each convex open set
G in RN the spaces Vω,GH and HV ω,G coincide as vector spaces, while the
topology of Vω,GH is strictly finer than the one of HV ω,G.
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Proof. Since Vω,GH ⊂ HV ω,G we only have to prove the converse inclu-
sion. It is no restriction to assume 0 ∈ G. If we fix f ∈ HV ω,G then it follows
from Lemma 4.2 that f ∈ Vω,RNH. By 2.7 there exists u ∈ E ′{ω}(RN ) such
that f = F(u). Next define σ(t) := |t|, t ∈ R, and note that ω = O(σ) by
hypothesis. From this it follows easily that V σ,G ⊂ V ω,G. Hence f belongs
to HV σ,G = Vσ,GH, by Theorem 3.4. Therefore, it follows from (4.6) that
f = F(v), where v ∈ E{σ}(G)′ = A(G)′. Consequently, there exists K ⊂ G
compact with K equal to the support of v. By Lemma 4.4 we have v = %t(u).
By the result of Heinrich and Meise [9] stated in Theorem 4.5, this implies
u ∈ E{ω}(G)′ and hence f ∈ Vω,GH.

The second statement of the theorem was proved in Bonet and Meise [4,
Theorem 3.1].

We conclude this section with further examples of weight functions which
extend Example 2.2(1).

4.7. Example. For k ∈ N0 define recursively

e0 := 1, ek := exp(ek−1), log0 x := x, logk x := log(logk−1 x).

For s ∈ N let α ∈ ]0, 1] if s = 1 and α > 0 if s ≥ 2 and define

ωα,s : R→ [0,∞[, ωα,s(t) :=
|t|

(logs(es + |t|))α .

Then it is easy to check that ωα,s is a weight function for each s ∈ N and
α in the range defined above. Hence we have Vωα,s,GH = HV ωα,s,G for each
convex open set G in RN .
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Universitätsstraße 1
D-40225 Düsseldorf, Germany

E-mail: meise@math.uni-duesseldorf.de

Received October 7, 2003
Revised version April 6, 2004 (5290)


