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Generalized non-commutative tori

by

Chun-Gil Park (Taejon)

Abstract. The generalized non-commutative torus T k% of rank n is defined by the
crossed product Am/k ×α3 Z×α4 . . .×αn Z, where the actions αi of Z on the fibre Mk(C)
of a rational rotation algebra Am/k are trivial, and C∗(kZ× kZ)×α3 Z×α4 . . .×αn Z is a

non-commutative torus A%. It is shown that T k% is strongly Morita equivalent to A%, and
that T k% ⊗Mp∞ is isomorphic to A%⊗Mk(C)⊗Mp∞ if and only if the set of prime factors
of k is a subset of the set of prime factors of p.

Introduction. Let G be a locally compact abelian group. A multiplier
on G is a measurable function ω : G×G→ T1 which satisfies

ω(xy, z)ω(x, y) = ω(x, yz)ω(y, z), x, y, z ∈ G,
ω(x, e) = ω(e, x) = 1, x ∈ G,

where e is the identity in G. Given a locally compact abelian group G and a
multiplier ω on G, one can associate to them the twisted group C∗-algebra
C∗(G,ω). C∗(Zn, ω) is said to be a non-commutative torus of rank n and
denoted by Aω. The multiplier ω determines a subgroup Sω of G, called
its symmetry group, and ω is called totally skew if the symmetry group Sω
is trivial; the torus Aω is then called completely irrational (see [1]). It was
shown in [1] that if G is a locally compact abelian group and ω is a totally
skew multiplier on G, then C∗(G,ω) is a simple C∗-algebra.

Boca [3] showed that almost all completely irrational non-commutative
tori are isomorphic to inductive limits of circle algebras, where the “circle
algebra” means a C∗-algebra which is a finite direct sum of C∗-algebras of
the form C(T1) ⊗Mq(C). We will assume that each completely irrational
non-commutative torus appearing in this paper is an inductive limit of circle
algebras.
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In [5], it was shown that two separable C∗-algebras A and B are sta-
bly isomorphic if and only if they are strongly Morita equivalent, i.e., there
exists an A-B-equivalence bimodule defined in [14]. In [4], M. Brabanter
constructed an Am/k-C(T2)-equivalence bimodule. Modifying his construc-
tion, we are going to construct a T k% -A%-equivalence bimodule.

It was shown in [2, Theorem 1.5] that each completely irrational non-
commutative torus has real rank 0, where the “real rank 0” means that
the set of invertible self-adjoint elements is dense in the set of self-adjoint
elements. Combining Theorem 1.2 given in the first section and [6, Corollary
3.3] yields that if A% is simple then T k% has real rank 0, since the non-
commutative torus A% has real rank 0. And Lin and Rørdam’s results [12,
Propositions 2 and 3] say that if A% simple then T k% is an inductive limit of
circle algebras, since T k% ⊗K(H) ∼= A% ⊗K(H) is an inductive limit of circle
algebras.

Combining Elliott’s classification theorem [10, Theorem 7.1] and Ji and
Xia’s result [11, Theorem 1.3] yields that the completely irrational non-
commutative tori Aω of rank n and the simple generalized non-commutative
tori T k% of rank n are classified by the ranges of the traces, and so one
can completely classify them up to isomorphism or up to strong Morita
equivalence. Hence some completely irrational non-commutative tori Aω of
rank n are isomorphic to some simple generalized non-commutative tori T k%
of rank n, and this result can be applied to understand the (bundle) structure
of C∗-algebras of sections of locally trivial continuous C∗-algebra bundles
over CW-complexes with fibres completely irrational non-commutative tori.

It is moreover shown that T k% ⊗Mp∞ is isomorphic to A%⊗Mk(C)⊗Mp∞

if and only if the set of prime factors of k is a subset of the set of prime
factors of p, that O2u ⊗ T k% is isomorphic to O2u ⊗ A% ⊗Mk(C) if and only
if k and 2u− 1 are relatively prime, and that O∞⊗ T k% is not isomorphic to
O∞ ⊗ A% ⊗Mk(C) if k > 1, where Ou and O∞ denote the Cuntz algebra
and the generalized Cuntz algebra, respectively.

