The classical subspaces of the projective tensor products of ℓ_{p} and $C(\alpha)$ spaces, $\alpha<\omega_{1}$

by

Elói Medina Galego (São Paulo) and Christian Samuel (Marseille)

Dedicated to the memory of Professor Aleksander Pełczyński

Abstract

We completely determine the ℓ_{q} and $C(K)$ spaces which are isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$, the projective tensor product of the classical ℓ_{p} space, $1 \leq p<\infty$, and the space $C(\alpha)$ of all scalar valued continuous functions defined on the interval of ordinal numbers $[1, \alpha], \alpha<\omega_{1}$. In order to do this, we extend a result of A. Tong concerning diagonal block matrices representing operators from ℓ_{p} to $\ell_{1}, 1 \leq p<\infty$.

The first main theorem is an extension of a result of E. Oja and states that the only ℓ_{q} space which is isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$ with $1 \leq p \leq q<\infty$ and $\omega \leq \alpha<\omega_{1}$ is ℓ_{p}. The second main theorem concerning $C(K)$ spaces improves a result of Bessaga and Pełczyński which allows us to classify, up to isomorphism, the separable spaces $\mathcal{N}(X, Y)$ of nuclear operators, where X and Y are direct sums of ℓ_{p} and $C(K)$ spaces. More precisely, we prove the following cancellation law for separable Banach spaces. Suppose that K_{1} and K_{3} are finite or countable compact metric spaces of the same cardinality and $1<p, q<\infty$. Then, for any infinite compact metric spaces K_{2} and K_{4}, the following statements are equivalent:

(a) $\mathcal{N}\left(\ell_{p} \oplus C\left(K_{1}\right), \ell_{q} \oplus C\left(K_{2}\right)\right)$ and $\mathcal{N}\left(\ell_{p} \oplus C\left(K_{3}\right), \ell_{q} \oplus C\left(K_{4}\right)\right)$ are isomorphic.
(b) $C\left(K_{2}\right)$ is isomorphic to $C\left(K_{4}\right)$.

1. Introduction. We shall use the standard notations and terminology of Banach space theory (see e.g. [7]). For K a compact Hausdorff space, we denote by $C(K)$ the Banach space of all continuous scalar valued functions defined on K and endowed with the supremum norm. If $\alpha \leq \beta$ are ordinal numbers, then $[\alpha, \beta]$ denotes the interval $\{\gamma ; \alpha \leq \gamma \leq \beta\}$ endowed with the order topology. ω denotes the first infinite ordinal and ω_{1} the first uncountable ordinal. The space $C([1, \alpha])$ will be denoted by $C(\alpha)$. Given Banach spaces X and Y, we write $X \sim Y$ whenever X and Y are isomorphic, and $Y \hookrightarrow X$ when X contains a subspace isomorphic to Y.
[^0]It is not an easy matter to study the projective tensor products $X \widehat{\otimes}_{\pi} Y$ of two Banach spaces X and Y introduced by Grothendieck in [6]. The starting point of this paper is the widely known fact that these Banach spaces may have some unexpected subspaces (see for instance [4]). We only recall that this happens even when $X=\ell_{p}$ for some $1 \leq p<\infty$. Indeed, by [9, Theorem 4], for every $1 \leq r, s<\infty$ satisfying $p(r-1) \leq r$ and $p(s-1)>s$ we have

$$
\begin{equation*}
\ell_{1} \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} \ell_{r} \quad \text { and } \quad \ell_{p s /(p+s)} \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} \ell_{s} \tag{1.1}
\end{equation*}
$$

In other words, the projective tensor product of ℓ_{p} and $Y=\ell_{q}$ contains unwanted subspaces for every $1 \leq p, q<\infty$. This is also the case when Y is not necessarily isomorphic to any ℓ_{q} space, $1 \leq q<\infty$. Indeed, it is well known that every finite sum of $Y, Y^{n}, 1 \leq n<\omega$, is isomorphic to $\mathbb{K}^{n} \widehat{\otimes}_{\pi} Y$, where \mathbb{K} is the field of scalars of Y. Therefore

$$
Y^{n} \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} Y
$$

In particular, when $Y=C\left(\omega_{1}\right)$ we have, by [14, Theorem 2.1],

$$
\begin{equation*}
C\left(\omega_{1} \cdot n\right) \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} C\left(\omega_{1}\right) \quad \text { but } \quad C\left(\omega_{1} \cdot n\right) \hookrightarrow C\left(\omega_{1}\right), \forall 1 \leq n<\omega . \tag{1.2}
\end{equation*}
$$

The observations (1.1) and (1.2) lead naturally to the following question.
PROBLEM 1.1. Do the separable $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$ spaces have any unexpected ℓ_{q} or $C(\beta)$ subspaces?

In contrast to the $\ell_{p} \widehat{\otimes}_{\pi} \ell_{q}$ and $\ell_{p} \widehat{\otimes}_{\pi} C\left(\omega_{1}\right)$ results mentioned above, our main theorems are as follows.

Theorem 1.2. Let $1 \leq p, q<\infty$ and $\omega \leq \alpha<\omega_{1}$. Then

$$
\ell_{q} \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} C(\alpha) \Leftrightarrow p=q
$$

It follows from [9, Theorem 3] that, for $p<q<\infty, \ell_{q}$ is not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$. So, Theorem 1.2 completes this result by stating that, for $1 \leq q<p, \ell_{q}$ is also not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$.

THEOREM 1.3. Let $1 \leq p<\infty$ and $\omega \leq \alpha \leq \beta<\omega_{1}$. Then

$$
C(\beta) \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} C(\alpha) \Leftrightarrow \beta<\alpha^{\omega}
$$

Bessaga and Pełczyński [1, Theorem 1] completely determined all $C(\beta)$ subspaces of a fixed separable $C(\alpha)$ space. More exactly, they stated that, for $\omega \leq \alpha \leq \beta<\omega_{1}, C(\beta)$ is isomorphic to a subspace of $C(\alpha)$ if, and only if, $\beta<\alpha^{\omega}$. Theorem 1.3 shows that there is no change if we consider the question of characterization of the $C(\beta)$ subspaces of $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$.

From Theorems 1.2 and 1.3 we infer easily when $\ell_{q} \widehat{\otimes}_{\pi} C(\beta)$ and $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$ have the same linear dimension [2, Chapitre XII]. Indeed, we can deduce something more:

Theorem 1.4. Let $1 \leq p, q<\infty$ and $\omega \leq \alpha \leq \beta<\omega_{1}$. Then

$$
\ell_{q} \widehat{\otimes}_{\pi} C(\beta) \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} C(\alpha) \Leftrightarrow p=q \text { and } \beta<\alpha^{\omega} .
$$

The present paper is organized as follows. In Section 2, we present some preliminary results and notation. In Section 3, we extend a result of Tong [15. Theorem 4.6] concerning "diagonal block matrices" representing operators from ℓ_{p} to $\ell_{1}, 1 \leq p<\infty$ and "normalized diagonal block sequences" in $\ell_{p} \widehat{\otimes}_{\pi} c_{0}$ (Theorem 3.7). In Section 4, we use this result to show that "normalized diagonal block sequences" in $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$ spaces are equivalent to the unit basis of ℓ_{p} (Theorem 4.2). In Section 5, we prove Theorem 1.2.

