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Orthogonally additive mappings on Hilbert modules
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Abstract. We study the representation of orthogonally additive mappings acting on
Hilbert C∗-modules and Hilbert H∗-modules. One of our main results shows that every
continuous orthogonally additive mapping f from a Hilbert module W over K(H) or
HS(H) to a complex normed space is of the form f(x) = T (x) + Φ(〈x, x〉) for all x ∈ W ,
where T is a continuous additive mapping, and Φ is a continuous linear mapping.

1. Introduction. Let A be a C∗-algebra or an H∗-algebra, (W, 〈·, ·〉)
be a Hilbert module over A, and G be a complex normed space. A con-
tinuous mapping f : W → G is said to be orthogonally additive if for all
x, y ∈W,

〈x, y〉 = 0 ⇒ f(x+ y) = f(x) + f(y).

In this paper, we study the representation of orthogonally additive map-
pings. If T : W → G and Φ : A → G are continuous additive mappings,
then clearly the mapping f : W → G defined by

f(x) = T (x) + Φ(〈x, x〉) for all x ∈W(1.1)

is a continuous orthogonally additive mapping. One of our main goals is
to show that the converse also holds true if A is a C∗-algebra of compact
operators or an H∗-algebra. In particular, this answers [23, Problem 27] affir-
matively, not only for Hilbert H∗-modules, but for Hilbert C∗-modules over
a C∗-algebra of compact operators as well. Other related problems in [23]
have been also solved in [11, 12, 13].

Orthogonally additive mappings have been extensively studied from
many aspects. See the survey [17] and the references therein for the represen-
tation of orthogonally additive mappings on orthogonality spaces. Refer to
[20, 21, 22] for the connection between the existence of even orthogonally ad-
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ditive mappings and inner product spaces. Recently, several mathematicians
have obtained some interesting results on orthogonally additive polynomials.
See, e.g., [7, 9, 10, 16].

The rest of this paper is organized as follows. In Section 2, we give
some necessary background and set up some notation. Section 3 deals with
⊥-additive mappings on abelian groups. The context there is very general,
so the results there may be also useful in future. Applying the results of
Section 3, we obtain in Section 4 the representation of orthogonally additive
mappings in general Hilbert modules. In Section 5, we strengthen the results
of Section 4 in the case when A is K(H) or HS(H). The main result is then
generalized in Section 6 to any Hilbert module over a C∗-algebra of compact
operators or H∗-algebra. In the last section, we obtain the representation of
orthogonally additive mappings on B(H1,H2).

Let us end the introduction by the following remark: Although some
results look very similar, there are many subtleties that make them concep-
tually different.

2. Preliminaries. In this section, we give some necessary background
and set up our notation.

2.1. Hilbert C∗-modules and Hilbert H∗-modules. Hilbert mod-
ules arise as generalizations of a complex Hilbert space when the complex
field is replaced by a C∗-algebra or an H∗-algebra. The idea of replacing
the complex numbers by the elements of a C∗-algebra first appeared in the
work of Kaplansky [14], and by the elements of a proper H∗-algebra in the
work of Saworotnow [18].

A C∗-algebra is a complex Banach ∗-algebra (A, ‖·‖) such that ‖a∗a‖
= ‖a‖2 for all a ∈ A. An H∗-algebra is a complex Banach ∗-algebra (A, ‖·‖)
whose underlying Banach space is a Hilbert space with respect to the in-
ner product 〈·, ·〉 satisfying 〈ab, c〉 = 〈b, a∗c〉 and 〈ba, c〉 = 〈b, ca∗〉 for all
a, b, c ∈ A. The trace-class associated with an H∗-algebra A is defined as
the set τ(A) = {ab : a, b ∈ A}; it is a self-adjoint two-sided ideal of A which
is dense in A.

Some examples of C∗-algebras are B(H) and K(H), the algebras of all
bounded linear operators, resp. all compact operators, on some complex
Hilbert space H. An example of an H∗-algebra is HS(H), the algebra of all
Hilbert–Schmidt operators on H.

An element a in a C∗-algebra A is called positive (a ≥ 0) if it is self-
adjoint and has nonnegative spectrum. An element a in an H∗-algebra A
is called positive (a ≥ 0) if 〈ax, x〉 ≥ 0 for all x ∈ A. If A is a C∗-algebra
(resp. an H∗-algebra) then every positive a ∈ A (resp. a ∈ τ(A)) can be
written as a = b∗b for some b ∈ A. Every a ∈ A can be written as a linear
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combination of four positive elements, in both structures. A projection (i.e.,
self-adjoint idempotent) e ∈ A is called minimal if eAe = Ce.

Let A be a C∗-algebra or an H∗-algebra. Let W be an algebraic right
A-module which is a complex linear space with a compatible scalar multipli-
cation, i.e. λ(xa) = (λx)a = x(λa) for all x ∈W, a ∈ A, λ ∈ C. The space W
is called a (right) inner product A-module if there exists a generalized inner
product , that is, a mapping 〈·, ·〉 from W ×W to A if A is a C∗-algebra, and
to τ(A) if A is an H∗-algebra, having the following properties:

(i) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 for all x, y, z ∈W,
(ii) 〈x, ya〉 = 〈x, y〉a for all x, y ∈W and a ∈ A,
(iii) 〈x, y〉∗ = 〈y, x〉 for all x, y ∈W,
(iv) 〈x, x〉 ≥ 0 for all x ∈W, and 〈x, x〉 = 0⇔ x = 0.

If W is an inner product module over (A, ‖·‖), then for x ∈W we write
‖x‖W = ‖〈x, x〉‖1/2. If W is complete with respect to this norm, then it is
called a Hilbert A-module, or a Hilbert C∗-module (resp. H∗-module) over
the C∗-algebra (resp. H∗-algebra) A.

We shall use the symbol 〈W,W 〉 for the linear span of all inner products
〈x, y〉, x, y ∈ W. A Hilbert A-module W is full if 〈W,W 〉 is dense in A.
Notice that A is a (full) Hilbert A-module via 〈x, y〉 = x∗y for all x, y ∈ A.

Let w ∈W . If 〈w,w〉 = e is a projection in A, then we = w. Indeed,

〈w − we,w − we〉 = 〈w,w〉 − 〈w,w〉e− e〈w,w〉+ e〈w,w〉e = 0

(see the paragraph before Lemma 1 in [6]). This property will be used fre-
quently later.

