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Nontrivial solutions for a class of
superquadratic elliptic equations

by

Chun Li, Zeng-Qi Ou and Chun-Lei Tang (Chongqing)

Abstract. Using a version of the Local Linking Theorem and the Fountain Theorem,
we obtain some existence and multiplicity results for a class of superquadratic elliptic
equations.

1. Introduction and main results. Consider the Dirichlet boundary
value problem

(1.1)

{
−∆u+ a(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain, a ∈ Lp(Ω), p > N/2
and f ∈ C(Ω × R,R).

In [9], Li and Willem established the existence of a nontrivial solution
for problem (1.1) under the following superquadratic condition: there exist
µ > 2 and L > 0 such that

(1.2) 0 < µF (x, u) ≤ uf(x, u)

for all |u| ≥ L and x ∈ Ω, where

F (x, u) =

u�

0

f(x, s) ds.

Condition (1.2), originally due to Ambrosetti and Rabinowitz [1], has
been used extensively in the literature (see [8, 9, 11, 12] and the references
therein).

In [7], Jiang and Tang obtained the existence of nontrivial solutions for
problem (1.1) under a new superquadratic condition by minimax methods
in critical point theory. They established the following with the aid of the
Local Linking Theorem (see [9]).
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Theorem 1.1 ([7, Theorem 1]). Suppose that F (x, u) satisfies the fol-
lowing conditions:

(F1) F (x, u)/u2 →∞ as |u| → ∞ uniformly in x ∈ Ω.
(F2) F (x, u)/u2 → 0 as |u| → 0 uniformly in x ∈ Ω.
(F3) There are constants 2 < λ < 2N/(N − 2) = 2∗ and a1 > 0 such

that

|f(x, u)| ≤ a1(1 + |u|λ−1) for all (x, u) ∈ Ω × R.
(F4) There exist constants β > 2N(λ − 1)/(N + 2), a2 > 0 and L > 0

such that

f(x, u)u− 2F (x, u) ≥ a2|u|β for all x ∈ Ω and |u| ≥ L.

If 0 is an eigenvalue of −∆+a (with Dirichlet boundary condition), assume
also that:

(F5) There exists δ > 0 such that either

(i) F (x, u) ≥ 0 for all |u| ≤ δ, x ∈ Ω, or
(ii) F (x, u) ≤ 0 for all |u| ≤ δ, x ∈ Ω.

Then problem (1.1) has a nontrivial solution.

In this paper, by applying a version of the Local Linking Theorem
(see [10]), we can prove the same result under a more general superquadratic
condition. Moreover, by using the Fountain Theorem, we get the existence
of infinitely many nontrivial solutions of problem (1.1). Our main results
are the following theorems.

Theorem 1.2. Assume that the nonlinearity f ∈ C(Ω × R,R) satisfies
(F1)–(F3) and

(F′4) There exists a constant β > N(λ− 2)/2 such that

lim inf
|u|→∞

f(x, u)u− 2F (x, u)

|u|β
> 0 uniformly in x ∈ Ω.

Assume also that (F5) holds if 0 is an eigenvalue of −∆+ a (with Dirichlet
boundary condition). Then problem (1.1) has a nontrivial solution.

Remark 1.3. Theorem 1.2 extends Theorem 1.1. Obviously, the range
of β is extended. There are functions satisfying the assumptions of Theorem
1.2 and not satisfying the assumptions in [7]. For example, fix x0 ∈ Ω and
let

F (x, u) = sin2(|x− x0|π)|u|λ + u2 ln(1 + u2).

Let λ = 3, N = 3. Then F satisfies the assumptions of our Theorem 1.2
and does not satisfy (F4), so it does not satisfy the assumptions of the
corresponding results in [7, 9].
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Moreover, Theorem 1 in [4] is a special case of our Theorem 1.2 corre-
sponding to a(x) = 0.

Theorem 1.4. Suppose that the nonlinearity f ∈ C(Ω × R,R) satisfies
(F1), (F2) and the following condition:

(F6) There exist positive constants L and m1, m2 such that

(j1) f(x, u)u− 2F (x, u) ≥ m1u
2 if |u| ≥ L.

(j2) |f(x, u)|σ/|u|σ ≤ m2(f(x, u)u − 2F (x, u)) if |u| ≥ L, where
σ > N/2.