In Section 6, we establish Theorem 1.3. In Section 7, we turn our attention to the Banach spaces $\mathcal{N}(X, Y)$ of nuclear operators containing subspaces isomorphic to $C(\alpha), \omega \leq \alpha<\omega_{1}$. As an application of Theorem 1.3 we obtain Theorem 7.1 which is a generalization of the classical isomorphic classification of $C(\alpha)$ spaces, $\omega \leq \alpha<\omega_{1}$, established by Bessaga and Pełczyński [1, Theorem 1].

In Section 8, as another consequence of Theorem 1.3, we accomplish the isomorphic classification of separable spaces of nuclear operators on $\ell_{p}(\Gamma) \oplus$ $C(K)$ spaces. See the cancellation law stated in Theorem 8.1 .

Finally, notice that Theorem 1.3 leaves several questions open on the geometry of projective tensor products of Banach spaces. We only stress the following one:

Problem 1.5. Let $1 \leq p<\infty, \omega \leq \alpha<\omega_{1}$ and Y a Banach space. Is it true that

$$
C(\alpha) \hookrightarrow \ell_{p} \widehat{\otimes}_{\pi} Y \Rightarrow C(\alpha) \hookrightarrow Y ?
$$

Observe that [10, Corollary 1] provides a positive answer to the above question in the simplest case $\alpha=\omega$.
2. Preliminary results and notation. We start by recalling some basic facts on projective tensor products of Banach spaces [6]. Let E, F be two Banach spaces. We denote by $\mathcal{B}(E, F)$ the space of bounded bilinear functionals on $E \times F$. The projective tensor norm of $u=\sum_{i=1}^{n} a_{i} \otimes b_{i} \in E \otimes F$ is defined by

$$
\|u\|=\sup \left\{\left|\sum_{i=1}^{n} \varphi\left(a_{i}, b_{i}\right)\right|: \varphi \in \mathcal{B}(E, F),\|\varphi\| \leq 1\right\} .
$$

As usual, $E \widehat{\otimes}_{\pi} F$ denotes the completion of $E \otimes F$ with respect to the projective norm. If necessary we denote by $\left\|\|_{\pi(E \otimes F)}\right.$ the projective norm on $E \widehat{\otimes}_{\pi} F$.

Suppose that M is a closed subspace of F. The two norms $\left\|\|_{\pi(E \otimes F)}\right.$ and $\left\|\|_{\pi(E \otimes M)}\right.$ are not necessarily equivalent on the subspace $E \otimes M$ of $E \otimes F$.

Nevertheless we have the following result of Grothendieck ([6, Corollary 1, p. 40]):

Theorem 2.1. Let E and F be Banach spaces. Suppose that M is a complemented subspace of F and P is a bounded linear projection from F onto M. Then for every $u \in E \widehat{\otimes}_{\pi} M$, we have

$$
\|u\|_{\pi(E \otimes F)} \leq\|u\|_{\pi(E \otimes M)} \leq\|P\|\|u\|_{\pi(E \otimes F)} .
$$

The following theorem will be useful later. Its proof is straightforward.
Theorem 2.2. Let $\left(p_{\alpha}\right)_{\alpha \in \mathcal{A}}$ (resp. $\left.\left(q_{\beta}\right)_{\beta \in \mathcal{B}}\right)$ be a uniformly bounded net of operators on a Banach space E (resp. F) which converge simply to the identity. Then $\left(p_{\alpha} \otimes q_{\beta}\right)_{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}}$ converges simply to the identity on $E \widehat{\otimes}_{\pi} F$.

We also recall that the space $\mathcal{B}(E, F)$ of bounded bilinear functionals on $E \times F$ is canonically isometrically isomorphic to the space $\mathcal{L}\left(E, F^{*}\right)$ of bounded linear operators from E to F^{*}. Moreover, $\left(E \widehat{\otimes}_{\pi} F\right)^{*}$ is isometrically isomorphic to $\mathcal{L}\left(E, F^{*}\right)$ in the following manner: to every $v \in \mathcal{L}\left(E, F^{*}\right)$ is associated the continuous linear functional also denoted by v on $E \widehat{\otimes}_{\pi} F$ such that, for each $a \in E$ and $b \in F, v(a \otimes b)=v(a)(b)$.

Finally, throughout this paper we denote by

- $\left(P_{m}\right)_{m}$ the sequence of natural projections associated to the unit basis of ℓ_{p},
- $\left(Q_{m}\right)_{m}$ the sequence of natural projections associated to the unit basis of ℓ_{1},
- $\left(R_{m}\right)_{m \geq 1}$ the sequence of natural projections associated to the unit vector basis of c_{0}.
Observe that $R_{m}^{*}=Q_{m}$ for every $m \geq 1$.

3. An extension of a result of Tong on diagonal block sequences in $\ell_{p} \widehat{\otimes}_{\pi} c_{0}$ spaces. We need to establish, in a different setting, results similar to those of Tong on diagonal block matrices [15, Proposition (2.5), Theorem (3.7), Theorem (4.6)]. In the following theorem, we summarize Tong's results that we use in our proof.

Let $\left(m_{k}\right)_{k \geq 0}$ be a strictly increasing sequence of integers. Given $\varphi \in$ $\ell_{p} \widehat{\otimes}_{\pi} c_{0}$ and $\bar{\psi} \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$, we denote, for every integer $k \geq 1$,

$$
\begin{aligned}
\varphi_{k} & =\left(P_{m_{k}}-P_{m_{k-1}}\right) \otimes\left(R_{m_{k}}-R_{m_{k-1}}\right)(\varphi), \\
\psi_{k} & =\left(Q_{m_{k}}-Q_{m_{k-1}}\right) \psi\left(P_{m_{k}}-P_{m_{k-1}}\right) .
\end{aligned}
$$

For every $1 \leq p<\infty$, we denote by p^{\prime} the conjugate exponent of p, that is, $1 / p+1 / p^{\prime}=1$.

Theorem 3.1. Let $\varphi \in \ell_{p} \widehat{\otimes}_{\pi} c_{0}$ and $\psi \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$. Then, for every integer N :
(a) $\left\|\sum_{k=1}^{N} \varphi_{k}\right\|=\left[\sum_{k=1}^{N}\left\|\varphi_{k}\right\|^{p}\right]^{1 / p} \leq\|\varphi\|$ if $1 \leq p<\infty$.
(b) $\left\|\sum_{k=1}^{N} \psi_{k}\right\|=\left[\sum_{k=1}^{N}\left\|\psi_{k}\right\|^{p^{\prime}}\right]^{1 / p^{\prime}} \leq\|\psi\|$ if $1<p<\infty$.
(c) $\left\|\sum_{k=1}^{N} \psi_{k}\right\|=\max _{1 \leq k \leq N}\left\|\psi_{k}\right\|$ if $p=1$.

The purpose of this section is to prove results analogous to Theorem 3.1 where, instead of a sequence $\left(m_{k}\right)_{k \geq 0}$, we have two strictly increasing sequences of integers.

