Composition operator and Sobolev–Lorentz spaces WL^{n,q}

by

STANISLAV HENCL, LUDĚK KLEPRLÍK and JAN MALÝ (Praha)

Abstract. Let $\Omega, \Omega' \subset \mathbb{R}^n$ be domains and let $f \colon \Omega \to \Omega'$ be a homeomorphism. We show that if the composition operator $T_f \colon u \mapsto u \circ f$ maps the Sobolev-Lorentz space $WL^{n,q}(\Omega')$ to $WL^{n,q}(\Omega)$ for some $q \neq n$ then f must be a locally bilipschitz mapping.

1. Introduction. Let $\Omega, \Omega' \subset \mathbb{R}^n$ be domains and let $f: \Omega \to \Omega'$ be a homeomorphism. Given a function space X we would like to characterize mappings f for which the composition operator $T_f: T_f(u) = u \circ f$ maps $X(\Omega')$ into $X(\Omega)$ continuously. This problem has been studied for many function spaces and one the most important is the following well-known result: The composition operator T_f maps $W_{\text{loc}}^{1,n}(\Omega')$ into $W_{\text{loc}}^{1,n}(\Omega)$ continuously if $f: \Omega \to \Omega'$ is a quasiconformal mapping ([N], [L], [VG], [VG2], [Re], [HKM], [K, Lemma 5.13]). Conversely, each homeomorphism f which maps $W_{\text{loc}}^{1,n}(\Omega')$ into $W_{\text{loc}}^{1,n}(\Omega)$ continuously is necessarily a quasiconformal mapping up to a reflection; this is a consequence of ring characterizations of quasiconformality ([N], [G1], [L], [V]). Similarly it is possible to characterize homeomorphisms for which the composition operator is continuous from $W_{\text{loc}}^{1,p}$ to $W_{\text{loc}}^{1,p}$ ([G2], [L], [M], [GRo], [GGR], [K11]). A homeomorphism $f \in W_{\text{loc}}^{1,1}(\Omega, \mathbb{R}^n)$ is called a quasiconformal mapping if there is a constant $Q \ge 1$ such that

(1.1)
$$|Df(x)|^n \le QJ_f(x)$$
 for a.e. $x \in \Omega$.

For the properties and further applications of quasiconformal mappings and their generalizations see e.g. [Re], [GR], [V], [Ri], [Vu], [IM], [AIM], [K].

The class of quasiconformal mappings serves as the best class of morphisms not only for $W_{\text{loc}}^{1,n}$ functions but also for other function spaces that are "close" to $W_{\text{loc}}^{1,n}$. Let us mention for example the stability under quasiconformal mappings for the BMO space (see [R]), fractional Sobolev spaces $\dot{M}_{n/s,q}^{s}$, $s \in (0, 1]$ (see [KYZ, Theorem 1.3]; also [TV] and [HK]), absolutely contin-

²⁰¹⁰ Mathematics Subject Classification: Primary 30C65; Secondary 46E35, 46E30. Key words and phrases: composition operator, Lorentz space, Sobolev–Lorentz space.

uous functions of several variables AC_{λ}^{n} (see [H]), exponential Orlicz space exp $L(\Omega)$ in the plane (see [FG]) and Sobolev–Orlicz spaces like $WL^{n} \log^{\alpha} L$, $\alpha \in \mathbb{R}$ (see [HKl]).

We wanted to know if the similar result holds for the Sobolev–Lorentz space $WL^{n,1}$, which is important in many applications (see e.g. [S], [CP], [KKM]). Surprisingly we have found that it is false for any Sobolev–Lorentz space $WL^{n,q}$, $q \neq n$ (see Preliminaries for the definition). This is the first result that we are aware of that says that some reasonable and useful function space close to $W^{1,n}$ is not stable under quasiconformal mappings. The main reason behind this seems to be that quasiconformality is a geometrical notion while the use of the non-increasing rearrangement in the definition of Lorentz spaces erases the geometrical information about the function Du. In the meantime, a similar feature has been observed in the scale of homogeneous Besov spaces $\dot{B}^s_{n/s,q}$ with $sq \neq n$ (see [KKSS]).

It is easy to see that a composition of a bilipschitz mapping f and a function $u \in WL^{p,q}$ satisfies $u \circ f \in WL^{p,q}$ but the following results show that we cannot improve on this.

THEOREM 1.1. Let $1 \leq q \leq \infty$, $q \neq n$. Let $f: \Omega \to \Omega'$ be a Sobolev homeomorphism. Assume that T_f maps $W_0L^{n,q}(\Omega')$ to $WL^{n,q}(\Omega)$. Then f is a locally bilipschitz mapping.

