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Hypercyclic, topologically mixing and chaotic semigroups
on Banach spaces

by

TERESA BERMUDEZ (La Laguna), ANTONIO BONILLA (La Laguna),
Jost A. CONEJERO (Valéncia) and ALFREDO PERIS (Valéncia)

Abstract. Our aim in this paper is to prove that every separable infinite-dimensional
complex Banach space admits a topologically mixing holomorphic uniformly continuous
semigroup and to characterize the mixing property for semigroups of operators. A concrete
characterization of being topologically mixing for the translation semigroup on weighted
spaces of functions is also given. Moreover, we prove that there exists a commutative
algebra of operators containing both a chaotic operator and an operator which is not a
multiple of the identity and no multiple of which is chaotic. This gives a negative answer
to a question of deLaubenfels and Emamirad.

1. Introduction. A bounded linear operator 7' on a separable complex
Banach space X is said to be hypercyclic if there exists an z € X such that
{T"z} en is dense in X. In that case we say that z is a hypercyclic vector
for T'. A point x is called periodic for T if there exists some n > 1 such that
T"x = x. The operator T is chaotic if it is hypercyclic and the set of periodic
points is dense in X.

This definition of chaos is consistent with the definition given by Devaney
[17, p. 50] for an arbitrary continuous mapping f on a metric space, which
requires that f be transitive, the set of periodic points of f be dense, and f
have sensitive dependence on the initial conditions. The first two conditions
imply the third [5]. For more details about hypercyclicity see the surveys of
Grosse-Erdmann [23, 24] and the survey of Bonet, Martinez-Giménez and
Peris [10].
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In 1969, Rolewicz [30] gave the first example of a hypercyclic operator on
a Banach space. He showed that if B is the backward shift on [?(N), then A\B
is hypercyclic if and only if |\| > 1. He also wondered if for every separable
infinite-dimensional Banach space there exists a hypercyclic operator. This
question was independently answered in the affirmative by Ansari [1] and
Bernal [7], and by Bonet and Peris [11] for Fréchet spaces. On the other
hand, Bonet, Martinez-Giménez and Peris [9] have recently proved that the
dual of a reflexive separable hereditarily indecomposable complex Banach
space admits no chaotic bounded linear operator.

It is well known that 7" is hypercyclic if and only if for any pair of non-void
open sets U, V' there exists some positive integer n such that

(*) T"UNV 0.

An operator is said to be topologically mizing if (x) holds for every n
large enough.

Costakis and Sambarino gave a sufficient condition for a linear operator
to be topologically mixing and characterized those weighted backward shift
operators that are topologically mixing [14].

In our context all semigroups are semigroups of operators in L(X), the
set of bounded linear operators from X to X.

Our semigroups have as an index set a concrete sector in the complex
plane. For « € [0, /2] we define the sector A(«) by

Ala) = {re? :r >0, 0 € [~a,al}.

We also consider A(7) = C, the whole complex plane.

A one-parameter family {7'(t)};cA(a) of bounded linear operators is a
one-parameter semigroup of operators in L(X) if it satisfies the following
conditions:

(1) T(0) = I (here I stands for the identity operator on X).
(2) T(t)T'(s) =T(t+s) for all t,s € A(«) (semigroup law).

The infinitesimal generator A of a semigroup {7'(f)};ca(q) is defined by

Az = lim M
h—0 h
for all x € X for which this limit exists.

We say that a semigroup is strongly continuous provided that lim;_,s T'(t)
= T(s) for all s € A(«) pointwise on X . The semigroup is uniformly contin-
wous if this limit holds uniformly on the unit ball of X.

If {T'(t)}cA(a) is a strongly continuous semigroup, then the infinitesimal
generator is closed and densely defined. In the uniformly continuous case,
the infinitesimal generator is everywhere defined and bounded.
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For o # 0 the semigroup {7(t)}+cA() is @ holomorphic semigroup of
angle « if the mapping ¢ — T'(t) is analytic on A(«a). For more details
about holomorphic semigroups see [31, Chapter IX, Section 10], [28, p. 60]
and [18, Chapter II, Section 4].