We introduce a new notation: Let $\left(m_{k}\right)_{k \geq 0}$ and $\left(n_{k}\right)_{k \geq 0}$ be two strictly increasing sequences of integers. For every integer $k \geq 1$ we denote by U_{k} the operator on $\ell_{p} \widehat{\otimes}_{\pi} c_{0}$ given by

$$
\left(P_{n_{k}}-P_{n_{k-1}}\right) \otimes\left(R_{m_{k}}-R_{m_{k-1}}\right) .
$$

REmARK 3.2. Let $V_{k}=U_{k}^{*}$. It is easy to verify that, for every $v \in$ $\mathcal{L}\left(\ell_{p}, \ell_{1}\right)$,

$$
V_{k}(v)=\left(Q_{m_{k}}-Q_{m_{k-1}}\right) v\left(P_{n_{k}}-P_{n_{k-1}}\right)
$$

Definition 3.3. We say that a sequence $\left(u_{k}\right)_{k \geq 1}$ (resp. $\left.\left(v_{k}\right)_{k \geq 1}\right)$ in $\ell_{p} \widehat{\otimes}_{\pi} c_{0}$ (resp. $\left.\mathcal{L}\left(\ell_{p}, \ell_{1}\right)\right)$ is a diagonal block sequence if there exist two strictly increasing sequences $\left(m_{k}\right)_{k \geq 0}$ and $\left(n_{k}\right)_{k \geq 0}$ of integers such that $u_{k}=U_{k}\left(u_{k}\right)$ (resp. $\left.v_{k}=V_{k}\left(v_{k}\right)\right)$ for every integer $k \geq 1$.

Before stating and proving the main result of this section (Theorem 3.7), we state some auxiliary results. By elementary computations we have the following results.

Lemma 3.4. Let $v \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$. For every integer N,

$$
\left\|\sum_{k=1}^{N} V_{k}(v)\right\|= \begin{cases}{\left[\sum_{k=1}^{N}\left\|V_{k}(v)\right\|^{p^{\prime}}\right]^{1 / p^{\prime}}} & \text { if } 1<p<\infty \\ \max _{1 \leq k \leq N}\left\|V_{k}(v)\right\| & \text { if } p=1\end{cases}
$$

Lemma 3.5. For every $v \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$,

$$
\left\|\left(V_{1}+V_{2}\right)(v)\right\| \leq\|v\|
$$

Proof. Let $v_{1}=V_{1}(v)$ and $v_{2}=V_{2}(v)$. If $m_{1}=n_{1}$ the result follows directly from Theorem 3.1(b).

Assume first that $m_{1}<n_{1}$. Denote by $\left(\varepsilon_{m}\right)_{m \geq 1}$ the unit basis of ℓ_{1}. Set $r=n_{1}-m_{1}$. Denote by τ the operator on ℓ_{1} defined by

$$
\tau\left(\varepsilon_{k}\right)= \begin{cases}\varepsilon_{k} & \text { if } 1 \leq k \leq m_{1} \\ \varepsilon_{k+r} & \text { if } m_{1}+1 \leq k\end{cases}
$$

Denote $w_{1}=Q_{n_{1}} \tau v P_{n_{1}}$ and $w_{2}=\left(Q_{m_{2+r}}-Q_{m_{1+r}}\right) \tau v\left(P_{n_{2}}-P_{n_{1}}\right)$. Again by Theorem 3.1(b) we see that $\left\|w_{1}+w_{2}\right\| \leq\|\tau v\|=\|v\|$. We have $Q_{n_{1}} \tau=Q_{m_{1}}$ and $\left(Q_{m_{2+r}}-Q_{m_{1+r}}\right) \tau=\tau\left(Q_{m_{2}}-Q_{m_{1}}\right)$, so it follows that $\left\|v_{1}\right\|=\left\|w_{1}\right\|$ and $w_{2}=\tau v_{2}$. Moreover, for every $y \in \ell_{1}$, we have $\|\tau y\|=\|y\|$, so $\left\|w_{2}\right\|=\left\|v_{2}\right\|$. The result follows from Lemma 3.4.

Assume now that $m_{1}>n_{1}$. Denote by $\left(e_{m}\right)_{m \geq 1}$ the unit basis of ℓ_{p}. Set $\rho=m_{1}-n_{1}$. Let σ be the operator on ℓ_{p} defined by

$$
\sigma\left(e_{k}\right)= \begin{cases}e_{k} & \text { if } 1 \leq k \leq n_{1}, \\ 0 & \text { if } n_{1}+1 \leq k \leq m_{1}, \\ e_{k-\rho} & \text { if } m_{1}+1 \leq k .\end{cases}
$$

It is easy to check that $\sigma P_{m_{1}}=P_{n_{1}}$ and $\sigma\left(P_{n_{2}+\rho}-P_{n_{1}+\rho}\right)=\left(P_{n_{2}}-P_{n_{1}}\right) \sigma$. Denote $w_{1}^{\prime}=Q_{m_{1}} v \sigma P_{m_{1}}$ and $w_{2}^{\prime}=\left(Q_{m_{2}}-Q_{m_{1}}\right) v \sigma\left(P_{n_{2}+\rho}-P_{n_{1}+\rho}\right)$. Once again from Theorem 3.1 b) we infer

$$
\left\|w_{1}^{\prime}+w_{2}^{\prime}\right\| \leq\left\|Q_{m_{2}} v \sigma P_{n_{2}+\rho}\right\| \leq\|v\| .
$$

It is clear that $w_{1}^{\prime}=v_{1}$ and $w_{2}^{\prime}=v_{2} \sigma$.
Now we will prove that $\left\|w_{2}^{\prime}\right\|=\left\|v_{2}\right\|$. It is obvious that $\left\|w_{2}^{\prime}\right\| \leq\left\|v_{2}\right\|$, so it suffices to show that $\left\|v_{2}\right\| \leq\left\|w_{2}^{\prime}\right\|$. There exists $x=\sum_{k=n_{1}+1}^{n_{2}} a_{k} e_{k}$ such that $\|x\|=1$ and $\left\|v_{2}\right\|=\left\|v_{2}(x)\right\|$. We have $x=\sigma\left(x^{\prime}\right)$ with $x^{\prime}=\sum_{k=n_{1}+1}^{n_{2}} a_{k} e_{k+\rho}$. Consequently, $\left\|v_{2}\right\|=\left\|v_{2} \sigma\left(x^{\prime}\right)\right\| \leq\left\|w_{2}^{\prime}\right\|$.

Now, by using Lemma 3.4 we conclude

$$
\left\|v_{1}+v_{2}\right\|=\left[\left\|v_{1}\right\|^{p^{\prime}}+\left\|v_{2}\right\|^{p^{\prime}}\right]^{1 / p^{\prime}}=\left[\left\|w_{1}^{\prime}\right\|^{p^{\prime}}+\left\|w_{2}^{\prime}\right\|^{p^{\prime}}\right]^{1 / p^{\prime}}=\left\|w_{1}^{\prime}+w_{2}^{\prime}\right\| \leq\|v\| .
$$

Proposition 3.6. Let $v \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$, let $\left(m_{k}\right)_{k \geq 0}$ and $\left(n_{k}\right)_{k \geq 0}$ be strictly increasing sequences of integers and $\left(V_{k}\right)_{k \geq 1}$ the associated sequence of operators on $\mathcal{L}\left(\ell_{p}, \ell_{1}\right)$. Then, for every $v \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$ and $N \geq 1$,

$$
\left\|\sum_{k=1}^{N} V_{k}(v)\right\|=\left[\sum_{k=1}^{N}\left\|V_{k}(v)\right\|^{p^{\prime}}\right]^{1 / p^{\prime}} \leq\|v\| .
$$

Proof. Use induction on N and Lemmas 3.4 and 3.5 .
We are now ready to prove the main theorem of this section. Notice that this result was proved in [15, Theorem 4.6] in the case where $m_{1} \leq n_{1}<$ $m_{2} \leq n_{2}<\cdots$.