As one of the steps of the proof we need the following result which is of independent interest for $p \neq n$. Note that especially for q = p we obtain a new proof of the characterization of homeomorphisms for which the composition operator is continuous from $W_{\text{loc}}^{1,p}$ to $W_{\text{loc}}^{1,p}$. Our proof uses a different idea and in contrast to the original article [GGR] (see also [K11]) we do not need to use the volume derivative instead of J_f , or the technical assumption that f is differentiable a.e. (See also [K12] for a more general version of the following theorem.)

THEOREM 1.2. Let $1 \leq p < \infty$ and $1 \leq q \leq \infty$. Let $f: \Omega \to \Omega'$ be a Sobolev homeomorphism. Suppose that T_f maps $W_0L^{p,q}(\Omega')$ into $WL^{p,q}(\Omega)$. Then there exists $Q \in \mathbb{R}$ such that

$$|Df(x)|^p \leq Q|J_f(x)|$$
 for a.e. $x \in \Omega$.

2. Preliminaries. Throughout this paper, Ω and Ω' are open subsets of \mathbb{R}^n . We use the symbol |A| for the Lebesgue measure of a measurable set $A \subset \mathbb{R}^n$. We say that a function $f: \Omega \to \mathbb{R}^n$ satisfies the Luzin (N) condition on $A \subset \Omega$ if |f(S)| = 0 for every measurable set $S \subset A$ with |S| = 0. If we do not specify where the Luzin (N) condition is satisfied, we mean the case $A = \Omega$.

The function $f : \Omega \to \mathbb{R}$ is called *essentially unbounded* if $|\{x : f(x) > t\}| \ge 0$ for every $t \in \mathbb{R}$. The support of the function f is denoted by supp $f = \overline{\{x : f(x) \neq 0\}}$.

The term Sobolev function is used for a function of class $W_{\text{loc}}^{1,1}(\Omega)$. Similarly we define Sobolev mappings. A Sobolev mapping $f: \Omega \to \Omega'$ is a Sobolev homeomorphism if f is homeomorphic and onto Ω' .

It is well-known that the *area formula*

(2.1)
$$\int_{A} J_f(x) \, dx = |f(A)|$$

holds for every quasiconformal mapping f and measurable set $A \subset \mathbb{R}^n$ (see e.g. [IM, Theorem 16.13.4] or [K, Remark 6.1]). Moreover, it is valid for every Sobolev homeomorphism on every set A on which the Luzin (N) condition holds. It is well-known that for each Sobolev mapping $f: \Omega \to \mathbb{R}^n$ we can find a set N such that |N| = 0 and f satisfies the Luzin (N) condition on $\Omega \setminus N$ (see e.g. [Ha]).

We denote by C a generic real constant which can change at each occurrence. Similarly we use c for a constant > 0.

2.1. Lorentz spaces. Let $1 \leq p < \infty$ and $1 \leq q \leq \infty$. The Lorentz space $L^{p,q}(\Omega)$ is defined as the class of all measurable functions (modulo equality a.e.) $g: \Omega \to \mathbb{R}^m$ for which the following "norm" is finite:

$$||g||_{L^{p,q}(\Omega)} = \begin{cases} \left(\int_{0}^{\infty} s^{q-1} |\{x \in \Omega \colon |g(x)| > s\}|^{q/p} \, ds \right)^{1/q} & \text{for } q < \infty, \\ \sup_{s>0} s |\{x \in \Omega \colon |g(x)| > s\}|^{1/p} & \text{for } q = \infty. \end{cases}$$

In fact, $\|\cdot\|_{L^{p,q}(\Omega)}$ is a genuine norm only for $1 \leq q \leq p$, but for $1 it still remains to be a quantity equivalent to a norm. It is well-known that for each <math>1 \leq p < \infty$ and $1 < q < \infty$ and for each function $g: \Omega \to \mathbb{R}$ we have

(2.2)
$$c \|g\|_{L^{p,\infty}(\Omega)} \le \|g\|_{L^{p,q}(\Omega)} \le C \|g\|_{L^{p,1}(\Omega)}.$$

For an introduction to Lorentz spaces see e.g. [SW].

The Sobolev-Lorentz space $WL^{p,q}(\Omega)$ is defined as the class of all Sobolev functions $f: \Omega \to \mathbb{R}$ such that $f \in L^{p,q}(\Omega)$ and $|Df| \in L^{p,q}(\Omega)$.