The most common index set, A(0) = [0,00), is widely applied in the
literature due to its relation to ordinary and partial differential equations.
For further information about semigroups of operators on Banach spaces we
refer the reader to the book of Pazy [28], or to the recent book of Engel and
Nagel [18].

A semigroup {T'(t)};ea(q) is hypercyclic if there exists z € X such that
{T'(t)r}iea(a) is dense in X. Furthermore, it is chaotic if it is hypercyclic
and the set {x € X : 3t € A(a)\{0}, T'(¢t)x = x} is dense in X. We say that
a semigroup {7'(t) };c a(a) is topologically mizing if for every pair of non-void
sets U,V there exists g € A(«) such that

T UNV #0  for all t such that |t| > [to].

In particular, all operators (except 7(0) = I) of a topologically mixing
semigroup are topologically mixing as single operators.

The theory of hypercyclic semigroups of operators has attracted the at-
tention of many authors [6, 29, 16, 13]. In [6] it is proved that every separable
infinite-dimensional complex Banach space admits a hypercyclic uniformly
continuous semigroup and that there are some separable Banach spaces ad-
mitting no chaotic semigroup of operators.

Our aim in this paper is to prove that every separable infinite-dimen-
sional complex Banach space admits a topologically mixing holomorphic
uniformly continuous semigroup. We also give some examples of topologically
mixing semigroups. More precisely, we characterize the topologically mixing
translation semigroups on L5(I) and C ,(I), where I = A(0) = [0,00) or
I =R and p is an admissible weight function on I.

Moreover, we prove that there exists a commutative algebra of operators
that contains a chaotic operator and an operator 1" which is not a multiple of
the identity such that no multiple of 7' is chaotic, answering in the negative
a question of deLaubenfels and Emamirad [15].

2. Existence of topologically mixing holomorphic semigroups.
We consider the weighted ¢!-space with a weight sequence 3 = (3;)32; of
positive numbers, defined by

2(8) = {@)Es s wi € C, i@-yxiy < oo}

i=1



60 T. Bermuadez et al.

equipped with the norm

(o)l := ) Bilail.
i=1

If sup;en Bi/Bi+1 < M for some constant M, then the backward shift B
defined by

B(zy,z2,...) = (z2,23,...)
is a bounded linear operator on £!(3).
In the case where 3; = 1 for all i > 1 we refer to this space as /L.
Following some ideas of [16, Theorem 5.2], where it was proved that

{e!B},> is hypercyclic in ¢!(3), we prove that {etBZ}teA(,T/z) is also a topo-
logically mixing semigroup there.

LEMMA 2.1. Let = (5;)32, be a sequence of positive numbers and B the
backward shift operator. If sup;ey Bi/Biv1 < M for some constant M, then

the uniformly continuous semigroup {eth}tE A(a) 18 topologically mizing in
1(B) for every a € [0,7/2] U {r}.

Proof. Fix a € [0,7/2]U {r}. Consider
2 _{(xz) 1C(C dm Vi > m, :L’Z_O}

which is dense in ¢1(3).

Given any pair y = (y;)32; and z = (2;);2; of elements in ¢, and € > 0,
our purpose is to construct vectors v(t) = (v;(t))32, € £1(B), t € A(«), such
that, for T'(t) := etBQ, there exists tp € A(a) with

lv(t) —yl| < e and [|[T(t)v(t) — z|| < e, for all t € A(ar) with |t| > |to].
To do this we first select and fix k¥ € N with
v, =2, =0 fori>2k.

We now define v(t) as follows:

) y, fore=1,..., 2k,
Ui =
0 fori=2k+1,...,4k and for i > 6k.

We will define v;(t) for i = 4k + 1,...,6k in such a way that

3k j
(Tt) =S z—, vajai(t) fori=1,...,2k.
j=0""
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In fact, we choose v;(t) for i = 4k+1, ..., 6k as the solutions of the following

system:

Y1 Vakt1(2) Z1
(2.1) A +D — ,
Yok vek (1) 2ok,
where
10 pr 0 po O -+ 0 pp— O
01 0 pwm O po -+ ppo 0  ppq
001 0 m 0 -+ 0 s O
0 1 0 m 0 pg—2
0 1 0 0
A=
0 1
00 0 O 0 o 1 0 1
o 0 o0 0 o0 0 1 0
00 0 0 0 O 0 0 1

with p; =t'/il fori=1,...,k —1 and

Ao 0 AM 0 - X1 O
0 Ao 0 A - 0 Ak
A1 0 Ao 0 .- : 0
D= 0 Ag 0 X - : . 7
A ki1 0 D 0
0 Alpy1 - - e 0 o

where \; = 1267 /(2k 4+ 4) for i = —k +1,... k — 1.
Observe that D = UW S, where



62 T. Bermuadez et al.

t2k 0 0 0 0 0
0o ¥ 0 0 0 0
0 0 1 9 0 0
U= 0 0 0 ¢*! 0 0o |,
0 0 0 0 - 0
0 0 0 0o - 0 thtl
70 0 m 0 Mk—1 0
0 o 0O m -~ 0 m
-1 0 o 0 0
W = 0 n-1 0 mno
N—k+1 0 oo o 0
0 7Nkt - - - 0 70

with p; = 1/(2k+d)! fori=—-k+1,...,k—1, and

1 000 0 0
0100 0 0
00 ¢t 0 0 0

S=| 00 0 ¢ 0 0
000 th=1 0

0 0 0 thkt

are regular 2k x 2k matrices for ¢ # 0. Thus the solution of (2.1) is given by

VUa+1(t) 21 (7
= s twolut -4
'Uﬁk-(t) 22k Yok
Let (w;)?%, be defined as
w1 21 Y1
=yt -4

W2k 22k Yok
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Then, if we consider ¢ with |t| > 1, there exists C; independent of ¢ such
that
lw;| < Chlt| "t forj=1,...,2k.

Thus there exists C5 independent of ¢ satisfying
v ()] < Colt|""?  fori=4k+1,... 6k
Since v;(t) = y; for i < 4k and yi = 0 for ¢ > 2k, we have

6k
lo(t) —yll = Z Biluit) < Co D> Biltl .
i=dk+1 i=Ak+1
Hence, for sufficiently large |t|, we get
[o(t) —yll <e.
Moreover
6k 6k 21
ITEo(t) =2 = > BlTEHe@))l= D B> = UQJ-H(t)'
i=2k+1 i=2k+1 j= 0 7t
6k 2%k—1 e R 2% 1|t! 1/2
S oY Wypre) <y (X,
i=2k+1 §=0 i=2k+1 §=0

Therefore we conclude that ||T'(t)v(t) — z|| < € if |t] is sufficiently large. m

The following lemma is, in part, a generalization of [26, Lemma 2.1]. Its
proof follows the same lines.

LEMMA 2.2. Let X1, X5 be separable Banach spaces and let d : X1 — X5
be a continuous mapping with dense range.

(1) LetT; € L(X;) be an operator fori = 1,2 such that To® = &T;. If Ty
is topologically mizing (resp. hypercyclic), then T is also topologically
mizing (resp. hypercyclic).

(2) Let {T'(t)}ca(a) and {S(t)}ea(q) be strongly continuous semigroups
of operators on X1 and Xo respectively with o € [0,7/2] U {m} such
that S(t)® = DT (t) for all t € A(a). If {T(t)}rcn(a) is topologi-
cally mizing (resp. hypercyclic), then {S(t)}tca(a) s also topologi-
cally mizing (resp. hypercyclic).

The following result due to Ovsepian and Pelczyniski [27] is needed to

show the existence result.

THEOREM 2.3 ([27]). Let X be a separable infinite-dimensional Banach
space. Then there exist (x,)22, C X and (fm)oo_; C X*, the dual space
of X, satisfying the following conditions:

(1) fm(xn) = 5m,n7 m,n € N.

(2) span{z, :n € N} = X.
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(3) fm(z) =0 forallme N= z=0.
(4) |lzn|| =1 for all n € N and sup,,cy || fml|| = ¢ < 00.

THEOREM 2.4. Fvery separable infinite-dimensional Banach space X ad-
mits a topologically mizing holomorphic uniformly continuous semigroup of
angle m/2.

