Generalized non-commutative tori

by

CHUN-GIL PARK (Taejon)

Abstract. The generalized non-commutative torus T_{ϱ}^k of rank n is defined by the crossed product $A_{m/k} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$, where the actions α_i of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of a rational rotation algebra $A_{m/k}$ are trivial, and $C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$ is a non-commutative torus A_{ϱ} . It is shown that T_{ϱ}^k is strongly Morita equivalent to A_{ϱ} , and that $T_{\varrho}^k \otimes M_{p^{\infty}}$ is isomorphic to $A_{\varrho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Introduction. Let G be a locally compact abelian group. A *multiplier* on G is a measurable function $\omega: G \times G \to \mathbb{T}^1$ which satisfies

$$\begin{split} \omega(xy,z)\omega(x,y) &= \omega(x,yz)\omega(y,z), \quad x,y,z \in G, \\ \omega(x,e) &= \omega(e,x) = 1, \qquad x \in G, \end{split}$$

where e is the identity in G. Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^* -algebra $C^*(G, \omega)$. $C^*(\mathbb{Z}^n, \omega)$ is said to be a non-commutative torus of rank n and denoted by A_{ω} . The multiplier ω determines a subgroup S_{ω} of G, called its symmetry group, and ω is called totally skew if the symmetry group S_{ω} is trivial; the torus A_{ω} is then called completely irrational (see [1]). It was shown in [1] that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* -algebra.

Boca [3] showed that almost all completely irrational non-commutative tori are isomorphic to inductive limits of circle algebras, where the "circle algebra" means a C^* -algebra which is a finite direct sum of C^* -algebras of the form $C(\mathbb{T}^1) \otimes M_q(\mathbb{C})$. We will assume that each completely irrational non-commutative torus appearing in this paper is an inductive limit of circle algebras.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L05, 46L87.

Key words and phrases: non-commutative torus, equivalence bimodule, circle algebra, real rank 0, crossed product, UHF-algebra, Cuntz algebra.

Research supported by grant No. 1999-2-102-001-3 from the interdisciplinary Research program year of the KOSEF. The author would also like to thank the referee for a number of valuable suggestions to a previous version of this paper.

In [5], it was shown that two separable C^* -algebras A and B are stably isomorphic if and only if they are strongly Morita equivalent, i.e., there exists an A-B-equivalence bimodule defined in [14]. In [4], M. Brabanter constructed an $A_{m/k}$ - $C(\mathbb{T}^2)$ -equivalence bimodule. Modifying his construction, we are going to construct a T^k_{ρ} - A_{ρ} -equivalence bimodule.

It was shown in [2, Theorem 1.5] that each completely irrational noncommutative torus has real rank 0, where the "real rank 0" means that the set of invertible self-adjoint elements is dense in the set of self-adjoint elements. Combining Theorem 1.2 given in the first section and [6, Corollary 3.3] yields that if A_{ϱ} is simple then T_{ϱ}^{k} has real rank 0, since the noncommutative torus A_{ϱ} has real rank 0. And Lin and Rørdam's results [12, Propositions 2 and 3] say that if A_{ϱ} simple then T_{ϱ}^{k} is an inductive limit of circle algebras, since $T_{\varrho}^{k} \otimes \mathcal{K}(\mathcal{H}) \cong A_{\varrho} \otimes \mathcal{K}(\mathcal{H})$ is an inductive limit of circle algebras.

Combining Elliott's classification theorem [10, Theorem 7.1] and Ji and Xia's result [11, Theorem 1.3] yields that the completely irrational noncommutative tori A_{ω} of rank n and the simple generalized non-commutative tori T_{ϱ}^{k} of rank n are classified by the ranges of the traces, and so one can completely classify them up to isomorphism or up to strong Morita equivalence. Hence some completely irrational non-commutative tori A_{ω} of rank n are isomorphic to some simple generalized non-commutative tori T_{ϱ}^{k} of rank n, and this result can be applied to understand the (bundle) structure of C^* -algebras of sections of locally trivial continuous C^* -algebra bundles over CW-complexes with fibres completely irrational non-commutative tori.