1. Generalized non-commutative tori. It was shown in [4, Proposi-
tion 1] that Am/k is the C∗-algebra of matrices (fij)ki,j=1 of functions fij
with

fij ∈ C∗(kZ× kZ) if i, j ∈ {1, . . . , k − 1} or (i, j) = (k, k),

fik ∈ Ω & fki ∈ Ω∗ if i ∈ {1, . . . , k − 1},
where Ω and Ω∗ are the C∗(kZ× kZ)-modules defined as

Ω = {f ∈ C(k̂Z× [0, 1]) | f(z, 1) = zsf(z, 0), ∀z ∈ k̂Z},
Ω∗ = {f ∈ C(k̂Z× [0, 1]) | f∗ ∈ Ω}

for an integer s such that sm = 1 (mod k).



Generalized non-commutative tori 103

The non-commutative torus Aω of rank n is obtained by an iteration of
n−1 crossed products by actions of Z, the first action being on C(T1). When
Aω has a primitive ideal space Ŝω ∼= k̂Z, Aω is realized as the C∗-algebra of
sections of a locally trivial continuous C∗-algebra bundle over k̂Z with fibres
C∗(Zn/Sω, ω1) for some totally skew multiplier ω1, where C∗(Zn/Sω, ω1) ∼=
Aϕ ⊗Mk(C) for Aϕ a completely irrational non-commutative torus of rank
n − 1. By a change of basis, one can assume that Aω ∼= Am/k ×α3 Z ×α4

. . .×αn Z, where the actions αi of Z on the fibre Mk(C) of Am/k are trivial,
since the fibre Mk(C) of Am/k is factored out of the fibre C∗(Zn/Sω, ω1) of
Aω (see [1, 9, 13]). This assures us of the existence of such actions αi as in
the definition of T k% in the abstract.

1.1. Definition. The generalized non-commutative torus T k% of rank n
is defined to be the crossed product Am/k ×α3 Z ×α4 . . . ×αn Z, where the
actions αi of Z on the fibre Mk(C) of a rational rotation algebra Am/k are
trivial, and C∗(kZ × kZ) ×α3 Z ×α4 . . . ×αn Z is a non-commutative torus
A% of rank n.

So the generalized non-commutative torus T k% has a matrix representa-
tion induced from the matrix representation of the rational rotation subal-
gebra Am/k.

1.2. Proposition. The generalized non-commutative torus T k% is iso-
morphic to the C∗-algebra of matrices (gij)ki,j=1 with

gij ∈ A% if i, j ∈ {1, . . . , k − 1} or (i, j) = (k, k),

gik ∈ Ω̃ & gki ∈ Ω̃∗ if i ∈ {1, . . . , k − 1},
where Ω̃ and Ω̃∗ are the A%-modules defined as

Ω̃ = A% ·Ω, Ω̃∗ = A% ·Ω∗.
Here Ω and Ω∗ are the C∗(kZ× kZ)-modules defined above.

Proof. One sees from the definition of T k% that the isomorphism between
Am/k and the C∗-algebra of matrices (fij)ki,j=1 satisfying the condition given
above gives an isomorphism between T k% and the C∗-algebra of matrices

(gij)ki,j=1 satisfying the condition given in the statement. Note that Ω̃ and

Ω̃∗ are the A%-modules defined by canonically replacing C∗(kZ × kZ) in
Ω = C∗(kZ×kZ) ·Ω with A% ∼= C∗(kZ×kZ)×α3 Z×α4 . . .×αn Z, since the
entries in the matrix representation of Am/k have a C∗(kZ × kZ)-module
structure, and T k% may be obtained by canonically replacing C∗(kZ × kZ)
with A% ∼= C∗(kZ× kZ)×α3 Z×α4 . . .×αn Z.

We are going to construct a T k% -A%-equivalence bimodule.