Proof. Let (xz,)22; C X and (fp)>_; C X* be as in Theorem 2.3.
Consider the bounded linear operator S : X — X defined by

o0

1
(22) Swi=3" o fui (@)
n=1

Our purpose is to show that {e*” Q}te A(r/2) is a topologically mixing holo-
morphic uniformly continuous semigroup of angle 7/2. This semigroup is
uniformly continuous by [18, Proposition 1.3.5(i)]. Since S is the generator
of a strongly continuous group, S? generates a holomorphic semigroup of
angle 7/2 by [3, Theorem 1.15] or [18, Corollary I1.4.9].

Define @ : /! — X by &((a;);) = > ;21 @jzj, which is a bounded linear
operator with dense range.

CLAIM. The semigroup e : ¢% — (' is topologically mizing, where
S((aj)j) == (a2/2,...,ang1/27,...).
From the definition it follows that S® = ®S on ¢! and therefore !5’ ¢ =

®etS” for all t € A(m/2). Applying Lemma 2.2(2) we deduce that {5}, Ar/2)
is topologically mixing in X.

Proof of the Claim. We define 3; := 1 and ; := 21t +0=1 for ¢ > 1,
and @5 : (1(3) — ! by Pg(ar, ag,...) := (Braq, B2z, ... ), which is a linear
continuous surjective mapping.

According to Lemma 2.1, {e Q}tGA (r/2) is topologically mixing on (B),
smce Bi/Bi+1 < 1 for all i € N. Therefore by Lemma 2.2(2), the semigroup

{et® } A(r/2) is topologically mixing because et Py = @56“32 for every t €
A(r/2). =
As a consequence of the above theorem, all separable infinite-dimensional
Banach spaces admit a topologically mixing holomorphic uniformly contin-
uous semigroup. However, the countable product of lines w = K~ endowed
with the product topology is a (separable) Fréchet space which does not
admit any hypercyclic uniformly continuous semigroup [12].

3. Topological mixing criteria. First of all, we state a criterion which
is sufficient for an operator to be topologically mixing.

CRITERION 3.1 (Mixing Criterion for Operators). Let X be a separable
Banach space and T € L(X). If
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(a) there exists a dense subset Xo C X such that lim, ..o T"z = 0 for
all z € Xg and

(b) there exist a dense subset Yo C X and mappings S, : Yo — X for
each n € N such that
(b.1) limy,, 00 Spy = 0 for all y € Yy, and
(b.2) limy, 0o T™ 0 Spy =y for all y € Yy,

then T 1is a topologically mizing operator.

There is another mixing criterion, which was already given by Costakis
and Sambarino [14]:

CRITERION 3.2 (Costakis—Sambarino). Let X be a separable Banach
space and T € L(X). If

(&) there exist a dense subset Xo C X and an increasing sequence (ny)
of positive integers such that supy(ng+1 — nk) < oo (i.e., (ng) s
syndetic) satisfying limg_oo T2z = 0 for all x € Xy and

(b") there exist a dense subset Yo C X and mappings Sy, : Yo — X for
each k € N such that

(b'.1) limg—,00 Spy = 0 for all y € Yo, and
(b'.2) limy—,0o T™ 0 Sy, y =y for all y € Y,
then T is a topologically mizing operator.

REMARK 3.3. Costakis—Sambarino’s criterion might look less restrictive
than ours, but it is actually equivalent: Let T satisfy (a’) and (b’) above.
We define S, := T "5, if np_1 <n < ng, k € N, and ng := 0. We set
m := supy(ng —ng_1). Given € > 0, z € Xy, y € Yo, we pick 6 > 0 such that
(1 4+ ||T]|™) < € and we find k¥’ € N satisfying

IT7all <8, [1Suyll <8 IT™ o Suy—yll <= Vk>K.
If n > ny, there are 7,7 < m and k > k' such that n =ny — j = ngp_1 + 75/,
and then
[T"|| < [T (1T 2]l <&, [[Spyll S TP NSnyll <e,
[T o Spy — yl| = T o Sp,y —yll <e,
which implies that T satisfies our Mixing Criterion.

The Mixing Criterion can be adapted to semigroups with index set [0, c0)
as follows.