It is moreover shown that $T_{\varrho}^k \otimes M_{p^{\infty}}$ is isomorphic to $A_{\varrho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p, that $\mathcal{O}_{2u} \otimes T_{\varrho}^k$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\varrho} \otimes M_k(\mathbb{C})$ if and only if k and 2u - 1 are relatively prime, and that $\mathcal{O}_{\infty} \otimes T_{\varrho}^k$ is not isomorphic to $\mathcal{O}_{\infty} \otimes A_{\varrho} \otimes M_k(\mathbb{C})$ if k > 1, where \mathcal{O}_u and \mathcal{O}_{∞} denote the Cuntz algebra and the generalized Cuntz algebra, respectively.

1. Generalized non-commutative tori. It was shown in [4, Proposition 1] that $A_{m/k}$ is the C^{*}-algebra of matrices $(f_{ij})_{i,j=1}^k$ of functions f_{ij} with

$$f_{ij} \in C^*(k\mathbb{Z} \times k\mathbb{Z}) \quad \text{if } i, j \in \{1, \dots, k-1\} \text{ or } (i, j) = (k, k),$$

$$f_{ik} \in \Omega \& f_{ki} \in \Omega^* \quad \text{if } i \in \{1, \dots, k-1\},$$

where Ω and Ω^* are the $C^*(k\mathbb{Z} \times k\mathbb{Z})$ -modules defined as

$$\begin{split} \Omega &= \{ f \in C(\widehat{k\mathbb{Z}} \times [0,1]) \mid f(z,1) = z^s f(z,0), \ \forall z \in \widehat{k\mathbb{Z}} \}, \\ \Omega^* &= \{ f \in C(\widehat{k\mathbb{Z}} \times [0,1]) \mid f^* \in \Omega \} \end{split}$$

for an integer s such that $sm = 1 \pmod{k}$.

The non-commutative torus A_{ω} of rank n is obtained by an iteration of n-1 crossed products by actions of \mathbb{Z} , the first action being on $C(\mathbb{T}^1)$. When A_{ω} has a primitive ideal space $\widehat{S}_{\omega} \cong \widehat{k\mathbb{Z}}$, A_{ω} is realized as the C^* -algebra of sections of a locally trivial continuous C^* -algebra bundle over $\widehat{k\mathbb{Z}}$ with fibres $C^*(\mathbb{Z}^n/S_{\omega},\omega_1)$ for some totally skew multiplier ω_1 , where $C^*(\mathbb{Z}^n/S_{\omega},\omega_1) \cong A_{\varphi} \otimes M_k(\mathbb{C})$ for A_{φ} a completely irrational non-commutative torus of rank n-1. By a change of basis, one can assume that $A_{\omega} \cong A_{m/k} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$, where the actions α_i of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of $A_{m/k}$ are trivial, since the fibre $M_k(\mathbb{C})$ of $A_{m/k}$ is factored out of the fibre $C^*(\mathbb{Z}^n/S_{\omega},\omega_1)$ of A_{ω} (see [1, 9, 13]). This assures us of the existence of such actions α_i as in the definition of T_{α}^k in the abstract.

1.1. DEFINITION. The generalized non-commutative torus T_{ϱ}^k of rank n is defined to be the crossed product $A_{m/k} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$, where the actions α_i of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of a rational rotation algebra $A_{m/k}$ are trivial, and $C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$ is a non-commutative torus A_{ϱ} of rank n.

So the generalized non-commutative torus T_{ϱ}^{k} has a matrix representation induced from the matrix representation of the rational rotation subalgebra $A_{m/k}$.