The main difference between Hilbert C∗-modules and Hilbert H∗-mod-
ules is the fact that Hilbert H∗-modules can be equipped with the structure
of a complex Hilbert space. Although both structures obey the same axioms
as ordinary Hilbert spaces (except that the inner product takes values in a
more general structure than the field of complex numbers), there are some
properties that differentiate Hilbert C∗-modules from Hilbert spaces. For
example, a closed submodule V of a Hilbert C∗-module W need not be
(orthogonally) complemented, that is, V ⊕ V ⊥ 6= W in general, where V ⊥

denotes {x ∈ W : 〈x, y〉 = 0 for all y ∈ V }; more details can be found in
e.g. [15]. However, Hilbert C∗-modules over compact operators share many
nice properties with Hilbert spaces; in particular all closed submodules of
such modules are complemented.

We shall deal with Hilbert C∗-modules over C∗-algebras of compact op-
erators, and Hilbert H∗-modules. These structures have orthonormal bases.
More precisely, if W is a Hilbert A-module, where A is a C∗-algebra of
compact operators or an H∗-algebra, then there exists a net {wi : i ∈ I}
generating a dense submodule of W, such that 〈wi, wi〉 is a minimal projec-
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tion in A, and 〈wi, wj〉 = 0 for i 6= j. All these orthonormal bases have the
same cardinal number, which is called the orthogonal dimension of W , de-
noted by dimAW. More details on orthonormal bases for Hilbert C∗-modules
over C∗-algebras of compact operators can be found in [6], and for Hilbert
H∗-modules in [8].

2.2. Notation and conventions. LetW be a Hilbert C∗-module (resp.
H∗-module) over a C∗-algebra (resp. an H∗-algebra) A. We simply use
“Hilbert A-module” or “Hilbert module over A” to refer to either of them.

If (H, (·, ·)) is a Hilbert space and ξ, η ∈ H, then we write ξ ⊗ η for the
rank one operator defined by (ξ ⊗ η)(ν) = (ν, η)ξ for all ν ∈ H.

All spaces are assumed to be over complex numbers.
If G is an abelian group, we always use “+” as its group operation.
“Orthogonally additive mapping(s)” are abbreviated as “o.a.m.”.
Finally, if W is a group (resp. normed space, Hilbert module), then by

W0 ≤W we mean that W0 is a subgroup (resp. subspace, submodule) of W .

3. ⊥-additive mappings on abelian groups. Let W and G be
abelian groups. Suppose that ⊥ is a binary relation on W . We say that
a mapping f : W → G is ⊥-additive if for all x, y ∈W ,

x ⊥ y ⇒ f(x+ y) = f(x) + f(y),

and that a mapping F : W ×W → G is ⊥-preserving if for all x, y ∈W ,

x ⊥ y ⇒ F (x, y) = 0.

Let us recall that a mapping T : W → G is called additive if T (x+ y) =
T (x)+T (y) for all x, y ∈W , a mapping B : W ×W → G is called biadditive
if it is additive in both variables, a mapping Q : W → G is called quadratic
if Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y) for all x, y ∈ W, and if W is a
complex vector space then a mapping S : W ×W → G is called sesquilinear
if it is linear in the first variable and conjugate linear in the second.

Lemma 3.1. Let W be an abelian group with a binary relation ⊥, and
V,G be uniquely 2-divisible abelian groups. Suppose that there exist additive
mappings ϕ,ψ : V →W with the following properties:

ϕ(V ) ⊥ ψ(V ) and (ϕ+ ψ)(V ) ⊥ (ϕ− ψ)(V ).(3.1)

Let W0 := φ(V ) + ψ(V ) ≤W. If f : W → G is a ⊥-additive mapping, then:

(i) If f is odd (resp. even), then f is additive (resp. quadratic) on W0.
(ii) If x ⊥ y implies (−x) ⊥ (−y), then there exist mappings T :

W → G and B : W ×W → G such that T is additive on W0, B is
⊥-preserving symmetric biadditive on W0 ×W0, and

f(x) = T (x) +B(x, x) for all x ∈W0.
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Proof. (i) Since ϕ and ψ are additive, clearly they are odd. Now using
the ⊥-additivity of f , additivity of ϕ and ψ, as well as the properties given
in (3.1), we obtain

(3.2) f(ϕ(x) + ϕ(y)) + f(ψ(x)− ψ(y))

= f(ϕ(x+ y)) + f(ψ(x− y)) = f(ϕ(x+ y) + ψ(x− y))

= f
(
ϕ(x) + ϕ(y) + ψ(x)− ψ(y)

)
= f

(
(ϕ+ ψ)(x) + (ϕ− ψ)(y)

)
= f((ϕ+ ψ)(x)) + f((ϕ− ψ)(y)) = f(ϕ(x) + ψ(x)) + f(ϕ(y)− ψ(y))

= f(ϕ(x)) + f(ψ(x)) + f(ϕ(y)) + f(−ψ(y))

for all x, y ∈ V .

First assume that f is odd. Switching x and y in (3.2) gives

(3.3) f(ϕ(x) + ϕ(y)) + f(ψ(y)− ψ(x))

= f(ϕ(y)) + f(ψ(y)) + f(ϕ(x)) + f(−ψ(x)).

Add (3.2) and (3.3) and use the fact that f is odd to get

2f(ϕ(x) + ϕ(y)) = 2f(ϕ(x)) + 2f(ϕ(y)),

or equivalently,

f(ϕ(x) + ϕ(y)) = f(ϕ(x)) + f(ϕ(y))

as G is uniquely 2-divisible. Thus f is additive on ϕ(V ). Then (3.2) reduces
to

f(ψ(x)− ψ(y)) = f(ψ(x)) + f(−ψ(y)),

that is,

f(ψ(x) + ψ(y)) = f(ψ(x)) + f(ψ(y))

as ψ is odd. Hence, f is additive on ψ(V ) as well. It is now easy to verify
that f is additive on W0.

Now assume that f is even. Put y = x in (3.2) to get

(3.4) f(2ϕ(x)) + f(0) = 2f(ϕ(x)) + 2f(ψ(x)),

then put y = −x in (3.2) to get

(3.5) f(0) + f(2ψ(x)) = 2f(ϕ(x)) + 2f(ψ(x)).

Comparing (3.4) and (3.5) yields f(2ϕ(x)) = f(2ψ(x)), that is, f(ϕ(2x)) =
f(ψ(2x)) for all x ∈ V. Since V is uniquely 2-divisible, we have

(3.6) f(ϕ(x)) = f(ψ(x)) for all x ∈ V.
Then f(ψ(x) − ψ(y)) = f(ϕ(x) − ϕ(y)) for all x, y ∈ V. This together
with (3.2) implies

f(ϕ(x) + ϕ(y)) + f(ϕ(x)− ϕ(y)) = 2f(ϕ(x)) + 2f(ϕ(y)),
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so f is quadratic on ϕ(V ). Hence it follows from (3.6) that f is also quadratic
on ψ(V ). Therefore f is quadratic on W0.

