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On the spectral Nevanlinna–Pick problem

by

Constantin Costara (Québec)

Abstract. We give several characterizations of the symmetrized n-disc Gn which
generalize to the case n ≥ 3 the characterizations of the symmetrized bidisc that were
used in order to solve the two-point spectral Nevanlinna–Pick problem in M2(C). Using
these characterizations of the symmetrized n-disc, which give necessary and sufficient
conditions for an element to belong to Gn, we obtain necessary conditions of interpolation
for the general spectral Nevanlinna–Pick problem. They also allow us to give a method to
construct analytic functions from the open unit disc of C into Gn and to obtain some of
the complex geodesics on Gn.

1. INTRODUCTION

The spectral Nevanlinna–Pick problem is the following.

We are given distinct points λ1, . . . , λm in the open unit disc D of the
complex plane and n × n complex matrices W1, . . . ,Wm ∈ Mn(C), and we
would like to find necessary and sufficient conditions for the existence of an
analytic n× n matrix-valued function F on D such that

F (λj) = Wj (j = 1, . . . ,m)(1.1)

and
r(F (λ)) ≤ 1 (λ ∈ D).(1.2)

(Here r(W ) denotes the spectral radius of the square matrix W.)

It is a variant of the well known classical Nevanlinna–Pick problem in
Mn(C), that is, the problem obtained by replacing the condition (1.2) by

‖F (λ)‖ ≤ 1 (λ ∈ D).(1.3)

(Here ‖W‖ denotes the operator norm onMn(C).) The classical version has
a complete solution: the existence of a function F satisfying (1.1) and (1.3)
can be reduced [11, Chapter X] to the determination of the semi-positivity of
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the so-called Nevanlinna–Pick matrix associated to the interpolation data,
[
I −W ∗jWk

1− λjλk

]m

j,k=1
.(1.4)

Lots of different approaches were developed in order to solve this classical
version. The standard one is operator-theoretic, and it uses the Sz. Nagy–
Foiaş commutant lifting theorem [16]. So, the first idea for the spectral
version was to try to find a spectral variant of the commutant lifting the-
orem. It was obtained by Bercovici, Foiaş and Tannenbaum in 1991, and
using this result we obtain the following theorem.

Theorem 1.1 ([7, Theorem 4]). For given interpolation data λ1, . . . , λm
∈ D and W1, . . . ,Wm ∈ Mn(C), there exists a bounded analytic function F :
D→Mn(C) such that F (λj) = Wj for j = 1, . . . ,m and sup|λ|<1 r(F (λ))< 1
if and only if we can find invertible matrices X1, . . . ,Xm ∈ Mn(C) and
an analytic function G : D → Mn(C) such that G(λj) = XjWjX

−1
j for

j = 1, . . . ,m and sup|λ|<1 ‖G(λ)‖ < 1.

Therefore, we can solve this slightly simpler form of the spectral Nevan-
linna–Pick problem if and only if we can solve the classical Nevanlinna–Pick
problem for some target matrices {Yj}mj=1 such that Yj is conjugate to Wj

for all j. The theorem does provide in principle a method of determining
whether an interpolation function exists, but is rather difficult to apply in
general, because there is no control on the new matrices Yj . It involves a
non-trivial search over n2m parameters, and we cannot obtain an explicit
necessary and sufficient condition of interpolation.

Clearly, if n = 1 then the spectral Nevanlinna–Pick problem is just
the classical scalar Nevanlinna–Pick problem, which is solved. That is why
throughout this paper n will always be assumed strictly greater than 1. The
simplest case of the spectral Nevanlinna–Pick problem is when we consider a
two-point interpolation problem, one of the matrices being the null matrix
0 ∈ Mn(C). By using the Vesentini theorem [6, Theorem 3.4.7] on the
subharmonicity of the spectral radius, we can easily see that there exists
F : D → Mn(C) such that F (0) = 0, F (λ0) = W0 and r(F (λ)) ≤ 1 on D
if and only if r(W0) ≤ |λ0|. Apart from this result, the two-point spectral
Nevanlinna–Pick problem inM2(C) is the only case for which we can find an
explicit necessary and sufficient condition in the published literature. (See
[5], [8], and the references therein.) The methods used to obtain this result
are totally different from the ones of Bercovici, Foiaş and Tannenbaum.
The purpose of this paper is to generalize to the case n ≥ 3 some of the
ingredients that were used to solve the two-point spectral Nevanlinna–Pick
problem for n = 2.
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2. THE SYMMETRIZED n-DISC

For an n × n complex matrix W , denote by σ(W ) its spectrum. (Each
eigenvalue of W is counted according to its multiplicity.) Denote by Ωn the
open spectral unit ball in Mn(C), that is,

Ωn = {W ∈ Mn(C) : r(W ) < 1}.
For W ∈ Mn(C), the fact that W belongs to Ωn is equivalent to the fact
that its characteristic polynomial P (z) = det(zI − W ) has all its roots
inside D. Therefore, if we want a necessary and sufficient condition for a
matrix to belong to Ωn then clearly this condition must be on the coefficients
of the characteristic polynomial. This leads us to consider the elementary
symmetric functions in n variables

Skn(λ1, . . . , λn) =
∑

1≤j1<···<jk≤n

k∏

i=1

λji (k = 1, . . . , n),(2.1)

the symmetrization map

πn(λ1, . . . , λn) = (S1
n(λ1, . . . , λn), . . . , Snn(λ1, . . . , λn))(2.2)

and the set Gn := πn(Dn), which we shall call the open symmetrized n-disc.
It is clear that W ∈ Ωn if and only if πn(σ(W )) ∈ Gn. Therefore, we can
consider Πn : Ωn → Gn given by

Πn(W ) = πn(σ(W )).(2.3)

Then (2.2) and the Viète relations imply that Πn is a well defined analytic
map. It is surjective, but it is very far from being injective: for example, it
does not take into account the Jordan form of W. For (s1, . . . , sn) ∈ Gn,
by considering the companion matrix associated to the polynomial P (z) =
zn−s1z

n−1 + · · ·+(−1)nsn we obtain the analytic map Jn : Gn → Ωn given
by

Jn(s1, . . . , sn) =




0 0 . . . 0 (−1)n−1sn

1 0 . . . 0 (−1)n−2sn−1
...

...
. . .

...
...

0 0 . . . 0 −s2

0 0 . . . 1 s1



.(2.4)

Even though Πn◦Jn is the identity on Gn, one can easily see that Jn◦Πn

is not the identity on Ωn. Therefore, we expect that the two interpolation
problems, the one into Gn and the one into Ωn, are not equivalent. This is
indeed the case (see [2, Example 2.2]), but in the generic case, that is, when
all the target matrices are non-derogatory, the following result holds.
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Theorem 2.1 ([2, Theorem 2.1]). Let λ1, . . . , λm ∈ D be distinct points,
and consider m matrices W1, . . . ,Wm ∈ Ωn. Suppose that Wj is non-deroga-
tory for all j (that is, Wj is conjugate to the companion matrix associated to
its characteristic polynomial). Then the following assertions are equivalent.

(i) There exists f : D→ Ωn analytic such that f(λj) = Wj for all j.
(ii) There exists g : D → Gn analytic such that g(λj) = Πn(Wj) for

all j.

We think that the interpolation problem into Gn is more tractable than
the interpolation problem intoΩn. First of all, the dimension of Gn is n while
the dimension of Ωn is n2, and therefore we are reducing an n2-dimensional
problem to an n-dimensional one. By applying Πn to a matrix W we are
erasing its Jordan form, and we consider (in an analytical way) only the
spectrum of W. Also, the set Gn is bounded (and therefore compact) while
Ωn is not: therefore, a Montel type reasoning can be applied for Gn (this
is not the case for Ωn, see [7, Example 3]). The only difference in favor of
Ωn is that it is balanced (if λ ∈ D and W ∈ Ωn then λW ∈ Ωn), while Gn
is not. Even though it is not a balanced set, the symmetrized n-disc has a
similar property. Define % : Cn → R+ given by

%(s1, . . . , sn) = max{|λ1|, . . . , |λn| : Skn(λ1, . . . , λn) = sk, k = 1, . . . , n}.
The map % is the analogue for Gn of the spectral radius on Ωn. It is clear
that Gn is the set of all points (s1, . . . , sn) ∈ Cn for which %(s1, . . . , sn) < 1,
and for its closure, the closed symmetrized n-disc Γn := Gn, we have Γn =
{(s1, . . . , sn) ∈ Cn : %(s1, . . . , sn) ≤ 1}. The most important properties of
the map % are given in the following proposition.

Proposition 2.1. (i) If λ ∈ C and (s1, . . . , sn) ∈ Cn then

%(λs1, . . . , λ
nsn) = |λ|%(s1, . . . , sn).

(ii) For a domain ∆ ⊆ C and an analytic map g : ∆ → Cn, the compo-
sition % ◦ g is subharmonic on ∆.

Proof. Part (i) is a consequence of the definition of %. Part (ii) is a
consequence of the Vesentini theorem [6, Theorem 3.4.7] and the fact that
% ◦ g = r(Jn ◦ g) on ∆.

Part (i) implies that if (s1, . . . , sn) ∈ Gn and λ ∈ D, then (λs1, . . . , λ
nsn)

∈ Gn. Part (ii) and the fact that the subharmonic functions satisfy the
maximum modulus principle give the following corollary. It will be a very
useful tool for us in the remainder of this paper.

Corollary 2.1. Let f be analytic on a neighborhood of D with values
in Cn such that f(T) ⊆ Γn. Then f(D) ⊆ Γn. Moreover , if there exists a
point λ0 ∈ D such that f(λ0) ∈ Gn then f(D) ⊆ Gn, and if there exists
λ0 ∈ D such that f(λ0) ∈ Γn \Gn then f(D) ⊆ Γn \Gn.
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3. CHARACTERIZATIONS OF Gn

For a given matrix W ∈ Mn(C), we have already seen that W belongs
to Ωn if and only if (s1, . . . , sn) := Πn(W ) belongs to Gn, that is, if and
only if the polynomial

P (z) = zn − s1z
n−1 + · · ·+ (−1)nsn(3.1)

has all its roots inside D. To verify whether all the roots of a polynomial are
inside D, the well known Schur theorem [15] is a standard tool. Denote by
P#(z) the reverse polynomial znP (1/z), that is, P#(z) = (−1)nsnzn+ · · ·+
(−s1)z + 1, and by S the shift operator S(x1, . . . , xn) = (x2, x3, . . . , xn, 0)
on Cn. Then the Schur test asserts that P has all its roots inside D if and
only if ‖P (S)(P#(S))−1‖ < 1, that is, if and only if

(3.2)

∥∥∥∥∥∥∥∥∥∥




(−1)nsn (−1)n−1sn−1 . . . −s1

0 (−1)nsn . . . s2
...

...
. . .

...

0 0 . . . (−1)nsn




·




1 −s1 . . . (−1)n−1sn−1

0 1 . . . (−1)n−2sn−2
...

...
. . .

...

0 0 . . . 1




−1
∥∥∥∥∥∥∥∥∥∥∥

< 1.

Unfortunately, we cannot obtain even necessary conditions of interpolation
into Ωn by using Schur’s result because of the conjugation operation that
appears in (3.2), which does not respect analyticity. Characterizations of Gn

(and therefore of Ωn) which respect analyticity will be given in the rest of
this section.

3.1. Characterization of Gn given by D. For (s1, . . . , sn) ∈ Cn,
consider the polynomial P (z) given by (3.1). If we put

Q(z) = n(−1)nsnzn−1 + (n− 1)(−1)n−1sn−1z
n−2 + · · ·+ (−s1),(3.3)

R(z) = n− (n− 1)s1z + · · ·+ (−1)n−1sn−1z
n−1,(3.4)

then we can easily verify that

Q(z) =
d

dz
(znP (1/z)), R(z) = zn−1P ′(1/z),

for all z in C \ {0}. Using Q and R, we define f = Q/R, that is,

f(z) =
n(−1)nsnzn−1 + (n− 1)(−1)n−1sn−1z

n−2 + · · ·+ (−s1)
n− (n− 1)s1z + · · ·+ (−1)n−1sn−1zn−1 .(3.5)



28 C. Costara

This rational function will play a fundamental role in this paper. Its impor-
tance is reflected in the next theorem.