1.2. PROPOSITION. The generalized non-commutative torus T_{ϱ}^{k} is isomorphic to the C^{*}-algebra of matrices $(g_{ij})_{i,j=1}^{k}$ with

 $g_{ij} \in A_{\varrho} \qquad if \ i, j \in \{1, \dots, k-1\} \ or \ (i, j) = (k, k),$ $g_{ik} \in \widetilde{\Omega} \& \ g_{ki} \in \widetilde{\Omega}^* \qquad if \ i \in \{1, \dots, k-1\},$

where $\widetilde{\Omega}$ and $\widetilde{\Omega}^*$ are the A_{ρ} -modules defined as

$$\widetilde{\Omega} = A_{\varrho} \cdot \Omega, \qquad \widetilde{\Omega}^* = A_{\varrho} \cdot \Omega^*.$$

Here Ω and Ω^* are the $C^*(k\mathbb{Z} \times k\mathbb{Z})$ -modules defined above.

Proof. One sees from the definition of T_{ϱ}^{k} that the isomorphism between $A_{m/k}$ and the C^{*} -algebra of matrices $(f_{ij})_{i,j=1}^{k}$ satisfying the condition given above gives an isomorphism between T_{ϱ}^{k} and the C^{*} -algebra of matrices $(g_{ij})_{i,j=1}^{k}$ satisfying the condition given in the statement. Note that $\widetilde{\Omega}$ and $\widetilde{\Omega}^{*}$ are the A_{ϱ} -modules defined by canonically replacing $C^{*}(k\mathbb{Z} \times k\mathbb{Z})$ in $\Omega = C^{*}(k\mathbb{Z} \times k\mathbb{Z}) \cdot \Omega$ with $A_{\varrho} \cong C^{*}(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_{3}} \mathbb{Z} \times_{\alpha_{4}} \ldots \times_{\alpha_{n}} \mathbb{Z}$, since the entries in the matrix representation of $A_{m/k}$ have a $C^{*}(k\mathbb{Z} \times k\mathbb{Z})$ -module structure, and T_{ϱ}^{k} may be obtained by canonically replacing $C^{*}(k\mathbb{Z} \times k\mathbb{Z})$ with $A_{\varrho} \cong C^{*}(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_{3}} \mathbb{Z} \times_{\alpha_{4}} \ldots \times_{\alpha_{n}} \mathbb{Z}$.

We are going to construct a T_{ρ}^{k} - A_{ρ} -equivalence bimodule.

1.3. THEOREM. T_{ρ}^{k} is strongly Morita equivalent to A_{ρ} .

Proof. Let X be the complex vector space $(\bigoplus_{1}^{k-1} \widetilde{\Omega}) \oplus A_{\varrho}$. We will consider the elements of X as (k, 1) matrices where the first k-1 entries are in $\widetilde{\Omega}$ and the last entry is in A_{ϱ} . If $x \in X$, denote by x^* the (1, k) matrix resulting from x by transposition and involution so that $x^* \in (\bigoplus_{1}^{k-1} \widetilde{\Omega}^*) \oplus A_{\varrho}$. The space X is a left T_{ϱ}^k -module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F = (g_{ij})_{i,j=1}^k \in T_{\varrho}^k$ and $x \in X$. If $g \in A_{\varrho}$ and $x \in X$, then $x \cdot [g]$ defines a right A_{ϱ} -module structure on X. Now we define a T_{ϱ}^k -valued and an A_{ϱ} -valued inner products $\langle \cdot, \cdot \rangle_{T_{\varrho}^k}$ and $\langle \cdot, \cdot \rangle_{A_{\varrho}}$ on X by

$$\langle x, y \rangle_{T^k_{\varrho}} = x \cdot y^*, \quad \langle x, y \rangle_{A_{\varrho}} = x^* \cdot y$$

for $x, y \in X$, with matrix multiplication on the right.