Assume also that (F5) holds if 0 is an eigenvalue of −∆+ a (with Dirichlet
boundary condition). Then problem (1.1) has a solution.

Remark 1.5. For Schrödinger equations, the corresponding condition
(F6) is due to Ding and Luan [5]. Condition (F6) is weaker than the usual
Ambrosetti–Rabinowitz-type condition (1.2) (see [5, 10]).

Theorem 1.6. Assume that the nonlinearity f ∈ C(Ω × R,R) satisfies
(F1), (F3), (F′4), and that F is even in u. Then problem (1.1) has infinitely
many nontrivial solutions.

Remark 1.7. Theorem 1.6 extends Theorem 1.1 of [6]. Obviously, the
range of β is extended. Condition (F1) is weaker than condition (A1) of
Theorem 1.1 of [6]. Moreover, Theorem 1.6 is a complement of Theorem 3.7
in [12]. Conditions (F1), (F′4) are more general than condition (1.2) and there
are functions F (see Remark 1.3) satisfying the assumptions of Theorem 1.6
and not satisfying the assumptions of the corresponding results in [6, 12].

Theorem 1.8. Assume that the nonlinearity f ∈ C(Ω × R,R) satisfies
(F1), (F6), and that F is even in u. Then problem (1.1) has infinitely many
nontrivial solutions.

Remark 1.9. Theorem 1.8 extends Theorem 3.7 in [12], since (F6) is
weaker than (1.2) (see [5, 10]).

Let ϕ : H1
0 (Ω) = E → R be the functional defined by

ϕ(u) = 1
2

�

Ω

(|∇u|2 + a(x)u2) dx−
�

Ω

F (x, u)dx(1.3)

= 1
2(‖u+‖2 − ‖u−‖2)−

�

Ω

F (x, u) dx

where u− ∈ E− and u+ ∈ E+; here E− (resp. E+) is the space spanned
by the eigenvectors corresponding to negative (resp. positive) eigenvalues of
−∆ + a. It is easy to see that ϕ ∈ C1(E,R) under the conditions of our
theorems. It is well known that a critical point of the functional ϕ in E
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corresponds to a weak solution of problem (1.1) and

〈ϕ′(u), v〉 =
�

Ω

(∇u∇v + a(x)uv) dx−
�

Ω

f(x, u)v dx

for any u, v ∈ E.

It is well known that E is continuously embedded in Lθ(Ω) for every
θ ∈ [1, 2N/(N − 2)]. If 1 ≤ θ < 2N/(N − 2), the embedding is compact. It
follows from (F3), (F′4) and (F6) that

λ <
2N

N − 2
,

λN − 2β

N − 2
<

2N

N − 2
,

2σ

σ − 1
<

2N

N − 2
.

Hence, there is a positive constant K such that

‖u‖Lθ ≤ K‖u‖, ∀u ∈ E,(1.4)

for θ = 1, 2, λ, (β+ 2)/β, 2σ/(σ− 1), 2N/(N − 2), where ‖ · ‖Lθ denotes the
norm of Lθ(Ω).

2. Proof of main results. To prove Theorems 1.2 and 1.4, we shall
use the Local Linking Theorem (Theorem 2.2 of [10]). Let X be a real

Banach space with X = X1 ⊕ X2 and Xj
0 ⊂ Xj

1 ⊂ Xj
2 ⊂ · · · ⊂ Xj such

that Xj =
⋃
n∈NX

j
n, j = 1, 2. For every multi-index α = (α1, α2) ∈ N2,

let Xα = X1
α1
⊕ X2

α2
. We define α ≤ β ⇔ α1 ≤ β1, α2 ≤ β2. A sequence

{αn} ⊂ N2 is admissible if for every α ∈ N2 there is m ∈ N such that
n ≥ m⇒ αn ≥ α. We say ϕ ∈ C1(X,R) satisfies the (C∗) condition if every
sequence {uαn} such that {αn} is admissible and satisfies

uαn ∈ Xαn , sup
n
ϕ(uαn) <∞, (1 + ‖uαn‖)ϕ′αn(uαn)→ 0

contains a subsequence which converges to a critical point of ϕ, where ϕα =
ϕ|Xα .

We now recall the Local Linking Theorem which extends theorems given
by Li and Szulkin [8] and Li and Willem [9].