104 C.-G. Park

1.3. Theorem. T k% is strongly Morita equivalent to A%.

Proof. Let X be the complex vector space (
⊕k−1

1 Ω̃) ⊕ A%. We will
consider the elements of X as (k, 1) matrices where the first k − 1 entries
are in Ω̃ and the last entry is in A%. If x ∈ X, denote by x∗ the (1, k) matrix
resulting from x by transposition and involution so that x∗ ∈ (

⊕k−1
1 Ω̃∗)⊕

A%. The space X is a left T k% -module if module multiplication is defined by
matrix multiplication F ·x, where F = (gij)ki,j=1 ∈ T k% and x ∈ X. If g ∈ A%
and x ∈ X, then x · [g] defines a right A%-module structure on X. Now we
define a T k% -valued and an A%-valued inner products 〈·, ·〉Tk% and 〈·, ·〉A% on
X by

〈x, y〉Tk% = x · y∗, 〈x, y〉A% = x∗ · y
for x, y ∈ X, with matrix multiplication on the right.

It is obvious that for x, y ∈ X, x·y∗ ∈ T k% and x∗ ·y ∈ A%. Let Am/k = T k% .
By [4, Theorem 3], {x · y∗ | x, y ∈ X} is dense in Am/k. Let us replace
C∗(kZ× kZ) in the vector space X for Am/k with A% ∼= C∗(kZ× kZ)×α3

Z ×α4 . . . ×αn Z. From the definitions of Ω̃ and Ω̃∗ and the structure of
the generalized non-commutative torus T k% of rank n, given in the proof of
Proposition 1.2, one finds that {x · y∗ | x, y ∈ X} is dense in T k% . On the
other hand, for any a ∈ A%, let x = (0, 0, . . . , 0, 1), y = (0, 0, . . . , 0, a) ∈ X.
Then x∗ · y = a. Hence {x∗ · y | x, y ∈ X} is dense in A%. So X becomes a
T k% -A%-equivalence bimodule, as desired.

The generalized non-commutative torus T k% of rank n is strongly Morita
equivalent to the non-commutative torus A% of rank n, so Ki(T k% ) ∼= Ki(A%)
∼= Z2n−1

(see [9, Theorem 2.2]). The non-commutative torus A% of rank n is
the universal object for unitary %-representations of Zn, so A% is realized as
C∗(u1, . . . , un | uiuj = e2πiθjiujui), where ui are unitaries and θji are real
numbers for 1 ≤ i, j ≤ n.

1.4. Theorem. (1) tr(K0(T k% )) = k−1 · tr(K0(A%)) if A% is completely
irrational.

(2) [1Tk% ] ∈ K0(T k% ) is primitive.

Proof. (1) T k% has a matrix representation induced from the matrix rep-
resentation of the rational rotation subalgebra Am/k. The diagonal entries of
the matrix representation are in A%, and so the range of the trace of K0(T k% )
is

Z+
1
k

(Z+ Zα+ Zβ + . . .+ Zγ),

where tr(K0(A%)) = Z + Zk + Zα + Zβ + . . . + Zγ. Hence tr(K0(T k% )) =
k−1 · tr(K0(A%)).
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(2) We argue by induction on n. For n = 2, it is the Elliott result [9,
Theorem 2.2]. Assume that the result is true for all T k% with n = i − 1.
Since T k% is realized as Am/k ×α3 Z ×α4 . . .×αn Z, write Si = C∗(Si−1, ui),
where Si = C∗(Am/k, u3, . . . , ui). Then the inductive hypothesis applies
to Si−1. Also, we can think of Si as the crossed product of Si−1 by an
action αi of Z, where the generator of Z corresponds to ui, which acts on
C∗(uk1 , u

k
2 , u3, . . . , ui−1) by conjugation (sending uj to uiuju−1

i = e2πiθjiuj ,
j 6= 1, 2, and sending ukj to uiukju

−1
i = e2πikθjiukj , j = 1, 2), and which acts

trivially on Mk(C). Note that this action is homotopic to the trivial action,
since we can homotope θji to 0. Hence Z acts trivially on the K-theory of
Si−1. The Pimsner–Voiculescu exact sequence for a crossed product gives an
exact sequence