It is obvious that for $x, y \in X, x \cdot y^* \in T_{\varrho}^k$ and $x^* \cdot y \in A_{\varrho}$. Let $A_{m/k} = T_{\varrho}^k$. By [4, Theorem 3], $\{x \cdot y^* \mid x, y \in X\}$ is dense in $A_{m/k}$. Let us replace $C^*(k\mathbb{Z} \times k\mathbb{Z})$ in the vector space X for $A_{m/k}$ with $A_{\varrho} \cong C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$. From the definitions of $\widetilde{\Omega}$ and $\widetilde{\Omega}^*$ and the structure of the generalized non-commutative torus T_{ϱ}^k of rank n, given in the proof of Proposition 1.2, one finds that $\{x \cdot y^* \mid x, y \in X\}$ is dense in T_{ϱ}^k . On the other hand, for any $a \in A_{\varrho}$, let $x = (0, 0, \ldots, 0, 1), y = (0, 0, \ldots, 0, a) \in X$. Then $x^* \cdot y = a$. Hence $\{x^* \cdot y \mid x, y \in X\}$ is dense in A_{ϱ} . So X becomes a $T_{\varrho}^k - A_{\varrho}$ -equivalence bimodule, as desired.

The generalized non-commutative torus T_{ϱ}^k of rank n is strongly Morita equivalent to the non-commutative torus A_{ϱ} of rank n, so $K_i(T_{\varrho}^k) \cong K_i(A_{\varrho})$ $\cong \mathbb{Z}^{2^{n-1}}$ (see [9, Theorem 2.2]). The non-commutative torus A_{ϱ} of rank n is the universal object for unitary ϱ -representations of \mathbb{Z}^n , so A_{ϱ} is realized as $C^*(u_1, \ldots, u_n \mid u_i u_j = e^{2\pi i \theta_{ji}} u_j u_i)$, where u_i are unitaries and θ_{ji} are real numbers for $1 \leq i, j \leq n$.

1.4. THEOREM. (1) $\operatorname{tr}(K_0(T_{\varrho}^k)) = k^{-1} \cdot \operatorname{tr}(K_0(A_{\varrho}))$ if A_{ϱ} is completely irrational.

(2) $[1_{T^k_{\rho}}] \in K_0(T^k_{\rho})$ is primitive.

Proof. (1) T_{ϱ}^{k} has a matrix representation induced from the matrix representation of the rational rotation subalgebra $A_{m/k}$. The diagonal entries of the matrix representation are in A_{ϱ} , and so the range of the trace of $K_{0}(T_{\varrho}^{k})$ is

$$\mathbb{Z} + \frac{1}{k}(\mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\beta + \ldots + \mathbb{Z}\gamma),$$

where $\operatorname{tr}(K_0(A_{\varrho})) = \mathbb{Z} + \mathbb{Z}k + \mathbb{Z}\alpha + \mathbb{Z}\beta + \ldots + \mathbb{Z}\gamma$. Hence $\operatorname{tr}(K_0(T_{\varrho}^k)) = k^{-1} \cdot \operatorname{tr}(K_0(A_{\varrho}))$.

(2) We argue by induction on n. For n = 2, it is the Elliott result [9, Theorem 2.2]. Assume that the result is true for all T_{ϱ}^{k} with n = i - 1. Since T_{ϱ}^{k} is realized as $A_{m/k} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \ldots \times_{\alpha_n} \mathbb{Z}$, write $\mathbb{S}_i = C^*(\mathbb{S}_{i-1}, u_i)$, where $\mathbb{S}_i = C^*(A_{m/k}, u_3, \ldots, u_i)$. Then the inductive hypothesis applies to \mathbb{S}_{i-1} . Also, we can think of \mathbb{S}_i as the crossed product of \mathbb{S}_{i-1} by an action α_i of \mathbb{Z} , where the generator of \mathbb{Z} corresponds to u_i , which acts on $C^*(u_1^k, u_2^k, u_3, \ldots, u_{i-1})$ by conjugation (sending u_j to $u_i u_j u_i^{-1} = e^{2\pi i \theta_{ji}} u_j$, $j \neq 1, 2$, and sending u_j^k to $u_i u_j^k u_i^{-1} = e^{2\pi i k \theta_{ji}} u_j^k$, j = 1, 2), and which acts trivially on $M_k(\mathbb{C})$. Note that this action is homotopic to the trivial action, since we can homotope θ_{ji} to 0. Hence \mathbb{Z} acts trivially on the K-theory of \mathbb{S}_{i-1} . The Pimsner–Voiculescu exact sequence for a crossed product gives an exact sequence