3. *p*-quasiconformality

LEMMA 3.1. Let $E \subset \mathbb{R}^n$ be a measurable set and $g: E \to [0, \infty]$ be an essentially unbounded measurable function. Then there exists an infinite sequence $\{U_k\}_{k\in\mathbb{N}}$ of pairwise disjoint open sets in \mathbb{R}^n such that g is essentially unbounded on each $E \cap U_k$.

S. Hencl et al.

Proof. Using the fact that g is essentially unbounded, it is not difficult to find $z \in \mathbb{R}^n$ and $r_j \searrow 0$ such that

$$|\{x \in E \cap B(z, r_j) \setminus B(z, r_{j+1}) : |g(x)| \ge j\}| > 0, \quad j = 1, 2, \dots$$

Then we write

$$A_j = B(z, r_j) \setminus \overline{B}(z, r_{j+1})$$

and set

$$U_{k+1} = A_{2^k} \cup A_{3 \cdot 2^k} \cup A_{5 \cdot 2^k} \cup \cdots, \qquad k = 0, 1, 2, \dots \blacksquare$$

LEMMA 3.2. Let $f: \Omega \to \Omega'$ be a Sobolev homeomorphism. Let $E \subset \Omega$ be a Borel measurable set of finite positive measure and t > |f(E)|. Then there exist a compact set $K \subset E$, an open set $G \subset \Omega'$ and a function $u \in C_c^{\infty}(\Omega')$ such that

$$(3.1) G \supset f(E),$$

(3.2)
$$|K| \ge \frac{1}{2n+1}|E|,$$

$$(3.3) |G| \le t,$$

$$(3.4) \qquad \qquad \operatorname{supp} u \subset G,$$

$$(3.5) |\nabla u| \le 2 in G,$$

$$(3.6) |D (u \circ f)| \ge \frac{1}{2n} |Df| in K.$$

Proof. Consider the sets

$$E_i = \left\{ x \in E \colon |Df_i(x)| \ge \frac{1}{n} |Df(x)| \right\}$$

and take $i \in \{1, \ldots, n\}$ such that

$$|E_i| \ge \frac{1}{n}|E|.$$

Find a compact set $K_i \subset E_i$ such that

$$|K_i| > \frac{2}{2n+1}|E|$$

and an open set $G \subset \Omega'$ such that $f(E) \subset G$ and $|G| \leq t$. Let $\eta \in \mathcal{C}^{\infty}_{c}(\Omega')$ be a cut-off function such that $\operatorname{supp} \eta \subset G$, $0 \leq \eta \leq 1$ and $\eta = 1$ on $f(K_i)$. Find $m \in \mathbb{N}$ such that $||D\eta||_{\infty} \leq m$. Choose K to be one of the sets

$$K^{\sin} = \{ x \in K_i : \cos^2(mf_i(x)) \ge 1/2 \},\$$

$$K^{\cos} = \{ x \in K_i : \sin^2(mf_i(x)) \ge 1/2 \}$$

such that

$$|K|\geq \frac{1}{2}|K_i|\geq \frac{1}{2n+1}|E|$$

200

and set

$$u(y) = \begin{cases} \frac{1}{m}\eta(y)\sin(my_i) & \text{if } K = K^{\sin}, \\ \frac{1}{m}\eta(y)\cos(my_i) & \text{if } K = K^{\cos}. \end{cases}$$

Then the properties (3.1)–(3.4) follow directly from the construction. Inequality (3.5) follows easily by the product rule as $||D\sin(my_i)||_{\infty} \leq m$ and $||D\eta||_{\infty} \leq m$. For (3.6) we assume e.g. that $K = K^{\sin}$. Since $K \subset E_i$, for $x \in K$ we have

$$|D(u \circ f)(x)| = |\cos(mf_i(x))| |Df_i(x)| \ge \frac{1}{\sqrt{2}} \frac{1}{n} |Df(x)| \ge \frac{|Df(x)|}{2n}.$$

THEOREM 3.3. Let $1 \leq p < \infty$ and $1 \leq q \leq \infty$. Let $f: \Omega \to \Omega'$ be a Sobolev homeomorphism. Suppose that there is a constant C_f such that

$$(3.7) ||D(u \circ f)||_{L^{p,q}(\Omega)} \le C_f ||Du||_{L^{p,q}(\Omega')}$$

for every $u \in \mathcal{C}^{\infty}_{c}(\Omega')$. Then there exists $Q \in \mathbb{R}$ such that