Theorem 3.7. Let $\left(u_{k}\right)_{k \geq 1}$ be a normalized diagonal block sequence in $\ell_{p} \widehat{\otimes}_{\pi} c_{0}$. Then, for every integer $N \geq 1$ and for every sequence $\left(\lambda_{k}\right)_{k}$ of scalars, we have

$$
\left\|\sum_{k=1}^{N} \lambda_{k} u_{k}\right\|=\left[\sum_{k=1}^{N}\left|\lambda_{k}\right|^{\mid}\right]^{1 / p} .
$$

Proof. Fix an integer N and scalars $\lambda_{1}, \ldots, \lambda_{N}$. There exists $v \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$ satisfying $\|v\|=1$ and

$$
\left\|\sum_{k=1}^{N} \lambda_{k} u_{k}\right\|=\left|\sum_{k=1}^{N} \lambda_{k} v\left(u_{k}\right)\right| .
$$

We have $U_{k}\left(u_{k}\right)=u_{k}$ so $v\left(u_{k}\right)=v_{k}\left(u_{k}\right)$ with $v_{k}=V_{k}(v)$.
According to Proposition 3.6 we deduce

$$
\left[\sum_{k=1}^{N}\left\|v_{k}\right\|^{p^{\prime}}\right]^{1 / p^{\prime}} \leq\|v\|=1
$$

Hence, by the Hölder inequality,

$$
\left\|\sum_{k=1}^{N} \lambda_{k} u_{k}\right\| \leq\left[\sum_{k=1}^{N}\left|\lambda_{k}\right|^{p}\right]^{1 / p}
$$

In order to prove the reverse inequality fix, for each integer $1 \leq i \leq N$, $w_{i} \in \mathcal{L}\left(\ell_{p}, \ell_{1}\right)$ such that $\left\|w_{i}\right\|=w_{i}\left(u_{i}\right)=1$. We have $u_{i}=U_{i}\left(u_{i}\right)$ so we can suppose that $w_{i}=U_{i}^{*}\left(w_{i}\right)$, that is, $w_{i}=V_{i}\left(w_{i}\right)$. Notice that for $1 \leq k \neq i$ $\leq N, w_{i}\left(u_{k}\right)=0$. Let $\alpha_{1}, \ldots, \alpha_{N}$ be scalars such that $\sum_{i=1}^{N}\left|\alpha_{i}\right|^{p^{\prime}} \leq 1$. Thus, by Proposition 3.6. $\left\|\sum_{i=1}^{N} \alpha_{i} w_{i}\right\| \leq 1$ and therefore

$$
\begin{aligned}
\left\|\sum_{k=1}^{N} \lambda_{k} u_{k}\right\| & \geq \sup \left\{\left|\sum_{k=1}^{N} \sum_{i=1}^{N} \alpha_{i} \lambda_{k} w_{i}\left(u_{k}\right)\right| ; \sum_{i=1}^{N}\left|\alpha_{i}\right|^{p^{\prime}} \leq 1\right\} \\
& \geq \sup \left\{\left|\sum_{k=1}^{N} \alpha_{k} \lambda_{k}\right| ; \sum_{k=1}^{N}\left|\alpha_{k}\right|^{p^{\prime}} \leq 1\right\} \geq\left[\sum_{k=1}^{N}\left|\lambda_{k}\right|^{p}\right]^{1 / p} .
\end{aligned}
$$

So the proof is complete.
4. On normalized diagonal block sequences in $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$ spaces. In this section we use Theorem 3.7 to show a similar result on normalized diagonal block sequences in $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ spaces (Theorem 4.2). This will be the main tool in the proof of Theorem 1.3 .

We need to introduce some more notations. We denote by $C_{0}(\alpha)$ the subspace of $C(\alpha)$ given by $\{f \in C(\alpha) ; f(\alpha)=0\}$. According to [1, Lemma 1], $C_{0}(\alpha)$ is isomorphic to $C(\alpha)$ for $\alpha \geq \omega$. Let $0 \leq \beta<\gamma<\alpha$. We denote

$$
C([\beta+1, \gamma])=\left\{f \in C_{0}(\alpha) ; f=f 1_{[\beta+1, \gamma]}\right\}
$$

where $1_{[\beta+1, \gamma]}$ is the characteristic function of $[\beta+1, \gamma]$. Let $1 \leq \gamma \leq \alpha$ be an ordinal. We denote by S_{γ} the operator from $C_{0}(\alpha)$ to $C_{0}(\alpha)$ defined, for every $f \in C_{0}(\alpha)$, by $S_{\gamma}(f)=f 1_{[1, \gamma]}$. It is obvious that, for $\alpha=\omega$ and $1 \leq m<\omega$, we have $S_{m}=R_{m}$.

Let $1 \leq p<\infty$, and let $\left(\gamma_{i}\right)_{i \geq 0}$ be a strictly increasing sequence in $[1, \alpha]$ and $\left(n_{i}\right)_{i \geq 0}$ a strictly increasing sequence of integers. For every $1 \leq k<\omega$ we denote by Π_{k} the operator on $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ given by

$$
P_{n_{k}} \otimes S_{\gamma_{k}}-P_{n_{k-1}} \otimes S_{\gamma_{k}}-P_{n_{k}} \otimes S_{\gamma_{k-1}}+P_{n_{k-1}} \otimes S_{\gamma_{k-1}} .
$$

Definition 4.1. We say that a sequence $\left(u_{k}\right)_{k \geq 1}$ in $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ is a diagonal block sequence if there exist strictly increasing sequences $\left(\gamma_{k}\right)_{k>0}$ in [$1, \alpha]$ and $\left(n_{k}\right)_{k \geq 0}$ of integers such that $u_{k}=\Pi_{k}\left(u_{k}\right)$ for every integer k.

Theorem 4.2. Suppose that $\left(u_{k}\right)_{k \geq 1}$ is a normalized diagonal block sequence in $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$. Then $\left(u_{k}\right)_{k \geq 1}$ is equivalent to the unit basis of ℓ_{p}.

Proof. There exists a sequence $\left(f_{i}\right)_{i}$ in $C_{0}(\alpha)$ such that, for every integer k, we have $u_{k}=\sum_{i=n_{k-1}+1}^{n_{k}} e_{i} \otimes f_{i}$ and $f_{n_{k-1}+1}, \ldots, f_{n_{k}} \in C\left(\left[\gamma_{k-1}+1, \gamma_{k}\right]\right)$. The space $C\left(\left[\gamma_{k-1}+1, \gamma_{k}\right]\right)$ is an $\mathcal{L}_{\infty, 1+\varepsilon}$ space for every $\varepsilon>0$ [7, p. 57], so there exists a finite-dimensional subspace E_{k} of $C\left(\left[\gamma_{k-1}+1, \gamma_{k}\right]\right)$ such that $f_{n_{k-1}+1}, \ldots, f_{n_{k}} \in E_{k}$ and the Banach-Mazur distance $d\left(E_{k}, \ell_{\infty}^{d_{k}}\right)$ is less than 2, where d_{k} is the dimension of E_{k}. Therefore there exists a linear projection π_{k} of $C\left(\left[\gamma_{k-1}+1, \gamma_{k}\right]\right)$ onto E_{k} of norm less than or equal to 2.