$$K_0(\mathbb{S}_{i-1}) \xrightarrow{1-(\alpha_i)_*} K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \to K_1(\mathbb{S}_{i-1}) \xrightarrow{1-(\alpha_i)_*} K_1(\mathbb{S}_{i-1})$$

and similarly for K_1 , where the map Φ is induced by inclusion. Since $(\alpha_i)_* = 1$ and since the K-groups of \mathbb{S}_{i-1} are free abelian, this reduces to a split short exact sequence

$$\{0\} \to K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \to K_1(\mathbb{S}_{i-1}) \to \{0\}$$

and similarly for K_1 . So $K_0(\mathbb{S}_i)$ and $K_1(\mathbb{S}_i)$ are free abelian of rank $2 \cdot 2^{i-2} = 2^{i-1}$. Furthermore, since the inclusion $\mathbb{S}_{i-1} \to \mathbb{S}_i$ sends $1_{\mathbb{S}_{i-1}}$ to $1_{\mathbb{S}_i}, [1_{\mathbb{S}_i}]$ is the image of $[1_{\mathbb{S}_{i-1}}]$, which is primitive in $K_0(\mathbb{S}_{i-1})$ by inductive hypothesis. Hence the image is primitive, since the Pimsner–Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

1.5. COROLLARY. T_{ϱ}^{k} is not isomorphic to $A \otimes M_{d}(\mathbb{C})$ for a C^{*} -algebra A if d > 1.

Proof. Assume T_{ϱ}^{k} is isomorphic to $A \otimes M_{d}(\mathbb{C})$. Then the unit $1_{T_{\varrho}^{k}}$ maps to $1_{A} \otimes I_{d}$. This implies that there is a projection e in T_{ϱ}^{k} such that $[1_{T_{\varrho}^{k}}] = d[e]$ in $K_{0}(T_{\varrho}^{k})$, which contradicts Theorem 1.4 if d > 1. Thus no non-trivial matrix algebra can be factored out of T_{ϱ}^{k} .

2. Tensor products of generalized non-commutative tori with UHF-algebras and Cuntz algebras. Using the fact that $[1_{T_{\varrho}^{k}}] \in K_{0}(T_{\varrho}^{k})$ is primitive, we investigate the structure of $T_{\varrho}^{k} \otimes M_{p^{\infty}}$ for $M_{p^{\infty}}$ a UHF-algebra of type p^{∞} .

2.1. THEOREM. $T_{\varrho}^k \otimes M_{p^{\infty}}$ is isomorphic to $A_{\varrho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of k is a subset of the set of prime factors of p. To show that $T_{\rho}^k \otimes M_{p^{\infty}}$ is isomorphic to $A_{\rho} \otimes M_k(\mathbb{C}) \otimes$

 $M_{p^{\infty}}$, it is enough to show that $T_{\varrho}^{k} \otimes M_{k^{\infty}} \cong A_{\varrho} \otimes M_{k}(\mathbb{C}) \otimes M_{k^{\infty}}$. But there exist the C^{*} -algebra homomorphisms which are the canonical inclusions $T_{\varrho}^{k} \otimes M_{k^{g}}(\mathbb{C}) \hookrightarrow A_{\varrho} \otimes M_{k}(\mathbb{C}) \otimes M_{k^{g}}(\mathbb{C})$ and the A_{ϱ} -module maps $A_{\varrho} \otimes M_{k^{g}}(\mathbb{C}) \hookrightarrow T_{\varrho}^{k} \otimes M_{k^{g}}(\mathbb{C})$:

$$T_{\varrho}^{k} \hookrightarrow A_{\varrho} \otimes M_{k}(\mathbb{C}) \hookrightarrow T_{\varrho}^{k} \otimes M_{k}(\mathbb{C}) \hookrightarrow A_{\varrho} \otimes M_{k^{2}}(\mathbb{C}) \hookrightarrow \dots$$