(ii) Set

T (x) = 1
2(f(x)− f(−x)), F (x) = 1

2(f(x) + f(−x)), for all x ∈W.

Then T is odd and ⊥-additive. By (i), T is additive on W0. Furthermore, F is
even and ⊥-additive. Again by (i), F is quadratic on W0. Then F (0) = 0, so

F (x+ x) + F (x− x) = 2F (x) + 2F (x)

yields F (2x) = 4F (x) for all x ∈W0.

Define

B(x, y) = 1
4(F (x+ y)− F (x− y)) for all x, y ∈W.

Since F is even, B is symmetric. It is well-known that B is biadditive
(on W0), but below we prove this fact for the reader’s convenience. Ob-
viously, B(x, 0) = B(0, x) = 0 and B(x, x) = 1

4(F (2x) − F (0)) = F (x) for
all x ∈W0. Since F is quadratic on W0, for all x, y, u ∈W0 we have

4B(x+ y, 2u) = F (x+ y + 2u)− F (x+ y − 2u)

= F ((x+ u) + (y + u)) + F ((x+ u)− (y + u))

− F ((x− u)− (y − u))− F ((x− u) + (y − u))

= 2(F (x+ u) + F (y + u))− 2(F (x− u) + F (y − u))

= 8B(x, u) + 8B(y, u).

Since G is uniquely 2-divisible, this implies

(3.7) B(x+ y, 2u) = 2B(x, u) + 2B(y, u).

Inserting y = 0 and x = z yields

B(z, 2u) = 2B(z, u).

If we put x+ y instead of z, using (3.7) we get

B(x+ y, u) = B(x, u) +B(y, u).

Hence, B is biadditive on W0 ×W0. Finally,

f(x) = T (x) + F (x) = T (x) +B(x, x)

for all x ∈W0. Notice that, for all x, y ∈W0, x ⊥ y implies

2B(x, y) = B(x, y) +B(y, x) = B(x+ y, x+ y)−B(x, x)−B(y, y)

= (f(x+ y)− T (x+ y))− (f(x)− T (x))− (f(y)− T (y))

=
(
f(x+ y)− f(x)− f(y)

)
−
(
T (x+ y)− T (x)− T (y)

)
= 0.

Hence B(x, y) = 0, that is, B is ⊥-preserving on W0 ×W0.
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Remark 3.2. Examining the definitions of T and B, it is easy to see
that they are uniquely determined by f . Actually,

T (x) = 1
2(f(x)− f(−x)),

B(x, y) = 1
8

(
f(x+ y) + f(−x− y)− f(x− y)− f(−x+ y)

)
for all x, y ∈W. The reason why we only have

f(x) = T (x) +B(x, x)

for all x ∈W0, instead of W , is because it is only known that F (x) = B(x, x)
for all x ∈W0.

Lemma 3.3. Let W,V,G be normed spaces, and ⊥ be a binary relation
on W such that x ⊥ y implies (−x) ⊥ (−y). Suppose that there are contin-
uous linear mappings ϕ,ψ : V →W with the following properties:

(3.8) ϕ(V ) ⊥ ψ(V ) and (ϕ+ λψ)(V ) ⊥ (ϕ− λψ)(V ) for λ ∈ {1, i}.
Let W0 := ϕ(V ) + ψ(V ) ≤W.

If f : W → G is a continuous ⊥-additive mapping, then there exist
continuous mappings T : W → G and S : W × W → G such that T is
additive on W0, S is sesquilinear on W0 ×W0 with the property that for all
x, y ∈W0, x ⊥ y implies S(x, y) + S(y, x) = 0, and

f(x) = T (x) + S(x, x) for all x ∈W0.

Furthermore, if we also assume that x ⊥ y implies x ⊥ iy, then S is
⊥-preserving on W0 ×W0.

Proof. By Lemma 3.1(ii), there exist mappings T : W → G and B :
W ×W → G such that T is additive on W0, B is ⊥-preserving symmetric
biadditive on W0 ×W0, and

f(x) = T (x) +B(x, x) for all x ∈W0.

Since f is continuous, clearly so are T and B (see Remark 3.2).

Since ψ is linear and B is ⊥-preserving on W0×W0, it follows from (3.8)
that for all x, y ∈ V and λ ∈ {1, i} we have

0 = B
(
(ϕ+ λψ)(x), (ϕ− λψ)(y)

)
= B

(
ϕ(x) + λψ(x), ϕ(y)− λψ(y)

)
= B(ϕ(x), ϕ(y)) +B(ψ(λx), ϕ(y))−B(ϕ(x), ψ(λy))−B(λψ(x), λψ(y))

= B(ϕ(x), ϕ(y))−B(λψ(x), λψ(y)).

This implies

B(iψ(x), iψ(y)) = B(ϕ(x), ϕ(y)) = B(ψ(x), ψ(y)),

B(iϕ(x), iϕ(y)) = B(ϕ(ix), ϕ(iy)) = B(ψ(ix), ψ(iy))

= B(iψ(x), iψ(y)) = B(ϕ(x), ϕ(y)).
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Hence,
B(ix, iy) = B(x, y)

for all x, y ∈ ϕ(V ) + ψ(V ) = W0.
Since B is biadditive and continuous on W0 ×W0, it is also R-bilinear

on W0 ×W0. Define S : W ×W → G by

S(x, y) = B(x, y) + iB(x, iy).

Then, for all x, y ∈W0,

S(ix, y) = B(ix, y) + iB(ix, iy) = B(ix, y) + iB(x, y)

= i(B(x, y)− iB(ix, y)) = i(B(x, y) + iB(x, iy)) = iS(x, y),

and analogously
S(x, iy) = −iS(x, y).

Since the mapping B is continuous R-bilinear on W0 ×W0, the mapping S
is continuous R-bilinear on W0 ×W0 as well. However, from the above we
conclude that S is continuous sesquilinear on W0 ×W0.

Also, notice that

S(x, y) + S(y, x) = B(x, y) + iB(x, iy) +B(y, x) + iB(y, ix)

= 2B(x, y) + iB(x, iy) + iB(ix, y) = 2B(x, y)

for all x, y ∈W0. In particular, we get

S(x, x) = B(x, x) for all x ∈W0.