CRITERION 3.4. Let {T'(t)}+>0 be a strongly continuous linear semigroup
on a separable Banach space X. If

(i) there exists a dense subset Xo C X such that lim_oo T'(t)z = 0 for
all z € X¢y and
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(ii) there exist a dense subset Yo C X and a one-parameter family of
mappings {S(t)}+>0 on Yy such that

(ii.1) limy—oo S(t)y = 0 for all y € Yy, and
(ii.2) limy—oo T(1)S(t)y = y for all y € Yy,

then {T'(t) }+>0 is a topologically mizing semigroup.

A sufficient condition for a semigroup to be mixing can be stated in terms
of syndetic sequences in [0, 00), by following the corresponding criterion for
single operators of Costakis and Sambarino. As in the previous remark, it
easily follows that this condition would be equivalent to the above criterion.

Recently, Grivaux [22] showed that, if K € L(X) is a compact operator,
then the set of vectors whose orbit under 7" := I + K tends to zero cannot
be dense in X. This in particular implies that no compact perturbation of
the identity can satisfy the Mixing Criterion. If we consider in Lemma 2.1
an increasing sequence of weights (3;) tending to infinity, then each operator
in the semigroup is a compact perturbation of the identity. In consequence
the corresponding semigroup is mixing but it does not satisfy the Mixing
Criterion.

The following result relates, in a clear way, the mixing condition for
semigroups to the mixing condition for the single operators corresponding
to a fixed index of the semigroup.

THEOREM 3.5. Let {T'(t)}+>0 be a strongly continuous semigroup of op-
erators defined on a Banach space X. The following are equivalent:

(i) {T(t)}+>0 ts a topologically mizing semigroup.
(ii) T(t) is topologically mizing as a single operator for all t > 0.
(iii) T'(to) is a topologically mizing operator for some t.

Proof. (i)=-(ii): Fix an arbitrary t; > 0; we prove that T'(¢;) is topo-
logically mixing as a single operator. As {T'(t)}+>0 is topologically mix-
ing, given two non-void open sets U and V, there exists sg > 0 such that
Tt)(U)NV #( for all t > sg. Consider n; € N such that nit; > sg. Then
T(t1)"UNV # 0 for all n > n;.

(if)=>(iii) is trivial.

(iii)=-(i): Let t9 > 0 be such that T'({p) is a mixing operator. Given
non-empty open sets U,V C X, we find a 0-neighbourhood W, and two
non-empty open subsets U C U, V C V, satisfying

U+WcU, V+WCcCVW
By local equicontinuity, there is another 0-neighbourhood W C W such that

T(s)(W) C W for each s < tq. Since T'(tg) is mixing, there is m € N large
enough so that

T(nto)(U)NW #0, T(ntg)W)NV £0,  V¥n>m.
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Now, given t > mtg there are s,s’ < tg and n > m satisfying t = s + nty =
(n + 1)tg — s’. On the other hand, we find v € U and w € W such that
T(nto)u € W and T((n+ 1)to)w € V. Setting w := T(s')w € W, we thus
infer that

T(t)(u+w) = T(s)(T(nto)u) + T((n+ 1)to — ') (T(s")w)
belongs to T(s)(W) + T((n + 1)tg)w C W + V C V. From this we conclude

that the semigroup is mixing. =

By the above theorem, if {T(¢)}:>0 is a topologically mixing semigroup,
then all T'(t) are topologically mixing operators. However, we do not know
if the hypercyclic vectors are the same.

4. Topologically mixing translations. Let I be either [0, 00) or R. By
an admissible weight function on I we mean a measurable function ¢ : I — R
satisfying the conditions:

(1) o(x) >0 for all x € I;
(2) there exist constants M > 1 and w € R such that o(z) < Me“!o(t+x)
for all z € I and all ¢ > 0.

We consider the following function spaces:

LE(I) ={u: I — C : u measurable, S |u(7)|Po(T) dr < o0}

I

with /

1/p

lully = (§lu(r)Pe(rydr) ™, p=1,
I
and
Co,o(I) ={u:1— C : u continuous, lim o(7)u(r) =0}

with

[ulloo = sup u(7)]o(T).
Tel

Similar spaces are considered for real-valued functions.