Theorem 2.1 (Local Linking Theorem, see also [10, Theorem 2.2]). Sup-
pose that ϕ ∈ C1(X,R) satisfies the following assumptions:

(i1) X 6= {0} and ϕ has a local linking at 0, that is, for some r > 0,

ϕ(u) ≥ 0, ∀u ∈ X1 with ‖u‖ ≤ r,
ϕ(u) ≤ 0, ∀u ∈ X2 with ‖u‖ ≤ r.

(i2) ϕ satisfies the (C∗) condition.
(i3) ϕ maps bounded sets into bounded sets.
(i4) For every m ∈ N, ϕ(u)→ −∞ as ‖u‖ → ∞ in X1

m ⊕X2.

Then ϕ has a nonzero critical point.
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In [2], Bartsch established the Fountain Theorem (Theorem 2.5 in [2],
Theorem 3.6 in [12]) under the (PS)c condition.

We say ϕ ∈ C1(X,R) satisfies the Cerami condition (C) if whenever
ϕ(un) is bounded and ‖ϕ′(un)‖(1 + ‖un‖)→ 0 as n→∞, then {un} has a
convergent subsequence in X. This condition is due to Cerami [3]. Since the
Deformation Theorem is still valid under the Cerami condition (C), we see
that like many critical point theorems, the Fountain Theorem is true under
the Cerami condition (C).

To state this theorem, let X be a reflexive and separable Banach space.
It is well known that there exist {vn}n∈N ⊂ X and {ψn}n∈N ⊂ X∗ such that:

(1) 〈ψn, vm〉 = δn,m.
(2) span{vn | n ∈ N} = X, spanω

∗{ψn | n ∈ N} = X∗.

Let Xj = Rvj . Then X =
⊕

j≥1Xj . We define

Yk =

k⊕
j=1

Xj , Zk =
⊕
j=k

Xj .

Theorem 2.2 (Fountain Theorem). Assume that ϕ ∈ C1(X,R) satisfies
the Cerami condition (C) and ϕ(−u) = ϕ(u). If for almost every k ∈ N,
there exist ρk > rk > 0 such that

(A1) ak := max
u∈Yk, ‖u‖=ρk

ϕ(u) ≤ 0,

(A2) bk := inf
u∈Zk, ‖u‖=rk

ϕ(u)→∞ as k →∞,

then ϕ has an unbounded sequence of critical values.

Now, we can give the proofs of our theorems.

Proof of Theorem 1.2. The proof is divided into several steps.

Step 1: We claim that ϕ ∈ C1(X,R) and ϕ maps bounded sets into
bounded sets. Let X = E, X1 = E+ ⊕ E0 and X2 = E−, where E0 =
ker(−∆+ a). By (F3), there exists a positive constant c1 such that

(2.1) |F (x, u)| ≤ c1(|u|+ |u|λ), ∀(x, u) ∈ Ω × R.

So, by (1.3), (1.4) and (2.1), we have

|ϕ(u)| =
∣∣∣12(‖u+‖2 − ‖u−‖2)−

�

Ω

F (x, u) dx
∣∣∣

≤ 1
2‖u‖

2 + c1
�

Ω

(|u|+ |u|λ) dx

≤ 1
2‖u‖

2 + c1K‖u‖+ c1K
λ‖u‖λ.

Hence, ϕ ∈ C1(X,R) and ϕ maps bounded sets into bounded sets.
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Step 2: We claim that ϕ has a local linking at zero with respect to
(X1, X2).

Here, we consider only the case where 0 is an eigenvalue of −∆+ a and
case (ii) of (F5) holds. Case (i) is similar.

By (F2), for any ε > 0, there exists δ1 > 0 such that

|F (x, u)| ≤ εu2, ∀|u| ≤ δ1.
From (2.1) and the above we obtain

(2.2) |F (x, u)| ≤ εu2 +M |u|λ, ∀(x, u) ∈ Ω × R,

where M = c1(1 + δ1−λ1 ). From (1.4) and (2.2) we get∣∣∣ �
Ω

F (x, u) dx
∣∣∣ ≤ �

Ω

εu2 dx+M
�

Ω

|u|λ dx(2.3)

≤ ε‖u‖2L2 +M‖u‖λLλ ≤ K
2ε‖u‖2 +KλM‖u‖λ

for all u ∈ E.