Then S is a continuous sesquilinear mapping on W0×W0 with the properties
that for all x, y ∈W0,

x ⊥ y ⇒ S(x, y) + S(y, x) = 0

and
f(x) = T (x) + S(x, x) for all x ∈W0.

Furthermore, if x ⊥ y implies x ⊥ iy, then for all x, y ∈ W0 satisfying
x ⊥ y we have

S(x, y) + S(y, x) = 0 and −iS(x, y) + iS(y, x) = 0.

Hence S(x, y) = 0, that is, S is ⊥-preserving on W0 ×W0.

By the definition of S and Remark 3.2, we conclude that S is also
uniquely determined by f and

S(x, y) = 1
8

(
f(x+ y) + if(x+ iy)− f(x− y)− if(x− iy)

+ f(−x− y) + if(−x− iy)− f(−x+ y)− if(−x+ iy)
)

for all x, y ∈W.
It should also be mentioned that the mapping T is R-linear on W0 since

it is continuous and additive on W0, but it is not C-linear in general.
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4. O.a.m. on Hilbert modules. Let (W, 〈·, ·〉) be a Hilbert A-module
and let G be an abelian group. We shall study ⊥-additive mappings and
⊥-preserving mappings for the binary relation ⊥ on W given by

x ⊥ y ⇔ 〈x, y〉 = 0.

In this setting we shall use the term orthogonally additive instead of
⊥-additive, and the term orthogonality preserving instead of ⊥-preserving.
More precisely, we shall say that a mapping f : W → G is orthogonally
additive if

〈x, y〉 = 0 ⇒ f(x+ y) = f(x) + f(y),

and that a mapping B : W ×W → G is orthogonality preserving if

〈x, y〉 = 0 ⇒ B(x, y) = 0.

A morphism between Hilbert A-modules V and W is a mapping ϕ :
V → W satisfying 〈ϕ(x), ϕ(y)〉 = 〈x, y〉 for all x, y ∈ V. It is clear that
morphisms are continuous mappings, and it is not difficult to verify that
they are also A-linear mappings, that is, linear mappings satisfying ϕ(xa) =
ϕ(x)a for all x ∈ V and a ∈ A.

Theorem 4.1. Let W be a Hilbert A-module, let V be a submodule
of W , and let ϕ : V → W be a morphism such that ϕ(V ) ⊆ V ⊥. Let
W0 := V ⊕ϕ(V ) ≤W. Suppose that G is a uniquely 2-divisible abelian group
and that f : W → G is an o.a.m. Then:

(i) There exist mappings T : W → G and B : W × W → G such
that T is additive on W0, B is symmetric biadditive orthogonality
preserving on W0 ×W0, and

f(x) = T (x) +B(x, x) for all x ∈W0.

(ii) If G is a normed space and f is continuous, then there exist con-
tinuous mappings T : W → G and S : W × W → G such that
T is additive on W0, S is sesquilinear orthogonality preserving on
W0 ×W0, and

f(x) = T (x) + S(x, x) for all x ∈W0.

Proof. Set x ⊥ y if and only if 〈x, y〉 = 0. Let id : V → V be the identity
mappping. Since ϕ(V ) ⊆ V ⊥, we have 〈ϕ(V ), id(V )〉 = 0. Furthermore, for
all x, y ∈ V, and λ ∈ {1, i},

〈(ϕ+ λ · id)(x), (ϕ− λ · id)(y)〉 = 〈ϕ(x), ϕ(y)〉 − 〈x, y〉 = 0.

Then (i) and (ii) follow from Lemma 3.1(ii) and Lemma 3.3, respectively.

We write U ∼ V if U and V are unitarily equivalent Hilbert C∗-modules
over a C∗-algebra A, that is, if there exists a mapping u : U → V such that
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there is a mapping u∗ : V → U satisfying 〈u(x), y〉 = 〈x, u∗(y)〉 for all x ∈ U,
y ∈ V, and

u∗u = idU , uu∗ = idV .

It is clear that u is bijective and 〈u(x), u(y)〉 = 〈x, y〉 for all x, y ∈ U.
A closed submodule V of a Hilbert C∗-module W is said to be comple-

mented if W = V ⊕ V ⊥, and fully complemented if V is complemented and
V ⊥ ∼W.

Corollary 4.2. Let V be a fully complemented submodule of a Hilbert
C∗-module W, G be a uniquely 2-divisible abelian group, and f : W → G be
an o.a.m. Then there exist mappings T : W → G and B : W ×W → G such
that T is additive on V, B is symmetric biadditive orthogonality preserving
on V × V, and

f(x) = T (x) +B(x, x) for all x ∈ V.

Furthermore, if G is a normed space and f is continuous then there exist a
continuous mapping T : W → G which is additive on V , and a continuous
mapping S : W ×W → G which is sesquilinear and orthogonality preserving
on V × V, such that

f(x) = T (x) + S(x, x) for all x ∈ V.

Proof. Since V is a fully complemented submodule of W , there exists a
linear operator u : W → V ⊥ such that 〈u(x), u(y)〉 = 〈x, y〉 for all x, y ∈W.
Set ϕ = u|V . Then ϕ : V → V ⊥ satisfies 〈ϕ(x), ϕ(y)〉 = 〈x, y〉 for all x, y ∈ V.
So it remains to apply Theorem 4.1.

5. O.a.m. on Hilbert K(H)-modules and Hilbert HS(H)-modules.
In this section, A always denotes K(H) or HS(H). Let W be a Hilbert
A-module and e ∈ A be a rank one projection in A. Then there exists an
orthonormal basis {wi : i ∈ I} for W such that 〈wi, wi〉 = e for all i ∈ I
(see [6, Remark 4(d)] for Hilbert K(H)-modules, and [5, Proposition 1.5] for
Hilbert HS(H)-modules). The following lemma will allow us to deal with
yet another suitable orthonormal basis for W.

Lemma 5.1. Let W be a Hilbert A-module with dimAW ≤ dimH, and
{ξi : i ∈ I} be an orthonormal basis for H. Then there exists an orthonormal
basis {wi : i ∈ J ⊆ I} for W such that 〈wi, wi〉 = ξi ⊗ ξi for all i ∈ J.

