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Generalized non-commutative tori
by

CHUN-GIL PARK (Taejon)

Abstract. The generalized non-commutative torus Tgf of rank n is defined by the
crossed product A, /i Xas Z Xay - - - Xa,, Z, where the actions a; of Z on the fibre M}, (C)
of a rational rotation algebra A,, 3, are trivial, and C*(kZ X kZ) Xas ZXay - Xa, Zis a

non-commutative torus A,. It is shown that TE’,C is strongly Morita equivalent to A,, and

that TZ," ® Mpee is isomorphic to Ay, ® My (C) ® Mpee if and only if the set of prime factors
of k is a subset of the set of prime factors of p.

Introduction. Let G be a locally compact abelian group. A multiplier

on G is a measurable function w : G x G — T*! which satisfies

w(zy, 2)w(z,y) = w(r,y2)w(y, 2), 2,9,2€G,

w(z,e) =w(e,z) =1, AN ER

where e is the identity in GG. Given a locally compact abelian group G and a
multiplier w on G, one can associate to them the twisted group C*-algebra
C*(G,w). C*(Z™,w) is said to be a non-commutative torus of rank n and
denoted by A,. The multiplier w determines a subgroup S, of G, called
its symmetry group, and w is called totally skew if the symmetry group S,
is trivial; the torus A, is then called completely irrational (see [1]). It was
shown in [1] that if G is a locally compact abelian group and w is a totally
skew multiplier on G, then C*(G,w) is a simple C*-algebra.

Boca [3] showed that almost all completely irrational non-commutative
tori are isomorphic to inductive limits of circle algebras, where the “circle
algebra” means a C*-algebra which is a finite direct sum of C*-algebras of
the form C(T') ® M,(C). We will assume that each completely irrational
non-commutative torus appearing in this paper is an inductive limit of circle
algebras.
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In [5], it was shown that two separable C*-algebras A and B are sta-
bly isomorphic if and only if they are strongly Morita equivalent, i.e., there
exists an A-B-equivalence bimodule defined in [14]. In [4], M. Brabanter
constructed an A,, /,-C (T?)-equivalence bimodule. Modifying his construc-
tion, we are going to construct a Tg—AQ—equivalence bimodule.

It was shown in [2, Theorem 1.5] that each completely irrational non-
commutative torus has real rank 0, where the “real rank 0” means that
the set of invertible self-adjoint elements is dense in the set of self-adjoint
elements. Combining Theorem 1.2 given in the first section and [6, Corollary
3.3] yields that if A, is simple then Tg has real rank 0, since the non-
commutative torus A, has real rank 0. And Lin and Rgrdam’s results [12,
Propositions 2 and 3] say that if A, simple then Té“ is an inductive limit of
circle algebras, since T% @ K(H) = A, ® K(H) is an inductive limit of circle
algebras.

Combining Elliott’s classification theorem [10, Theorem 7.1] and Ji and
Xia’s result [11, Theorem 1.3] yields that the completely irrational non-
commutative tori A, of rank n and the simple generalized non-commutative
tori Tg of rank n are classified by the ranges of the traces, and so one
can completely classify them up to isomorphism or up to strong Morita
equivalence. Hence some completely irrational non-commutative tori A, of
rank n are isomorphic to some simple generalized non-commutative tori Tj
of rank n, and this result can be applied to understand the (bundle) structure
of C*-algebras of sections of locally trivial continuous C*-algebra bundles
over CW-complexes with fibres completely irrational non-commutative tori.

It is moreover shown that T ® Mpe is isomorphic to A, ® My (C) @ My
if and only if the set of prime factors of k is a subset of the set of prime
factors of p, that Og, ® Tgk is isomorphic to Oz, ® A, ® M},(C) if and only
if k and 2u — 1 are relatively prime, and that O, ® T, 5 is not isomorphic to
O ® Ay @ Mi(C) if k > 1, where O, and O denote the Cuntz algebra
and the generalized Cuntz algebra, respectively.

1. Generalized non-commutative tori. It was shown in [4, Proposi-
tion 1] that A,,/, is the C*-algebra of matrices (fij)ﬁj:l of functions f;;
with

fi; € C(kZ x kzZ) ifi,je{l,...,k—1} or (i,j) = (k. k),
fik €& fric 2 ific{l,....k—1},
where (2 and 2* are the C*(kZ x kZ)-modules defined as
Q={feCkZx[0,1)] f(z,1) = 2°f(2,0), Vz € kZ},
2 ={feCHKLx[0,1])) | f* € 2}

for an integer s such that sm =1 (mod k).
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The non-commutative torus A, of rank n is obtained by an iteration of
n—1 crossed products by actions of Z, the first action being on C(T!). When
A, has a primitive ideal space S, = EZ, A, is realized as the C*-algebra of
sections of a locally trivial continuous C*-algebra bundle over kZ with fibres
C*(Z™/S.,,w1) for some totally skew multiplier wy, where C*(Z"/S,,,w;) =
A, ® My(C) for A, a completely irrational non-commutative torus of rank
n — 1. By a change of basis, one can assume that A, = A,/ Xa; Z Xq,

- Xa, Z, where the actions «; of Z on the fibre My (C) of A,, /;, are trivial,
since the fibre M},(C) of A,, /. is factored out of the fibre C*(Z"/S,,,w:) of
A, (see [1, 9, 13]). This assures us of the existence of such actions «; as in
the definition of Té“ in the abstract.