(3.8)
$$|Df(x)|^{p} \leq Q|J_{f}(x)| \quad \text{for a.e. } x \in \Omega$$

Proof. Fix a point $z \in \Omega$ of approximate differentiability of f and of approximate continuity of Df. Moreover, we assume that $Df(z) \neq 0$, otherwise there is nothing to prove. Choose $\varepsilon > 0$ and find $\delta > 0$ with $B(z, \delta) \subset \Omega$ such that for each $0 < r < \delta$ we have

 $\left|\left\{x \in B(z,r) : |Df(x)| < \frac{1}{2}|Df(z)| \text{ or } |J_f(x)| > |J_f(z)| + \varepsilon\right\}\right| < \frac{1}{2}|B(z,r)|.$ Consider $r \in (0,\delta)$ and set

(3.9)
$$\tilde{E} = \{x \in B(z,r) : |Df(x)| \ge \frac{1}{2} |Df(z)| \text{ and } |J_f(x)| \le |J_f(z)| + \varepsilon \}.$$

Then we pass to a Borel measurable subset $E \subset \tilde{E}$ of full measure in \tilde{E} such that f fulfills the Luzin (N) condition on E. Using Lemma 3.2 we find a compact set $K \subset E$, an open set $G \subset \Omega$ and a test function $u \in \mathcal{C}^{\infty}_{c}(\Omega')$ such that the properties (3.1)–(3.6) are satisfied with $t = |f(E)| + \varepsilon |E|$. Then u = 0 on $\Omega' \setminus G$, $|Du| \leq 2$ a.e., and thus (with the aid of (2.2))

$$\|Du\|_{L^{p,q}} \le C \|Du\|_{L^{p,1}} \le C \int_{0}^{2} |G|^{1/p} \, ds \le C |G|^{1/p} \le C t^{1/p}.$$

Using (2.2) and the morphism property (3.7), we obtain

(3.10)
$$\|D(u \circ f)\|_{L^{p,\infty}}^p \le C \|D(u \circ f)\|_{L^{p,q}}^p \le C C_f^p \|Du\|_{L^{p,q}}^p \le C C_f^p t.$$

This means that for each s > 0 we have

(3.11)
$$s^p |\{x \in \Omega : |D(u \circ f)(x)| > s\}| \le Ct.$$

(Here and below we do not indicate the dependence of the generic constant C on C_f .) In particular, it is useful to put $s := \frac{1}{4n} |Df(z)|$. Indeed, by (3.6),

(3.12)
$$|D(u \circ f)(x)| \ge \frac{1}{4n} |Df(z)| = s, \quad x \in K.$$

From (3.11) and (3.12) we obtain

$$(3.13) |Df(z)|^p |K| \le Ct = C(|f(E)| + \varepsilon |E|).$$

Now, in view of the condition (N) on E we can use the area formula (2.1) and (3.9) to obtain

(3.14)
$$|f(E)| = \int_{E} |J_f(x)| \, dx \le |E|(|J_f(z)| + \varepsilon).$$

From (3.13), (3.14) and (3.2) we easily infer that

$$|Df(z)|^p \le C \frac{|E|(|J_f(z)| + 2\varepsilon)}{|K|} \le C(|J_f(z)| + 2\varepsilon).$$

Letting $\varepsilon \to 0$ we conclude that

$$|Df(z)|^p \leq C|J_f(z)|.$$

Proof of Theorem 1.2. We assume that f is not p-quasiconformal, i.e. does not satisfy (3.8). Our aim is to construct $u \in W_0L^{p,q}(\Omega')$ such that $u \circ f \notin WL^{p,q}(\Omega)$. Set

$$g(x) = \begin{cases} |Df(x)|^p / |J_f(x)|, & J_f(x) \neq 0, \\ \infty, & J_f(x) = 0, Df(x) \neq 0, \\ 1, & Df(x) = 0. \end{cases}$$

Then the function g is essentially unbounded. By Lemma 3.1, there exist pairwise disjoint open sets $U_k \subset \Omega$, k = 1, 2, ..., such that g is essentially unbounded on each U_k . We know that f is not p-quasiconformal on U_k and hence the assumptions of Theorem 3.3 cannot be satisfied there. It follows that we can construct $u_k \in C_c^{\infty}(f(U_k))$ such that

$$|Du_k||_{L^{p,q}(f(U_k))} \le 2^{-k}$$
 and $||D(u_k \circ f)||_{L^{p,q}(U_k)} \ge 2^k$.