The inductive limit of the odd terms

$$\ldots \to T^k_{\varrho} \otimes M_{k^g}(\mathbb{C}) \to T^k_{\varrho} \otimes M_{k^{g+1}}(\mathbb{C}) \to \ldots$$

is $T_{\rho}^k \otimes M_{k^{\infty}}$, and the inductive limit of the even terms

$$\dots \to A_{\varrho} \otimes M_{k^g}(\mathbb{C}) \to A_{\varrho} \otimes M_{k^{g+1}}(\mathbb{C}) \to \dots$$

is $A_{\varrho} \otimes M_{k^{\infty}}$. Thus by the Elliott theorem [10, Theorem 2.1], $T_{\varrho}^k \otimes M_{k^{\infty}}$ is isomorphic to $A_{\varrho} \otimes M_{k^{\infty}}$.

Conversely, assume that $T_{\varrho}^k \otimes M_{p^{\infty}} \cong A_{\varrho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$. Then the unit $1_{T_{\varrho}^k} \otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{A_{\varrho}} \otimes 1_{M_{p^{\infty}}} \otimes I_k$. So

$$\begin{split} [\mathbf{1}_{T_{\varrho}^{k}} \otimes \mathbf{1}_{M_{p^{\infty}}}] &= [\mathbf{1}_{A_{\varrho}} \otimes \mathbf{1}_{M_{p^{\infty}}} \otimes I_{k}], \\ [\mathbf{1}_{T_{\varrho}^{k}} \otimes \mathbf{1}_{M_{p^{\infty}}}] &= [\mathbf{1}_{T_{\varrho}^{k}}] \otimes [\mathbf{1}_{M_{p^{\infty}}}], \\ [\mathbf{1}_{A_{\varrho}} \otimes \mathbf{1}_{M_{p^{\infty}}} \otimes I_{k}] &= k([\mathbf{1}_{A_{\varrho}}] \otimes [\mathbf{1}_{M_{p^{\infty}}}]). \end{split}$$

Under the assumption that the unit $1_{T_{\varrho}^{k}} \otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{A_{\varrho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{k}$, if there is a prime factor q of k such that $q \nmid p$, then $[1_{M_{p^{\infty}}}] \neq q[e_{\infty}]$ for e_{∞} a projection in $M_{p^{\infty}}$. So there is a projection $e \in T_{\varrho}^{k}$ such that $[1_{T_{\varrho}^{k}}] = q[e]$. This contradicts Theorem 1.4. Thus the set of prime factors of k is a subset of the set of prime factors of p.

Therefore, $T_{\varrho}^k \otimes M_{p^{\infty}}$ is isomorphic to $A_{\varrho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Let us study the structure of the tensor products of generalized noncommutative tori with (even) Cuntz algebras.

The Cuntz algebra $\mathcal{O}_u, 2 \leq u < \infty$, is the universal C^* -algebra generated by u isometries s_1, \ldots, s_u , i.e., $s_j^* s_j = 1$ for all j, with the relation $s_1 s_1^* + \ldots + s_u s_u^* = 1$. Cuntz [7, 8] proved that \mathcal{O}_u is simple and the K-theory of \mathcal{O}_u is $K_0(\mathcal{O}_u) = \mathbb{Z}/(u-1)\mathbb{Z}$ and $K_1(\mathcal{O}_u) = 0$. He proved that $K_0(\mathcal{O}_u)$ is generated by the class of the unit.

2.2. PROPOSITION. Let u be a positive integer such that k and u-1 are not relatively prime. Then $\mathcal{O}_u \otimes T^k_{\rho}$ is not isomorphic to $\mathcal{O}_u \otimes A_{\rho} \otimes M_k(\mathbb{C})$.