Fix $1 \leq N<\omega$. The subspace $E=E_{1} \oplus \cdots \oplus E_{N}$ of $C_{0}(\alpha)$ is complemented by a projection of norm less than or equal to 2 . Let a_{1}, \ldots, a_{N} be scalars. We have $\sum_{n=1}^{N} a_{n} u_{n} \in \ell_{p} \widehat{\otimes}_{\pi} E$. So, according to Theorem 2.1.

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} a_{n} u_{n}\right\|_{\pi\left(\ell_{p} \otimes C_{0}(\alpha)\right)} \leq\left\|\sum_{n=1}^{N} a_{n} u_{n}\right\|_{\pi\left(\ell_{p} \otimes E\right)} \leq 2\left\|\sum_{n=1}^{N} a_{n} u_{n}\right\|_{\pi\left(\ell_{p} \otimes C_{0}(\alpha)\right)} . \tag{4.1}
\end{equation*}
$$

Let $d=d_{1}+\cdots+d_{N}$. It is obvious that E is 2 -isomorphic to a subspace of c_{0}. Then, by Theorems 3.7 and 2.1, we obtain

$$
\begin{equation*}
\left[\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right]^{1 / p} \leq\left\|\sum_{n=1}^{N} a_{n} u_{n}\right\|_{\pi\left(\ell_{p} \otimes E\right)} \leq 2\left[\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right]^{1 / p} . \tag{4.2}
\end{equation*}
$$

By combining (4.1) with (4.2) we conclude

$$
\frac{1}{2}\left[\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right]^{1 / p} \leq\left\|\sum_{n=1}^{N} a_{n} u_{n}\right\|_{\pi\left(\ell_{p} \otimes C_{0}(\alpha)\right)} \leq 2\left[\sum_{n=1}^{N}\left|a_{n}\right|^{p}\right]^{1 / p}
$$

5. ℓ_{q} subspaces of separable $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$ spaces. The object of this section is to prove Theorem 1.2. It is convenient to introduce the following notation:

Let $1 \leq p<\infty$ and $\omega \leq \alpha<\omega_{1}$. For every $(m, \gamma) \in[1, \omega) \times[1, \alpha)$, we denote by $T_{m, \gamma}$ the operator on $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ given by

$$
P_{m} \otimes I_{C_{0}(\alpha)}+I_{\ell_{p}} \otimes S_{\gamma}-P_{m} \otimes S_{\gamma}
$$

LEMMA 5.1. Let $1 \leq p<\infty$ and $\omega \leq \alpha<\omega_{1}$. Then, for every $(m, \gamma) \in$ $[1, \omega) \times[1, \alpha), \operatorname{Im} T_{m, \gamma}$ is isomorphic to $C_{0}(\alpha) \oplus \ell_{p} \widehat{\otimes}_{\pi} C(\gamma)$.

Proof. Denote by Ψ_{m} and $\Phi_{m, \gamma}$ the projections of $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ given by $P_{m} \otimes I_{C_{0}(\alpha)}$ and $\left(I_{\ell_{p}}-P_{m}\right) \otimes S_{\gamma}$ respectively. We notice that
(a) $\Psi_{m}\left(\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)\right) \sim C_{0}(\alpha)$,
(b) $\Phi_{m, \gamma}\left(\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)\right) \sim \ell_{p} \widehat{\otimes}_{\pi} C(\gamma)$,
(c) $T_{m, \gamma}=\Psi_{m}+\Phi_{m, \gamma}$,
(d) $\Psi_{m} \Phi_{m, \gamma}=\Phi_{m, \gamma} \Psi_{m}=0$

It follows that $\operatorname{Im} T_{m, \gamma}$ is isomorphic to $C_{0}(\alpha) \oplus \ell_{p} \widehat{\otimes}_{\pi} C(\gamma)$.
Proof of Theorem 1.2. We need only show that if ℓ_{q} is isomorphic to a subspace of $\ell_{p} \hat{\otimes}_{\pi} C(\alpha)$ then $p=q$. The converse is obvious.

We suppose $p \neq q$ and we prove by transfinite induction that for every $\alpha<\omega_{1}, \ell_{q}$ is not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$. This is so if $\alpha<\omega$. Now let $\omega \leq \alpha<\omega_{1}$ and suppose that, for every $\gamma<\alpha, \ell_{q}$ is not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C(\gamma)$. It is still the case for $\gamma=\alpha$ if α is a successor. Consider the case where α is a limit ordinal. We shall show that the existence of a linear operator $T: \ell_{q} \rightarrow \ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ which is an isomorphism onto its image leads to a contradiction.

Denote by $\left(x_{n}\right)_{n \geq 1}$ the unit basis of ℓ_{q}. Fix a number $\varepsilon>0$. We construct by induction a normalized block basic sequence $\left(y_{k}\right)_{k \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$, a strictly increasing sequence $\left(m_{k}\right)_{k \geq 1}$ of integers and a strictly increasing sequence $\left(\gamma_{k}\right)_{k \geq 1}$ in $[1, \alpha[$ such that, for every integer k,

$$
\begin{equation*}
\left\|T\left(y_{k}\right)-\left(P_{n_{k}}-P_{n_{k-1}}\right) \otimes\left(S_{\gamma_{k}}-S_{\gamma_{k-1}}\right) T\left(y_{k}\right)\right\| \leq \varepsilon / 2^{k} \tag{5.1}
\end{equation*}
$$

We take $y_{1}=x_{1}$. By Theorem 2.2 we fix an integer m_{1} and $\gamma_{1}<\alpha$ such that

$$
\left\|T\left(y_{1}\right)-\left(P_{n_{1}} \otimes S_{\gamma_{1}}\right) T\left(y_{1}\right)\right\| \leq \varepsilon / 2
$$

Now let $i \geq 1$ be an integer and suppose that we have a finite normalized block basic sequence $\left(y_{1}, \ldots, y_{i}\right)$ of $\left(x_{n}\right)_{n \geq 1}, m_{1}<\cdots<m_{i}$ and $\gamma_{1}<\cdots<$ $\gamma_{i}<\alpha$ such that (5.1) is satisfied for $1 \leq k \leq i$. There exists an integer k_{i} such that $y_{1}, \ldots, y_{i} \in \operatorname{span}\left\{x_{k} ; 1 \leq k \leq k_{i}\right\}$. It follows from Lemma 5.1 that $\operatorname{Im} T_{n_{i}, \gamma_{i}}$ is isomorphic to $C_{0}(\alpha) \oplus \ell_{p} \widehat{\otimes}_{\pi} C\left(\gamma_{i}\right)$. Hence, $\operatorname{Im} T_{n_{i}, \gamma_{i}}$ does not contain a subspace isomorphic to ℓ_{q}. So there is $y_{i+1} \in \operatorname{span}\left\{x_{l} ; l \geq k_{i}+1\right\}$ which satisfies $\left\|y_{i+1}\right\|=1$ and

$$
\left\|T_{n_{i}, \gamma_{i}} T\left(y_{i+1}\right)\right\| \leq \varepsilon / 2^{i+2}
$$

There exist an integer $n_{i+1}>n_{i}$ and an ordinal $\left.\gamma_{i+1} \in\right] \gamma_{i}, \alpha[$ such that

$$
\begin{equation*}
\left\|T\left(y_{i+1}\right)-\left(P_{n_{i+1}} \otimes S_{\gamma_{i+1}}\right) T\left(y_{i+1}\right)\right\| \leq \varepsilon / 2^{i+2} \tag{5.2}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\|\left(P_{n_{i+1}} \otimes S_{\gamma_{i+1}}\right) T_{n_{i}, \gamma_{i}} T\left(y_{i+1}\right)\right\| \leq \varepsilon / 2^{i+2} \tag{5.3}
\end{equation*}
$$

so, by (5.2) and (5.3), (5.1) holds for $i+1$.