Choose a Hilbertian basis {en}n≥0 for X1 and define

X1
n := span{e0, . . . , en}, n ∈ N,

X2
n := X2, n ∈ N,

X1 =
⋃
n

X1
n.

Now, by (2.3), for each u ∈ X2 = E−, one has

ϕ(u) = −1
2‖u‖

2 −
�

Ω

F (x, u) dx ≤ −1
2‖u‖

2 +K2ε‖u‖2 +KλM‖u‖λ.

Letting ε = 1/(8K2), since λ > 2, we have

ϕ(u) ≤ 0, ∀u ∈ X2 with ‖u‖ ≤ δ2
for δ2 > 0 small enough.

It follows from the equivalence of norms on the finite-dimensional space
E0 that there exists K1 > 0 such that

(2.4) ‖u‖∞ ≤ K1‖u‖, ‖u‖ ≤ K1‖u‖L1 , ‖u‖ ≤ K1‖u‖L2 , ∀u ∈ E0.

Let u = u0 + u+ ∈ E0 ⊕ E+ = X1 be such that ‖u‖ ≤ δ3 , δ/(2K1). Put

Ω1 = {x ∈ Ω | |u+(x)| ≤ δ/2}, Ω2 = Ω \Ω1.

Then, for all ‖u‖ ≤ δ3 and x ∈ Ω, by (2.4), one has

(2.5) |u0(x)| ≤ ‖u0‖∞ ≤ K1‖u0‖ ≤ K1‖u‖ ≤ δ/2.
On one hand, from (2.5), for each x ∈ Ω1, we have

|u(x)| ≤ |u0(x)|+ |u+(x)| ≤ ‖u0‖∞ + δ/2 ≤ δ.



Superquadratic elliptic equations 229

Hence, by condition (ii) of (F5),�

Ω1

F (x, u) dx ≤ 0.

On the other hand, by (2.5), for every x ∈ Ω2,

|u(x)| ≤ |u0(x)|+ |u+(x)| ≤ δ/2 + |u+(x)| ≤ 2|u+(x)|.
Hence, for all x ∈ Ω2 and u ∈ X1 with ‖u‖ ≤ δ3, we infer from (2.2) that

F (x, u) ≤ εu2 +M |u|λ ≤ 4ε|u+(x)|2 + 2λM |u+(x)|λ,
which implies that�

Ω2

F (x, u) dx ≤ 4ε
�

Ω2

|u+(x)|2 dx+ 2λM
�

Ω2

|u+(x)|λ dx

≤ 4ε‖u+‖2L2 + 2λM‖u+‖λLλ ≤ 4K2ε‖u+‖2 + (2K)λM‖u+‖λ.
Letting ε = 1/(16K2) in the above expression, for all x ∈ Ω2 and u ∈ X1

with ‖u‖ ≤ δ3 we have

ϕ(u) = 1
2‖u

+‖2 −
�

Ω2

F (x, u) dx−
�

Ω1

F (x, u) dx

≥ 1
2‖u

+‖2− 4K2ε‖u+‖2 − (2K)λM‖u+‖λ ≥ 1
4‖u

+‖2 − (2K)λM‖u+‖λ,
and consequently

ϕ(u) ≥ 0, ∀u ∈ X1 with ‖u‖ ≤ δ4,
for δ4 > 0 small enough. Hence, ϕ has a local linking at zero with respect
to (X1, X2) for δ5 = min{δ2, δ4} small enough.

Step 3: We claim that ϕ satisfies the (C∗) condition. Consider a se-
quence {uαn} such that {αn} is admissible and

uαn ∈ Xαn , sup
n
ϕ(uαn) <∞, (1 + ‖uαn‖)ϕ′αn(uαn)→ 0.

Then there exists a constant M0 > 0 such that

ϕ(uαn) ≤M0, (1 + ‖uαn‖)‖ϕ′αn(uαn)‖ ≤M0.(2.6)

By a standard argument, we only need to prove that {uαn} is a bounded
sequence in X.

Indeed, otherwise we can assume that ‖uαn‖ → ∞ as n → ∞. From
(F′4), there exist constants c2, c3 > 0 such that

(2.7) f(x, u)u− 2F (x, u) ≥ c2|u|β − c3, ∀(x, u) ∈ Ω × R.
So, we conclude from (2.6) and (2.7) that

3M0 ≥ 2ϕ(uαn)− 〈ϕ′αn(uαn), uαn〉

=
�

Ω

(f(x, uαn)uαn − 2F (x, uαn)) dx ≥ c2
�

Ω

|uαn |β dx− c3|Ω|,
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which implies that

(2.8)
�

Ω

|uαn |β dx < c4

for all αn and some positive constant c4.