LEMMA 4.1 ([16, Lemma 4.2]). Let I be either [0,00) or R and let o
be an admissible weight function on I. For each | > 0 there are constants
0 <m < M (depending on o and | only) such that for each o € I and each
T € lo,0+ 1],

mo(o) < o(1) < Mo(o +1).
The translation semigroup {T'(t)}+>0 with parameter ¢ € [0, c0) is defined

[T(t)u](7) :=u(r +t) for u e Co,(I) or LE(T).
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LEMMA 4.2 ([16, Theorems 4.7 and 4.8]). Let X be one of the spaces
L(I) or Cy,o(I) with an admissible weight function o and let {T(t)}i>0 be
the translation semigroup on X.

(1) If I =10,00), then {T'(t)}+>0 is hypercyclic if and only if
liminf o(t) = 0.
t—o0
(2) If I =R, then {T(t)}+>0 ts hypercyclic if and only if for each 6 € R,
liminf o(¢t + 0) = liminf o(—t + 0) = 0.
t—o0 t—o00
We give analogous results for topologically mixing translations.

THEOREM 4.3. Let X be one of the spaces Li(I) or Cp,(I) with an
admissible weight function o and let {T'(t)}1>0 be the translation semigroup
on X.

(1) If I =10,00), then {T'(t)}+>0 is topologically mizing if and only if
frg o) =0
(2) If I =R, then {T(t)}+>0 is topologically mizing if and only if
Jim o) = Jim o) =

Proof. We will prove the case X = Li(I). The case X = (g ,(I) is easier.
(1) First assume that {T'(¢) }+>0 is topologically mixing. Consider U,, :=
B(0,1/n), the ball of centre 0 and radius 1/n, and V,, := B(u,1/n), where
u is a fixed non-zero function with support in [0,[] for some [ > 0. Since

{T'(t) }+>0 is topologically mixing, it follows that for each n > 0, there exists
t(n) (defined as before) such that

THUL NV, £0, > t(n).

To derive a contradiction we will suppose that limsup,_,., o(t) # 0. For
every n > 0, there exists ¢, > 0 such that lim, .~ ¢, = oo and o(t,) > § for
some ¢ > 0. Hence there exists u,, € U, such that ||T(¢,)u, —u|| < 1/n. Let
Wn = Un|t, 1,40 Then [|T(tn)wa | — [ul] # 0.

On the other hand, using Lemma 4.1 we obtain

l tn+l
IT(tn)wnll? = lwa(r + ta)Po(r) dr = § Jwn(r)[Po(r — ta) dr
0 tn

tn+l1
< Mo(l) | |wa(r)|P dr

tn
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Moreover,

oo tn+l

lunll” = § [un()Po(r)dr = | |wa(r)[Po(r) dr
0 tn
tn+l
> mo(tn) | |wn(7)Pdr
tn

for some m, M > 0. Hence by the two inequalities obtained before we have

M M 1
It )unl? < 2 20 fualP < T80 < 02
Therefore, ||T(t,)wy||P — 0 as n — 0, which yields a contradiction. We then
get lim;_. o(t) = 0.

Conversely, suppose that lim; .o 0(t) = 0. It is enough to prove that
{T'(t) }+>0 satisfies Criterion 3.4. Consider the set X of all functions defined
on [0,00) with compact support. It is clear that Xy is dense in X. In order
to define S(t), let u € Xy be a function with compact support on [0,!] for

some [ > 0. Define
0 if 7 < ¢,
vi(7) = .
u(t—t) if 7>t

Then
oo t+1
loillP = § [oi(r)Po(r)dr = | |u(r = t)Po(r) dr
t t
t-+l l
< Mo(t+1) | Ju(r = t)|P dr = Mo(t + 1) { |u(r)|P dr.
t 0
Moreover
! l
lull” = § [u(r)Po(r) dr = me(0) | u(r)[” dr.
0 0
Hence ( )
Mo(t+1
|| < ———=||ullP.
[[od[” < m0(0) ul
Since lim;_. 0(t) = 0, we see that ||v:|| — 0 as t — oc.
Define S(t)u := v, which converges to zero as t — oo for all u with

compact support. Moreover T'(t)S(t)u = u for all u € Xy. The proof in the
case I = [0,00) is complete.