Theorem 3.1. Let (s1, . . . , sn) ∈ Cn, and let f be given by (3.5). The
following assertions are equivalent.

(i) The element (s1, . . . , sn) belongs to Gn.
(ii) We have

sup
|z|≤1
|f(z)| < 1.(3.6)

Proof. (i)⇒(ii): If all the zeros of the polynomial P given by (3.1) lie
inside D, then by the Lucas theorem [13, Theorem 6.1] the zeros of its
derivative P ′ also lie inside D. Therefore, P ′(w) 6= 0 for all w ∈ C\D, which
gives P ′(1/z) 6= 0 for all z in a neighborhood of D. Therefore, R(z) 6= 0 on
the same neighborhood, and this implies that f is well defined and analytic
on a neighborhood of D. To prove (3.6) it suffices to show that |f(ξ)| < 1
for all ξ in T. Consider therefore such a ξ. By the definition of Q, we have
Q(ξ) = nξn−1P (1/ξ)− ξn−2P ′(1/ξ), and therefore

|f(ξ)| =
∣∣∣∣
nξn−1P (1/ξ)− ξn−2P ′(1/ξ)

ξn−1P ′(1/ξ)

∣∣∣∣

=
∣∣∣∣n

P (1/ξ)
P ′(1/ξ)

− 1
ξ

∣∣∣∣ =
∣∣∣∣n

P (ξ)

ξP ′(ξ)
− 1
∣∣∣∣.

We must prove that ζ 7→ nP (ζ)/(ζP ′(ζ)) sends T into {w ∈ C : |w−1| < 1}.
If we denote by z1, . . . , zn ∈ D the zeros of P , then for all ζ in T we have

ζP ′(ζ)
nP (ζ)

=
1
n

n∑

j=1

1
1− zj/ζ

.(3.7)

Therefore ζP ′(ζ)/(nP (ζ)) belongs to the convex hull of {1/(1 − zj/ζ) :
j = 1, . . . , n}. Since zj/ζ ∈ D for all j ∈ {1, . . . , n}, and since the map w 7→
1/(1 − w) is a conformal transformation of D onto {t ∈ C : Re(t) > 1/2},
we obtain Re(1/(1 − zj/ζ)) > 1/2 for j = 1, . . . , n. Now (3.7) implies that
Re(ζP ′(ζ)/(nP (ζ))) > 1/2. Using then the inverse of the above conformal
transformation, we obtain 1− nP (ζ)/(ζP ′(ζ)) ∈ D.

(ii)⇒(i): We first prove that (3.6) implies that R(z) 6= 0 for all z in D.
Suppose, for contradiction, that there exists z0 in D such that R(z0) = 0.
Then z0 6= 0 and (3.6) implies that Q(z0) = 0. The equality R(z0) = 0 gives
P ′(1/z0) = 0, and Q(z0) = 0 gives nzn−1

0 P (1/z0)− zn−2
0 P ′(1/z0) = 0. Thus

P (1/z0) is also 0, and therefore 1/z0 is a zero of order at least 2 for the
polynomial P. If we write P (z) = (z − 1/z0)mg(z) on C, where m ≥ 2 and
g is non-zero on a neighborhood of 1/z0, then for z in a neighborhood of z0
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we have

f(z) =
nzn−1P (1/z)− zn−2P ′(1/z)

zn−1P ′(1/z)

=
nzn−1(1/z − 1/z0)mg(1/z)

mzn−1(1/z − 1/z0)m−1g(1/z) + zn−1(1/z − 1/z0)mg′(1/z)

− zn−2(m(1/z − 1/z0)m−1g(1/z) + (1/z − 1/z0)mg′(1/z))
mzn−1(1/z − 1/z0)m−1g(1/z) + zn−1(1/z − 1/z0)mg′(1/z)

,

and therefore

|f(z0)| =
∣∣∣∣
−mzn−2

0 g(1/z0)

mzn−1
0 g(1/z0)

∣∣∣∣ = |1/z0| ≥ 1,

which contradicts our hypothesis on f.

Therefore R is non-zero on D and now (3.6) implies that |Q| < |R| on T.
This yields |zn−1Q(1/z)| < |znR(1/z)| for all z ∈ T, and therefore

|n(−1)nsn + (n− 1)(−1)n−1sn−1z + · · ·+ (−s1)zn−1|
< |nzn − (n− 1)s1z

n−1 + · · ·+ (−1)n−1sn−1z|
on T. Using now Rouché’s theorem we find that the polynomials

(n(−1)nsn + (n− 1)(−1)n−1sn−1z + · · ·+ (−s1)zn−1)

+ (nzn − (n− 1)s1z
n−1 + · · ·+ (−1)n−1sn−1z)

and
nzn − (n− 1)s1z

n−1 + · · ·+ (−1)n−1sn−1z

have the same number of roots inside D. The second polynomial is in fact
znR(1/z), and we have just proved that it has all its roots inside D. Therefore
the first polynomial, which is in fact nP , has n roots inside D, and therefore
(s1, . . . , sn) ∈ Gn.

For the particular case n = 2, we deduce that (s, p) ∈ C2 belongs to G2
if and only if

sup
|z|≤1

∣∣∣∣
2zp− s
2− zs

∣∣∣∣ < 1.(3.8)

We recover the characterization of G2 given by Agler and Young [4, Theorem
1.1]. In fact, they proved that (s, p) ∈ G2 if and only if |s| < 2 and (3.8)
is satisfied. But one can easily see that (3.8) implies that |s| < 2. Indeed,
if (3.8) is true and |s| ≥ 2, then 2(2/s)p − s = 0, that is, p = s2/4, and
then the rational function from (3.8) equals −s/2 on D. Since |s| ≥ 2, this
contradicts (3.8).

Let us remark that in the proof of Theorem 3.1 we have shown that the
inequality (3.6) implies that the denominator of f does not have zeros on D.
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Therefore, the denominator and the numerator of f do not have common
zeros on D. But they can have common zeros on C \ D, and therefore the
degree of the rational function f can be strictly less than n− 1. In fact, the
degree of f can even be zero: if α ∈ D, then for (C1

nα,C
2
nα

2, . . . ,Cn
nα

n) ∈ Gn
the associated function f is a constant, f = −α on D. (Throughout this
paper, Ck

n denotes the binomial coefficient Ck
n = n!/(k!(n− k)!).)

Using Theorem 3.1, we obtain the following necessary condition for the
interpolation problem into Gn.

Corollary 3.1. Consider m distinct points λ1, . . . , λm in D and m el-
ements (s1,1, . . . , sn,1), . . . , (s1,m, . . . , sn,m) in Gn. If there exists an analytic
function g : D→ Gn such that g(λj) = (s1,j, . . . , sn,j) for j = 1, . . . ,m, then

for all z ∈ D the matrix
[

1− zjzk
1− λjλk

]m

j,k=1
is positive semi-definite, where

zj =
n(−1)nsn,jzn−1 + (n− 1)(−1)n−1sn−1,jz

n−2 + · · ·+ (−s1,j)
n− (n− 1)s1,jz + · · ·+ (−1)n−1sn−1,jzn−1

for j = 1, . . . ,m.

Proof. This is an immediate consequence of Theorem 3.1 and (1.4).

Using Theorem 3.1 we also obtain a similar characterization of Γn. Here
is the version of this result in the case of the closed symmetrized n-disc.

Theorem 3.2. Let (s1, . . . , sn) ∈ Cn and let f be given by (3.5). The
following assertions are equivalent.

(i) The element (s1, . . . , sn) belongs to Γn.
(ii) We have

sup
|z|≤1
|f(z)| ≤ 1.(3.9)

Proof. (i)⇒(ii): Fix z ∈ D. Since the polynomial P given by (3.1) has
all its roots inside D, the Lucas theorem shows that P ′ also has all its roots
inside D. For the polynomial R given by (3.3), this implies that R(z) 6= 0.

By applying Theorem 3.1 to (rs1, . . . , r
nsn) ∈ Gn we obtain

∣∣∣∣
n(−1)nrnsnzn−1 + (n− 1)(−1)n−1rn−1sn−1z

n−2 + · · ·+ (−rs1)
n− (n− 1)rs1z + · · ·+ (−1)n−1rn−1sn−1zn−1

∣∣∣∣ < 1

for all r ∈ (0, 1). By letting r → 1 and using the fact that R(z) 6= 0 we
deduce that |f(z)| ≤ 1. Therefore |f(z)| ≤ 1 for all z in D and since f is a
rational function this implies that f is continuous on a neighborhood of D.
Therefore, by continuity, |f(z)| ≤ 1 for all z ∈ D.

(ii)⇒(i): Consider a sequence (rk)k∈N ⊆ (0, 1) such that rk ↗ 1. For
each k ∈ N we have
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sup
|z|≤1

∣∣∣∣
n(−1)nrnk snz

n−1 + (n− 1)(−1)n−1rn−1
k sn−1z

n−2 + · · ·+ (−rks1)

n− (n− 1)rks1z + · · ·+ (−1)n−1rn−1
k sn−1zn−1

∣∣∣∣

= rk sup
|w|≤rk

|f(w)| ≤ rk < 1,

and now Theorem 3.1 implies that (rks1, . . . , r
n
k sn) ∈ Gn. By letting k →∞

we conclude that (s1, . . . , sn) ∈ Γn.

For (s1, . . . , sn) in Γn \ Gn, the denominator of f given by (3.5) has no
zeros on D, but it can have zeros on T. In this situation, the numerator of
f has at least the same zeros on T, with at least the same multiplicity, so
that, in the expression of f , the factors of the denominator giving zeros on T
will simplify. For example, if we consider 1, 1 and 1/2 in D, which give the
element (5/2, 2, 1/2) ∈ Γ3 \G3, we have

f(z) =
−3z2 + 8z − 5
6− 10z + 4z2 = −(z − 1)(3z − 5)

(z − 1)(4z − 6)
= −3z − 5

4z − 6
.

One can easily verify that sup|z|≤1 |f(z)| = 1.
In fact, using Theorems 3.1 and 3.2 we obtain the following characteri-

zation of the boundary Γn \Gn of Γn.

Corollary 3.2. Let (s1, . . . , sn) ∈ Cn and let f be given by (3.5). The
following assertions are equivalent.

(i) The element (s1, . . . , sn) belongs to Γn \Gn.
(ii) We have

sup
|z|≤1
|f(z)| = 1.(3.10)

Inside the boundary of Γn there is a set that will play an important role
for the interpolation problem into Gn. It is the distinguished boundary of
Γn, that is, the set

db(Γn) := πn(Tn),(3.11)

where πn is given by (2.2).
For the distinguished boundary of Γn, we have the following characteri-

zation.

Theorem 3.3. For (s1, . . . , sn) ∈ Cn, the following assertions are equiv-
alent.

(i) The element (s1, . . . , sn) belongs to db(Γn).
(ii) The complex numbers sj satisfy the following relations:

|sn| = 1,(3.12)

sj = sn−jsn (1 ≤ j ≤ n/2),(3.13)

((n− 1)s1/n, (n− 2)s2/n, . . . , sn−1/n) ∈ Γn−1.(3.14)
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Proof. (i)⇒(ii): If (s1, . . . , sn) ∈ db(Γn) then

s1 =
n∑

j=1

λj , . . . , sn =
n∏

j=1

λj ,

where |λj| = 1 for j = 1, . . . , n. Then clearly |sn| = 1, and

sn−j =
∑

λi1 · · ·λin−j =
∑ 1

λi1 · · ·λin−j
=

1
λ1 · · ·λn

∑
λi1 · · ·λij =

sj
sn

for j = 1, . . . , n− 1. Also, the zeros of the polynomial P (z) = zn− s1z
n−1 +

· · ·+ (−1)nsn are all inside D and therefore, by using once more the Lucas
theorem, we see that the zeros of P ′ are all inside D. Therefore, (3.14) is
true.