1.1. DEFINITION. The generalized non-commutative torus Tgf of rank n
is defined to be the crossed product Am/k Xag L Xay .. X, L, where the
actions a; of Z on the fibre My (C) of a rational rotation algebra A,, /;, are
trivial, and C*(kZ X kZ) Xy Z Xy - - - Xa, Z is a non-commutative torus
A, of rank n.

So the generalized non-commutative torus T;“ has a matrix representa-
tion induced from the matrix representation of the rational rotation subal-
gebra A, /.

1.2. PROPOSITION. The generalized non-commutative torus TQ’“ 18 1S0-
morphic to the C*-algebra of matrices (gij)ﬁjzl with

gij € A, ifi,je{l,....k—1} or (i,5) = (k, k),
gr €N & g€ 2 ifie{l,... k—1},

where 2 and 2* are the A,-modules defined as

N=A,-02, 2*=A, 0.
Here 2 and 2% are the C*(kZ x kZ)-modules defined above.

Proof. One sees from the definition of T;“ that the isomorphism between
A, /1 and the C*-algebra of matrices (f;) f j—1 satisfying the condition given
above gives an isomorphism between T’ Q’“ and the C*-algebra of matrices
(gij)ﬁ j—1 satisfying the condition given in the statement. Note that 2 and
% are the A,-modules defined by canonically replacing C*(kZ x kZ) in
Q2 =C*(KZxKZ)-$2with A, 2 C*(kZ X kZ) Xay Z X, - - - Xa, Z, since the
entries in the matrix representation of A,,,; have a C*(kZ x kZ)-module
structure, and Tgk may be obtained by canonically replacing C*(kZ x kZ)
with A, = C*(KZ X kZ) Xy L Xqy - .- Xa, L. m

We are going to construct a T Q’“—Ag-equivalence bimodule.
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1.3. THEOREM. Tgk is strongly Morita equivalent to A,.

Proof. Let X be the complex vector space (EB’ffl (~2) ® A, We will
consider the elements of X as (k, 1) matrices where the first £ — 1 entries
are in 2 and the last entry is in A,. If z € X, denote by z* the (1, k) matrix
resulting from x by transposition and involution so that z* € ( lffl ﬁ*) &
A,. The space X is a left Tg—module if module multiplication is defined by
matrix multiplication F -z, where F = (g;;)F;_, € Ty and x € X. If g € 4,
and = € X, then x - [g] defines a right A,-module structure on X. Now we
define a T¥-valued and an A,-valued inner products (-, )rr and ()4, on
X by

<$,y>T§ :‘T'y*7 <‘T7y>AQ :‘T*'y
for x,y € X, with matrix multiplication on the right.

It is obvious that for z,y € X, z-y* € Té“ and z*-y € A, Let Ay, /1 = Tf.
By [4, Theorem 3|, {z - y* | z,y € X} is dense in A,, /. Let us replace
C*(kZ x kZ) in the vector space X for A, with A, = C*(kZ x kZ) X4,
Z Xqy .- Xq, L. From the definitions of 2 and £2* and the structure of
the generalized non-commutative torus Té“ of rank n, given in the proof of
Proposition 1.2, one finds that {z - y* | 2,y € X} is dense in T¥. On the
other hand, for any a € A,, let x = (0,0,...,0,1), y = (0,0,...,0,a) € X.
Then z* -y = a. Hence {z* -y | x,y € X} is dense in A,. So X becomes a
TQ’“—AQ—equivalence bimodule, as desired. m

The generalized non-commutative torus T’ 5 of rank n is strongly Morita
equivalent to the non-commutative torus A, of rank n, so K;(T¥) = K;(A,)
~ 72" (sce [9, Theorem 2.2]). The non-commutative torus A, of rank n is
the universal object for unitary p-representations of Z", so A, is realized as
C*(ur, ..., un | wuj = ezmeﬁujui), where u; are unitaries and 6;; are real
numbers for 1 <i,j < n.