(2) Suppose that {T'(t)}:>0 is a topologically mixing semigroup. If
lim;_,o0 0(t) # 0 then, by following the argument of (1), we reach a con-
tradiction. If lim; .o, o(—t) # O then, proceeding in a similar manner and
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keeping the same notation for u, U, and V,, we find ¢, > 0 such that
lim,, t,, = 00, o(—t,) > § for some ¢ > 0, and
T(tn)VoNU, #0 V¥n eN.
Hence there exists v, € V,, such that ||v, —u| < 1/n and ||T'(¢t,)v.| < 1/n.
Let wy, := vp|joy- Then |lw, — u|| — 0 and || T'(t,)w,|| — 0 as n — oo, since
l[wn = ull < flvn — ull and [T (tn)wn | < |T(tn)vnll-
On the other hand, using Lemma 4.1, we obtain
I—ty,
> T(t)wallP = | [on(r + ta)Po(r) dr
—tn
! !
= lon(N)Polr = tn) dr > mo(—ty) | lon(7)|P dr
0 0

1
np

Moreover,
! !
[wnl? = { [va(T)Po(r) dr < Mo(l) | [on(r)|? dr
0 0
for some m, M > 0. Using these inequalities we get
mo(—ty, ma
Mo(1) Mo(l)

1
L Tt P > [ul]? #0  ¥neN,
yielding a contradiction.

Conversely, suppose that lim; . 0(t) = lim;_,oc 0(—t) = 0. It is enough
to prove that {T'(¢)}+>0 satisfies Criterion 3.4. Consider the set Xy of all
functions defined on R with compact support, which is a dense subspace
of X. Using the same technique as in (1) we find that 7'(¢)u converges to
zero as t — oo for all u € Xj. In order to define S(t), let u € Xy be a
function with compact support on [—[, (] for some [ > 0. If we define

0 ifr—t<—lI,
(S(t)u)(r) = .
u(r—t) ifr—t>—l,
we easily prove that lim; .., S(t)u = 0. Moreover T'(¢)S(t)u = w, and the
proof is complete. u

A bounded linear operator S on a Banach space X is a generalized back-
ward shift if the kernel of .S, denoted by ker S, is a one-dimensional subspace
and (J{ker S™ : n =0,1,2,...} is dense in X [20]. Inspired by the arguments
of [26, Section 5], we can establish the following two results.

THEOREM 4.4. If S is a generalized backward shift on a separable Ba-
nach space X, then {e*® }>0 s a topologically mizing uniformly continuous
semaigroup.
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Proof. Since S is a generalized backward shift, there exists a sequence
{ej}52, of non-zero vectors such that Se; = 0, Sej11 = e; for j € N and
span{e; : j € N} = X (see [20]).

Define w := (wj)‘;‘;l, where w; := ||e;]|, and

o0
VN (w) — X, (ml,xg,...)HLT/(xl,mz,...):Z$jej.
j=1

Since w; = |l = [|Sejall < (IS lej41ll = l[Sllwjs1, we have
wj/wjy1 < ||S||  for every j € N.

Moreover, the following diagram commutes:

£ (w) - 1 (w)

where B is the backward shift defined on ¢! (w).

On the other hand, e'? is topologically mixing (see the proof of [16,
Theorem 5.2]). By Lemma 2.2(2) we conclude that {e"*};>q is topologically
mixing. =

In particular, if S is a generalized backward shift on a Banach space,
then e® is a topologically mixing operator. This is related to the following
question of [14]: Characterize those unilateral backward shifts 7' for which
I + T is topologically mixing.

THEOREM 4.5. If S is a generalized backward shift on a separable Banach
space, then I + S is a topologically mizing operator.

Proof. Using the same argument of the last theorem, we find that the
following diagrams commute:

1+T

(o

s |

O w) 0 (w)

| b

where the weights w = (wy,) and the mapping ¥ are given in the proof of the
previous theorem, T is a weighted backward shift operator defined on ¢! by

w1 w2
T(aj‘l,aj‘g,...) = <—ZL‘2,—3§‘3,...>
w2 w3
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and
G0 — M w), (z1,22,...)— D(ry,29,...) = (ﬂ,ﬂ,)
w1 W2
Hence, (I + B)® = ¢(I +T) and (I + S)¥ = ¥(I + B). By [22, Lemma
2.3] the operator [ + T is topologically mixing, so Lemma 2.2(1) shows that
I + B is topologically mixing. Using Lemma 2.2(1) again, we get the desired
result. m

5. Chaotic semigroups and infinitesimal generators. In [15] de-
Laubenfels and Emamirad made the following

CONJECTURE 5.1. Suppose A is a commutative algebra of operators that
contains a chaotic operator. Let T € A which is not a multiple of the identity.
Then there exists a constant ¢ > 0 such that cT' is chaotic.