Proof. Let us fix an arbitrary j0 ∈ I. Then there exists an orthonormal
basis {gi : i ∈ J} for W such that 〈gi, gi〉 = ξj0 ⊗ ξj0 for all i ∈ J. Since
dimAW ≤ dimH, we assume J ⊆ I. We define, for all i ∈ J,

wi = gi(ξj0 ⊗ ξi).
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Then 〈wi, wj〉 = 0 if i 6= j, and

〈wi, wi〉 = 〈gi(ξj0 ⊗ ξi), gi(ξj0 ⊗ ξi)〉 = (ξi ⊗ ξj0)〈gi, gi〉(ξj0 ⊗ ξi)
= (ξi ⊗ ξj0)(ξj0 ⊗ ξj0)(ξj0 ⊗ ξi) = ξi ⊗ ξi

for all i ∈ J. Furthermore, for all x ∈W,

x =
∑
i∈J

gi〈gi, x〉 =
∑
i∈J

gi〈gi(ξj0 ⊗ ξj0), x〉 =
∑
i∈J

gi(ξj0 ⊗ ξj0)〈gi, x〉

=
∑
i∈J

gi(ξj0 ⊗ ξi)(ξi ⊗ ξj0)〈gi, x〉

=
∑
i∈J

gi(ξj0 ⊗ ξi)〈gi(ξj0 ⊗ ξi), x〉 =
∑
i∈J

wi〈wi, x〉.

By [6, Theorem 1], {wi : i ∈ J} is an orthonormal basis for W.

Remark 5.2. LetH be a Hilbert space with dimH = ℵ0, W be a Hilbert
A-module such that dimAW = ℵ0, and {ξi : i ∈ N} be an orthonormal basis
for H. By Lemma 5.1 there exists an orthonormal basis {wi : i ∈ N} for W
such that 〈wi, wi〉 = ξi ⊗ ξi for all i ∈ N. Let a ∈ A. Since∥∥∥ n∑

i=m

wia
∥∥∥2
W

=
∥∥∥〈 n∑

i=m

wia,

n∑
i=m

wia
〉∥∥∥

=
∥∥∥ n∑
i=m

a∗〈wi, wi〉a
∥∥∥ =

∥∥∥ n∑
i=m

a∗(ξi ⊗ ξi)a
∥∥∥

and
∑∞

i=1 a
∗(ξi ⊗ ξi)a = a∗a, the sequence (

∑n
i=1wia)∞n=1 is a Cauchy se-

quence in W, so it converges. Hence, for all a ∈ A,
∑∞

i=1wia ∈ W and
〈
∑∞

i=1wia,
∑∞

i=1wia〉 = a∗a.

Before giving the main result of this section, we provide a representation
result of sesquilinear orthogonality preserving mappings S : W ×W → G.
This result may be of independent interest.

Proposition 5.3. Let W be a Hilbert A-module and G be a normed
space. If S : W ×W → G is a continuous sesquilinear orthogonality pre-
serving mapping, then there is a unique linear mapping Φ : 〈W,W 〉 → G
such that

S(x, y) = Φ(〈y, x〉) for all x, y ∈W.

Furthermore, if H is finite-dimensional or dimH = dimAW = ℵ0, then Φ
can be extended to a continuous linear mapping on A.

Proof. Let {ξi : i ∈ I} be an orthonormal basis for H and let ei = ξi⊗ ξi
for all i ∈ I. Fix an arbitrary i0 ∈ I. Let {wj : j ∈ J} be an orthonormal
basis for W such that 〈wj , wj〉 = ei0 for all j ∈ J. Then for all j, k ∈ J,
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j 6= k, and all a, b ∈ A we have

〈wja− wka,wjb+ wkb〉 = a∗〈wj , wj〉b− a∗〈wk, wk〉b = a∗ei0b− a∗ei0b = 0,

hence

0 = S(wja− wka,wjb+ wkb) = S(wja,wjb)− S(wka,wkb).

In particular, for b = ei0 , one obtains

S(wja,wj) = S(wja,wjei0) = S(wka,wkei0) = S(wka,wk)

for all j, k ∈ J . Hence the mapping Φi0 : A → G, defined by

Φi0(a) = S(wka,wk),

does not depend on k ∈ J. It is clear that Φi0 is linear. Notice that

‖Φi0(a)‖ = ‖S(wka,wk)‖ ≤ ‖S‖ ‖wk‖2W ‖a‖ = ‖S‖ ‖ei0‖ ‖a‖.(5.1)

Let us remark that if A = K(H) then each (minimal) projection has norm
one, which is not true in general if A = HS(H), but in both cases Φi0 is
bounded and ‖Φi0‖ ≤ ‖S‖ ‖ei0‖. Furthermore,

Φi0(〈yei0 , x〉) = S(wk〈yei0 , x〉, wk) =
∑
j∈J

S(wk〈yei0 , wj〉〈wj , x〉, wk)

=
∑
j∈J

S(wkei0〈y, wj〉ei0〈wj , x〉, wk) =
∑
j∈J

S(wk(λjei0)〈wj , x〉, wk)

=
∑
j∈J

λjS(wk〈wj , x〉, wk) =
∑
j∈J

S(wk〈wj , x〉, wk(λjei0))

=
∑
j∈J

S(wk〈wj , x〉, wk(ei0〈wj , y〉ei0)) =
∑
j∈J

S(wk〈wj , x〉, wk〈wj , yei0〉)

=
∑
j∈J

S(wj〈wj , x〉, wj〈wj , yei0〉) = S
(∑

j∈J
wj〈wj , x〉,

∑
j∈J

wj〈wj , yei0〉
)

= S(x, yei0).

Since i0 ∈ I is arbitrary, it follows that

(5.2) S(x, y) = S
(
x,
∑
i∈I

yei

)
=
∑
i∈I

S(x, yei) =
∑
i∈I

Φi(〈yei, x〉).

Define Φ : 〈W,W 〉 → G by

Φ(a) =
∑
i∈I

Φi(eia).

By (5.2), the mapping Φ is well-defined and

S(x, y) = Φ(〈y, x〉)
for all x, y ∈ W. Since all Φi are linear, Φ is linear as well. Uniqueness of
such Φ is obvious.
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If H is finite-dimensional, then
∑

i∈I Φi(eia) converges for all a ∈ A. If
dimH = dimAW = ℵ0, then by Lemma 5.1 there exists an orthonormal
basis {vi : i ∈ I} for W such that 〈vi, vi〉 = ξi ⊗ ξi for all i ∈ I. By
Remark 5.2,

∑
j∈I vja ∈W for all a ∈ A, so for all a, b ∈ A we have

S
(∑

j∈I
vjb,

∑
j∈I

vja
∗
)

=
∑
i∈I

Φi

(〈∑
j∈I

vja
∗ei,

∑
j∈I

vjb
〉)

=
∑
i∈I

Φi

(∑
j∈I

eia〈vj , vj〉b
)

=
∑
i∈I

Φi

(∑
j∈I

eia(ξj ⊗ ξj)b
)

=
∑
i∈I

Φi(eiab).

