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Podal subspaces on the unit polydisk

by

Kunyu Guo (Shanghai)

Abstract. Beurling’s classical theorem gives a complete characterization of all invari-
ant subspaces in the Hardy space H2(D). To generalize the theorem to higher dimensions,
one is naturally led to determining the structure of each unitary equivalence (resp. simi-
larity) class. This, in turn, requires finding podal (resp. s-podal) points in unitary (resp.
similarity) orbits. In this note, we find that H-outer (resp. G-outer) functions play an im-
portant role in finding podal (resp. s-podal) points. By the methods developed in this note,
we can assess when a unitary (resp. similarity) orbit contains a podal (resp. an s-podal)
point, and hence provide examples of orbits without such points.

1. Introduction. Let T be the unit circle in the complex plane,
and let L2(T ) be the Hilbert space of square integrable functions, with
respect to arc-length measure. Recall that the Hardy space H2(D) over
the open unit disk D is the closed subspace of L2(T ) spanned by the
non-negative powers of the coordinate function z. If M is a (closed) sub-
space of H2(D) that is invariant for the multiplication operator Mz, then
Beurling’s theorem says that there exists an inner function φ such that
M = φH2(D). The reason for the success of Buerling’s theorem is that
the function theory in this case is one-dimensional and the associated poly-
nomial ring in one variable is a principal ideal domain. Almost everyone
who has thought about this topic must have considered the correspond-
ing problem for H2 on the polydisk. Let M be a closed subspace of
H2(Dn). We say that M is an invariant subspace if pM ⊆ M for any
complex polynomial p in n variables. It is easy to see that M is invari-
ant if and only if it is invariant under multiplication by the coordinate
functions z1, . . . , zn. However in the higher dimensional case, one quickly
sees that a Beurling-like characterization is not possible. From recent work
[ACD, DPSY, DY, Guo1, Guo2, Yan1, Yan2], the other extreme appears to
be true and hence one directs attention to investigating equivalence classes
of invariant subspaces of H2(Dn) under some kind of equivalence relation.
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Definition. Let M1, M2 be two invariant subspaces of H2(Dn). We say
that they are unitarily equivalent (resp. similar) if there exists a unitary
operator (resp. an invertible operator) X : M1 → M2 such that for any
polynomial p,

Xph = pXh, ∀h ∈M1.

To generalize Beurling’s theorem to higher dimensions, one is naturally
led to the following problems:

(1) give all unitary equivalence (resp. similarity) classes of invariant sub-
spaces on the polydisk;

(2) determine the structure of each unitary equivalence (resp. similarity)
class.

On the classical Hardy space H2(D), Beurling’s theorem implies that
there is only one unitary equivalence (resp. similarity) class. In the higher
dimensional case, to determine the structure of unitary equivalence classes,
Douglas and Yan [DY] introduced the following concept. An invariant sub-
space of H2(Dn) is called podal if every invariant subspace that is unitarily
equivalent to it is contained in it. Furthermore, we say that an invariant sub-
space of H2(Dn) is s-podal if every invariant subspace that is similar to it is
contained in it. Let M be an invariant subspace. We use orbu(M), orbs(M)
to denote the unitary orbit and similarity orbit of M , respectively, that
is, the unitary equivalence class and the similarity class of M . Obviously,
H2(Dn) is a podal (resp. an s-podal) point in its unitary (resp. similarity)
orbit. In [DY], Douglas and Yan introduced the condition (?) (to be recalled
later in this paper), and proved that an invariant subspace which satisfies
(?) is necessarily podal. In particular, they gave an example to show that
not every unitary orbit contains a podal point. Note that every unitary
(resp. similarity) orbit can contain at most one podal (resp. s-podal) point
(if it exists) and hence the orbit is completely determined by its podal (resp.
s-podal) point (if it exists). So a partial generalization of Beurling’s theorem
will be to find all podal (resp. s-podal) points.

In this note, we find that H-outer (resp. G-outer) functions play an im-
portant role in finding podal (resp. s-podal) points. This, in turn, is directly
related to the factorization problem for H2(Dn) functions. By the methods
developed in this note, we can assess when a unitary (resp. similarity) or-
bit contains a podal (resp. an s-podal) point, and hence provide examples
of orbits without such points. In the next section, we will state and prove
these results.