K0(Si−1)
1−(αi)∗−−−−→ K0(Si−1) Φ→ K0(Si)→ K1(Si−1)

1−(αi)∗−−−−→ K1(Si−1)

and similarly for K1, where the map Φ is induced by inclusion. Since (αi)∗ =
1 and since the K-groups of Si−1 are free abelian, this reduces to a split short
exact sequence

{0} → K0(Si−1) Φ→ K0(Si)→ K1(Si−1)→ {0}
and similarly for K1. So K0(Si) and K1(Si) are free abelian of rank 2 · 2i−2

= 2i−1. Furthermore, since the inclusion Si−1 → Si sends 1Si−1 to 1Si , [1Si ] is
the image of [1Si−1 ], which is primitive in K0(Si−1) by inductive hypothesis.
Hence the image is primitive, since the Pimsner–Voiculescu exact sequence
is a split short exact sequence of torsion-free groups.

1.5. Corollary. T k% is not isomorphic to A⊗Md(C) for a C∗-algebra
A if d > 1.

Proof. Assume T k% is isomorphic to A⊗Md(C). Then the unit 1Tk% maps
to 1A⊗ Id. This implies that there is a projection e in T k% such that [1Tk% ] =
d[e] in K0(T k% ), which contradicts Theorem 1.4 if d > 1. Thus no non-trivial
matrix algebra can be factored out of T k% .

2. Tensor products of generalized non-commutative tori with
UHF-algebras and Cuntz algebras. Using the fact that [1Tk% ] ∈ K0(T k% )
is primitive, we investigate the structure of T k% ⊗ Mp∞ for Mp∞ a UHF-
algebra of type p∞.

2.1. Theorem. T k% ⊗Mp∞ is isomorphic to A% ⊗Mk(C)⊗Mp∞ if and
only if the set of prime factors of k is a subset of the set of prime factors
of p.

Proof. Assume that the set of prime factors of k is a subset of the set of
prime factors of p. To show that T k% ⊗Mp∞ is isomorphic to A% ⊗Mk(C)⊗
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Mp∞ , it is enough to show that T k% ⊗Mk∞
∼= A%⊗Mk(C)⊗Mk∞ . But there

exist the C∗-algebra homomorphisms which are the canonical inclusions
T k% ⊗ Mkg (C) ↪→ A% ⊗ Mk(C) ⊗ Mkg (C) and the A%-module maps A% ⊗
Mkg (C) ↪→ T k% ⊗Mkg (C):

T k% ↪→ A% ⊗Mk(C) ↪→ T k% ⊗Mk(C) ↪→ A% ⊗Mk2(C) ↪→ . . .

The inductive limit of the odd terms

. . .→ T k% ⊗Mkg (C)→ T k% ⊗Mkg+1(C)→ . . .

is T k% ⊗Mk∞ , and the inductive limit of the even terms

. . .→ A% ⊗Mkg (C)→ A% ⊗Mkg+1(C)→ . . .

is A% ⊗Mk∞ . Thus by the Elliott theorem [10, Theorem 2.1], T k% ⊗Mk∞ is
isomorphic to A% ⊗Mk∞ .

Conversely, assume that T k% ⊗Mp∞
∼= A%⊗Mk(C)⊗Mp∞ . Then the unit

1Tk% ⊗ 1Mp∞ maps to the unit 1A% ⊗ 1Mp∞ ⊗ Ik. So

[1Tk% ⊗ 1Mp∞ ] = [1A% ⊗ 1Mp∞ ⊗ Ik],

[1Tk% ⊗ 1Mp∞ ] = [1Tk% ]⊗ [1Mp∞ ],

[1A% ⊗ 1Mp∞ ⊗ Ik] = k([1A% ]⊗ [1Mp∞ ]).