We extend the domain of the functions u_k by putting $u_k = 0$ on $\Omega' \setminus U_k$. Set

$$u = \sum_{k=1}^{\infty} u_k.$$

Then the sum converges in the norm of $W_0L^{p,q}(\Omega')$. Now, assume that the function $u \circ f$ is a Sobolev function on Ω , otherwise there is nothing to prove. Then $D(u \circ f) = D(u_k \circ f)$ a.e. in U_k and it easily follows that $D(u \circ f) \notin L^{p,q}(\Omega)$.

4. Bilipschitz property

THEOREM 4.1. Let $1 \leq q \leq \infty$, $q \neq n$. Let $f: \Omega \to \Omega'$ be a Sobolev homeomorphism. Assume that

$$(4.1) ||D(u \circ f)||_{L^{n,q}(\Omega)} \le C ||Du||_{L^{n,q}(\Omega')}$$

for every $u \in \mathcal{C}^{\infty}_{c}(\Omega')$. Then f is a locally bilipschitz mapping.

Proof. We already know from Theorem 3.3 that there exists a constant Q such that

$$(4.2) |Df(x)|^n \le Q|J_f(x)|$$

The reverse inequality

$$(4.3) |J_f(x)| \le |Df(x)|^n$$

holds always. Thus, f is quasiconformal or antiquasiconformal. We may assume that f is quasiconformal; then it follows that $J_f > 0$ a.e. If there are 0 < c < C such that $c \leq J_f \leq C$ a.e., then we may use (4.3) and (4.2) to show that

$$c \le |Df|^n \le QC$$
 a.e.

Since f is quasiconformal, f satisfies the (N) condition and thus for a.e. $y = f(x) \in \Omega'$ we have

$$|Df^{-1}(y)| = |(Df(x))^{-1}| \le \frac{|Df(x)|^{n-1}}{J_f(x)} \le \frac{(QC)^{(n-1)/n}}{c}$$

This is enough to conclude that f is locally bilipschitz.

Now, assume for a contradiction that J_f is not essentially bounded by C from above or by c from below. Choose $k \in \mathbb{N}$. Then there exist $0 < a_1 < a_2 < \cdots < a_k$ and measurable sets A_j , $j = 1, \ldots, k$, such that $|A_j| > 0$ and

(4.4)
$$2^n a_{j-1} < a_j, \qquad j = 2, \dots, k_j$$

(4.5)
$$a_j \le J_f \le 2a_j \quad \text{on } A_j, \quad j = 1, \dots, k$$

Choose positive constants $\mu_j < |A_j|$ and λ_j , $j = 1, \ldots, k$, to be specified later. Find compact sets $E_j \subset A_j$ such that

(4.6)
$$\mu_j = |E_j|.$$

Since E_j are pairwise disjoint, there exist pairwise disjoint "separating" open sets $W_j \subset \Omega$ such that $E_j \subset W_j$. Since

$$|f(E_j)| = \int_{E_j} |J_f(x)| \, dx > 0,$$

we can set

$$t_j = 2|f(E_j)| > |f(E_j)|$$

According to Lemma 3.2 we construct compact sets $K_j \subset E_j$, open sets $G_j \subset f(W_j)$ and functions $u_j \in \mathcal{C}_c^{\infty}(f(\Omega))$ such that for $j = 1, \ldots, k$ we have

(4.7)
$$G_j \supset f(E_j),$$

S. Hencl et al.

(4.8)
$$|K_j| \ge \frac{1}{2n+1} |E_j|,$$

$$(4.9) |G_j| \le t_j,$$

$$(4.10) \qquad \qquad \operatorname{supp} u_j \subset G_j,$$

$$(4.11) |Du_j| \le 2 in G,$$

(4.12)
$$|D(u_j \circ f)| \ge \frac{1}{2n} |Df| \quad \text{in } K_j.$$

Set

$$u = \sum_{j=1}^{k} \lambda_j u_j.$$

Now we distinguish three cases.