2. Podal subspaces on the unit polydisk. From Beurling’s theorem,
each nontrivial invariant subspaceM of the Hardy spaceH2(D) has a unique



Podal subspaces on the unit polydisk 111

representation

M = ηBH2(D) = ηH2(D) ∩BH2(D),

where η is a singular inner function, and B a Blaschke product. The “zeros”
of the invariant subspace lying on the boundary T depend on the singular
part ηH2(D). By [Gar], we know that the singular inner function η is de-
termined by the singular measure dση on T . Although higher dimensional
Hardy invariant subspaces do not have the Beurling form, we can define the
relevant analogue of singular distribution of invariant subspaces. Let N(Dn)
denote the Nevanlinna class defined in [Ru1]. For each f ∈ N(Dn), f has
radial limits f∗ a.e. on Tn. Moreover, there is a real singular measure dσf on
Tn determined by f such that the least harmonic majorant u(f) of log |f |
is given by

u(f) = Pz(log |f∗|+ dσf ),

where Pz denotes the Poisson integral on the unit polydisk. Use N∗(Dn) to
denote the class of all f ∈ N(Dn) for which the functions log+ |fr| form a
uniformly integrable family. Then for any p > 0, Hp(Dn) ⊂ N∗(Dn). By
[Ru1, Th. 3.3.5],

N∗(Dn) = {f ∈ N(Dn) : dσf ≤ 0}.
For an invariant subspace M of H2(Dn), Z∂(M) is the singular distri-

bution of M on T n defined by

Z∂(M) = inf{−dσf : f ∈M, f 6= 0}.
For two invariant subspaces M1,M2, the relation Z∂(M1) ≤ Z∂(M2) means
that for each non-zero f ∈M2, there is a function g ∈M1 such that −dσg ≤
−dσf . As shown in [DY], the invariant Z∂ reveals many deep properties of
invariant subspaces. Also in the same paper, Douglas and Yan introduced the
condition (?) for invariant subspaces. An invariant subspace M of H2(Dn)
is said to satisfy the condition (?) if

(1) h2n−2(Z(M)) = 0 and
(2) Z∂(M) = 0,

where Z(M) = {z ∈ Dn : f(z) = 0, ∀f ∈ M}, and h2n−2 is the (2n − 2)-
dimensional Hausdorff measure.

Remark 2.1. From [Ru1, Th. 3.3.6], we see that for a function f ∈
H2(Dn), dσf = 0 if and only if for almost all w ∈ T n, the inner factor of the
slice function fw(z) = f(wz) is a Blaschke product. Hence if there is such a
function in M , then Z∂(M) = 0. In particular, if M ∩ A(Dn) 6= {0}, then
Z∂(M) = 0, where A(Dn) is the polydisk algebra.

Now let us state Douglas and Yan’s technical result [DY, Th. 1].
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Theorem 2.2 ([DY]). If M satisfies the condition (1) in (?), and
φ ∈ L∞(Tn), then φM ⊆ H2(Dn) if and only if φ ∈ N(Dn) ∩ L∞(Tn)
and dσφ ≤ Z∂(M). Moreover , if M satisfies (?), then φM ⊆ H2(Dn) if
and only if φ ∈ H∞(Dn).

From [DY] or [Guo2], if A : M1 → M2 is a similarity (resp. unitary
equivalence), then there is an invertible (resp. unimodular) function ψ in
L∞(T ) such that A = Mψ. This says that similarity (or unitary equivalence)
between invariant subspaces can be realized by an operator of multiplication
by a bounded function. Combining this fact with Theorem 2.2, one sees
that if an invariant subspace M satisfies the condition (?), then M is a
podal (resp. s-podal) point in its unitary (resp. similarity) orbit. That is,
M is the maximum in its unitary (resp. similarity) orbit. Although each
podal subspace M is the maximum in its unitary orbit orbu(M), we give
an example to show that not every unitary orbit has a podal point. For
f ∈ H2(Dn), let [f ] denote the invariant subspace generated by f . We also
say that [f ] is a principal invariant subspace generated by f .

Example 2.3. Considering the Hardy space H2(D2), it is easy to verify
that the invariant subspaces

[
z+ 1

2w
]

and
[
w+ 1

2z
]

are unitarily equivalent
because

∣∣z + 1
2w
∣∣ =

∣∣w + 1
2z
∣∣ on T 2. Assume that there is a podal point M

in the unitary orbit orbu
([
z + 1

2w
])

. Then
[
z + 1

2w
]
⊆M and

[
w + 1

2z
]
⊆M.

Therefore z, w ∈M . So, M ⊇M0, where M0 = {f ∈ H2(D2) : f(0, 0) = 0}.
Hence M = M0 or H2(D2). Note that

rank
([
z + 1

2w
])

= 1 but rank(M0) = 2.