Under the assumption that the unit 1Tk% ⊗ 1Mp∞ maps to the unit 1A% ⊗
1Mp∞⊗Ik, if there is a prime factor q of k such that q - p, then [1Mp∞ ] 6= q[e∞]
for e∞ a projection in Mp∞ . So there is a projection e ∈ T k% such that
[1Tk% ] = q[e]. This contradicts Theorem 1.4. Thus the set of prime factors of
k is a subset of the set of prime factors of p.

Therefore, T k% ⊗Mp∞ is isomorphic to A% ⊗Mk(C)⊗Mp∞ if and only if
the set of prime factors of k is a subset of the set of prime factors of p.

Let us study the structure of the tensor products of generalized non-
commutative tori with (even) Cuntz algebras.

The Cuntz algebra Ou, 2 ≤ u <∞, is the universal C∗-algebra generated
by u isometries s1, . . . , su, i.e., s∗jsj = 1 for all j, with the relation s1s

∗
1 +

. . . + sus
∗
u = 1. Cuntz [7, 8] proved that Ou is simple and the K-theory of

Ou is K0(Ou) = Z/(u − 1)Z and K1(Ou) = 0. He proved that K0(Ou) is
generated by the class of the unit.

2.2. Proposition. Let u be a positive integer such that k and u−1 are
not relatively prime. Then Ou⊗ T k% is not isomorphic to Ou⊗A%⊗Mk(C).

Proof. Let p be a prime such that p | k and p |u−1. Suppose that Ou⊗T k%
is isomorphic to Ou⊗A%⊗Mk(C). Then the unit 1Ou⊗Tk% maps to the unit
1Ou⊗A% ⊗ Ik. So [1Ou⊗Tk% ] = [1Ou⊗A% ⊗ Ik] = k[1Ou⊗A% ]. Hence there is
a projection e in Ou ⊗ T k% such that [1Ou⊗Tk% ] = k[e]. But [1Ou⊗Tk% ] =
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[1Ou ]⊗ [1Tk% ] and [1Ou ] is a generator of K0(Ou) ∼= Z/(u−1)Z (see [8]). But
p |u − 1. We have [1Ou ] 6= p[e∗] for e∗ a projection in Ou. So [1Tk% ] = p[e′]
for e′ a projection in T k% . This contradicts Theorem 1.4. Hence k and u− 1
are relatively prime.

Therefore, Ou⊗T k% is not isomorphic to Ou⊗A%⊗Mk(C) if k and u−1
are not relatively prime.

The following result is useful to understand the structure of Ou ⊗ T k% .

2.3. Proposition [15, Theorem 7.2]. Let A and B be unital simple
inductive limits of even Cuntz algebras. If α : K0(A) → K0(B) is an iso-
morphism of abelian groups satisfying α([1A]) = [1B], then there is an iso-
morphism φ : A→ B which induces α.

2.4. Corollary. (1) Let p be an odd integer such that p and 2u − 1
are relatively prime. Then O2u is isomorphic to O(2u−1)p+1 ⊗Mp∞ . That
is, O2u is isomorphic to O2u ⊗Mp∞ .

(2) O2u is isomorphic to O2u ⊗M(2u)∞ .

2.5. Theorem. O2u⊗T k% is isomorphic to O2u⊗A%⊗Mk(C) if and only
if k and 2u− 1 are relatively prime.

Proof. Assume that k and 2u − 1 are relatively prime. Let k = p2v

for some odd integer p. Then p and 2u − 1 are relatively prime. Then by
Corollary 2.4, O2u is isomorphic to O2u ⊗ Mp∞ , and O2u is isomorphic
to O2u ⊗M(2u)∞

∼= O2u ⊗M(2u)∞ ⊗M(2v)∞
∼= O2u ⊗M(2v)∞ . So O2u is

isomorphic to O2u ⊗Mp∞ ⊗M(2v)∞
∼= O2u ⊗Mk∞ . Thus by Theorem 2.1,

O2u ⊗ T k% is isomorphic to O2u ⊗Mk∞ ⊗ T k% , which in turn is isomorphic to
O2u⊗Mk∞⊗A%⊗Mk(C). HenceO2u⊗T k% is isomorphic toO2u⊗A%⊗Mk(C).