CASE A: $1 \le q < n$. We specify

(4.13)
$$\lambda_j = \lambda, \quad \mu_j = \frac{1}{a_j \lambda^n}, \quad j = 1, \dots, k,$$

where $\lambda > 0$ is chosen so large that $\mu_j < |A_j|$ for each j. From (4.9), (4.6) and (4.5) we obtain

$$|G_j| \le 2|f(E_j)| = 2 \int_{E_j} J_f(x) \, dx \le 4a_j \mu_j = 4\lambda^{-n}.$$

Hence by (4.10), (4.13) and (4.11),

$$|\{|Du| > s\}| \le \begin{cases} \sum_{j=1}^{k} |G_j| \le 4k\lambda^{-n}, & 0 < s < 2\lambda, \\ 0, & s \ge 2\lambda. \end{cases}$$

It follows that

(4.14)
$$\|Du\|_{L^{n,q}}^q \leq \int_0^{2\lambda} s^{q-1} (4k\lambda^{-n})^{q/n} \, ds \leq Ck^{q/n}.$$

On the other hand, from $|Df|^n \ge J_f$, (4.12) and (4.5), on K_j we have

$$|D(u \circ f)|^n = \lambda^n |D(u_j \circ f)|^n \ge \lambda^n \frac{1}{(2n)^n} |Df|^n \ge \frac{\lambda^n a_j}{(2n)^n},$$

so that

$$|\{|D(u \circ f)| > s\}| \ge |K_j|, \quad 0 \le s < s_j := \frac{\lambda}{2n} a_j^{1/n}.$$

By (4.8), (4.6) and (4.13),

(4.15)
$$|K_j| \ge \frac{1}{2n+1}|E_j| = \frac{1}{(2n+1)a_j\lambda^n} \ge cs_j^{-n}.$$

With the convention $s_0 = 0$, from (4.4) we infer that

$$s_{j-1} \le \frac{1}{2}s_j, \quad j = 1, \dots, k.$$

From (4.15) it follows that

$$(4.16) \qquad \|D(u \circ f)\|_{L^{n,q}}^q \ge \sum_{j=1}^k \int_{s_{j-1}}^{s_j} s^{q-1} |K_j|^{q/n} \, ds \ge c \sum_{j=1}^k s_j^q |K_j|^{q/n} \ge ck.$$

Comparing (4.14) and (4.16) we observe that (4.1) leads to $k \leq Ck^{q/n}$ with a constant independent of k. Since we can construct a corresponding function u for an arbitrary $k \in \mathbb{N}$, this is a contradiction.

CASE B: $n < q < \infty$. We specify

(4.17)
$$\lambda_j = (\mu a_j)^{-1/n}, \quad \mu_j = \mu, \quad j = 1, \dots, k_j$$

where $\mu > 0$ is chosen so small that $\mu < |A_j|$ for each *j*. From (4.9), (4.5) and (4.6) we obtain

$$|G_j| \le 2|f(E_j)| = 2 \int_{E_j} J_f(x) \, dx \le 4a_j \mu.$$

By (4.4), $a_i \leq 2^{n(j-i)}a_j$, i = 1, ..., j, and thus

(4.18)
$$|\{|Du| > s\}| \leq \begin{cases} \sum_{i=1}^{j} |G_i| \leq C \sum_{i=1}^{j} \mu a_i \leq C \mu a_j, & 0 < s < 2\lambda_j, \\ 0, & s \geq 2\lambda_1. \end{cases}$$

From (4.17) it follows that

(4.19)
$$||Du||_{L^{n,q}}^q \le C \sum_{j=1}^k \int_0^{2\lambda_j} s^{q-1} (\mu a_j)^{q/n} \, ds \le C \sum_{j=1}^k \lambda_j^q (\mu a_j)^{q/n} \le Ck.$$

On the other hand, as $|Df|^n \ge J_f$, by (4.12), (4.5) and (4.17), on K_j we have

$$|D(u \circ f)|^n = \lambda_j^n |D(u_j \circ f)|^n \ge \frac{\lambda_j^n}{(2n)^n} |Df|^n \ge \frac{\lambda_j^n a_j}{(2n)^n} = \frac{1}{(2n)^n \mu}.$$

By (4.8) and (4.6),

$$|K_j| \ge \frac{1}{2n+1}|E_j| \ge c\mu.$$

Consequently,

(4.20)
$$|\{|D(u \circ f)| > s\}| \ge \sum_{j=1}^{k} |K_j| \ge ck\mu, \quad 0 \le s < \bar{s} := \frac{1}{2n\mu^{1/n}}.$$

Hence

(4.21)
$$\|D(u \circ f)\|_{L^{n,q}}^q \ge c \int_0^s s^{q-1} (k\mu)^{q/n} \, ds \ge c \bar{s}^q (k\mu)^{q/n} \ge c k^{q/n}$$

Comparing (4.19) and (4.21) we observe that (4.1) leads to $k^{q/n} \leq Ck$, which is again a contradiction.