Hence
∑

i∈I Φi(eia) converges for all a ∈ A2 = A. This means that in the
cases when dimH is finite or dimH = dimAW = ℵ0, we can extend Φ from
〈W,W 〉 to A if we define

Φ(a) =
∑
i∈I

Φi(eia).

Finally, let us prove that Φ : A → G is bounded. If H is finite-di-
mensional, this immediately follows from (5.1). Now assume that dimH =
dimAW = ℵ0. Then for every a ∈ A, by Remark 5.2, we have

‖Φ(a∗a)‖ =
∥∥∥Φ(〈∑

i∈I
via,

∑
i∈I

via
〉)∥∥∥ =

∥∥∥S(∑
i∈I

via,
∑
i∈I

via
)∥∥∥

≤ ‖S‖
∥∥∥∑

i∈I
via
∥∥∥2
W

= ‖S‖
∥∥∥〈∑

i∈I
via,

∑
i∈I

via
〉∥∥∥ = ‖S‖ ‖a∗a‖.

Thus Φ is bounded on positive elements on A. Therefore it is bounded
on A.

We are now ready to prove our main result of this section.

Theorem 5.4. Let W be a Hilbert A-module such that dimAW ≥ 2.
Let G be a uniquely 2-divisible abelian group, and f : W → G be an o.a.m.
Then:

(i) There exist a unique additive mapping T : W → G and a unique
symmetric biadditive orthogonality preserving mapping B : W ×W
→ G such that

f(x) = T (x) +B(x, x) for all x ∈W.
(ii) If G is a normed space and f is continuous, then there are a unique

continuous additive mapping T : W → G and a unique linear map-
ping Φ : 〈W,W 〉 → G such that

f(x) = T (x) + Φ(〈x, x〉) for all x ∈W.
Furthermore, if H is finite-dimensional or dimH = dimAW = ℵ0,
then Φ can be extended to a continuous linear mapping on A.
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Proof. (i) First assume that W is either finite-dimensional with dimAW
= 2n, or dimAW ≥ ℵ0. If dimAW = 2n then let V be a closed sub-
module of W such that dimAW = n; if dimAW ≥ ℵ0 then let V be
a closed submodule of W such that dimA V = dimA V

⊥ = dimAW. Let
{wi : i ∈ I} be an orthonormal basis for W such that 〈wi, wi〉 = e for all
i ∈ I, where e is a fixed rank one projection in A. Let {wi : i ∈ I1 ⊆ I}
be an orthonormal basis for V and {wi : i ∈ I2 ⊆ I} be an orthonor-
mal basis for V ⊥. Let ϕ : V → V ⊥ be an isomorphism between the bases
of V and V ⊥. It remains to apply Theorem 4.1(i). Notice that V ⊕ ϕ(V ) =
V ⊕ V ⊥ = W.

Now assume that W is finite-dimensional with dimAW = 2n+ 1. From
the above we deduce that the desired conclusion is true for f restricted to
any 2n-dimensional closed submodule of W. Let X be a closed submodule
of W such that dimAX = 1. Then dimAX

⊥ = 2n. Let Z be a closed
submodule of W such that dimA Z = 2, and X ⊂ Z. The statement is true
on both Z and X⊥, hence on W .

(ii) Combining the proofs of (i) above and Theorem 4.1(ii), we can find
a unique continuous additive mapping T : W → G and a unique continu-
ous sesquilinear orthogonality preserving mapping S : W ×W → G such
that

f(x) = T (x) + S(x, x) for all x ∈W.

Then we apply Proposition 5.3 to end the proof.

Let us emphasize that in Theorem 5.4 the additional assumption that f
is odd implies that the corresponding mapping B (or Φ) must be zero, so f
is additive. Analogously, if f is even then T is zero, thus f(x) = B(x, x) (or
f(x) = Φ(〈x, x〉)) for all x ∈ W. Recall that for each o.a.m. f the mapping
x 7→ f(x) − f(−x) is an odd o.a.m. and the mapping x 7→ f(x) + f(−x) is
an even o.a.m.

Furthermore, if we assume that in Theorem 5.4 the mapping f has the
form f(x) = F (x, . . . , x), where F is n-additive (i.e., additive in all n vari-
ables), then from the above we conclude that n ≤ 2.

We should mention that the condition dimAW ≥ 2 is essential in Theo-
rem 5.4, as shown in the following example.

Example 5.5. Let (H, (·, ·)) be an infinite-dimensional Hilbert space.
Then H is a Hilbert A-module with respect to the A-valued inner product
given by 〈ξ, η〉 = η ⊗ ξ. It is known that dimAH = 1 ([6, Example 1] and
[5, Example 2.3]). Notice that 〈ξ, η〉 = 0 if and only if ξ = 0 or η = 0. Then
every odd mapping on H (taking values in a uniquely 2-divisible abelian
group) is orthogonally additive, but not additive in general. For example,
fix 0 6= η0 ∈ H and define f(ξ) = (ξ, η0)ξ ⊗ ξ for all ξ ∈ H.
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The next example shows that in the case when H is infinite-dimensional
and dimAW is finite, the mapping Φ from Theorem 5.4 cannot be extended
to a continuous linear mapping on A.

Example 5.6. Let H be an infinite-dimensional separable Hilbert space.
Let W = H⊕H be a Hilbert A-module with the coordinate operations and
the A-valued inner product given by

〈(ξ1, ξ2), (η1, η2)〉 = η1 ⊗ ξ1 + η2 ⊗ ξ2.

Then dimAW = 2 (see [6, Theorem 3] and [8, Section 2]). To distinguish the
above notation, we use (·, ·)H for the inner product on H. Define f : W → C
by

f((ξ1, ξ2)) = (ξ1, ξ1)H + (ξ2, ξ2)H for all ξ1, ξ2 ∈ H.

We claim that f is an orthogonally additive mapping. Indeed, let
ξ1, ξ2, η1, η2 ∈ H be such that

0 = 〈(ξ1, ξ2), (η1, η2)〉 = η1 ⊗ ξ1 + η2 ⊗ ξ2.

Then one can easily check that

(ξ1, η1)H + (η1, ξ1)H + (ξ2, η2)H + (η2, ξ2)H = 0.