(ii)⇒(i): Let f be given by (3.5). The relation (3.14) implies that the
denominator of f has no zeros on D. Since |sn| = 1 and sj = sn−jsn for
j = 1, . . . , n − 1 we infer that, for z in T such that n − (n − 1)s1z + · · · +
(−1)n−1sn−1z

n−1 6= 0, we have |f(z)| = 1. Therefore, the rational function
f has no poles on D. Using now the maximum modulus principle we have
|f | ≤ 1 on D, and Theorem 3.2 implies that (s1, . . . , sn) ∈ Γn. Since |sn| = 1
we conclude that (s1, . . . , sn) ∈ db(Γn).

3.2. Characterizations of Gn given by Gn−1. The proof of Theorem
3.1 relies on the Lucas theorem. For (s1, . . . , sn) ∈ Gn, the fact that the
denominator of the function f given by (3.5) has no zeros on D was one
of the motivations for choosing f of this form. But the Lucas theorem can
be seen as a particular case of a more general result, which appears in the
theory of apolar polynomials [13, Chapter IV].

Theorem 3.4 ([13, Corollary (16,1a)]). Given two complex polynomials

A(z) =
n∑

k=0

Ck
nakz

k and B(z) =
n∑

k=0

Ck
nbkz

k,

consider

C(z) =
n∑

k=0

Ck
nakbkz

k.

If A has all its zeros inside the open disc of radius r > 0 and all the zeros
of B lie inside the closed disc of radius R > 0, then all the zeros of C lie
inside the open disc of radius rR.

As a corollary, we obtain the following result.
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Corollary 3.3. If (s1, . . . , sn) ∈ Gn and (S1, . . . , Sn) ∈ Γn, then

((s1S1)/C1
n, . . . , (snSn)/Cn

n) ∈ Gn.(3.15)

If (s1, . . . , sn) ∈ Gn and (S1, . . . , Sn−1) ∈ Γn−1, then

((s1S1)/C1
n, . . . , (sn−1Sn−1)/Cn−1

n ) ∈ Gn−1.(3.16)

Proof. We obtain (3.15) by applying Theorem 3.4 to the polynomials
zn−s1z

n−1+· · ·+(−1)nsn and zn+S1z
n−1+· · ·+Sn, with r = R = 1. Then

(3.16) is a particular case of (3.15), since the facts that (S1, . . . , Sn−1, 0) ∈ Γn
and (S1, . . . , Sn−1) ∈ Γn−1 are equivalent.

The relation (3.15) says that, for a fixed (S1, . . . , Sn) ∈ Γn, if we consider
the diagonal matrix D = diag(S1/C1

n, . . . , Sn/C
n
n) ∈ Mn(C), then D(Gn) ⊆

Gn. We therefore obtain a family of (non-trivial) linear operators from Gn

into Gn. In fact, one can easily see that (s1, . . . , sn) ∈ Gn if and only if
D(s1, . . . , sn) ∈ Gn for all D in the above family. If we consider in (3.16)
the element (C1

n−1, . . . ,C
n−1
n−1) ∈ Γn−1, then for (s1, . . . , sn) in Gn we have

((n − 1)s1/n, . . . , sn−1/n) ∈ Gn−1. That is, if P (z) = zn − s1z
n−1 + · · ·

+ (−1)nsn has all its roots inside D, then so does (1/n)P ′(z) = zn−1 −
(n−1)s1z

n−2/n+· · ·+(−1)n−1sn−1/n. This is the result that was repeatedly
used in the proof of Theorem 3.1.

Having now in mind (3.16), for a fixed element (s1, . . . , sn) ∈ Cn the
natural generalization of the function f given by (3.5) is

(3.17) g(S1, . . . , Sn−1)

=
Sn−1sn − Sn−2sn−1/C1

n + Sn−3sn−2/C2
n + · · ·+ (−1)n−1s1/Cn−1

n

1− S1s1/C1
n + S2s2/C2

n + · · ·+ (−1)n−1Sn−1sn−1/Cn−1
n

.

It is defined on the subset of Cn−1 where the denominator is not zero.
Observe that if (s1, . . . , sn) ∈ Gn, then g is well defined on a neighborhood
of Γn−1. Moreover, the following theorem holds.

Theorem 3.5. Let (s1, . . . , sn) ∈ Cn and let g be given by (3.17). The
following assertions are equivalent.

(i) The element (s1, . . . , sn) belongs to Gn.
(ii) The function g is well defined on a neighborhood of Γn−1 ⊆ Cn−1,

and

sup
(S1,...,Sn−1)∈Γn−1

|g(S1, . . . , Sn−1)| < 1.(3.18)

In fact, if (s1, . . . , sn) ∈ Gn, then

sup
(S1,...,Sn−1)∈Γn−1

|g(S1, . . . , Sn−1)| = sup
|z|≤1
|f(z)|,(3.19)

where f is the rational function given by (3.5).
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Proof. Observe that f(z) = (−1)ng(C1
n−1z,C

2
n−1z

2, . . . ,Cn−1
n−1z

n−1) for
all z ∈ D. Using Theorem 3.1, we obtain the implication “(ii)⇒(i)”. The
same identity also implies the inequality “≥” in (3.19). If we now show the
inequality “≤” in (3.19), the theorem will be proved. For this, it is sufficient
to prove that if

sup
|z|≤1

∣∣∣∣
n(−1)nsnzn−1 + (n− 1)(−1)n−1sn−1z

n−2 + · · ·+ (−s1)
n− (n− 1)s1z + · · ·+ (−1)n−1sn−1zn−1

∣∣∣∣ < r,

then

sup
(S1,...,Sn−1)∈Γn−1

∣∣∣∣∣
Sn−1sn−Sn−2sn−1/C

1
n+Sn−3sn−2/C

2
n + · · ·+ (−1)n−1s1/C

n−1
n

1− S1s1/C1
n + S2s2/C2

n + · · ·+ (−1)n−1Sn−1sn−1/C
n−1
n

∣∣∣∣∣≤r

If the first inequality holds, then

n(−1)nsnzn−1 + (n− 1)(−1)n−1sn−1z
n−2 + · · ·+ (−s1)

n− (n− 1)s1z + · · ·+ (−1)n−1sn−1zn−1 6= rw

for all |z| ≤ 1 and |w| ≥ 1. This gives

(nrw + s1)− z((n− 1)rws1 + 2s2) + · · ·
+ (−1)n−2zn−2(2rwsn−2 + (n− 1)sn−1) + (−1)n−1zn−1(rwsn−1 + nsn) 6= 0

for all |z| ≤ 1 and |w| ≥ 1. Set

S̃1 =
(n− 1)rws1 + 2s2

nrw + s1
, . . .

S̃n−2 =
2rwsn−2 + (n− 1)sn−1

nrw + s1
, S̃n−1 =

rwsn−1 + nsn
nrw + s1

.

Then
1− S̃1z + · · ·+ (−1)n−2zn−2S̃n−2 + (−1)n−1zn−1S̃n−1 6= 0

for all |z| ≤ 1. This gives

zn−1 − S̃1z
n−2 + · · ·+ (−1)n−2zS̃n−2 + (−1)n−1S̃n−1 6= 0

for all |z| ≥ 1, and therefore (S̃1, . . . , S̃n−1) ∈ Gn−1. Using now (3.15), for
(S1, . . . , Sn−1) ∈ Γn−1 we have (S1S̃1/C1

n−1, . . . , Sn−1S̃n−1/Cn−1
n−1) ∈ Gn−1.

This implies

1−S1S̃1/C1
n−1+· · ·+(−1)n−2Sn−2S̃n−2/Cn−2

n−1+(−1)n−1Sn−1S̃n−1/Cn−1
n−1 6= 0.

By reversing the above calculations, we obtain
(−1)nSn−1sn+(−1)n−1Sn−2sn−1/C1

n+(−1)n−2Sn−3sn−2/C2
n + · · ·+ (−s1/Cn−1

n )

1− S1s1/C1
n + S2s2/C2

n + · · ·+ (−1)n−1Sn−1sn−1/C
n−1
n

6=rw

for all (S1, . . . , Sn−1) ∈ Γn−1 and |w| ≥ 1. Therefore,

sup
(S1,...,Sn−1)∈Γn−1

∣∣∣∣∣
Sn−1sn−Sn−2sn−1/C

1
n+Sn−3sn−2/C

2
n + · · ·+ (−1)n−1s1/C

n−1
n

1− S1s1/C1
n + S2s2/C2

n + · · ·+ (−1)n−1Sn−1sn−1/C
n−1
n

∣∣∣∣∣≤r

and the theorem is proved.
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It is clear that to test whether (s1, . . . , sn) ∈ Gn, it is much easier to
use (3.6). A result similar to Corollary 3.1 can also be obtained: using the
function g given by (3.17), we can easily deduce necessary conditions for
the interpolation problem into Gn. In the general case, we do not know
whether we obtain more necessary conditions besides the ones given by
Corollary 3.1. For the interpolation problem with two interpolation points,
one of them being (0, . . . , 0) ∈ Gn, the equality (3.19) says that we obtain
the same necessary conditions.

The most important fact about the theorem we have just proved is that
it gives the following new characterization of Gn in terms of Gn−1.

Corollary 3.4. For (s1, . . . , sn) in Cn, the following assertions are
equivalent.

(i) The element (s1, . . . , sn) belongs to Gn.
(ii) For all z in D we have (s̃1(z), . . . , s̃n−1(z)) ∈ Gn−1, where

s̃j(z) = Cj
n−1

sj/C
j
n − zsj+1/C

j+1
n

1− zs1/C1
n

(3.20)

for j = 1, . . . , n− 1.

Proof. The elements of Γn−1 are of the form

(t1 + z, t2 + zt1, . . . , tn−2 + ztn−3, ztn−2),

where z ∈ D and (t1, . . . , tn−2) ∈ Γn−2. Theorem 3.5 shows that (s1, . . . , sn)
∈ Gn if and only if the function g given by (3.17) is analytic on a neighbor-
hood of Γn−1 and

sup
z∈D

sup
(t1,...,tn−2)∈Γn−2

|g(t1 + z, t2 + zt1, . . . , tn−2 + ztn−3, ztn−2)| < 1.

Therefore, (s1, . . . , sn) ∈ Gn if and only if for all z in D we have

1− t1s̃1(z)/C1
n−1 + t2s̃2(z)/C2

n−1 + · · ·+ (−1)n−2tn−2s̃n−2(z)/Cn−2
n−1 6= 0

on a neighborhood of Γn−2 and

sup
(t1,...,tn−2)∈Γn−2

∣∣∣∣∣
tn−2s̃n−1(z)−tn−3s̃n−2(z)/C1

n−1 + · · ·+ (−1)n−2s̃1(z)/Cn−2
n−1

1−t1s̃1(z)/C1
n−1+t2s̃2(z)/C2

n−1 + · · ·+ (−1)n−2tn−2s̃n−2(z)/Cn−2
n−1

∣∣∣∣∣
< 1.

By Theorem 3.5 once more, this is equivalent to (s̃1(z), . . . , s̃n−1(z)) ∈ Gn−1
for all z in D.

3.3. Parametrization of Gn. The last characterization of Gn we give
is totally different from the preceding ones. We shall obtain, in fact, a
parametrization of Gn. It cannot be used in order to obtain necessary inter-
polation conditions, but, as we shall see in Section 5, it gives the extremal
rational function of degree 1 from D into Gn.
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Theorem 3.6. For (s1, . . . , sn) in Cn, the following assertions are equiv-
alent.

(i) The element (s1, . . . , sn) belongs to Gn.
(ii) We have |sn| < 1, and there exists (S1, . . . , Sn−1) in Gn−1 such that

sj = Sj + Sn−jsn for j = 1, . . . , n− 1.