CASE C: $q = \infty$. Again, we specify the choice of λ_j and μ_j by (4.17). From (4.18) we obtain

$$s |\{|Du| > s\}|^{1/n} \le \begin{cases} C\lambda_j(\mu a_j)^{1/n} \le C, & 0 < s \le 2\lambda_j, \ j = 1, \dots, k, \\ 0, & s \ge 2\lambda_1, \end{cases}$$

and thus

$$(4.22) ||Du||_{L^{n,\infty}} \le C.$$

From (4.20) we see that

$$\bar{s} |\{ |D(u \circ f)| > \frac{1}{2}\bar{s} \} |^{1/n} \ge ck^{1/n}.$$

Hence

(4.23)
$$||D(u \circ f)||_{L^{n,\infty}} \ge Ck^{1/n}.$$

Once more, comparing (4.22) and (4.23) we arrive at a contradiction.

Proof of Theorem 1.1. We already know from Theorem 1.2 that $|Df(x)|^n \leq Q|J_f(x)|$. Thus, f is quasiconformal or antiquasiconformal. Hence it is enough to show that J_f is bounded from above by some c and from below by some 1/c. Now, we proceed similarly to the proof of Theorem 1.2 with p = n but instead of Theorem 3.3 we use Theorem 4.1.

Acknowledgements. Stanislav Hencl and Luděk Kleprlík were supported in part by the grant GAČR P201/12/0291 and in part by the ERC CZ grant LL1203 of the Czech Ministry of Education. Jan Malý was supported by the grant GAČR P201/12/0436.

References

- [AIM] K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser. 48, Princeton Univ. Press, Princeton, NJ, 2009.
- [CP] A. Cianchi and L. Pick, Sobolev embeddings into BMO, VMO, and L_{∞} , Ark. Mat. 36 (1998), 317–340.
- [FG] F. Farroni and R. Giova, Quasiconformal mappings and exponentially integrable functions, Studia Math. 203 (2011), 195–203.
- [G1] F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.

206

- [G2] F. W. Gehring, Lipschitz mappings and the p-capacity of rings in n-space, in: Advances in the Theory of Riemann Surfaces (Stony Brook, NY, 1969), Ann. of Math. Stud. 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193.
- [GGR] V. Gol'dshtein, L. Gurov and A. Romanov, Homeomorphisms that induce monomorphisms of Sobolev spaces, Israel J. Math. 91 (1995), 31–60.
- [GR] V. M. Gol'dshteĭn and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Math. Appl. (Soviet Ser.) 54, Kluwer, Dordrecht, 1990.
- [GRo] V. M. Gol'dshteĭn and A. S. Romanov, Mappings preserving Sobolev spaces, Sibirsk. Mat. Zh. 25 (1984), 55–61 (in Russian).
- [Ha] P. Hajłasz, Change of variables formula under minimal assumptions, Colloq. Math. 64 (1993), 93–101.
- [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monogr., Clarendon Press, New York, 1993.
- [H] S. Hencl, Absolutely continuous functions of several variables and quasiconformal mappings, Z. Anal. Anwend. 22 (2003), 767–778.
- [HKI] S. Hencl and L. Kleprlík, Composition of q-quasiconformal mappings and functions in Orlicz-Sobolev spaces, Illinois J. Math. 56 (2012), 931–955.
- [HK] S. Hencl and P. Koskela, Composition of quasiconformal mappings and functions in Triebel–Lizorkin spaces, Math. Nachr. 286 (2013), 669–678.
- [IM] T. Iwaniec and G. Martin, Geometric Function Theory and Non-Linear Analysis, Oxford Math. Monogr., Clarendon Press, New York, 2001.
- [KKM] J. Kauhanen, P. Koskela, and J. Malý, On functions with derivatives in a Lorentz space, Manuscripta Math. 100 (1999), 87–101.
- [K11] L. Kleprlík, Mappings of finite signed distortion: Sobolev spaces and composition of mappings, J. Math. Anal. Appl. 386 (2012), 870–881.
- [Kl2] L. Kleprlík, Composition operators on W¹X are necessarily induced by quasiconformal mappings, Cent. Eur. J. Math. 12 (2014), 1229–1238.
- [KKSS] H. Koch, P. Koskela, E. Saksman and T. Soto, Bounded compositions on scaling invariant Besov spaces, J. Funct. Anal. 266 (2014), 2765–2788.
- [K] P. Koskela, Lectures on quasiconformal and quasisymmetric mappings, 2009, http://users.jyu.fi/~pkoskela/.
- [KYZ] P. Koskela, D. Yang and Y. Zhou, Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings, Adv. Math. 226 (2011), 3579–3621.
- [L] L. G. Lewis, Quasiconformal mappings and Royden algebras in space, Trans. Amer. Math. Soc. 158 (1971), 481–492.
- [M] V. G. Maz'ya, Sobolev Spaces, Springer Ser. Soviet Math., Springer, Berlin, 1985.
- M. Nakai, Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J. 16 (1960), 157–184.
- [R] H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260–276.
- [Re] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monogr. 73, Amer. Math. Soc., Providence, RI, 1989.
- [Ri] S. Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3) 26, Springer, Berlin, 1993.
- [S] E. M. Stein, *Editor's note: The differentiability of functions in* \mathbb{R}^n , Ann. of Math. (2) 113 (1981), 383–385.
- [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Math. Ser. 32, Princeton Univ. Press, Princeton, NJ, 1971.