1.4. THEOREM. (1) tr(Ko(TF)) = k=1 - tr(Ko(A,)) if A, is completely
irrational.
(2) [17x] € Ko(TY) is primitive.

Proof. (1) T; has a matrix representation induced from the matrix rep-
resentation of the rational rotation subalgebra A,, ;.. The diagonal entries of
the matrix representation are in A,, and so the range of the trace of Ko(T¥)
is

1
Z+ L (Z+Za+ZB+ ...+ 1),

where tr(Ko(A,)) = Z + Zk + Za + Zf3 + ... + Zv. Hence tr(Ko(TF)) =
k=l tr(Ko(A,)).
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(2) We argue by induction on n. For n = 2, it is the Elliott result [9,
Theorem 2.2]. Assume that the result is true for all T; with n =7 — 1.
Since Tg is realized as Ay, /i Xas Z Xay -+ - Xa, L, write S; = C*(S;_1, u;),
where S; = C*(A;, /i, us,...,u;). Then the inductive hypothesis applies
to S;_1. Also, we can think of S; as the crossed product of S;_; by an
action «; of Z, where the generator of Z corresponds to w;, which acts on
C*(u¥,ub,us, ..., u;—1) by conjugation (sending u; to uiuju;l = 2™ Wiy,
j # 1,2, and sending ué‘: to uiu;-“ui_l = e27rik9jiu§3,j = 1,2), and which acts
trivially on M} (C). Note that this action is homotopic to the trivial action,
since we can homotope 0;; to 0. Hence Z acts trivially on the K-theory of
S;_1. The Pimsner—Voiculescu exact sequence for a crossed product gives an
exact sequence

lf(az)*

Ko(Si1) %% Ko(Sis1) 2 Ko(Sy) — Ki(Si—1) 2% Ky (Si21)

and similarly for K, where the map @ is induced by inclusion. Since (o). =
1 and since the K-groups of S;_; are free abelian, this reduces to a split short
exact sequence

{0} — Ko(Si—1) & Ko(S;) — Ki1(Si—1) — {0}

and similarly for K;. So Ko(S;) and K1(S;) are free abelian of rank 2 - 2¢~2
= 2i=1. Furthermore, since the inclusion S; _; — S; sends 1g,_, to 1g,, [1g,] is
the image of [1g,_,], which is primitive in Ky(S;—1) by inductive hypothesis.
Hence the image is primitive, since the Pimsner—Voiculescu exact sequence
is a split short exact sequence of torsion-free groups. =

1.5. COROLLARY. Tgk is not isomorphic to A® My(C) for a C*-algebra
Adf d> 1.

Proof. Assume Tg is isomorphic to A ® M4(C). Then the unit L maps
to 14 ® I4. This implies that there is a projection e in Tf such that [1T§] =
dle] in Ko(TF), which contradicts Theorem 1.4 if d > 1. Thus no non-trivial
matrix algebra can be factored out of T;“. m

2. Tensor products of generalized non-commutative tori with
UHF-algebras and Cuntz algebras. Using the fact that [ngk] € KO(TZ;C )

is primitive, we investigate the structure of TQ’“ ® My~ for My~ a UHF-
algebra of type p.

2.1. THEOREM. Ty ® My is isomorphic to Ay @ My(C) @ Mpe if and
only if the set of prime factors of k is a subset of the set of prime factors
of p.

Proof. Assume that the set of prime factors of k is a subset of the set of
prime factors of p. To show that Té“ ® Moo is isomorphic to A, ® M(C) ®
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My, it is enough to show that Tg ® Mpoo = Ay @ My (C) ® Mpyoo. But there
exist the C*-algebra homomorphisms which are the canonical inclusions
TF @ Mo (C) — Ay ® Mp(C) ® Mys(C) and the A,-module maps A, ®
ng (C) — Tgk X ng ((C)
TV — Ay ® My(C) = Ty ® My(C) = Ay ® My2(C) — ...

The inductive limit of the odd terms

= TF @ Mo (C) = TF @ Myar1 (C) — ...
isT 5 ® My, and the inductive limit of the even terms

. — Ag ®ng((C) — AQ ®ng+1((C) — ...
is Ay ® Myo. Thus by the Elliott theorem [10, Theorem 2.1], T; ® Moo is
isomorphic to A, ® M.