We have

β >
N

2
(λ− 2) and

N

2
(λ− 2) <

2N

N + 2
(λ− 1).

Here, we consider only the case

N

2
(λ− 2) < β <

2N

N + 2
(λ− 1).

Put

α =
2(λ− 1)N − (N + 2)β

2N − (N − 2)β
.

Then 0 < α < 1. Let

p =
β

λ− 1− α
> 1 and uαn = u+αn + u−αn + u0αn ∈ E

+ ⊕ E− ⊕ E0.

From Hölder’s inequality, (1.4) and (2.8) we obtain

(2.9)
�

Ω

|uαn |λ−1|u+αn | dx =
�

Ω

|uαn |λ−1−α|uαn |α|u+αn | dx

=
�

Ω

|uαn |β/p|uαn |α|u+αn | dx

≤
( �

Ω

(|uαn |β/p)p dx
)1/p( �

Ω

(|uαn |α|u+αn |)
q dx

)1/q
≤
( �

Ω

|uαn |β dx
)1/p( �

Ω

(|uαn |qα)2
∗/(qα) dx

)α/2∗( �

Ω

(|u+αn |
q)2
∗/q dx

)1/2∗
≤ c1/p4 ‖uαn‖

α
L2∗‖u+αn‖L2∗ ≤ c1/p4 Kα+1‖uαn‖α‖u+αn‖

for all n, where q = p/(p− 1) = 2∗/(α+ 1).

By (F3), (1.4), (2.8) and (2.9),

〈ϕ′αn(uαn), u+αn〉 = ‖u+αn‖
2 −

�

Ω

f(x, uαn)u+αn dx

≥ ‖u+αn‖
2 −

�

Ω

|f(x, uαn)| |u+αn | dx

≥ ‖u+αn‖
2 − a1

�

Ω

(|uαn |λ−1|u+αn |+ |u
+
αn |) dx
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= ‖u+αn‖
2 − a1

�

Ω

|uαn |λ−1|u+αn | dx− a1
�

Ω

|u+αn | dx

≥ ‖u+αn‖
2 − a1c1/p4 Kα+1‖uαn‖α‖u+αn‖ − a1K‖u

+
αn‖

for all n.

Since α < 1, we have

(2.10)
‖u+αn‖
‖uαn‖

→ 0 as n→∞.

Similarly,

(2.11)
‖u−αn‖
‖uαn‖

→ 0 as n→∞.

It follows from (2.4), (2.8) and Hölder’s inequality that

1

K2
1

‖u0αn‖
2 ≤

�

Ω

|u0αn |
2 dx ≤

�

Ω

|uαn |2 dx

=
�

Ω

|uαn |β/(β+1)|uαn |(β+2)/(β+1) dx

≤
( �

Ω

|uαn |β dx
)1/(β+1)( �

Ω

|uαn |(β+2)/β dx
)β/(β+1)

≤ c1/(β+1)
4 K(β+2)/(β+1)‖uαn‖(β+2)/(β+1),

and consequently

‖u0αn‖
‖uαn‖

→ 0 as n→∞.(2.12)

Hence, by (2.10)–(2.12),

1 =
‖uαn‖
‖uαn‖

≤
‖u+αn‖+ ‖u0αn‖+ ‖u−αn‖

‖uαn‖
→ 0

as n → ∞, which is a contradiction. So, {uαn} is bounded in X. By a
standard argument, we deduce that ϕ satisfies the (C∗) condition.

Step 4: Now, we claim that for each m ∈ N,

ϕ(u)→ −∞ as ‖u‖ → ∞ in X1
m ⊕X2.

Since dimE0 <∞ and dimX1
m <∞, all norms are equivalent. There exists

a constant c5 > 0 such that for all u ∈ X1
m ⊕X2,

(2.13) ‖u‖ ≤ c5‖u‖L2 .