Proof. (i)⇒(ii): If (s1, . . . , sn) ∈ Gn then sn ∈ D and therefore |sn| < 1.
We calculate the Sj such that sj = Sj + Sn−jsn for all j, and we obtain
Sj = (sj − sn−jsn)/(1− |sn|2) for j = 1, . . . , n− 1. We must now prove that
(S1, . . . , Sn−1) ∈ Gn−1. Consider h : C→ Cn given by

h(λ) = (S1 + λSn−1, . . . , Sn−1 + λS1, λ).(3.21)

If we write h(λ) = (t1(λ), . . . , tn(λ)) on C, then tj = tn−jtn on T for all
j ∈ {1, . . . , n− 1}. Consider

F (z, λ) =
n(−1)ntn(λ)zn−1+(n− 1)(−1)n−1tn−1(λ)zn−2 + · · ·+ (−t1(λ))

n− (n− 1)t1(λ)z + · · ·+ (−1)n−1tn−1(λ)zn−1

=
λA(z) +B(z)
λC(z) +D(z)

,

where

A(z) = n(−1)nzn−1 + (n− 1)(−1)n−1S1z
n−2 + · · ·+ (−Sn−1),

B(z) = (n− 1)(−1)n−1Sn−1z
n−2 + (n− 2)(−1)n−2Sn−2z

n−3 + · · ·+ (−S1),

C(z) = −(n− 1)Sn−1z + (n− 2)Sn−2z
2 + · · ·+ (−1)n−1S1z

n−1,

D(z) = n− (n− 1)S1z + (n− 2)S2z
2 + · · ·+ (−1)n−1Sn−1z

n−1.

Fix z ∈ T. Using the fact that |tn| = 1 and tj = tn−jtn on T we obtain
|F (z, λ)| = 1 for all λ in T for which λC(z) +D(z) 6= 0. Also, Theorem 3.1
and the fact that h(sn) = (s1, . . . , sn) ∈ Gn give |F (z, sn)| < 1. Therefore,
the map λ 7→ F (z, λ) is a Möbius transformation on D. This gives λC(z) +
D(z) 6= 0 for all |λ| < 1 and |z| = 1, and

|F (z, λ)| < 1 (|λ| < 1, |z| = 1).(3.22)

If (S1, . . . , Sn−1) 6∈ Gn−1, then h(0) 6∈ Gn. Since h(sn) ∈ Gn, by continuity
we can find λ0 in the line segment between 0 and sn such that h(λ0) ∈
Γn \Gn. Using Corollary 3.2, we find z0 ∈ T such that |F (z0, λ0)| = 1, and
this contradicts (3.22).

(ii)⇒(i): Consider h given by (3.21). We want to prove that h(λ) ∈ Gn

for all λ ∈ D. By Theorem 3.1, (S1, . . . , Sn−1, 0) ∈ Gn implies

sup
|z|≤1

∣∣∣∣
(−1)n−1(n−1)Sn−1z

n−2+(−1)n−2(n− 2)Sn−2z
n−3 + · · ·+ (−S1)

n− (n− 1)S1z + (n− 2)S2z2 + · · ·+ (−1)n−1Sn−1zn−1

∣∣∣∣<1
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and this inequality gives

sup
|z|≤1

|C(z)|
|D(z)| < 1.

Fix now λ0 ∈ T. Then the map z 7→ F (z, λ0) is well defined and analytic on
a neighborhood of D. We have already seen that |F (z, λ0)| = 1 for all z ∈ T
and, using the maximum modulus principle, we obtain |F (z, λ0)| ≤ 1 for
all z ∈ D. Theorem 3.1 implies now that h(λ0) ∈ Γn. Therefore h(T) ⊆ Γn,
and since h(0) ∈ Gn, Corollary 2.1 shows that h(D) ⊆ Gn. In particular
h(sn) ∈ Gn, which gives (s1, . . . , sn) ∈ Gn.

The above theorem contains a generalization to the case n ≥ 3 of the
parametrization formula for the elements of G2 given by Agler and Young
[4, Theorem 1.1]. The idea to seek for such a parametrization of Gn was
given by the expression of the function f from (3.5). The proof of the above
theorem shows why the condition on the Sj and the relations between the
Sj and the sj are quite natural. Even though we have stated and proved
Theorem 3.6 having in mind the function f , for example, for the implication
“(ii)⇒(i)” a simpler proof can be given. It relies on the fact that the Blaschke
products send C \D into C \D. Indeed, let (S1, . . . , Sn−1) ∈ Gn−1. Then for
all z in C \ D and λ in D we have

z
zn−1 − S1z

n−2 + · · ·+ (−1)n−1Sn−1

1− S1z + · · ·+ (−1)n−1Sn−1zn−1
6= (−1)n−1λ.

Therefore, for all λ in D and z in C \ D we have

zn − (S1 + λSn−1)zn−1 + (S2 + λSn−2)zn−2 + · · ·
+ (−1)n−1(Sn−1 + λS1)z + (−1)nλ 6= 0,

which is equivalent to

(S1 + λSn−1, S2 + λSn−2, . . . , Sn−1 + λS1, λ) ∈ Gn (λ ∈ D).

For the closed symmetrized n-disc, an analogous result holds.

Theorem 3.7. For (s1, . . . , sn) in Cn, the following assertions are equiv-
alent.

(i) The element (s1, . . . , sn) belongs to Γn.
(ii) We have |sn| ≤ 1, and there exists (S1, . . . , Sn−1) in Γn−1 such that

sj = Sj + Sn−jsn for j = 1, . . . , n− 1.

Proof. (i)⇒(ii): If (s1, . . . , sn) ∈ Γn, then by considering a sequence
(rk)k∈N ⊆ [0, 1) with rk → 1 we obtain (rks1, . . . , r

n
ksn) ∈ Gn for all k.

Theorem 3.6 now yields a sequence ((Sk,1, . . . , Sk,n−1))k∈N ⊆ Gn−1 such
that rjksj = Sk,j + Sk,n−jrnk sn for all j and k. The symmetrized n-disc is
bounded and so the sequences (Sk,j)k∈N are also bounded. Therefore, we may
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suppose that Sk,j → Sj for j = 1, . . . , n − 1. Then (S1, . . . , Sn−1) ∈ Γn−1,
and sj = Sj + Sn−jsn for j = 1, . . . , n− 1.

(ii)⇒(i): By applying Theorem 3.6 for rsn ∈ D and (rS1, . . . , r
n−1Sn−1)

∈ Gn−1 we obtain

(rS1 + (rn−1Sn−1)(rsn), . . . , rn−1Sn−1 + (rS1)(rsn), rsn) ∈ Gn
for all r ∈ [0, 1). By letting r → 1, we see that (s1, . . . , sn) ∈ Γn.

4. THE RATIONAL Γn-INNER FUNCTIONS

By its definition (3.11), the distinguished boundary of Γn is the counter-
part of T ⊆ D for the set Γn. In accordance with this definition, an analytic
function f : D→ Gn will be called Γn-inner if f(ξ) ∈ db(Γn) for almost all
ξ in T. If we write f = (s1, . . . , sn), then the fact that f is Γn-inner implies
that sn is a scalar inner function on D. Also, if f is a rational Γn-inner
function, then sn is necessarily a finite Blaschke product.

For the interpolation problem from D into D we know [12, Theorem 1.2.2]
that if there exists f : D→ D analytic such that f(λj) = zj for j = 1, . . . ,m
then there exists a Blaschke product of degree at most m which solves the
same interpolation problem. The Blaschke products are the rational analytic
functions on D which are unimodular on T. For the classical Nevanlinna–Pick
problem in Mn(C), their role is played by the rational analytic functions
F : D→Mn(C) that are inner, that is, F (ξ) is unitary for all ξ ∈ T. In this
case, an analogous result holds.

Theorem 4.1 ([1, p. 181]). Given distinct points λ1, . . . , λm in D and
matrices W1, . . . ,Wm in Mn(C), if there exists F : D → Mn(C) analytic
such that ‖F (λ)‖ ≤ 1 for all λ ∈ D and F (λj) = Wj for all j, then there
exists G : D → Mn(C) analytic, with entries rational functions with poles
in the exterior of D, such that G(ξ) is unitary for all ξ ∈ T and G(λj) = Wj

for j = 1, . . . ,m.

The version of this result for the symmetrized n-disc is the following.

Theorem 4.2. Given distinct points λ1, . . . , λm in D and elements
(s1,1, . . . , sn,1), . . . , (s1,m, . . . , sn,m) in Gn, if there exists an analytic func-
tion f : D→ Gn such that f(λj) = (s1,j , . . . , sn,j) for all j, then there exists
a rational Γn-inner function g : D → Gn such that g(λj) = (s1,j , . . . , sn,j)
for all j.

Proof. If such an f exists, then F = Jn◦f is a bounded analytic function
from D into Ωn. Then for r ∈ (0, 1) we can apply Theorem 1.1 to rF to
obtain an analytic function Gr : D → Mn(C) such that Gr(λj) ∼ rF (λj)
for all j and sup|λ|<1 ‖Gr(λ)‖ < 1. We thus obtain a uniformly bounded
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family of analytic functions (Gr)r∈(0,1), and using the Montel theorem we
find a sequence (rn)n∈N ⊆ (0, 1) and an analytic function G : D →Mn(C)
such that rn → 1 and Grn → G locally uniformly on D. Then ‖G(λ)‖ ≤ 1
on D. Also, the continuity properties of the eigenvalues give σ(G(λj)) =
σ(F (λj)) for j = 1, . . . ,m. (Recall that the eigenvalues are counted with
their multiplicities.) Now Theorem 4.1 gives a rational inner function G̃ :
D → Mn(C) such that G̃(λj) = G(λj) for all j. Define g = Πn ◦ G̃. Then
g is a rational analytic function on D and since the spectrum of a unitary
matrix is always a subset of T we conclude that g : D→ Gn is Γn-inner. We
also have

g(λj) = Πn(G̃(λj)) = Πn(G(λj)) = Πn(F (λj)) = f(λj) = (s1,j, . . . , sn,j)

for j = 1, . . . ,m.

The important fact about the rational Γn-inner functions is that their
form can be calculated explicitly. Indeed, let f = (s1, . . . , sn) : D → Gn be
such a function. As we have already seen, sn is necessarily a finite Blaschke
product, so let

sn(λ) = ξ

m∏

k=1

λ− αk
1− αkλ

,(4.1)

where ξ ∈ T and αk ∈ D for all k. Using (3.13) and the fact that f(T) ⊆
db(Γn) we deduce that sj = sn−jsn on T for j = 1, . . . , n− 1. Consider now
the Hardy space H2 (on T). For a fixed j ∈ {1, . . . , n − 1}, the function sj
belongs to H∞, and so to H2. Therefore, sn−jsn ∈ H2. Then sn−jsn ∈ H2,
where H2 = {f ∈ L2 : f ∈ H2}. If we define H2

− = {f ∈ L2 : f̂(k) = 0,
∀k ≥ 0}, then H2 = λH2

−, where λ is the identity function from D into D.
Since |sn| = 1 on T and sn−jsn ∈ H2 we obtain sn−j ∈ snH2. Therefore,
sn−j ∈ (λsn)H2

−. Since sn−j also belongs to H2, we deduce that sn−j ∈
H2∩ (λsn)H2

−. For the inner function (in fact, finite Blaschke product) λsn,
the set H2 ∩ (λsn)H2

− is its model space. We have [14, p. 228]

H2 ∩ (λsn)H2
− = H2 	 (λsn)H2.

The fact that λsn is a finite Blaschke product implies that H2 	 (λsn)H2

is of finite dimension (in fact, the dimension is exactly the degree of λsn,
that is, m+ 1). Its elements are of the form Q/P , where Q is a polynomial
of degree at most m and P (λ) =

∏m
j=1(1− αjλ). Since sk ∈ H2 	 (λsn)H2

for k = 1, . . . , n− 1, we can find a polynomial Pk of degree at most m such
that sk = Pk/P . We also have sk = sn−ksn on T, and therefore

sn−ksk
sn

= |sn−k|2 ≥ 0 on T,
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for all k = 1, . . . , n− 1. We have

sn−ksk
sn

=
Pn−kPk

ξ(
∏m
j=1(1− αjλ))(

∏m
j=1(λ− αj))

,

and therefore sn−ksk/sn is a rational function which is positive on T. The
form of those rational functions can be calculated explicitly [10, p. 137]: we
can find r ≥ 0, t and q in N ∪ {0} with t + q = m, β1, . . . , βq ∈ D and
ξ1, . . . , ξt ∈ T such that

sn−ksk
sn

= r
(
∏t
j=1(λ+ ξj)2)(

∏q
j=1(1− βjλ)(λ− βj))

(
∏t
j=1 ξj)(

∏m
j=1(1− αjλ)(λ− αj))

.