Conversely, assume that T @ Mye 2 A, @ Mj,(C) ® Mpe . Then the unit
1sz€ @ 1as,0. maps to the unit 14, ®@ 1as,00 @ I So
[Lrr @ Ingyee] = [1a, ® a0 ® Ii],
[Lrr @ Ingye] = [L7n] @ [Lagyec ],
[1AQ & ]-Mpoo & Ik] = k([lAQ] & []-Mpoo])‘
Under the assumption that the unit 1T§ ® 1p1,0c maps to the unit 14, ®
101,00 @1y, if there is a prime factor g of k such that g1 p, then [1/ .. | # glec]
for e a projection in Mpe. So there is a projection e € Tg such that
[17x] = q[e]. This contradicts Theorem 1.4. Thus the set of prime factors of
k is a subset of the set of prime factors of p.
Therefore, Té“ ® Mo is isomorphic to A, ® M(C) ® My if and only if
the set of prime factors of k is a subset of the set of prime factors of p. m
Let us study the structure of the tensor products of generalized non-
commutative tori with (even) Cuntz algebras.
The Cuntz algebra Oy, 2 < u < 00, is the universal C'*-algebra generated
by u isometries si,..., sy, Le., sis; = 1 for all j, with the relation sys] +
...+ sys;, = 1. Cuntz [7, 8] proved that O, is simple and the K-theory of
O, is Ko(Oy) = Z/(u — 1)Z and K;(O,) = 0. He proved that Ky(O,) is
generated by the class of the unit.

2.2. PROPOSITION. Let u be a positive integer such that k and u—1 are
not relatively prime. Then O, ® Té“ is not isomorphic to O, ® A, @ My(C).

Proof. Let p be a prime such that p |k and p| u—1. Suppose that (’)u®Té€
is isomorphic to O, ® A, ® My (C). Then the unit 1ou®T§ maps to the unit
1Ou®AQ ® Ij,. So [10u®Tgk] = [1Ou®AQ & Ik] = k[10u®AQ]- Hence there is
a projection e in O, ® Ty such that lo,err] = kle]. But [lo,g7r:] =
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[lo,]®[17+] and [1p,] is a generator of Ko(Oy) = Z/(u—1)Z (see [8]). But
plu—1. We have [lo,] # ple.] for e, a projection in O,. So [17:] = p[e/]
for ¢’ a projection in TZf. This contradicts Theorem 1.4. Hence k£ and v — 1
are relatively prime.

Therefore, O, ® TQ’g is not isomorphic to O, ® A, ® My(C) if k and u—1
are not relatively prime. m

The following result is useful to understand the structure of O, ® TQ’“.

2.3. PROPOSITION [15, Theorem 7.2]. Let A and B be unital simple
inductive limits of even Cuntz algebras. If o : Ko(A) — Ko(B) is an iso-
morphism of abelian groups satisfying a([14]) = [1g], then there is an iso-
morphism ¢ : A — B which induces «.

2.4. COROLLARY. (1) Let p be an odd integer such that p and 2u — 1
are relatively prime. Then Oy, is isomorphic to Oy—1)pt+1 @ Mp~. That
is, Oy is isomorphic to Oz, @ Mpeo.

(2) Ogy is isomorphic to Oy @ M,y

2.5. THEOREM. Oy, ®T§ is isomorphic to Og, @ A, @ My, (C) if and only
if k and 2u — 1 are relatively prime.

Proof. Assume that k and 2u — 1 are relatively prime. Let & = p2?
for some odd integer p. Then p and 2u — 1 are relatively prime. Then by
Corollary 2.4, Oy, is isomorphic to O, ® Mp~, and O, is isomorphic
to Oy ® M(Qu)oo > 0y, ® M(gu)w & M(2U)D° = 0y, ® M(2'u)00. So Oy, is
isomorphic to Oz, @ My @ M(gvyee = Ozy @ Myeo. Thus by Theorem 2.1,
Oy T 5 is isomorphic to Oy, @ Mi~ ® T;, which in turn is isomorphic to
O2y, @ My ®A,@M},(C). Hence (92u®Téf is isomorphic to Oz, ®A,& M} (C).

The converse was proved in Proposition 2.2.

Therefore, Oy, @ T glf is isomorphic to Og,, ® A, ® M}, (C) if and only if k
and 2u — 1 are relatively prime. m

Cuntz [8] computed the K-theory of the generalized Cuntz algebra O,
generated by a sequence of isometries with mutually orthogonal ranges,
Ky(Ox) = Z and K;(O) = 0. He proved that K¢(Ox) is generated by
the class of the unit.

2.6. PROPOSITION. Oy ® TQ’g is not isomorphic to O ® A, @ My (C) if
k> 1.

Proof. Suppose O ® Tgk is isomorphic to O ® A, ® M},(C). The unit
1Ow®T§ maps to the unit 1o_ga, ® Ix. By the same trick as in the proof
of Proposition 2.2, one can show that [1p_g7r] = kle] for a projection
e € O @ TF. We have lo.ers] = [lo.] ® [lr:] and [1o_] is a primitive
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element of Ko(Ou) = Z (see [8]). So [17«] = k[e'] for a projection e’ € Tk
This contradicts Theorem 1.4 if & > 1.

[10]
[11]
[12]
[13]

[14]

[15]

Therefore, Oy ® Tgk is not isomorphic to Os ® A, ® My (C). m
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