Our purpose in this section is to provide an example that disproves the
above conjecture.

REMARK 5.2. There is a chaotic operator R such that no multiple of the
semigroup generated by R is hypercyclic.

Let T = I +&B on ¢! (N), where B is the backward shift on ¢!(N), and let
e > 0. By [20, Sect. 6], T is chaotic. The operator T2 inherits the periodic
points of T, and it is also hypercyclic [2, Theorem 1], therefore chaotic. Hence
by [8, Proposition 2.14 and Theorem 2.3]|, 72 @ T? is hypercyclic and equals
T?@ (-T)? = (T ®—-T)?% so T® —T is hypercyclic. On the other hand, the
set

{z @y | x,y are periodic points for 7'}

is dense in X & X and it consists of periodic points for 7' @ —T', hence
R :=T & —T is also chaotic.

If ¢ is sufficiently small then, for each multiple of e?, at least one of the
two components of its spectrum does not intersect the unit circle, therefore
it cannot be hypercyclic. This gives a negative answer to Conjecture 5.1.

REMARK 5.3. There exists a chaotic uniformly continuous semigroup
such that no multiple of its generator is hypercyclic.

Let T(t) = e*¥ on ¢}(N), where S := 2B and B is the backward shift
operator on ¢}(N). Then o(S) = B(0,2) and S is chaotic by [20, Sect. 6].
Moreover, T'(t) (as a single operator!) is chaotic by [16, Theorem 5.3].

This implies that T(t) ® e>*T'(t) is chaotic, and the spectrum of its in-
finitesimal generator S @ (5i + S) is B(0,2) U B(5i,2).

Thus, for any multiple of the infinitesimal generator, there is a connected
component of its spectrum which does not intersect the unit circle and, hence,
it cannot be hypercyclic.
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6. Final remarks. A Banach space X is called hereditarily indecom-
posable if whenever Y and Z are closed infinite-dimensional subspaces of X
satisfying Y N Z = {0}, then Y + Z is non-closed.

Gowers and Maurey provided the first example of a hereditarily indecom-
posable Banach space [21]. In particular, they proved that every bounded
linear operator 1" on X can be written as T'= A\ 4+ S, where A € C and S is
strictly singular (i.e. it has no bounded inverse on any infinite-dimensional
subspace).

Notice that the dual of a hereditarily indecomposable space may be far
from being hereditarily indecomposable [4]. However, Ferenczi proved that
the space defined by Gowers and Maurey in [21]|, Xgm, which is hereditarily
indecomposable, has the property that X¢,; is also hereditarily indecompos-
able [19, Corollary 22].

From the proof of the main theorem of [9], [6, Theorem 3.3], and [25,
Theorem 2.8] we can deduce the following result:

THEOREM 6.1. Let X be a hereditarily indecomposable Banach space
such that X* is also hereditarily indecomposable. Then all hypercyclic op-
erators on X are of the form

T=X+S

with S strictly singular, |\| = 1 and o(S) = 0. Moreover, all hypercyclic
semigroups on X are of the form
OiT+S)t

where S is strictly singular and o(S) = 0 and 0 is a real number.

On the one hand, if S is a generalized backward shift in a Banach space,
then I + S and e are hypercyclic operators by [26, Theorem 5.2] and The-
orem 4.4, respectively.

On the other hand, if we consider the operator S = 2iI + B on ¢}(N),
where B is the backward shift, then o(S) C B(24,1) and

(1) I+ S cannot be hypercyclic.
(2) e is hypercyclic.

QUESTION. Let S be a continuous linear operator on a Banach space X,
whose spectrum is connected and contains zero. If I + S is hypercyclic, is e°
necessarily hypercyclic? Is the converse true?
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