 [TV] P. Tukia and J. Väisälä, Quasiconformal extension from dimension n to n + Ann. of Math. (2) 115 (1982), 331-348. [V] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture No in Math. 229, Springer, Berlin, 1971. [VG] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Lattice isomorphisms of the spa W¹_n and quasiconformal mappings, Sibirsk. Mat. Zh. 16 (1975), 224-246 Russian). [VG2] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Quasiconformal mappings, and spa of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 	208	S. Hencl et al.	
 Ann. of Math. (2) 115 (1982), 331–348. [V] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture No in Math. 229, Springer, Berlin, 1971. [VG] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Lattice isomorphisms of the spa W¹_n and quasiconformal mappings, Sibirsk. Mat. Zh. 16 (1975), 224–246 Russian). [VG2] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Quasiconformal mappings, and spa of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz Received November, 11, 2012 	[TV]	P. Tukia and J. Väisälä, Quasiconformal extension from dimension n to $n + 1$	1,
 in Math. 229, Springer, Berlin, 1971. [VG] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Lattice isomorphisms of the spa W¹_n and quasiconformal mappings, Sibirsk. Mat. Zh. 16 (1975), 224–246 Russian). [VG2] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Quasiconformal mappings, and spa of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 	[V]	Ann. of Math. (2) 115 (1982), 331–348. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Not	es
 [VG] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Lattice isomorphisms of the spa W¹_n and quasiconformal mappings, Sibirsk. Mat. Zh. 16 (1975), 224–246 Russian). [VG2] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Quasiconformal mappings, and spa of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 	1.1	in Math. 229, Springer, Berlin, 1971.	
 W¹_n and quasiconformal mappings, Sibirsk. Mat. Zh. 16 (1975), 224–246 Russian). [VG2] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Quasiconformal mappings, and spa of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 	[VG]	S. K. Vodop'yanov and V. M. Gol'dshteĭn, Lattice isomorphisms of the space	es
 [VG2] S. K. Vodop'yanov and V. M. Gol'dshteĭn, Quasiconformal mappings, and spa of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 		W_n^1 and quasiconformal mappings, Sibirsk. Mat. Zh. 16 (1975), 224–246 (in
 [VG2] S. K. Vodop'yanov and V. M. Gol'dshtein, Quasiconformal mappings, and spa of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 	[VG2]	Russian).	
 [Vu] 531 (in Russian). [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 		S. K. Vodop'yanov and V. M. Gol'dshtein, Quasiconformal mappings, and space of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), 51	es 5 $-$
 [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture No in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz 		531 (in Russian).	
in Math. 1319, Springer, Berlin, 1988. Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz (76)	[Vu]	M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Not	es
Stanislav Hencl, Luděk Kleprlík, Jan Malý Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz (76)		in Math. 1319, Springer, Berlin, 1988.	
Department of Mathematical Analysis Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz (76)	Stanislav	Hencl, Luděk Kleprlík, Jan Malý	
Charles University Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz (76)	Departm	ent of Mathematical Analysis	
Sokolovská 83 186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz Received November 11, 2012 (76)	Charles U	University	
186 00 Praha, Czech Republic E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz	Sokolovsl	ká 83	
E-mail: hencl@karlin.mff.cuni.cz kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz Received November 11 2012 (76)	186 00 P	raha, Czech Republic	
kleprlik@karlin.mff.cuni.cz maly@karlin.mff.cuni.cz Received November 11 2012 (76)	E-mail: h	nencl@karlin.mff.cuni.cz	
maly@karlin.mff.cuni.cz Received November 11 2012 (76)	k	tleprlik@karlin.mff.cuni.cz	
Received November 11 2012 (76)	n	naly@karlin.mff.cuni.cz	
110000110001111, 2012 (100		Received November 11, 2012 (768	1)