Thus

f((ξ1, ξ2) + (η1, η2)) = f((ξ1 + η1, ξ2 + η2))

= (ξ1 + η1, ξ1 + η1)H + (ξ2 + η2, ξ2 + η2)H

= (ξ1, ξ1)H + (ξ1, η1)H + (η1, ξ1)H + (η1, η1)H

+ (ξ2, ξ2)H + (ξ2, η2)H + (η2, ξ2)H + (η2, η2)H

= (ξ1, ξ1)H + (ξ2, ξ2)H + (η1, η1)H + (η2, η2)H

= f((ξ1, ξ2)) + f((η1, η2)).

This shows that f is an orthogonally additive mapping. It is clear that f is
even.

We now verify that f is continuous. Indeed, if (ξn, ηn) is a sequence
in W converging to (ξ0, η0), then 〈(ξn − ξ0, ηn − η0), (ξn − ξ0, ηn − η0)〉 → 0.
This implies (ξn − ξ0) ⊗ (ξn − ξ0) + (ηn − η0) ⊗ (ηn − η0) → 0, and so
(ξn − ξ0)⊗ (ξn − ξ0)→ 0 and (ηn − η0)⊗ (ηn − η0)→ 0. Hence (ξn, ξn)H →
(ξ0, ξ0)H and (ηn, ηn)H → (η0, η0)H. Therefore, f((ξn, ηn)) → f((ξ0, η0)),
proving the continuity of f .

In what follows, we prove that there is no continuous linear mapping
Φ : A → C such that f(w) = Φ(〈w,w〉) for all w ∈ W. To the contrary,
assume that there is such a mapping Φ. Let {ξn : n ∈ N} be an orthonormal
basis for H and let En = ξn ⊗ ξn for all n ∈ N. For each n ∈ N, we
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set Tn =
∑n

k=1 k
−1Ek ∈ 〈W,W 〉. Since the sequence (Tn) converges to

T =
∑∞

k=1 k
−1Ek ∈ A and Φ is continuous, we conclude that the sequence

(Φ(Tn)) converges as well. However,

Φ(Tn) =
n∑

k=1

1

k
Φ(Ek) =

1

2

n∑
k=1

1

k
Φ(2Ek) =

1

2

n∑
k=1

1

k
Φ(ξk ⊗ ξk + ξk ⊗ ξk)

=
1

2

n∑
k=1

1

k
Φ(〈(ξk, ξk), (ξk, ξk)〉) =

1

2

n∑
k=1

1

k
f((ξk, ξk)) =

n∑
k=1

1

k

does not converge, a contradiction.

The following result is an immediate consequence of Theorem 5.4 (see
[6, Example 2]).

Corollary 5.7. Let H be a Hilbert space with 2 ≤ dimH ≤ ℵ0, and
the orthogonality on A be defined by

x ⊥ y ⇔ x∗y = 0.

Assume that G is a uniquely 2-divisible abelian group and that f : A → G
is an o.a.m. Then:

(i) There exist a unique additive mapping T : A → G and a unique
symmetric biadditive orthogonality preserving mapping B : A×A →
G such that

f(x) = T (x) +B(x, x) for all x ∈ A.

(ii) If G is a normed space and f is continuous, then T is continuous
and there exists a unique continuous linear mapping Φ : A → G
such that

f(x) = T (x) + Φ(x∗x) for all x ∈ A.

The following example demonstrates that it is essential that the un-
derlying algebra is K(H) (instead of just being a C∗-algebra of compact
operators) in Corollary 5.7 (and Theorem 5.4). The same example shows
that we cannot take an arbitrary H∗-algebra instead of HS(H).

Example 5.8. Let H be a separable Hilbert space. Fix an orthonormal
basis {ξi} for H. As usual, we represent operators on H as matrices with
respect to {ξi}. Let D be the norm closed subalgebra of A consisting of all
diagonal operators. Then D is a Hilbert module over itself; notice that D is
commutative. Now, 〈x, y〉 = 0 if and only if x∗y = y∗x = yx∗ = xy∗ = 0.
Define f : D → D by f(x) = x(x∗)2. Then f is an odd orthogonally additive
mapping, but it is clearly not additive.
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6. O.a.m. on Hilbert C∗-modules over a C∗-algebra of compact
operators and Hilbert H∗-modules. Let A be an arbitrary C∗-algebra
of compact operators. By [4, Theorem 1.4.5],

A =
⊕
j∈J
K(Hj) =

{
(aj) ∈

∏
j∈J
K(Hj) : lim

j∈J
‖aj‖ = 0

}
.

Let W be a Hilbert A-module. We may assume that W is full. If Wj de-
notes the closed linear span of WK(Hj), then each Wj is a (full) Hilbert
K(Hj)-module and W is the outer direct sum of Wj ’s:

W =
⊕
j∈J

Wj =
{

(wj) ∈
∏
j∈J

Wj : lim
j∈J
‖wj‖ = 0

}
(see [6, Introduction] or [19]).

Now let A be an arbitrary H∗-algebra. By [3, Theorems 4.2 and 4.3], A is
the orthogonal sum

⊕
j∈J Aj where each Aj is a simple H∗-algebra which

is a minimal closed ideal of A and Aj = HS(Hj) for some Hilbert space Hj .
Then every a ∈ A can be written as a =

∑
j∈J aj with aj ∈ HS(Hj) and

‖a‖2 =
∑

j∈J ‖aj‖2. Let W be a Hilbert A-module. We may assume that W
is faithful (i.e. it has zero annihilator in A). According to [8, Theorem 2.3],
there exists a family {Wj : j ∈ J} such that each Wj is a (faithful) Hilbert
HS(Hj)-module and W is the mixed product of Wj ’s:

W = ×
j∈J

Wj =
{

(wj) ∈
∏
j∈J

Wj :
∑
j∈J
‖wj‖2 <∞

}
.

Theorem 6.1. Let A =
⊕

j∈J Aj be a C∗-algebra of compact opera-
tors, resp. an H∗-algebra, with Aj = K(Hj), resp. Aj = HS(Hj). Let
W =

⊕
j∈J Wj be a Hilbert A-module with Wj a Hilbert Aj-module such

that dimAj Wj = dimHj = ℵ0 for each j ∈ J. Let G be a normed space
and let f : W → G be a continuous o.a.m. Then there exist a continuous
additive mapping T : W → G and a continuous linear mapping Φ : A → G
such that

f(x) = T (x) + Φ(〈x, x〉) for all x ∈W.

Proof. Define fj = f |Wj for each j ∈ J. Then fj : Wj → G is a con-
tinuous o.a.m. By Theorem 5.4, there exist a continuous additive mapping
Tj : Wj → G and a continuous linear mapping Φj : Aj → G such that

fj(xj) = Tj(xj) + Φj(〈xj , xj〉) for all xj ∈Wj .