The converse was proved in Proposition 2.2.
Therefore, O2u⊗ T k% is isomorphic to O2u⊗A% ⊗Mk(C) if and only if k

and 2u− 1 are relatively prime.

Cuntz [8] computed the K-theory of the generalized Cuntz algebra O∞,
generated by a sequence of isometries with mutually orthogonal ranges,
K0(O∞) = Z and K1(O∞) = 0. He proved that K0(O∞) is generated by
the class of the unit.

2.6. Proposition. O∞ ⊗ T k% is not isomorphic to O∞ ⊗A% ⊗Mk(C) if
k > 1.

Proof. Suppose O∞ ⊗ T k% is isomorphic to O∞ ⊗A% ⊗Mk(C). The unit
1O∞⊗Tk% maps to the unit 1O∞⊗A% ⊗ Ik. By the same trick as in the proof
of Proposition 2.2, one can show that [1O∞⊗Tk% ] = k[e] for a projection
e ∈ O∞ ⊗ T k% . We have [1O∞⊗Tk% ] = [1O∞ ]⊗ [1Tk% ] and [1O∞ ] is a primitive



108 C.-G. Park

element of K0(O∞) ∼= Z (see [8]). So [1Tk% ] = k[e′] for a projection e′ ∈ T k% .
This contradicts Theorem 1.4 if k > 1.

Therefore, O∞ ⊗ T k% is not isomorphic to O∞ ⊗ A% ⊗Mk(C).

References

[1] L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Funct.
Anal. 14 (1973), 299–324.

[2] B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and
the structure of non-commutative tori , K-Theory 6 (1992), 267–284.

[3] F. Boca, The structure of higher-dimensional non-commutative tori and metric Dio-
phantine approximation, J. Reine Angew. Math. 492 (1997), 179–219.

[4] M. Brabanter, The classification of rational rotation C∗-algebras, Arch. Math.
(Basel) 43 (1984), 79–83.

[5] L. Brown, P. Green and M. Rieffel, Stable isomorphism and strong Morita equiva-
lence of C∗-algebras, Pacific J. Math. 71 (1977), 349–363.

[6] L. Brown and G. Pedersen, C∗-algebras of real rank zero, J. Funct. Anal. 99 (1991),
131–149.

[7] J. Cuntz, Simple C∗-algebras generated by isometries, Comm. Math. Phys. 57
(1977), 173–185.

[8] —, K-theory for certain C∗-algebras, Ann. of Math. 113 (1981), 181–197.
[9] G. Elliott, On the K-theory of the C∗-algebra generated by a projective represen-

tation of a torsion-free discrete abelian group, in: Operator Algebras and Group
Representations, Vol. 1, G. Aresene et al. (eds.), Pitman, London, 1984, 157–184.

[10] —, On the classification of C∗-algebras of real rank zero, J. Reine Angew. Math.
443 (1993), 179–219.

[11] R. Ji and J. Xia, On the classification of commutator ideals, J. Funct. Anal. 78
(1988), 208–232.

[12] H. Lin and M. Rørdam, Extensions of inductive limits of circle algebras, J. London
Math. Soc. 51 (1995), 603–613.

[13] S. Oh and C. Park, The bundle structure of non-commutative tori , Vietnam J.
Math. 27 (1999), 301–308.

[14] M. Rieffel, Morita equivalence for operator algebras, in: Operator Algebras and
Applications, R. V. Kadison (ed.), Proc. Sympos. Pure Math. 38, Amer. Math.
Soc., Providence, RI, 1982, 285–298.

[15] M. Rørdam, Classification of inductive limits of Cuntz algebras, J. Reine Angew.
Math. 440 (1993), 175–200.

Department of Mathematics
Chungnam National University
Taejon 305-764, South Korea
E-mail: cgpark@math.chungnam.ac.kr

Received March 13, 2000
Revised version August 20, 2001 (4493)