From condition (F1), there exists c6 > 0 such that

(2.14) F (x, u) ≥ c25|u|2 − c6, ∀(x, u) ∈ Ω × R.
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For u ∈ X1
m ⊕X2, it follows from (2.13) and (2.14) that

ϕ(u) = 1
2(‖u+‖2 − ‖u−‖2)−

�

Ω

F (x, u) dx

≤ 1
2(‖u+‖2 − ‖u−‖2)− c25‖u‖2L2 + c6|Ω|

≤ 1
2(‖u+‖2 − ‖u−‖2)− (‖u+‖2 + ‖u0‖2) + c6|Ω|

≤ −1
2‖u

+‖2 − 1
2‖u

−‖2 − ‖u0‖2 + c6|Ω| ≤ −1
2‖u‖

2 + c6|Ω|,

which implies that

ϕ(u)→ −∞ as ‖u‖ → ∞ in X1
m ⊕X2.

So, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.4. It is easy to see that ϕ satisfies (i1), (i3) and (i4)
of Theorem 2.1. The proof is similar to that of Theorem 1.2. Here, we only
need to prove that ϕ satisfies (i2), i.e., the (C∗) condition.

Consider a sequence {uαn} such that {αn} is admissible and

uαn ∈ Xαn , sup
n
ϕ(uαn) <∞, (1 + ‖uαn‖)ϕ′αn(uαn)→ 0.

By a standard argument, we only need to prove that {uαn} is a bounded
sequence in X.

Indeed, otherwise, we can assume that ‖uαn‖ → ∞ as n→∞.

From assumption (F6), there exist positive constants m3 and m4 such
that

m3 ≥ 2ϕ(uαn)− 〈ϕ′αn(uαn), uαn〉(2.15)

=
�

Ω

(f(x, uαn)uαn − 2F (x, uαn)) dx ≥ m1

�

Ω

u2αn dx−m4|Ω|.

So,
�

Ω

u2αn dx ≤ m5(2.16)

for all n and some positive constant m5.

Let vαn = uαn/‖uαn‖. Then ‖vαn‖ = 1 and ‖vαn‖Lr ≤ Cr for all r ∈
[1, 2N/(N − 2)). By (2.16), we have

�

Ω

v2αn dx =
1

‖uαn‖2
�

Ω

u2αn dx ≤
m5

‖uαn‖2
→ 0,

as n→∞. So, for r ∈ (2, 2N/(N − 2)), Hölder’s inequality yields

(2.17)
�

Ω

|vαn |r dx ≤
( �

Ω

|vαn |2(r−1) dx
)1/2( �

Ω

|vαn |2 dx
)1/2

→ 0
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as n→∞. Since dimE0 <∞, by (2.4) one has

〈ϕ′αn(uαn), u+αn − u
−
αn〉 = ‖u+αn − u

−
αn‖

2 −
�

Ω

f(x, uαn)(u+αn − u
−
αn) dx

= ‖uαn‖2 − ‖u0αn‖
2 −

�

Ω

f(x, uαn)(u+αn − u
−
αn) dx

= ‖uαn‖2
(

1−
�

Ω

f(x, uαn)(u+αn − u
−
αn)

‖uαn‖2
dx

)
− ‖u0αn‖

2

≥ ‖uαn‖2
(

1−
�

Ω

f(x, uαn)(u+αn − u
−
αn)

‖uαn‖2
dx

)
−K2

1‖u0αn‖
2
L2 .

Hence,

(2.18) 1−
�

Ω

f(x, uαn)(u+αn − u
−
αn)

‖uαn‖2
dx = o(1).

From (F6), (2.15) and (2.17), there exists a positive constant m6 such that

(2.19)

∣∣∣∣ �
Ω

f(x, uαn)(u+αn − u
−
αn)

‖uαn‖2
dx

∣∣∣∣ ≤ 2
�

Ω

|f(x, uαn)|
|uαn |

|vαn |2 dx

≤ 2

( �

Ω

(
|f(x, uαn)|
|uαn |

)σ
dx

)1/σ( �

Ω

|vαn |2σ
′
dx
)1/σ′

≤ m6

( �

Ω

|vαn |2σ
′
dx
)1/σ′

→ 0

as n → ∞, where σ′ = σ/(σ − 1). Therefore, from (2.18) and (2.19), one
sees 1 = o(1), a contradiction. Hence, {un} is bounded.

By a standard argument, we deduce that ϕ satisfies the (C∗) condition.

Proof of Theorem 1.6. First, we claim that ϕ satisfies the Cerami con-
dition (C).