Let $z_{1}=\left(P_{n_{1}} \otimes S_{\gamma_{1}}\right) T\left(y_{1}\right)$ and, for $k \geq 2$,

$$
z_{k}=\left(P_{n_{k}}-P_{n_{k-1}}\right) \otimes\left(S_{\gamma_{k}}-S_{\gamma_{k-1}}\right) T\left(y_{k}\right)
$$

On one hand, for $\varepsilon>0$ small enough the sequence $\left(z_{k}\right)_{k \geq 1}$ is equivalent to the unit basis of ℓ_{q}; on the other hand, $\left(z_{k}\right)_{k \geq 1}$ is a seminormalized diagonal block sequence in $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$. Thus, by Theorem 4.2, it is equivalent to the unit basis of ℓ_{p}, which is a contradiction.
6. $C(\beta)$ subspaces of separable $\ell_{p} \widehat{\otimes}_{\pi} C(\alpha)$ spaces. In this section we prove Theorem 1.3 . We begin with some auxiliary results.

Lemma 6.1. Suppose that $1 \leq p<\infty$ and $\omega \leq \alpha<\omega_{1}$. If, for every ordinal $\gamma<\alpha$, the space $C_{0}(\alpha)$ is not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\gamma)$, then for every operator $L: C_{0}\left(\alpha^{\omega}\right) \rightarrow \ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ and for every $(n, \gamma) \in$ $[1, \omega) \times[1, \alpha)$, the operator $T_{n, \gamma} L$ is not an isomorphism onto its image.

Proof. Suppose that there exist $L: C_{0}\left(\alpha^{\omega}\right) \rightarrow \ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ and $(m, \gamma) \in$ $[1, \omega) \times[1, \alpha)$ such that $T_{m, \gamma} L$ is an isomorphism onto its image. Lemma 5.1 shows that $C\left(\alpha^{\omega}\right)$ is isomorphic to a subspace of $C_{0}(\alpha) \oplus \ell_{p} \widehat{\otimes}_{\pi} C(\gamma)$. According to [1, Theorem 1], $C_{0}(\alpha)$ contains no subspace isomorphic to $C\left(\alpha^{\omega}\right)$. Therefore by [11, Theorem 1] and [5, Theorem 2.4] we infer that $\ell_{p} \widehat{\otimes}_{\pi} C(\gamma)$ contains a subspace isomorphic to $C\left(\alpha^{\omega}\right)$, a contradiction.

The next lemma is a direct consequence of Theorem 2.2 .
LEMMA 6.2. Let $1 \leq p<\infty$ and $\omega \leq \alpha<\omega_{1}$. For all $u \in \ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ and $\varepsilon>0$ there exist $1 \leq n_{0}<\omega$ and $1 \leq \gamma_{0}<\alpha$ such for all $n_{0} \leq n<\omega$ and $\gamma_{0} \leq \gamma<\alpha$,

$$
\left\|u-\left(P_{n} \otimes S_{\gamma}\right)(u)\right\| \leq \varepsilon
$$

The following proposition is a key result to prove Theorem 1.3 ,
Proposition 6.3. Let $1 \leq p<\infty$ and $\omega \leq \alpha<\omega_{1}$. If, for every ordinal $\gamma<\alpha$, the space $C_{0}(\alpha)$ is not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\gamma)$, then $C_{0}\left(\alpha^{\omega}\right)$ is not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$.

Proof. Towards a contradiction, suppose that $L: C_{0}\left(\alpha^{\omega}\right) \rightarrow \ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$ is an isomorphism onto its image. There exist $0<a \leq b$ such that

$$
a\|f\| \leq\|L(f)\| \leq b\|f\|
$$

for every $f \in C_{0}\left(\alpha^{\omega}\right)$. Let $0<\varepsilon<a$. By using Lemmas 6.1 and 6.2 we will construct by induction a normalized sequence $\left(f_{i}\right)_{i}$ in $C_{0}\left(\alpha^{\omega}\right)$, two strictly increasing sequences $\left(k_{i}\right)_{i},\left(n_{i}\right)_{i}$ of integers and a strictly increasing sequence $\left(\gamma_{i}\right)_{i}$ in $[1, \alpha]$ such that
(a) $f_{1}=f_{1} 1_{\left[1, \alpha^{k_{1}}\right]}$ and $f_{i}=f_{i} 1_{\left[\alpha^{\left.k_{i-1}+1, \alpha^{k}\right]}\right.}$ for every integer $i \geq 2$,
(b) $\left\|T_{n_{i-1}, \gamma_{i-1}} L\left(f_{i}\right)\right\| \leq \varepsilon / 2^{i+1}$ for every integer $i \geq 2$,
(c) $\left\|L\left(f_{1}\right)-\left(P_{n_{1}} \otimes S_{\gamma_{1}}\right) L\left(f_{1}\right)\right\| \leq \varepsilon / 2$,
(d) $\left\|L\left(f_{i}\right)-\left(P_{n_{i}} \otimes S_{\gamma_{i}}\right) L\left(f_{i}\right)\right\| \leq \varepsilon / 2^{i+1}$ for every $i \geq 2$.

To begin, we fix $f_{1}=1_{[1, \alpha]} \in C_{0}\left(\alpha^{\omega}\right)$ and $k_{1}=1$. By Lemma 6.2 there exist an integer n_{1} and an ordinal $\gamma_{1}<\alpha$ such that

$$
\left\|L\left(f_{1}\right)-\left(P_{n_{1}} \otimes S_{\gamma_{1}}\right) L\left(f_{1}\right)\right\| \leq \varepsilon / 2
$$

Let $i \geq 1$, and suppose that $f_{1}, \ldots, f_{i}, n_{1}<\cdots<n_{i}<\omega, k_{1}<\cdots<k_{i}<\omega$ and $\gamma_{1}<\cdots<\gamma_{i}<\alpha$ have been chosen satisfying (a)-(d). It is clear that $C_{0}\left(\left[\alpha^{k_{i}}+1, \alpha^{\omega}\right]\right)$ is isomorphic to $C_{0}\left(\alpha^{\omega}\right)$. So, by Lemma 6.1, there exists $f_{i+1}^{\prime} \in C_{0}\left(\left[\alpha^{k_{i}}+1, \alpha^{\omega}\right]\right)$ such that

$$
\left\|f_{i+1}^{\prime}\right\|=1 \quad \text { and } \quad\left\|T_{n_{i}, \gamma_{i}} L\left(f_{i+1}^{\prime}\right)\right\|<\varepsilon / 2^{i+2}
$$

Now we fix k_{i+1} such that

$$
\left\|f_{i+1}^{\prime} 1_{\left[\alpha^{k_{i}}+1, \alpha^{\left.k_{i+1}\right]}\right.}\right\|=1 \quad \text { and } \quad\left\|T_{n_{i}, \gamma_{i}} L\left(f_{i+1}^{\prime} 1_{\left[\alpha^{\left.k_{i}+1, \alpha^{k_{i+1}}\right]}\right.}\right)\right\| \leq \varepsilon / 2^{i+2}
$$

We take $f_{i+1}=f_{i+1}^{\prime} 1_{\left[\alpha^{k_{i}+1, \alpha^{\left.k_{i+1}\right]}}\right.}$. Then, by Lemma 6.2, we choose $n_{i+1}>n_{i}$ and $\gamma_{i}<\gamma_{i+1}<\alpha$ satisfying (d).