So, M 6= M0. Since
[
z + 1

2w
]

and H2(D2) are generated by homogeneous
polynomials z + 1

2w and 1, respectively, Theorem 2 of [Yan1] implies that[
z+ 1

2w
]

and H2(D2) are not unitarily equivalent, and hence M 6= H2(D2).
We have thus shown that the unitary orbit orbu

([
z+ 1

2w
])

has no maximum.
Note that z + 1

2w has no zero on T 2. By [Yan1], the invariant subspace[
z+ 1

2w
]

is similar to H2(D2), and hence H2(D2) ∈ orbs
([
z+ 1

2w
])

. There-
fore, the inclusion

orbu
([
z + 1

2w
])
⊂ orbs

([
z + 1

2w
])

is strict.

The following is a modification of the example given in [DY] to show
that not every similarity orbit has an s-podal point.

Example 2.4. From [Ru2], there exist two functions f, g inH2(D2) such
that
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(1) |f | = |g| a.e. on T 2;
(2) f/g is not the quotient of two H∞ functions.

Then obviously [f ] and [g] are similar. But there exists no maximum in
orbs([f ]). If there were one, say M , then there would exist functions φ1, φ2 ∈
H∞(D2) which are bounded below on T 2 such that

φ1M = [f ], φ2M = [g].

This implies that φ2[f ] = φ1[g]. By [Yan1], there would exist r ∈ N∗(D2)
satisfying

φ2fr = φ1g.

Note that the equality |f | = |g| insures that r is a bounded analytic function
and hence contradicts the fact that f/g is not the quotient of two H∞

functions.

Recall that a function f in the Hardy space H2(D) is outer if and only
if |g| ≤ |f | a.e. on T implies f | g, that is, there exists a function h ∈ H2(D)
such that g = fh. Equivalently, f is outer if and only if for any φ ∈ L∞(T ),
φf ∈ H2(D) implies φ ∈ H∞(D). Motivated by this observation, in [Guo1],
we introduced the concept of H-outer functions. A function f ∈ H2(Dn) is
called H-outer if |g| ≤ |f | a.e. on T n implies f | g. Obviously the definition is
equivalent to the statement that for any φ ∈ L∞(Tn), φf ∈ H2(Dn) implies
φ ∈ H∞(Dn). This is different from the concept of outer function in the
sense of Rudin [Ru1]. A function f is outer in the sense of Rudin (briefly,
R-outer) if log |f(z)| = Pz[log |f |] for some z ∈ Dn and hence for all z ∈ Dn.
For convenience, we say that a function f ∈ H2(Dn) is separately outer if
for each i, f(z1, . . . , zi−1, z, zi+1, . . . , zn) is outer in H2(D) as a function of
z for a.e. (z1, . . . , zi−1, zi+1, . . . , zn) ∈ Tn−1. Obviously, in the case n = 1,
these concepts are identical. In the case n > 1, in [Guo1], we proved

{all R-outers} ⊆ {all separately outers} ⊆ {all H-outers}.
In fact, the first inclusion is strict; we do not know if the second inclusion
is strict.

Remark 2.5. By Proposition 2.1 of [Ge] or Proposition 2.9 of [Guo2],
for a polynomial p, if p has no zero in Dn, then p is R-outer. For a polynomial
p in two variables, if p depends strictly on two variables, then p is separately
outer if and only if Z(p) ∩ (D × T ∪ T × D) = ∅. In fact, if the above
condition is satisfied, then obviously p is separately outer. Assume that p is
separately outer. If there is some (z0, w0) ∈ D × T such that p(z0, w0) = 0,
by slightly perturbing w0 on T and using the continuous dependence of
the roots on the coefficients, one deduces that for each w near w0, there
exists z ∈ D such that p(z, w) = 0. Hence if p is separately outer, then
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Z(p) ∩ (D × T ∪ T ×D) = ∅. Of course, one can extend this conclusion to
the case of several variables.

For a polynomial p, we define the monomial λp(z) = zk1
1 . . . zknn , where

kl is the maximum degree of zl which occurs in p for l = 1, . . . , n.

Proposition 2.6. Let p be an irreducible polynomial , and Z(p) ∩ Dn

6= ∅. If p is H-outer , then p = cλpp on Tn, where c is a constant with
|c| = 1.

Proof. We can write p = λpr on Tn, where r is a polynomial. Then r is
irreducible. Since p is H-outer, the equality (r/r)p = λpr forces that

r

r
=
λpr

λpr
=
λpr

p

is a rational inner function. Since p is irreducible and Z(p) ∩Dn 6= ∅, The-
orem 5.2.5 of [Ru1] implies that there exists a polynomial q such that

λpr = qp.