Since sk = sn−ksn on T, this implies, for k 6= n− k, that we can find a real
number R and η, δ ∈ T with ηδ

∏t
j=1 ξj = ξ such that

sk = Rη
(
∏t
j=1(λ+ ξj))(

∏q
j=1 fj)∏m

j=1(1− αjλ)
,

sn−k = Rδ
(
∏t
j=1(λ+ ξj))(

∏q
j=1 gj)∏m

j=1(1− αjλ)

where, for j = 1, . . . , q, either fj = 1− βjλ and gj = λ− βj , or fj = λ− βj
and gj = 1− βjλ. If n− k = k, then sk must be of the form

sk = Rη
(
∏t
j=1(λ+ ξj))(

∏s
j=1(1− βjλ)(λ− βj))∏m

j=1(1− αjλ)
,

where t + 2s = m, R is a real number and η2∏t
j=1 ξj = ξ. Using now the

above calculations and Theorem 4.2, we obtain the following result.

Theorem 4.3. Let λ1, . . . , λN be distinct points in D and let
(s1,1, . . . , sn,1), . . . , (s1,N , . . . , sn,N ) in Gn be such that we can find an ana-
lytic function f from D into Gn with f(λj) = (s1,j , . . . , sn,j) for j = 1, . . . , N.

(i) Suppose that n = 2k + 1, where k ∈ N. Then we can find m ∈ N,
ξ ∈ T and α1, . . . , αm ∈ D such that, for every j ∈ {1, . . . , k}, there
exist tj , qj ∈ N ∪ {0}, rj ∈ R, ηj , δj ∈ T, ξj,1, . . . , ξj,tj ∈ T and
βj,1, . . . , βj,qj ∈ D such that

tj + qj = m, ηjδj

( tj∏

i=1

ξj,i

)
= ξ (1 ≤ j ≤ k),

and if sn is given by (4.1) and

sj = rjηj
(
∏tj
i=1(λ+ ξj,i))(

∏qj
i=1 fj,i)∏m

i=1(1− αiλ)
(1 ≤ j ≤ k),(4.2)
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sn−j = rjδj
(
∏tj
i=1(λ+ ξj,i))(

∏qj
i=1 gj,i)∏m

i=1(1− αiλ)
(1 ≤ j ≤ k),(4.3)

where, for i = 1, . . . , qj , either fj,i = 1− βj,iλ and gj,i = λ− βj,i, or
fj,i = λ − βj,i and gj,i = 1 − βj,iλ, then g = (s1, . . . , sn) solves the
same interpolation problem as f.

(ii) If n = 2k, where k ∈ N, then almost the same statement as in (i)
holds, the only difference being that sk must be of the form

(4.4) sk = rkηk
(
∏tk
i=1(λ+ ξk,i))(

∏qk
i=1(1− βk,iλ)(λ− βk,i))∏m

i=1(1− αiλ)
,

where tk, qk ∈ N∪ {0} and tk + 2qk = m, rk ∈ R, βk,1, . . . , βk,qk ∈ D,
and ηk, ξk,1, . . . , ξk,tk ∈ T are such that η2

k

∏tk
i=1 ξk,i = ξ.

Now consider a rational analytic function g = (s1, . . . , sn) from D into
Cn of the form given by the above theorem. By our construction, |sn| = 1
on T and sj = sn−jsn for j = 1, . . . , n − 1. By Corollary 2.1 and Theorem
3.2, in order to have g(D) ⊆ Γn we must have

(4.5) sup
|z|≤1

∣∣∣∣∣
n(−1)nsn(ξ)zn−1+(n− 1)(−1)n−1sn−1(ξ)zn−2 + · · ·+ (−s1(ξ))

n− (n− 1)s1(ξ)z + · · ·+ (−1)n−1sn−1(ξ)zn−1

∣∣∣∣∣ ≤ 1

for all ξ ∈ T. For z in T, if n− (n−1)s1(ξ)z+ · · ·+ (−1)n−1sn−1(ξ)zn−1 6= 0
then∣∣∣∣
n(−1)nsn(ξ)zn−1 + (n− 1)(−1)n−1sn−1(ξ)zn−2 + · · ·+ (−s1(ξ))

n− (n− 1)s1(ξ)z + · · ·+ (−1)n−1sn−1(ξ)zn−1

∣∣∣∣

=
∣∣∣∣
n(−1)n sn(ξ) zn−1 + (n− 1)(−1)n−1 sn−1(ξ) zn−2 + · · ·+ (−s1(ξ))

n− (n− 1)s1(ξ)z + · · ·+ (−1)n−1sn−1(ξ)zn−1

∣∣∣∣

=

∣∣∣∣
(−1)n sn(ξ) zn−1(n− (n− 1)s1(ξ)z + · · ·+ (−1)n−1sn−1(ξ)zn−1)

n− (n− 1)s1(ξ)z + · · ·+ (−1)n−1sn−1(ξ)zn−1

∣∣∣∣ = 1,

and therefore, in order to have (4.5) it is necessary and sufficient to have

n− (n− 1)s1(ξ)z + · · ·+ (−1)n−1sn−1(ξ)zn−1 6= 0

for all z ∈ D and ξ ∈ T. This yields

((n− 1)s1(ξ)/n, (n− 2)s2(ξ)/n, . . . , sn−1(ξ)/n) ∈ Γn−1 (ξ ∈ T).(4.6)

If (4.6) is satisfied, then g sends D into Γn. If, for example, we also have
g(0) ∈ Gn, then by Corollary 2.1, g sends D into Gn.

Remark. Let f = (s1, . . . , sn) : D→ Gn be a rational Γn-inner function
of degree k ≥ 1 (observe that the degree of f is the degree of sn as a finite
Blaschke product). Then, for all 1 ≤ j ≤ n− 1,

sj(λ) = sn−j(1/λ)sn(λ) (λ ∈ D).(4.7)
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Also, if we write sn = Q/P , where P (λ) =
∏k
i=1(1 − αiλ) and Q(λ) =

ζ
∏k
i=1(λ−αi), with ζ ∈ T and α1, . . . , αk ∈ D, then there exist polynomials

P1, . . . , Pn−1, all of degree less than or equal to k, such that

sj(λ) =
Pj(λ)
P (λ)

=
Pn−j(1/λ)

Q(1/λ)
(λ ∈ D)(4.8)

for 1 ≤ j ≤ n− 1. Indeed, if we define Sj(λ) = sn−j(1/λ)sn(λ), then Sj is a
well defined analytic function on a neighborhood of D. Since f(T) ⊆ db(Γn)
we also have Sj(ξ) = sn−j(ξ)sn(ξ) = sj(ξ) for all ξ ∈ T. Therefore Sj = sj ,
and (4.7) holds. Then, for λ ∈ D,

sj(λ) = ζ
Pn−j(1/λ)

P (1/λ)

Q(λ)
P (λ)

= ζ
λkPn−j(1/λ)
∏k
i=1(λ− αi)

∏k
i=1(λ− αi)∏k
i=1(1− αiλ)

=
Pn−j(1/λ)

ζ
∏k
i=1(1/λ− αi)

=
Pn−j(1/λ)

Q(1/λ)
.

For the interpolation problem into Gn, Theorem 4.3 gives a method to
construct “enough” interpolation functions. The main problem is now that
the condition (4.6) is very difficult to verify. This will reduce the applicability
of the above theorem only to some very particular cases, which will appear
in the remainder of this paper.

5. COMPLEX GEODESICS ON Gn

A two-point interpolation problem from D into a domain D ⊆ Cn
is closely related to the theory of Carathéodory and Kobayashi pseudo-
distances on D. By definition (see [9, Chapter 4]), the Carathéodory pseudo-
distance between p, q ∈ D is given by CD(p, q) = sup d(F (p), F (q)), where
the supremum is over all analytic functions F : D → D, and d denotes the
hyperbolic distance on D, that is,

d(λ1, λ2) = tanh−1
∣∣∣∣
λ1 − λ2

1− λ1λ2

∣∣∣∣ (λ1, λ2 ∈ D).

An analytic function ϕ : D → D is called a complex geodesic on D if
CD(ϕ(λ1), ϕ(λ2)) = d(λ1, λ2) for all λ1, λ2 ∈ D. Observe that if ϕ : D → D
and F : D → D are analytic functions such that F ◦ ϕ is an automor-
phism of D, then ϕ is a complex geodesic on D. For p, q ∈ D, we define
δD(p, q) = inf d(λ1, λ2), where the infimum is over all λ1, λ2 ∈ D for which
there exists ϕ : D → D analytic such that ϕ(λ1) = p and ϕ(λ2) = q.
The map δD is usually called the Lempert function, and, for general do-
mains D, it does not satisfy the triangle inequality, and therefore it is not
a pseudo-distance. By definition, the Kobayashi pseudo-distance KD on D
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is the largest pseudo-distance on D smaller than δD. Then (see [9, Chap-
ter 4]) CD ≤ KD ≤ δD on D, and if ϕ is a complex geodesic on D, then
CD = KD = δD on ϕ(D). Also observe that if D = Gn or Ωn, where n ≥ 2,
then for λ1, λ2 ∈ D and p, q ∈ D, there exists an analytic function f : D→ D
such that f(λ1) = p and f(λ2) = q if and only if δD(p, q) ≤ d(λ1, λ2), and
therefore a necessary and sufficient condition for the two-point interpolation
problem from D into Gn and Ωn is given by δGn and δΩn , respectively.

5.1. Complex geodesics of degree 1 and 2 on Gn. By using The-
orem 4.3, we can find an explicit formula for some of the complex geodesics
on Gn.

5.1.1. Complex geodesics of degree 1 on Gn. The simplest case in the
statement of Theorem 4.3 is when m = 1. Consider sn(λ) = λ for λ ∈ D.
Then for a fixed j ∈ {1, . . . , n− 1}, for the function sj given by (4.2), (4.3)
or (4.4) the following cases can occur:

(i) j 6= n/2 and sj(λ) = rη(λ + ξ), sn−j(λ) = rδ(λ + ξ), where r ∈ R
and η, δ, ξ ∈ T, with ηδξ = 1. By putting a = rη and b = rηξ we obtain
sj(λ) = aλ+ b and sn−j(λ) = bλ+ a.

(ii) j 6= n/2 and sj(λ) = rη(λ− α), sn−j(λ) = rδ(1− αλ), where r ∈ R,
η, δ ∈ T with ηδ = 1, and α ∈ D. Put a = rη and b = −rηα. Once more, we
have sj(λ) = aλ+ b and sn−j(λ) = bλ+ a.

(iii) j 6= n/2 and sj(λ) = rδ(1− αλ), sn−j(λ) = rη(λ− α), where r ∈ R,
η, δ ∈ T with ηδ = 1, and α ∈ D. Put a = −rηα and b = rη. Then again
sj(λ) = aλ+ b and sn−j(λ) = bλ+ a.

(iv) j = n/2 and sj(λ) = rη(λ + ξ), where r ∈ R and η, ξ ∈ T with
η2ξ = 1. By putting a = rη we obtain rηξ=rη = a and sj(λ) = aλ+a on D.