Define T : W → G by

T (x) = 1
2(f(x)− f(−x)).
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If we write x =
∑

j∈J xj with xj ∈Wj , then

T (x) =
1

2

∑
j∈J

(fj(xj)− fj(−xj)) =
∑
j∈J

Tj(xj).

This implies that T is an additive mapping; it is continuous since f is con-
tinuous.

Let {wi : i ∈ I} be an orthonormal basis for W and let {wi
j : i ∈ Ij} ⊆

{wi : i ∈ I} be an orthonormal basis for Wj . By Lemma 5.1, without loss
of generality we can assume 〈wi

j , wi
j〉 = ξi

j ⊗ ξij where {ξij : i ∈ Ij} is an
orthonormal basis for Hj . Let aj ∈ Aj . Then

Φj(a
∗
jaj) = Φj

(∑
i∈Ij

a∗j (ξi
j ⊗ ξij)aj

)
=
∑
i∈Ij

Φj(a
∗
j 〈wi

j , wi
j〉aj)

=
∑
i∈Ij

Φj(〈wi
jaj , wi

jaj〉) = Φj

(〈∑
i∈Ij

wi
jaj ,

∑
i∈Ij

wi
jaj

〉)
.

Notice that
∑

i∈I wia converges for all a ∈ A. In fact, if a =
∑

j∈J aj with

aj ∈ Aj , then Remark 5.2 implies that
∑

i∈Ij w
j
i aj ∈Wj and〈∑

i∈Ij

wj
i aj ,

∑
i∈Ij

wj
i aj

〉
= a∗jaj .

Then∥∥∥∑
i∈Ij

wj
i aj

∥∥∥
Wj

=
∥∥∥〈∑

i∈Ij

wj
i aj ,

∑
i∈Ij

wj
i aj

〉∥∥∥1/2 = ‖a∗jaj‖1/2 = ‖aj‖.

Hence
∑

j∈J
∑

i∈Ij wi
jaj ∈ W, that is,

∑
i∈I wia ∈ W. For a ∈ A define

Φ(a∗a) = 1
2(f(

∑
i∈I wia) + f(−

∑
i∈I wia)). If we write a =

∑
j∈J aj with

aj ∈ Aj , then

Φ(a∗a) =
1

2

∑
j∈J

(
fj

(∑
i∈Ij

wi
jaj

)
+ fj

(
−
∑
i∈Ij

wi
jaj

))
=
∑
j∈J

Φj

(〈∑
i∈Ij

wi
jaj ,

∑
i∈Ij

wi
jaj

〉)
=
∑
j∈J

Φj(a
∗
jaj).

Using the fact that every a ∈ A can be written as a linear combination of
four positive elements (i.e., those of the form x∗x for some x ∈ A), we define
Φ(a) =

∑
j∈J Φj(aj) for all a =

∑
j∈J aj ∈ A. Since each Φj is linear, Φ is

linear as well. Since

‖Φ(a∗a)‖ ≤ ‖f‖
∥∥∥∑

i∈I
wia
∥∥∥ = ‖f‖ ‖a‖

for every a ∈ A, we see that Φ is continuous. Finally,

f(x) = T (x) + Φ(〈x, x〉) for all x ∈W.
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Corollary 6.2. Let A =
⊕

j∈J Aj be a C∗-algebra of compact opera-
tors, resp. an H∗-algebra, with Aj = K(Hj), resp. Aj = HS(Hj), such that
2 ≤ dimHj ≤ ℵ0 for each j ∈ J. Let G be a normed space and let f : A → G
be a continuous o.a.m., with respect to the orthogonality defined by

x ⊥ y ⇔ x∗y = 0.

Then there exist a unique continuous additive mapping T : A → G and a
unique continuous linear mapping Φ : A → G such that

f(x) = T (x) + Φ(x∗x) for all x ∈ A.
Let us mention that Example 5.8 also provides a counterexample for

Corollary 6.2 in the case when A = W =
⊕

j∈J Aj with Aj = Wj = K(Hj)
or HS(Hj) and dimAj Wj = dimHj = 1 for all j ∈ J.

7. O.a.m. on B(H1,H2). The aim of this section is to prove an analogue
of Corollary 5.7 for B(H1,H2) instead of K(H) and HS(H).

Proposition 7.1. Let H1, H2 be Hilbert spaces with dimH1,dimH2≥ 2.
Let G be a uniquely 2-divisible abelian group and let f : B(H1,H2) → G be
an o.a.m., with respect to the orthogonality defined by

x ⊥ y ⇔ x∗y = 0.

Then there exist a unique additive mapping T : B(H1,H2) → G and a
symmetric biadditive orthogonality preserving mapping B : B(H1,H2) ×
B(H1,H2)→ G such that

f(x) = T (x) +B(x, x) for all x ∈ B(H1,H2).

If H is a Hilbert space such that dimH ≥ 2, G is a Banach space and
f is continuous, then T is continuous and there exists a unique continuous
linear mapping Φ : B(H)→ G such that

f(x) = T (x) + Φ(x∗x) for all x ∈ B(H).

Proof. Let us emphasize that B(H1,H2) is a Hilbert B(H1)-module with
respect to the inner product 〈x, y〉 = x∗y. If H2 is infinite-dimensional,
let K be a closed subspace of H2 such that both K and K⊥ are infinite-
dimensional. If dimH2 = 2n, let K be an n-dimensional subspace of H2. Let
U : K → K⊥ be unitary. Then ϕ : B(H1,K)→ B(H1,K⊥), ϕ(A) = UA, is an
isomorphism. Notice that B(H1,K)⊕ ϕ(B(H1,K)) = B(H1,H2). It remains
to apply Theorem 4.1(i).

If dimH2 = 2n + 1, let K be a 1-dimensional subspace of H2. Then
dimK⊥= 2n and, according to the above, the statement holds on B(H1,K⊥).
Let M be a 2-dimensional subspace of H2 containing K. Again, according
to the above, the statement also holds true on B(H1,M), hence finally on
B(H1,H2).
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The second statement can be proved in a similar way, but using Theo-
rem 4.1(ii) instead of Theorem 4.1(i), and then applying the results from [1]
(see also [2, Theorem 1.1]) to represent S via Φ.
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[12] D. Ilǐsević, Molnár-dependence in a pre-Hilbert module over an H∗-algebra, Acta
Math. Hungar. 101 (2003), 69–78.
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