This sequence $\left(f_{i}\right)_{i}$ leads to a contradiction. Indeed, let $\Pi_{1}=P_{n_{1}} \otimes S_{\gamma_{1}}$ and, for $i \geq 2$,

$$
\Pi_{i}=P_{n_{i}} \otimes S_{\gamma_{i}}-P_{n_{i-1}} \otimes S_{\gamma_{i}}-P_{n_{i}} \otimes S_{\gamma_{i-1}}+P_{n_{i-1}} \otimes S_{\gamma_{i-1}}
$$

For every integer $i \geq 2$ we have

$$
\left(P_{n_{i}} \otimes S_{\gamma_{i}}\right) T_{n_{i-1}, \gamma_{i-1}}=P_{n_{i-1}} \otimes S_{\gamma_{i}}+P_{n_{i}} \otimes S_{\gamma_{i-i}}-P_{n_{i-1}} \otimes S_{\gamma_{i-1}}
$$

Consequently,
$\left\|\Pi_{i} L\left(f_{i}\right)-L\left(f_{i}\right)\right\| \leq\left\|\left(P_{n_{i}} \otimes S_{\gamma_{i}}\right) L\left(f_{i}\right)-L\left(f_{i}\right)\right\|+\left\|\left(P_{n_{i}} \otimes S_{\gamma_{i}}\right) T_{n_{i-1}, \gamma_{i-1}} L\left(f_{i}\right)\right\|$, and therefore

$$
\left\|\Pi_{i} L\left(f_{i}\right)-L\left(f_{i}\right)\right\| \leq \varepsilon / 2^{i}
$$

The sequence $\left(L\left(f_{i}\right)\right)_{i}$ is equivalent to the unit basis of c_{0}. On one hand, for $\varepsilon>0$ enough small, the sequence $\left(\Pi_{i} L\left(f_{i}\right)\right)_{i}$ is equivalent to the unit basis of c_{0}. On the other hand, $\left(\Pi_{i} L\left(f_{i}\right)\right)_{i}$ is a seminormalized diagonal block sequence in $\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)$, so by Theorem 4.2 , it is equivalent to the unit basis of ℓ_{p}. We have the required contradiction.

Proof of Theorem 1.3. Let
$I=\left\{\alpha \in\left[\omega, \omega_{1}\left[; C_{0}\left(\alpha^{\omega}\right)\right.\right.\right.$ is not isomorphic to a subspace of $\left.\ell_{p} \widehat{\otimes}_{\pi} C_{0}(\alpha)\right\}$.
It is well known that c_{0} is not isomorphic to a subspace of ℓ_{p}. So, by Proposition 6.3, $\omega \in I$. Now we suppose that $I \neq\left[\omega, \omega_{1}[\right.$ and show that this leads to a contradiction.

Let $\alpha_{0}=\min \left(\left[\omega, \omega_{1}[\backslash I)\right.\right.$. This means that $C_{0}\left(\alpha_{0}^{\omega}\right)$ is isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C_{0}\left(\alpha_{0}\right)$ and by Proposition 6.3 there exists $\beta_{0}<\alpha_{0}$ such
that

$$
\begin{equation*}
C_{0}\left(\alpha_{0}\right) \text { is isomorphic to a subspace of } \ell_{p} \widehat{\otimes}_{\pi} C_{0}\left(\beta_{0}\right) . \tag{6.1}
\end{equation*}
$$

We have $\beta_{0} \in I$, thus $C_{0}\left(\beta_{0}^{\omega}\right)$ is not isomorphic to a subspace of $\ell_{p} \widehat{\otimes}_{\pi} C_{0}\left(\beta_{0}\right)$.
It follows from (6.1) and (6.2 that $\alpha_{0}<\beta_{0}^{\omega}$. We have $\beta_{0}<\alpha_{0}<\beta_{0}^{\omega}$ and so $\alpha_{0}^{\omega}=\beta_{0}^{\omega}$. The spaces $C_{0}\left(\alpha_{0}\right)$ and $C_{0}\left(\beta_{0}\right)$ are isomorphic by [1, Theorem 1]; we also have $C_{0}\left(\alpha_{0}^{\omega}\right)=C_{0}\left(\beta_{0}^{\omega}\right)$; hence a contradiction between $\alpha_{0} \notin I$ and $\beta_{0} \in I$.
7. An extension of a result of Bessaga and Pełczyński’s on $C(\alpha)$ spaces. The main aim of this section is to prove Theorem 7.1. Notice that the case where ξ and Γ are finite and Y is a finite-dimensional space is exactly [1, Theorem 1]. We denote by $\bar{\xi}$ the cardinality of the ordinal ξ.

Theorem 7.1. Let $1<p<\infty, 1 \leq \xi, \eta<\omega_{1}$ with $\bar{\xi}=\bar{\eta}, \Gamma$ a countable set and Y a Banach space containing no subspace isomorphic to c_{0}. Then, for any ordinals $\omega \leq \alpha \leq \beta<\omega_{1}$,

$$
\mathcal{N}\left(\ell_{p}(\Gamma) \oplus C(\xi), Y \oplus C(\alpha)\right) \sim \mathcal{N}\left(\ell_{p}(\Gamma) \oplus C(\eta), Y \oplus C(\beta)\right) \Leftrightarrow \beta<\alpha^{\omega}
$$

Proof. We begin by noticing that if $1 \leq p<\infty, 1 \leq \lambda, \mu<\omega_{1}, \Lambda$ is a set and Y is an arbitrary Banach space, then by [6, Proposition 35, p. 164],

$$
\begin{equation*}
\mathcal{N}\left(\ell_{p}(\Lambda) \oplus C(\lambda), Y \oplus C(\mu)\right) \sim\left(\ell_{p}(\Lambda) \oplus C(\lambda)\right)^{*} \widehat{\otimes}_{\pi}(Y \oplus C(\mu)) \tag{7.1}
\end{equation*}
$$

Moreover, by [6, Proposition 6, p.46], this space is isomorphic to

$$
\begin{equation*}
\left(\ell_{p^{\prime}}(\Lambda) \widehat{\otimes}_{\pi} Y\right) \oplus\left(\ell_{p^{\prime}}(\Lambda) \widehat{\otimes}_{\pi} C(\mu)\right) \oplus\left(\ell_{1}(\bar{\lambda}) \widehat{\otimes}_{\pi} Y\right) \oplus\left(\ell_{1}(\bar{\lambda}) \widehat{\otimes}_{\pi} C(\mu)\right) \tag{7.2}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$.
To prove the sufficiency, suppose that $\beta<\alpha^{\omega}$. Then by [1, Theorem 1], $C(\alpha)$ is isomorphic to $C(\beta)$. Hence by (7.1) and 7.2 we deduce

$$
\begin{equation*}
\mathcal{N}\left(\ell_{p}(\Gamma) \oplus C(\xi), Y \oplus C(\alpha)\right) \sim \mathcal{N}\left(\ell_{p}(\Gamma) \oplus C(\eta), Y \oplus C(\beta)\right) \tag{7.3}
\end{equation*}
$$

Conversely, assume that (7.3 holds. For contradiction suppose $\beta \geq \alpha^{\omega}$. Since $C(\beta)$ is isomorphic to a subspace of $\mathcal{N}\left(\ell_{p}(\Gamma) \oplus C(\eta), X \oplus C(\beta)\right)$, it follows by (7.1), (7.2 and our hypothesis that $C\left(\alpha^{\omega}\right)$ is isomorphic to a subspace of the space in 7.2 with $\lambda=\xi, \mu=\alpha$ and $\Lambda=\Gamma$.