Therefore, we obtain a function of the form

f(λ) = (Sn−1λ+ S1, . . . , S1λ+ Sn−1, λ) (λ ∈ D),

and by (4.6) a necessary and sufficient condition for f(D) ⊆ Gn is that
((n− 1)(Sn−1ξ + S1)/n, . . . , (S1ξ + Sn−1)/n) ∈ Γn−1 for all ξ ∈ T. Even for
this very particular case, the last condition is not trivial to check. Instead
of using this condition, we shall use the proof of Theorem 3.6 to see that
f(D) ⊆ Gn if and only if (S1, . . . , Sn−1) ∈ Gn−1. If this is the case, and
F : Gn → D is given by F (s1, . . . , sn) = sn, then F ◦ f is the identity on D.
Therefore, f is a complex geodesic on Gn. We have proved the following
theorem.

Theorem 5.1. For b(λ) = ξ(λ− α)/(1− αλ), where ξ ∈ T and α ∈ D,
and (S1, . . . , Sn−1) ∈ Gn−1, the map

λ 7→ (Sn−1b(λ) + S1, . . . , S1b(λ) + Sn−1, b(λ))(5.1)

is a complex geodesic on Gn.
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Are those the only complex geodesics of degree 1 on Gn? For the general
case n ≥ 2, we do not have an answer. In fact, we would like to have an
answer to the following more general question.

Question. If f = (s1, . . . , sn) : D → Gn is a complex geodesic on Gn,
must sn be a Blaschke product of degree at most n?

If the answer to the last question is yes (for n = 2, this is indeed the case
[8]), then every complex geodesic of degree 1 on Gn is of the form given by
Theorem 5.1.

5.1.2. Complex geodesics of degree 2 on Gn passing through the origin. If
we consider m = 2 in the statement of Theorem 4.3, then (4.1)–(4.4) give the
form of the rational analytic functions f = (s1, . . . , sn) : D → Cn of degree
2 such that |sn| = 1 on T and sj = sn−jsn on T for j = 1, . . . , n − 1. In
order to have f(D) ⊆ Gn, the function f must satisfy (4.6) and f(0) ∈ Gn.
Even though the degree of f is small, the relations in (4.6) are very difficult
to check in the general case. To simplify the calculations, suppose that f
also satisfies f(0) = (0, . . . , 0). Let therefore ξ ∈ T and α ∈ D. Consider also
ϑ1, . . . , ϑn−1 ∈ C such that ϑj = ϑn−jξ for j = 1, . . . , n− 1. Then put

f(λ) =
(

ϑ1λ

1− αλ, . . . ,
ϑn−1λ

1− αλ, ξλ
λ− α
1− αλ

)
(λ ∈ D).(5.2)

If we write f = (s1, . . . , sn) on D, then in order to have

n− (n− 1)s1(λ)z + · · ·+ (−1)n−1sn−1(λ)zn−1 6= 0

for all z ∈ D and λ ∈ T we must impose the condition

λ(nα+ (n− 1)ϑ1z − (n− 2)ϑ2z
2 + · · ·+ (−1)nϑn−1z

n−1) 6= n

(|z| < 1, |λ| = 1).
This is equivalent to

sup
|z|≤1
|nα+ (n− 1)ϑ1z − (n− 2)ϑ2z

2 + · · ·+ (−1)nϑn−1z
n−1| ≤ n.(5.3)

Therefore, if the last supremum is ≤ n, then f(D) ⊆ Gn. If the supremum
is exactly n and it is attained at some z0 ∈ T, then we see that h : D → D
defined by

h(λ) =
n(−1)nsn(λ)zn−1

0 + (n− 1)(−1)n−1sn−1(λ)zn−2
0 + · · ·+ (−s1(λ))

n− (n− 1)s1(λ)z0 + · · ·+ (−1)n−1sn−1(λ)zn−1
0

for λ ∈ D is a rational function of degree at most 1 such that |h(λ)| = 1
for all λ ∈ T. Since h(0) = 0 we obtain h(λ) = ηλ for some η ∈ T, and so
f : D → Gn is a complex geodesic on Gn. Let us also remark that if the
answer to the final question from the above subsection is yes, then every
complex geodesic of degree 2 on Gn passing through the origin is of the
form (5.2).
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For the case n = 2, if (s0, p0) is a fixed element in G2\{(0, 0)} then there
is a complex geodesic on G2 of the form (5.1) or (5.2) passing through (0, 0)
and (s0, p0). This allows us to obtain a Schwarz lemma for the symmetrized
bidisc ([3, Theorem 1.1], [8, Theorem 5]). In fact, if n = 2 then Theorem 4.3
can be used ([8, Theorem 7]) in order to explicitly calculate the set of all
complex geodesics onG2, and to solve completely the two-point interpolation
problem into G2.

For n ≥ 3, observe that if equality occurs in (5.3) then we can find
z0, ξ ∈ T such that n− (n−1)s1(ξ)z0 + · · ·+ (−1)n−1sn−1(ξ)zn−1

0 = 0. Then
the polynomial Q(z) = nzn−1 − (n − 1)s1(ξ)zn−2 + · · · + (−1)n−1sn−1(ξ)
has a zero at z0 ∈ T. Since (s1(ξ), . . . , sn(ξ)) ∈ Γn, the polynomial P (z) =
zn − s1(ξ)zn−1 + · · ·+ (−1)nsn(ξ) has all its roots inside D. Since Q = P ′,
the Lucas theorem implies that P has a zero of order at least 2 at z0.
Therefore, the complex geodesic f on Gn given by (5.2) is a rational Γn-
inner function on D of degree 2 for which we can find ξ ∈ T such that f(ξ) =
πn(z0, z0, w1, . . . , wn−2) ∈ db(Γn). As we shall see in the next subsection,
this situation can be generalized to the case of rational Γn-inner functions
on D of degree k ≤ n: by studying the relation between the interpolation
problem into Gn and the interpolation problem into Gn−1 we shall give a
method to construct complex geodesics of arbitrary order k ≤ n on Gn.

5.2. Relations between the case n and n− 1. Complex geodesics
of order k ≤ n. Let us start by proving a generalization of the implication
“(i)⇒(ii)” of Corollary 3.4. The idea of the proof of Lemma 5.1 comes from
the proof of Theorem 3.5.

Lemma 5.1. Let (s1, . . . , sn) ∈ Gn and define R = sup|z|≤1 |f(z)|, where
f is given by (3.5), so that 0 ≤ R < 1. Set

s̃j(w) = Cj
n−1

sj/C
j
n − (w/R)(sj+1/C

j+1
n )

1− (w/R)(s1/C1
n)

(w ∈ D)(5.4)

for j = 1, . . . , n − 1. Then (s̃1(w), . . . , s̃n−1(w)) ∈ Gn−1 for all w ∈ D.
Moreover , if (s1, . . . , sn) 6∈ {πn(α, . . . , α) : α ∈ D}, then there exists w0 ∈ T
such that (s̃1(w0), . . . , s̃n−1(w0)) ∈ Γn−1 \Gn−1.

Proof. We know that

n(−1)nsnzn−1 + (n− 1)(−1)n−1sn−1z
n−2 + · · ·+ (−s1)

n− (n− 1)s1z + · · ·+ (−1)n−1sn−1zn−1 6= −R
w

for |z| ≤ 1 and 0 < |w| < 1, and that there exist |z0| = 1 and |w0| = 1 such
that equality occurs. If the above rational function in z is not constant, then
|s1| < nR and



46 C. Costara

1− (n− 1)s1 − 2(w/R)s2

n− (w/R)s1
z +

(n− 2)s2 − 3(w/R)s3

n− (w/R)s1
z2 + · · ·

+ (−1)n−1 sn−1 − n(w/R)sn
n− (w/R)s1

zn−1 6= 0

for all |z| ≤ 1 and |w| < 1. Therefore

λn−1 − s̃1(w)λn−1 + · · ·+ (−1)n−1s̃n−1(w) 6= 0

for all w ∈ D and λ ∈ C \D, which means that (s̃1(w), . . . , s̃n−1(w)) ∈ Gn−1

for all w ∈ D. Since also zn−1
0 − s̃1(w0)zn−2

0 + · · · + (−1)n−1s̃n−1(w0) = 0,
this implies that (s̃1(w0), . . . , s̃n−1(w0)) ∈ Γn−1 \ Gn−1. If the above func-
tion in z is constant, then we can find α ∈ D such that (s1, . . . , sn) =
(C1

nα, . . . ,C
n
nα

n), and then s̃j(w) = Cj
n−1α

j for all w ∈ D.

By using (3.20) or the above lemma, we obtain a relation between the
Γn-inner and Γn−1-inner functions.

Lemma 5.2. For an analytic function f = (s1, . . . , sn) : D→ Gn and for
z ∈ D, the map fz = (s̃1, . . . , s̃n−1) sends D into Gn−1, where

s̃j(λ) = Cj
n−1

sj(λ)/Cj
n − zsj+1(λ)/Cj+1

n

1− zs1(λ)/C1
n

(λ ∈ D)(5.5)

for j = 1, . . . , n − 1. Moreover, if f is Γn-inner and z ∈ T, then fz is
Γn−1-inner, and if f is rational and Γn-inner and z ∈ T, then fz is rational
and Γn−1-inner.

Proof. The fact that for all z ∈ D the function fz is analytic from D into
Gn−1 is a consequence of the above lemma. If f(ξ) ∈ db(Γn) for almost all
ξ in T and if z ∈ T, then

|sn−1(ξ)/Cn−1
n − zsn(ξ)/Cn

n| = |1− zs1(ξ)/C1
n|

almost everywhere on T, and therefore |s̃n−1| = 1 almost everywhere on T.
Since fz(ξ) ∈ Γn−1 almost everywhere on T this implies that fz(ξ) ∈
db(Γn−1) almost everywhere on T.

Lemma 5.2 gives a way to construct analytic functions from D into Gn−1,
by starting with analytic functions from D into Gn. But how to solve the
inverse problem? That is, we start with analytic functions from D into Gn−1
and we want to construct analytic functions from D into Gn. It is clear that
if g = (s1, , . . . , sn−1) : D → Gn−1 and b : D → D are analytic functions,
then by considering f = (s1 + b, s1b + s2, . . . , sn−2b + sn−1, sn−1b) we find
that g is analytic from D into Gn. But in the definition of g we have sepa-
rated, analytically, n− 1 values in D from one value in D. Therefore, for the
interpolation problem into Gn, it is clear that this method is not sufficient.
A general way of reversing the construction in the above lemma (that is,
g = (s̃1, . . . , s̃n−1) analytic from D into Gn−1 is given, and we want to find
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z ∈ D and f = (s1, . . . , sn) : D→ Gn analytic such that fz = g) seems to be
difficult to obtain.

It is proved in Lemma 5.2 that if f = (s1, . . . , sn) : D → Gn is Γn-inner
and z ∈ T, then g = (s̃1, . . . , s̃n−1) given by (5.5) is Γn−1-inner. But if f is a
complex geodesic on Gn, does it follow that there exists z ∈ T such that g is
a complex geodesic on Gn−1? We do not know the answer to this question.
A partial result is given by the proof of the following theorem. It will also
allow us to obtain some of the complex geodesics of order n on Gn.

Theorem 5.2. If f = (s1, . . . , sn) : D → Gn is a rational Γn-inner
function of degree less than or equal to n such that there exists ξ ∈ T with
f(ξ) = πn(η, . . . , η) for some η ∈ T, then f is a complex geodesic of degree
n on Gn.

Proof. Induction on n. For n = 2, let f = (s, p) from D into G2 be
a rational function of degree at most 2 with poles off D such that f(T) ⊆
db(Γ2) and ‖s‖∞ = 2. Then f cannot be of degree 1 since as we have already
seen in Theorem 5.1 it must then be of the form f(λ) = (βb(λ) + β, b(λ)),
where β ∈ D and b is a Möbius transformation on D, which contradicts
the fact that ‖s‖∞ = 2. Let f(ξ) = (2η, η2) where ξ, η ∈ T, and consider
q : G2 → D given by

q(s, p) =
2ηp− s
2− ηs .

Then q ◦ f is a rational function of degree at most 1 on D which is also
inner. The relation (3.8) and the fact that f(D) ⊆ G2 imply |q ◦f | < 1 on D,
and therefore q ◦ f cannot be a constant function. Hence q ◦ f is a Möbius
transformation on D, and therefore f is a complex geodesic on G2.