Proof. Let p be a prime such that $p \mid k$ and $p \mid u-1$. Suppose that $\mathcal{O}_u \otimes T_{\varrho}^k$ is isomorphic to $\mathcal{O}_u \otimes A_{\varrho} \otimes M_k(\mathbb{C})$. Then the unit $1_{\mathcal{O}_u \otimes T_{\varrho}^k}$ maps to the unit $1_{\mathcal{O}_u \otimes A_{\varrho}} \otimes I_k$. So $[1_{\mathcal{O}_u \otimes T_{\varrho}^k}] = [1_{\mathcal{O}_u \otimes A_{\varrho}} \otimes I_k] = k[1_{\mathcal{O}_u \otimes A_{\varrho}}]$. Hence there is a projection e in $\mathcal{O}_u \otimes T_{\varrho}^k$ such that $[1_{\mathcal{O}_u \otimes T_{\varrho}^k}] = k[e]$. But $[1_{\mathcal{O}_u \otimes T_{\varrho}^k}] =$ $[1_{\mathcal{O}_u}] \otimes [1_{T_\varrho^k}]$ and $[1_{\mathcal{O}_u}]$ is a generator of $K_0(\mathcal{O}_u) \cong \mathbb{Z}/(u-1)\mathbb{Z}$ (see [8]). But $p \mid u-1$. We have $[1_{\mathcal{O}_u}] \neq p[e_*]$ for e_* a projection in \mathcal{O}_u . So $[1_{T_\varrho^k}] = p[e']$ for e' a projection in T_ϱ^k . This contradicts Theorem 1.4. Hence k and u-1 are relatively prime.

Therefore, $\mathcal{O}_u \otimes T_{\varrho}^k$ is not isomorphic to $\mathcal{O}_u \otimes A_{\varrho} \otimes M_k(\mathbb{C})$ if k and u-1 are not relatively prime.

The following result is useful to understand the structure of $\mathcal{O}_u \otimes T_{\rho}^k$.

2.3. PROPOSITION [15, Theorem 7.2]. Let A and B be unital simple inductive limits of even Cuntz algebras. If $\alpha : K_0(A) \to K_0(B)$ is an isomorphism of abelian groups satisfying $\alpha([1_A]) = [1_B]$, then there is an isomorphism $\phi : A \to B$ which induces α .

2.4. COROLLARY. (1) Let p be an odd integer such that p and 2u - 1are relatively prime. Then \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{(2u-1)p+1} \otimes M_{p^{\infty}}$. That is, \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$.

(2) \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}}$.

2.5. THEOREM. $\mathcal{O}_{2u} \otimes T_{\varrho}^k$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\varrho} \otimes M_k(\mathbb{C})$ if and only if k and 2u - 1 are relatively prime.

Proof. Assume that k and 2u - 1 are relatively prime. Let $k = p2^{v}$ for some odd integer p. Then p and 2u - 1 are relatively prime. Then by Corollary 2.4, \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$, and \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \otimes M_{(2^{v})^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(2^{v})^{\infty}}$. So \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}} \otimes M_{(2^{v})^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{k^{\infty}}$. Thus by Theorem 2.1, $\mathcal{O}_{2u} \otimes T_{\varrho}^{k}$ is isomorphic to $\mathcal{O}_{2u} \otimes M_{k^{\infty}} \otimes T_{\varrho}^{k}$, which in turn is isomorphic to $\mathcal{O}_{2u} \otimes M_{k^{\infty}} \otimes A_{\varrho} \otimes M_{k}(\mathbb{C})$. Hence $\mathcal{O}_{2u} \otimes T_{\varrho}^{k}$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\varrho} \otimes M_{k}(\mathbb{C})$. The converse was proved in Proposition 2.2.

Therefore, $\mathcal{O}_{2u} \otimes T_{\varrho}^k$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\varrho} \otimes M_k(\mathbb{C})$ if and only if k and 2u - 1 are relatively prime.