Therefore [1, Theorem 1] and [5, Theorem 2.4] imply that $C\left(\alpha^{\omega}\right)$ is isomorphic to a subspace of some of the four summands in 7.2). However, an appeal to [10, Corollary 1] shows that $C\left(\alpha^{\omega}\right)$ is isomorphic to no subspace of the first summand in (7.2). Furthermore, since the third summand is a subspace of $\ell_{1}(\mathbb{N}, Y)$, a standard gliding hump argument shows that c_{0} and therefore $C\left(\alpha^{\omega}\right)$ is not isomorphic to any subspace of this (see for instance [3]). Finally, by Theorem $1.3, C\left(\alpha^{\omega}\right)$ is isomorphic to no subspace of the second or fourth summands, completing the proof.
8. Separable spaces of nuclear operators on $\ell_{p}(\Gamma) \oplus C(K)$ spaces. The purpose of this last section is to classify, up to isomorphisms, all separable spaces $\mathcal{N}(X, Y)$ of nuclear operators where X and Y are direct sums of ℓ_{p} and $C(K)$ spaces. Namely, we have:

THEOREM 8.1. Let $1<p, q<\infty, 1 \leq \xi, \eta<\omega_{1}$ with $\bar{\xi}=\bar{\eta}$, and let Γ and Λ countable sets. Then, for any infinite compact metric spaces K_{1} and K_{2}, the following statements are equivalent:
(a) $\mathcal{N}\left(\ell_{p}(\Gamma) \oplus C(\xi), \ell_{q}(\Lambda) \oplus C\left(K_{1}\right)\right) \sim \mathcal{N}\left(\ell_{p}(\Gamma) \oplus C(\eta), \ell_{q}(\Lambda) \oplus C\left(K_{2}\right)\right)$.
(b) $C\left(K_{1}\right)$ is isomorphic to $C\left(K_{2}\right)$.

Proof. It is clear that (b) implies (a). Next, suppose that (a) holds. It is convenient to distinguish two cases.

CASE 1: K_{1} and K_{2} are countable. In this case, by the Mazurkiewicz and Sierpiński theorem [8] there exist ordinals $\omega \leq \alpha, \beta<\omega_{1}$ such that K_{1} is homeomorphic to $[1, \alpha]$ and K_{2} is homeomorphic to $[1, \beta]$. Then by Theorem 7.1 and [1, Theorem 1], $C\left(K_{1}\right)$ is isomorphic to $C\left(K_{2}\right)$.

Case 2: K_{1} or K_{2} is uncountable. Without loss of generality we assume that K_{2} is uncountable. To prove that $C\left(K_{1}\right)$ is isomorphic to $C\left(K_{2}\right)$ it suffices by Milyutin's theorem [12, Theorem 21.5.10] to show that K_{1} is uncountable. Suppose the contrary. Then, again by the Mazurkiewicz and Sierpiński theorem [8], there exists an ordinal $\omega \leq \alpha<\omega_{1}$ such that $C\left(K_{1}\right)$ is isomorphic to $C(\alpha)$. Hence the first space of (a) is isomorphic to

$$
\begin{equation*}
\left(\ell_{p^{\prime}}(\Lambda) \widehat{\otimes}_{\pi} \ell_{q}(\Lambda)\right) \oplus\left(\ell_{p^{\prime}}(\Lambda) \widehat{\otimes}_{\pi} C(\alpha)\right) \oplus\left(\ell_{1}(\bar{\xi}) \widehat{\otimes}_{\pi} \ell_{q}(\Lambda)\right) \oplus\left(\ell_{1}\left(\bar{\xi}^{\xi}\right) \widehat{\otimes}_{\pi} C(\alpha)\right) \tag{8.1}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$.
Pick $r>\max \left\{p^{\prime}, q\right\}$. Since $C\left(K_{2}\right)$ is universal for separable Banach spaces and is isomorphic to a subspace of the second space in (a), it follows that ℓ_{r} is isomorphic to a subspace of the space in 8.1). Therefore ℓ_{r} is isomorphic to any of the four summands of (8.1) [13, Theorem 1]. But, by [9, Theorem 3], this is impossible.

Acknowledgements. The authors wish to express their gratitude to the referee for a thorough reading of the manuscript and valuable comments.

References

[1] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53-61.
[2] S. Banach, Théorie des opérations linéaires, Monografje Matematyczne 1, Warszawa, 1932.
[3] L. Burlando, On subspaces of direct sums of infinite sequences of Banach spaces, Atti Accad. Ligure Sci. Lett. 46 (1989), 96-105.
[4] F. Cabello Sánchez, D. Pérez-García and I. Villanueva, Unexpected subspaces of tensor products, J. London Math. Soc. (2) 74 (2006), 512-526.
[5] E. M. Galego and C. Samuel, On the spaces of nuclear and compact operators without a complemented copy of $C\left(\omega^{\omega}\right)$, J. Math. Anal. Appl. 400 (2013), 377-385.
[6] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[7] W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in: Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 1-84.
[8] S. Mazurkiewicz et W. Sierpiński, Contributions à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 513-522.
[9] E. Oja, Sur la réflexivité des produits tensoriels et les sous-espaces des produits tensoriels projectifs, Math. Scand. 51 (1982), 275-288.
[10] E. Oja, On the reproducibility of $c_{0}-$ and ℓ_{1}-spaces in tensor products, Rev. Roumaine Math. Pures Appl. 29 (1984), 335-339.
[11] A. Pełczyński, On $C(S)$-subspaces of separable Banach spaces, Studia Math. 31 (1968), 513-522.
[12] H. P. Rosenthal, The Banach space $C(K)$, in: Handbook of the Geometry of Banach Spaces, North-Holland, Amsterdam, 2001, 1547-1602.
[13] C. Samuel, Sur la reproductibilité des espaces ℓ_{p}, Math. Scand. 45 (1979), 103-117.
[14] Z. Semadeni, Banach spaces non-isomorphic to their Cartesian squares. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 81-84.
[15] A. Tong, Diagonal nuclear operators on ℓ_{p}-spaces, Trans. Amer. Math. Soc. 143 (1969), 235-247.

Elói Medina Galego
Department of Mathematics
University of São Paulo
São Paulo, Brazil 05508-090
E-mail: eloi@ime.usp.br

Christian Samuel
LATP
Université D'Aix-Marseille, CNRS
13397 Marseille Cedex 20, France
E-mail: christian.samuel@univ-amu.fr

Received March 10, 2012
Revised version March 25, 2013

[^0]: 2010 Mathematics Subject Classification: Primary 46B03; Secondary 46B25.
 Key words and phrases: l_{p} and $C(K)$ spaces, projective tensor products, spaces of nuclear operators, isomorphic classifications.