Suppose now that every rational analytic function g : D → Gn−1 of
degree ≤ n − 1 such that g(T) ⊆ db(Γn−1) and g(ξ) = πn−1(η, . . . , η) for
some ξ ∈ T and η ∈ T, is a complex geodesic of degree n − 1 on Gn−1. Let
f be as in the statement. Without loss of generality, we may suppose that
f(1) = (C1

n, . . . ,C
n
n). Define g : D → Gn−1 by g(λ) = (s̃1(λ), . . . , s̃n−1(λ))

on D, where

s̃j(λ) = Cj
n−1

sj(λ)/Cj
n − sj+1(λ)/Cj+1

n

1− s1(λ)/C1
n

(1 ≤ j ≤ n− 1).

Then g is a rational function of degree ≤ n−1, its poles are in the exterior of
D, and g(T) ⊆ db(Γn−1) by Lemma 5.2. We want to prove that s̃1(1) = n−1.
For z in D, put

ϕz(λ) =
s1(λ)/C1

n − zs2(λ)/C2
n

1− zs1(λ)/C1
n

(λ ∈ D).

Lemma 5.2 shows that ϕz(D) ⊆ D, the function ϕz being rational, with poles
off D. Observe that ϕz(1) = 1 for all z ∈ D \ {1}. We want to prove that
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s̃1(1) = n − 1, that is, ϕ1(1) = 1. It will be shown in the final part of the
proof that s′1(1) 6= 0. Then

ϕ1(1) = −s
′
1(1)/C1

n − s′2(1)/C2
n

s′1(1)/C1
n

,

and therefore we must prove that

− s′1(1)/C1
n + s′2(1)/C2

n = s′1(1)/C1
n.(5.6)

For each z ∈ D\{1} there exists a neighborhood Vz of 1 ∈ C such that ϕz is
well defined and analytic on Vz. We have |ϕz(1)| = 1 and |ϕz| ≤ 1 on Vz∩D.
Put hz(θ) = |ϕz(eiθ)|2 for θ in a neighborhood of 0 ∈ R. The function hz is
at least of class C1 near θ = 0, and it has a maximum at this point. This
implies that h′z(0) = 0. Since

dhz
dθ

(θ) = −ie−iθ ϕ′z(eiθ)ϕz(eiθ) + ieiθ ϕz(eiθ)ϕ′z(e
iθ)

= i(−eiθ ϕz(eiθ)ϕ′z(eiθ) + eiθ ϕz(eiθ)ϕ′z(e
iθ)),

we obtain Im(ϕ′z(1)) = 0 for all z ∈ D \ {1}. Therefore

Im
s′1(1)/C1

n − z(−s′1(1)/C1
n + s′2(1)/C2

n)
1− z = 0 (z ∈ D \ {1}),

which implies that s′1(1)/C1
n=−s′1(1)/C1

n+s′2(1)/C2
n.Therefore, the equality

(5.6) is true. Hence s̃1(1) = n−1, and now the fact that (s̃1(1), . . . , s̃n−1(1))
∈ Γn−1 gives g(1) = (C1

n−1, . . . ,C
n−1
n−1). By the induction hypothesis, the

degree of g is n− 1 and there exists G : Gn−1 → D analytic such that G ◦ g
is a Möbius transformation on D. Define F : Gn → D by

F (S1, . . . , Sn) =G

(
C1
n−1

S1/C1
n − S2/C2

n

1− S1/C1
n

, . . . ,Cn−1
n−1

Sn−1/Cn−1
n − Sn/Cn

n

1− S1/C1
n

)
.

Then F ◦ f = G ◦ g, and therefore F ◦ f is a Möbius transformation on D.
We conclude that f is a complex geodesic of degree n on Gn.

Let us now justify the remaining claim. Suppose, for contradiction, that
s′1(1) = 0. We know that

λ 7→ s1(λ)/C1
n − s2(λ)/C2

n

1− s1(λ)/C1
n

is a rational function sending D into D. Since s1(1) = C1
n and s2(1) = C2

n, the
fact that s′1(1) = 0 implies s′1(1)/C1

n − s′2(1)/C2
n = 0. Therefore, s′2(1) = 0.

Considering then

λ 7→ s2(λ)/C2
n − s3(λ)/C3

n

1− s1(λ)/C1
n

,

we deduce in the same way that s′3(1) = 0. After n − 1 steps we obtain
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s′n(1) = 0. If we write

sn(λ) = δ
λm − S1λ

m−1 + · · ·+ (−1)m−1Sm−1λ+ (−1)mSm
1− S1λ+ · · ·+ (−1)m−1Sm−1λm−1 + (−1)mSmλm

,

where δ ∈ T and (S1, . . . , Sm) ∈ Gm, the fact that s′n(1) = 0 implies

|m− (m− 1)S1 + · · ·+ (−1)m−1Sm−1|
= |−S1 + · · ·+ (m− 1)(−1)m−1Sm−1 +m(−1)mSm|.

Therefore ∣∣∣∣
−S1 + · · ·+ (m− 1)(−1)m−1Sm−1 +m(−1)mSm

m− (m− 1)S1 + · · ·+ (−1)m−1Sm−1

∣∣∣∣ = 1,

and this contradicts (3.6), since (S1, . . . , Sm) ∈ Gm.

We have seen (Theorems 3.6 and 5.1) that for every (s1, . . . , sn) ∈ Gn
there is a complex geodesic on Gn of degree 1 passing through this point.
Using Theorem 5.2, we also obtain the following fact.

Corollary 5.1. For a given element (s1, . . . , sn) ∈ Gn there is a com-
plex geodesic of degree n passing through it.

Proof. Let (s1, . . . , sn) = πn(z1, . . . , zn) with z1, . . . , zn ∈ D, and fix
ξ ∈ T. Consider then the Möbius transformations b1, . . . , bn on D such that
bj(0) = zj and bj(1) = ξ for j = 1, . . . , n. Now Theorem 5.2 shows that
λ 7→ πn(b1(λ), . . . , bn(λ)) is a complex geodesic of degree n on Gn passing
through (s1, . . . , sn).

Now we want to construct complex geodesics of order k < n on Gn. An
important ingredient is the following lemma.

Lemma 5.3. Let (s1, . . . , sn) = πn(1, . . . , 1, z1, . . . , zn−k) ∈ db(Γn),
where 1 ≤ k < n and at least one of the zj is different from 1 ∈ T. Put

s̃j = Cj
n−1

sj/C
j
n − sj+1/C

j+1
n

1− s1/C1
n

(j = 1, . . . , n− 1).

Then (s̃1, . . . , s̃n−1) = πn−1(1, . . . , 1, w1, . . . , wn−k−1) for some w1, . . .
. . . , wn−k−1 ∈ T.

Proof. We already know (see Lemma 5.2) that (s̃1, . . . , s̃n−1)∈db(Γn−1).
Consider the polynomial P (z) = zn−s1z

n−1 + · · ·+(−1)nsn on C. We know
that 1 is a zero of P of order at least k ≥ 1. In particular, P (1) = 0, that
is, 1− s1 + · · ·+ (−1)nsn = 0. We rewrite this equality as

n(−1)nsn + (n− 1)(−1)n−1sn−1 + · · ·+ (−s1)

= −(n− (n− 1)s1 + · · ·+ (−1)n−1sn−1),
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and observe that in the proof of Lemma 5.1 it is shown that this implies
that 1 − s̃1 + · · · + (−1)n−1s̃n−1 = 0. Thus 1 is a root of Q(z) = zn−1 −
s̃1z

n−2 + · · ·+ (−1)n−1s̃n−1.
If k ≥ 2, then 1 is also a root of the polynomial

P ′(z)
n

= zn−1 − n− 1
n

s1z
n−2 + · · ·+ (−1)n−1 1

n
sn−1.

By applying the above considerations to P ′(z)/n we obtain

1− C1
n−2

n−1
n s1/C1

n−1 − n−2
n s2/C2

n−1

1− n−1
n s1/C1

n−1
+ · · ·

+ (−1)n−2Cn−2
n−2

2
nsn−2/Cn−2

n−1 − 1
nsn−1/Cn−1

n−1

1− n−1
n s1/C1

n−1
= 0,

that is, Q′(1)/(n−2) = 0. Therefore, 1 is also a zero of Q of order at least 2.
By repeating the above reasoning k times, we conclude that 1 is a zero of Q
of order at least k, and this is exactly what we wanted to prove.

Observe that the above reasoning can be reversed to show that, in
the context of Lemma 5.3, if (s1, . . . , sn) ∈ db(Γn) \ {πn(1, . . . , 1)} and
(s̃1, . . . , s̃n−1) = πn−1(1, . . . , 1, w1, . . . , wn−k−1), where 1 ≤ k < n and
w1, . . . , wn−k−1 ∈ T, then (s1, . . . , sn) = πn(1, . . . , 1, z1, . . . , zn−k) for some
z1, . . . , zn−k ∈ T.

The above lemma gives a way to recognize some of the complex geodesics
on Gn of degree less than or equal to n.

Theorem 5.3. Let n, k ∈ N with n ≥ 2 and 1 ≤ k ≤ n. If f : D→ Gn is
a rational Γn-inner function of degree at most k for which there exist ζ, η ∈ T
such that f(ζ) = πn(η, . . . , η, z1, . . . , zn−k) for some z1, . . . , zn−k ∈ T, then
f is a complex geodesic of degree k on Gn.

Proof. Induction on n ≥ 2. The case n = 2 is proved in Theorem 5.1.
Suppose now that n ≥ 2 and that for all k ∈ {1, . . . , n}, if f is a rational
Γn-inner function of degree at most k for which there exist ζ, η ∈ T such
that f(ζ) = πn(η, . . . , η, z1, . . . , zn−k) for some z1, . . . , zn−k ∈ T, then f is a
complex geodesic of degree k on Gn. Let now g = (S1, . . . , Sn+1) : D→ Gn+1
be a rational Γn+1-inner function of degree at most k ≤ n+ 1 for which, for
example, g(1)=πn+1(1, . . . , 1, w1, . . . , wn+1−k), for some w1, . . . , wn+1−k∈T.
If k = n+ 1, then Theorem 5.2 shows that g is a complex geodesic of degree
n + 1 on Gn+1. If not, then at least one of the wj is different from 1, and
consider h : D→ Gn given by

h =
(

C1
n

S1/C1
n+1 − S2/C2

n+1

1− S1/C1
n+1

, . . . ,Cn
n

Sn/Cn
n+1 − Sn+1/Cn+1

n+1

1− S1/C1
n+1

)
.

Lemma 5.2 shows that h is a rational Γn-inner function. Its degree is at
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most k, and h(1) = πn(1, . . . , 1, z1, . . . , zn−k) ∈ db(Γn) by Lemma 5.3. The
induction hypothesis now implies that h is a complex geodesic of degree k
on Gn, and hence (see the proof of Theorem 5.2) g is a complex geodesic of
degree k on Gn+1.

Using the above theorem one can see now that for any fixed 1 ≤ k ≤ n
there are complex geodesics of order k on Gn. Furthermore, the following
corollary holds.

Corollary 5.2. If (s1, . . . , sn) ∈ Gn, then for each 1 ≤ k ≤ n there
is a complex geodesic of degree k on Gn of the form given by Theorem 5.3
which passes through this point.