Cuntz [8] computed the K-theory of the generalized Cuntz algebra \mathcal{O}_{∞} , generated by a sequence of isometries with mutually orthogonal ranges, $K_0(\mathcal{O}_{\infty}) = \mathbb{Z}$ and $K_1(\mathcal{O}_{\infty}) = 0$. He proved that $K_0(\mathcal{O}_{\infty})$ is generated by the class of the unit.

2.6. PROPOSITION. $\mathcal{O}_{\infty} \otimes T_{\varrho}^{k}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes A_{\varrho} \otimes M_{k}(\mathbb{C})$ if k > 1.

Proof. Suppose $\mathcal{O}_{\infty} \otimes T_{\varrho}^{k}$ is isomorphic to $\mathcal{O}_{\infty} \otimes A_{\varrho} \otimes M_{k}(\mathbb{C})$. The unit $1_{\mathcal{O}_{\infty} \otimes T_{\varrho}^{k}}$ maps to the unit $1_{\mathcal{O}_{\infty} \otimes A_{\varrho}} \otimes I_{k}$. By the same trick as in the proof of Proposition 2.2, one can show that $[1_{\mathcal{O}_{\infty} \otimes T_{\varrho}^{k}}] = k[e]$ for a projection $e \in \mathcal{O}_{\infty} \otimes T_{\varrho}^{k}$. We have $[1_{\mathcal{O}_{\infty} \otimes T_{\varrho}^{k}}] = [1_{\mathcal{O}_{\infty}}] \otimes [1_{T_{\varrho}^{k}}]$ and $[1_{\mathcal{O}_{\infty}}]$ is a primitive

element of $K_0(\mathcal{O}_{\infty}) \cong \mathbb{Z}$ (see [8]). So $[1_{T_{\varrho}^k}] = k[e']$ for a projection $e' \in T_{\varrho}^k$. This contradicts Theorem 1.4 if k > 1.

Therefore, $\mathcal{O}_{\infty} \otimes T_{\varrho}^k$ is not isomorphic to $\mathcal{O}_{\infty} \otimes A_{\varrho} \otimes M_k(\mathbb{C})$.

References

- L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Funct. Anal. 14 (1973), 299–324.
- [2] B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of non-commutative tori, K-Theory 6 (1992), 267–284.
- [3] F. Boca, The structure of higher-dimensional non-commutative tori and metric Diophantine approximation, J. Reine Angew. Math. 492 (1997), 179–219.
- M. Brabanter, The classification of rational rotation C^{*}-algebras, Arch. Math. (Basel) 43 (1984), 79–83.
- [5] L. Brown, P. Green and M. Rieffel, Stable isomorphism and strong Morita equivalence of C^{*}-algebras, Pacific J. Math. 71 (1977), 349–363.
- [6] L. Brown and G. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
- [7] J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185.
- [8] —, K-theory for certain C^{*}-algebras, Ann. of Math. 113 (1981), 181–197.
- [9] G. Elliott, On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group, in: Operator Algebras and Group Representations, Vol. 1, G. Aresene et al. (eds.), Pitman, London, 1984, 157–184.
- [10] —, On the classification of C*-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219.
- [11] R. Ji and J. Xia, On the classification of commutator ideals, J. Funct. Anal. 78 (1988), 208–232.
- [12] H. Lin and M. Rørdam, Extensions of inductive limits of circle algebras, J. London Math. Soc. 51 (1995), 603–613.
- [13] S. Oh and C. Park, The bundle structure of non-commutative tori, Vietnam J. Math. 27 (1999), 301–308.
- [14] M. Rieffel, Morita equivalence for operator algebras, in: Operator Algebras and Applications, R. V. Kadison (ed.), Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, RI, 1982, 285–298.
- [15] M. Rørdam, Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math. 440 (1993), 175–200.

Department of Mathematics Chungnam National University Taejon 305-764, South Korea E-mail: cgpark@math.chungnam.ac.kr

> Received March 13, 2000 Revised version August 20, 2001

(4493)