Indeed, let {un} be a sequence in E such that ϕ(un) is bounded and
‖ϕ′(un)‖(1 + ‖un‖) → 0 as n → ∞. Then there exists a constant M1 > 0
such that

|ϕ(un)| < M1, ‖ϕ′(un)‖(1 + ‖un‖) ≤M1

for all n ∈ N.
In a way similar to the proof of Theorem 1.2, we find that {un} is a

bounded sequence in E. By a standard argument, we deduce that ϕ satisfies
the Cerami condition (C).

Since dimYk <∞, all norms are equivalent. For each u ∈ Yk, there exists
a constant M2 > 0 such that

(2.20) ‖u‖ ≤M2‖u‖L2 .
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From condition (F1), there exists M3 > 0 such that

(2.21) F (x, u) ≥M2
2u

2 −M3, ∀(x, u) ∈ Ω × R.
For u ∈ Yk, it follows from (2.20) and (2.21) that

ϕ(u) = 1
2(‖u+‖2 − ‖u−‖2)−

�

Ω

F (x, u) dx

≤ 1
2(‖u+‖2 − ‖u−‖2)−M2

2 ‖u‖2L2 +M3|Ω|
≤ 1

2(‖u+‖2 − ‖u−‖2)− (‖u+‖2 + ‖u0‖2) +M3|Ω|
≤ −1

2‖u
+‖2 − 1

2‖u
−‖2 − ‖u0‖2 +M3|Ω| ≤ −1

2‖u‖
2 +M3|Ω|,

which implies that

ϕ(u)→ −∞ as ‖u‖ → ∞ in Yk.

So, (A1) of Theorem 2.2 is satisfied for every ρk > 0 large enough.
After integrating, we obtain from (F3) the existence of M4 > 0 such that

(2.22) |F (x, u)| ≤M4(1 + |u|λ), ∀(x, u) ∈ Ω × R.
Let us define

βk = sup
u∈Zk, ‖u‖=1

‖u‖Lλ .

Then, for k large enough such that Zk ⊂ E+, by (2.22), on Zk we have

ϕ(u) =
‖u‖2

2
−

�

Ω

F (x, u) dx ≥ ‖u‖
2

2
−M4‖u‖λLλ −M4|Ω|

≥ ‖u‖
2

2
−M4β

λ
k‖u‖λ −M4|Ω|.

Choosing rk = (M4λβ
λ
k )1/(2−λ), we obtain, for u ∈ Zk and ‖u‖ = rk,

ϕ(u) ≥
(

1

2
− 1

λ

)
(M4λβ

λ
k )2/(2−λ) −M4|Ω|.

Since, by Lemma 3.8 of [12], βk → 0 as k → ∞, relation (A2) is proved.
Hence, the proof is completed by using the Fountain Theorem.

Proof of Theorem 1.8. Firstly, we prove that ϕ satisfies the Cerami con-
dition (C).

Let {un} be a sequence in E such that ϕ(un) is bounded and ‖ϕ′(un)‖(1+
‖un‖)→ 0 as n→∞. Then there exists a constant M5 > 0 such that

|ϕ(un)| < M5, ‖ϕ′(un)‖(1 + ‖un‖) ≤M5

for all n ∈ N.
In a way similar to the proof of Theorem 1.4, we find that {un} is a

bounded sequence in E. By a standard argument, ϕ satisfies the Cerami
condition (C).
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It follows from (F1) that there is an L1 > 0 such that

(2.23) F (x, u) ≥ |u|2 if |u| ≥ L1.

Then, by (F6) and (2.23), for |u| ≥ L2 = max{L,L1}, x ∈ Ω, one has

(2.24) |f(x, u)|σ ≤ m2(f(x, u)u− 2F (x, u))|u|σ ≤ m2|f(x, u)| |u|σ+1.

By (2.24), we get

|f(x, u)| ≤ m1/(σ−1)
2 |u|(σ+1)/(σ−1) for |u| ≥ L2.

Therefore, there exists a positive constant m7 such that

|F (x, u)| ≤ m7(1 + |u|2σ/(σ−1)), ∀(x, u) ∈ Ω × R,

where 2σ/(σ − 1) < 2∗ = 2N/(N − 2).

Now, by a standard argument as in the proof of Theorem 1.6, the con-
clusion follows immediately.
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