Proof. Induction on n. If n = 2, then for a fixed element in G2 by The-
orems 3.6 and 5.1 there is a complex geodesic of order 1 on G2 passing
through it, and by Corollary 5.1 there is a complex geodesic f = (s, p)
of order 2 passing through it such that ‖s‖∞ = 2. Suppose now that
if 1 ≤ k ≤ n and (s1, . . . , sn) ∈ Gn, then there is a complex geodesic of
degree k on Gn of the form given by Theorem 5.3 such that its image
contains (s1, . . . , sn). Let 1 ≤ j ≤ n + 1 and (S1, . . . , Sn, Sn+1) ∈ Gn+1.
Write (S1, . . . , Sn, Sn+1) = πn+1(z1, . . . , zn+1) for some z1, . . . , zn+1 ∈ D.
If j = 1, we have already seen that there is a complex geodesic of or-
der 1 on Gn+1 of the form given by Theorem 5.3 which passes through
(S1, . . . , Sn, Sn+1). If j > 1, then by our induction hypothesis we can find
a rational Γn-inner function f = (s1, . . . , sn) of degree j − 1 such that
f(λ0) = πn(z1, . . . , zn) for a λ0 ∈ D and such that, for some ζ ∈ T, we
have f(ζ) = πn(η, . . . , η, w1, . . . , wn−j+1) for some η,w1, . . . , wn−j+1 ∈ T.
Let b be the Möbius transformation on D such that b(λ0) = zn+1 and
b(ζ) = η. Put g = (s1 + b, s1b + s2, . . . , snb) on D. Then g is a rational
Γn+1-inner function of degree j such that g(λ0) = (S1, . . . , Sn, Sn+1) and
g(ζ) = πn(η, . . . , η, w1, . . . , wn−j+1, η).

5.3. Uniqueness. For a fixed element z ∈ D, denote by f (n)
z : Gn → D

the analytic map

(5.7) f (n)
z (s1, . . . , sn)

=
n(−1)nsnzn−1 + (n− 1)(−1)n−1sn−1z

n−2 + · · ·+ (−s1)
n− (n− 1)s1z + · · ·+ (−1)n−1sn−1zn−1 .

For a complex geodesic on Gn of the form given by Theorem 5.3, that is, a
rational Γn-inner function of degree k ≤ n for which there exist ζ, z0 ∈ T
such that f(ζ) = πn(z0, . . . , z0, z1, . . . , zn−k) for some z1, . . . , zn−k ∈ T\{z0},
the proof of Theorem 5.3 shows that f (n)

z0
◦ g is an automorphism of D. Our

next theorem asserts that those are the only complex geodesics on Gn which
can be obtained by using the functions f (n)

z given by (5.7).
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Theorem 5.4. If g : D → Gn is an analytic function for which there
exists z0 ∈ D such that b := f

(n)
z0 ◦ g is a Möbius transformation on D then g

is a rational Γn-inner function of degree k ≤ n for which we can find ζ ∈ T
such that g(ζ) = πn(z0, . . . , z0, z1, . . . , zn−k) for some z1, . . . , zn−k ∈ T.

We shall first prove the following weaker version of the statement.

Lemma 5.4. If g : D → Gn is a rational Γn-inner function of degree
k ≥ 1 for which there is z0 ∈ T such that b := f

(n)
z0 ◦ g is a Möbius

transformation on D then k ≤ n and we can find ζ ∈ T such that g(ζ) =
πn(z0, . . . , z0, z1, . . . , zn−k) for some z1, . . . , zn−k ∈ T.

Proof. Once more, induction on n ≥ 2. For n = 2, the statement is a
particular case of [8, Theorem 7]. Suppose the statement is true for an n ≥ 2,
and let g = (S1, . . . , Sn+1) : D → Gn+1 be a rational Γn+1-inner function
of degree k ≥ 1 for which there is z0 ∈ T such that b := f

(n+1)
z0 ◦ g is a

Möbius transformation on D. Without loss of generality we may suppose
that z0 = 1. Therefore,

(5.8) b(λ)

=
(n+ 1)(−1)n+1Sn+1(λ) + n(−1)nSn(λ) + · · ·+ (−S1(λ))

(n+ 1)− nS1(λ) + · · ·+ (−1)nSn(λ)
(λ ∈ D).

Put

(5.9) h(λ)

=
(

C1
n

S1(λ)/C1
n+1 − S2(λ)/C2

n+1

1− S1(λ)/C1
n+1

, . . . ,Cn
n

Sn(λ)/Cn
n+1 − Sn+1(λ)/Cn+1

n+1

1− S1(λ)/C1
n+1

)

for λ ∈ D. Write h = (s1, . . . , sn) : D → Gn, and observe that, on the sj ,
(5.8) and (5.9) imply that

(5.10)
n(−1)nsn(λ) + (n− 1)(−1)n−1sn−1(λ) + · · ·+ (−s1(λ))

n− (n− 1)s1(λ) + · · ·+ (−1)n−1sn−1(λ)
= b(λ)

for all λ ∈ D. The following cases can occur.
(i) S1 6= C1

n+1 on T. In this case, h is a rational Γn-inner function of
degree k. Indeed, we can write Sn+1 = Q/P , S1 = R/P and Sn = T/P ,
where R and T are polynomials of degree at most k, P (λ) =

∏k
i=1(1− αiλ)

and Q(λ) = ξ
∏k
i=1(λ − αi) with ξ ∈ T and α1, . . . , αk ∈ D. Then sn =

(T − (n+ 1)Q)/((n+ 1)P −R), and we know that sn is a Blaschke product
on D. We want to prove first that the degree of T−(n+1)Q is k. If the degree
is strictly less than k, then T (λ) = akλ

k + · · ·+a1λ+a0 with ak = (n+ 1)ξ.
Now since for λ ∈ T we have

|Sn(λ)| =
∣∣∣∣
ak + · · ·+ a1λ

k−1 + a0λ
k

∏k
i=1(1− αiλ)

∣∣∣∣,
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it follows that

sup
|λ|≤1

∣∣∣∣
ak + · · ·+ a1λ

k−1 + a0λ
k

∏k
i=1(1− αiλ)

∣∣∣∣ ≤ ‖Sn‖∞ ≤ n+ 1.

The analytic function inside the supremum has value (n+ 1)ξ at λ = 0, so
by the maximum modulus principle it is constant and equal to (n+1)ξ on D.
This implies that Sn(λ) = (n+1)Sn+1(λ) on D, and since S1 = SnSn+1 on T
we obtain S1 ≡ n+1, a contradiction. Therefore, the degree of T − (n+1)Q
is k, and it remains to prove that T − (n+ 1)Q and (n+ 1)P − R have no
common zeros in C. If T (α) = (n + 1)Q(α) and R(α) = (n + 1)P (α) for
some α ∈ C, then the second equality implies that |α| > 1 (indeed, if α ∈ D
then P (α) 6= 0 and S1(α) = n + 1, and this contradicts our supposition).
Therefore, 1/α ∈ D. By using (4.8) we get S1(1/α) = T (α)/Q(α) = n + 1,
and once more we obtain a contradiction. Therefore, the degree of h is k,
and then by (5.10) and our induction hypothesis we infer that k ≤ n and
that we can find ζ ∈ T such that h(ζ) = πn(1, . . . , 1, z1, . . . , zn−k) for some
z1, . . . , zn−k ∈ T. Now the remark following the proof of Lemma 5.3 shows
that g(ζ) = πn+1(1, . . . , 1, w1, . . . , wn−k+1) for some w1, . . . , wn−k+1 ∈ T.

(ii) There is ζ∈T such that S1(ζ)=C1
n+1. Then g(ζ)=(C1

n+1, . . . ,C
n+1
n+1).

We now use what is proved in Theorem 5.2. For the function h = (s1, . . . , sn)
given by (5.9), we have h(ζ) = (C1

n, . . . ,C
n
n), and so we can apply the same

argument for h to see that if we set

h1(λ) =
(

C1
n−1

s1(λ)/C1
n − s2(λ)/C2

n

1− s1(λ)/C1
n

, . . . ,Cn−1
n−1

sn−1(λ)/Cn−1
n − sn(λ)/Cn

n

1− s1(λ)/C1
n

)

for λ ∈ D, then h1(ζ) = (C1
n−1, . . . ,C

n−1
n−1). After n steps, we obtain hn−1(ζ)

= C1
1 = 1. Now observe that

hn−1 = −(n+ 1)(−1)n+1Sn+1(λ) + n(−1)nSn(λ) + · · ·+ (−S1(λ))
(n+ 1)− nS1(λ) + · · ·+ (−1)nSn(λ)

on D, and hence, by using (5.8), we obtain b(ζ) = −1. Since b is bijective
on T, there is only one ζ ∈ T such that S1(ζ) = C1

n+1. Since S′1(ζ) 6= 0 (see
the proof of Theorem 5.2), the h given by (5.9) is of degree k− 1. (By what
is proved at (i), the only points where cancellations can occur, which could
decrease the degree of sn, are the points on T where S1 equals n+ 1.) Since
(5.10) holds for h, by applying the induction hypothesis we deduce that the
degree of h is ≤ n. Therefore the degree of g is at most n + 1, and since
g(ζ) = (C1

n+1, . . . ,C
n+1
n+1), by Theorem 5.2 we conclude that k = n+ 1.

Proof of Theorem 5.4. Suppose first that z0 ∈ D. Consider two distinct
points λ1 and λ2 in D. Then by Theorem 4.2 we can find a rational Γn-inner
function g̃ : D → Gn such that g̃(λk) = g(λk) for k = 1, 2. Now the ana-
lytic function f

(n)
z0 ◦ g̃ sends D into D, and (f (n)

z0 ◦ g̃)(λk) = (f (n)
z0 ◦ g)(λk) =
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b(λk) for k = 1, 2. Therefore f
(n)
z0 ◦ g̃ = b. If we write g̃ = (s1, . . . , sn),

then

(5.11)
n(−1)nsn(λ)zn−1

0 + (n− 1)(−1)n−1sn−1(λ)zn−2
0 + · · ·+ (−s1(λ))

n− (n− 1)s1(λ)z0 + · · ·+ (−1)n−1sn−1(λ)zn−1
0

= b(λ)

for all λ in a neighborhood of D. For ζ ∈ T, since (s1(ζ), . . . , sn(ζ)) ∈ Γn
and z0 ∈ D we see that n− (n− 1)s1(ζ)z0 + · · ·+ (−1)n−1sn−1(ζ)zn−1

0 6= 0.
Therefore,

|n(−1)nsn(ζ)zn−1
0 + (n− 1)(−1)n−1sn−1(ζ)zn−2

0 + · · ·+ (−s1(ζ))|
|n− (n− 1)s1(ζ)z0 + · · ·+ (−1)n−1sn−1(ζ)zn−1

0 |
= 1.

Since by (3.9) the analytic function

z 7→ n(−1)nsn(ζ)zn + (n− 1)(−1)n−1sn−1(ζ)zn−1 + · · ·+ (−s1(ζ))
n− (n− 1)s1(ζ)z + · · ·+ (−1)n−1sn−1(ζ)zn−1

sends D into D, by the maximum modulus principle it must be constant. One
can easily see that this implies that there is η ∈ T such that (s1(ζ), . . . , sn(ζ))
= πn(η, . . . , η). Since ζ ∈ T was arbitrary, we infer that there is a Blaschke
product B such that g̃ = πn(B, . . . , B) on D. But g(λ1) = g̃(λ1) and
λ1 ∈ D was arbitrary; therefore, there exists f : D → D analytic such
that g = πn(f, . . . , f) on D. Then (5.11) gives f = −b, and this easily im-
plies that f (n)

z ◦ g = −b for all z ∈ D. Therefore, without loss of generality
we may suppose that z0 ∈ T.

Let (λk)k∈N ⊆ D be a dense sequence. For each j ≥ 2, by applying
Theorem 4.2 we obtain a rational Γn-inner function gj : D→ Gn such that

gj(λk) = g(λk) for k = 1, . . . , j. As above, f (n)
z0 ◦ gj = b for each j ≥ 2. Then

by Lemma 5.4, for each j ≥ 2 the last component of gj is a Blaschke product
of degree ≤ n. Since Gn ⊆ Cn is bounded, by Montel’s theorem we can find
a subsequence (ji)i∈N ⊆ N and h : D→ Γn analytic such that gji → h locally
uniformly on D. Then clearly the last component of h is either constant or
a Blaschke product of degree at most n. But gji(λk)→ g(λk) for all k, and
therefore h(λk) = g(λk) for all k. By density we deduce that h = g, and
therefore g is a rational Γn-inner function. Now we apply Lemma 5.4 to g
to obtain the statement.
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