From the equality p = λpr, one sees that |q| = 1 on T n, and hence q is a
monomial. Consequently, the equality λpr = qp implies that there exists a
constant c with |c| = 1 such that p = cr. This yields the desired conclusion.

If an invariant subspace M contains an H-outer function, then by Propo-
sition 3.2 of [Guo1], M is necessarily the s-podal point in its similarity orbit.
The following theorem may be seen to be a partial converse to this state-
ment.

Theorem 2.7. Assume that an invariant subspace M satisfies the con-
dition (?). Then the invariant subspace [fM ] is s-podal if and only if f is
H-outer.

Proof. First assume that f is H-outer, and an invariant subspace N is
similar to [fM ]. Then there exists a φ ∈ L∞(Tn) which is bounded below
on Tn such that φ[fM ] = N . Theorem 2.2 thus implies that φf ∈ H2(Dn).
So, φ ∈ H∞(Dn). This insures that N is a subspace of [fM ]. We conclude
that if f is H-outer, then [fM ] is s-podal.

Now let [fM ] be s-podal. If φ ∈ L∞(Tn) is such that φf ∈ H2(Dn),
our aim is to prove that φ is in H∞(Dn). Of course, we may assume that
1/2 ≤ |φ| ≤ 1 on T n. Otherwise, we replace φ by φ + c, where c is a large
positive constant. One thus establishes a similarity:

Mφ : [fM ]→ [φfM ], Mφ−1 : [φfM ]→ [fM ].

Since [fM ] is s-podal, we see that

φ[fM ] ⊆ [fM ].
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It follows that for any natural k, φkf ∈ H2(Dn). By using an ideal of
Schneider [ACD, see the proof of Proposition 3], one can prove φ ∈ H∞(Dn).
Here, we give a different proof. For every natural number k, set gk = φkf and
extend φk to those z in Dn where f(z) 6= 0 by defining φk(z) = gk(z)/f(z).
By induction, it is easy to see that for any z 6∈ Z(f),

φk(z) = (φ1(z))k.

Since (φkf)(z) = φk(z)f(z) = Pz[φkf ], one sees that

|(φ1(z))kf(z)| ≤ Pz[|φkf |] ≤ Pz[|f |]
for each natural k. This implies that |φ1(z)| ≤ 1 for each z 6∈ Z(f). Now
the fact that φ(z) = φ1(z) is analytic in Dn follows from Hartogs’ theorem.
Thus φ is a bounded analytic function in Dn. This shows that f is H-outer.
The proof is complete.

Corollary 2.8. A principal invariant subspace [f ] is s-podal if and only
if f is H-outer.

To obtain the next corollary we need to recall some results on the poly-
nomial ring C = C[z1, . . . , zn]. Let P be a prime ideal in C. The height of
P is defined to be the maximal length l of any strictly increasing chain of
prime ideals

0 = P0 ⊂ P1 ⊂ . . . ⊂ Pl = P.

Since the polynomial ring is Noetherian every prime ideal has finite height
and the height of an arbitrary ideal is defined to be the minimum of the
heights of its associated prime ideals. For an ideal I, one has dimC Z(I) =
n − l, where l is the height of I and dimC Z(I) the complex dimension of
the zero variety of I (cf. [DPSY] or [ZS]). When an ideal L is of height at
least 2, this condition guarantees that the zero variety of L is an h2n−2-null
set. This means that [L], the invariant subspace generated by L, satisfies the
condition (?). Let I be an ideal of C. Since C is Noetherian, I is generated by
a finite number of polynomials. This implies that I has the greatest common
divisor p. So, I can be uniquely written as I = pL for some ideal L, which
is called the Beurling form of I.

Proposition 2.9. Let I be an ideal and I = pL be its Beurling form.
Then height I = 1 if and only if p 6= constant. Equivalently , height I ≥ 2
if and only if the greatest common divisor GCD(I) is 1. In particular , we
have heightL ≥ 2.

Proof. The necessity comes from Lemma 3.4 of [Guo2]. Conversely, if
p 6= constant, then all elements in I are divisible by p, and hence they are
also divisible by some irreducible factor q of p. Then the ideal I is contained
in the prime ideal generated by q. Since the height of this prime ideal is 1,
the height of I is 1.
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Combining Theorem 2.7 with Proposition 2.9, we have

Corollary 2.10. Let I be an ideal and I = pL be its Beurling form.
Then [I] is s-podal if and only if p is H-outer.

Theorem 2.11. Assume that an invariant subspace M satisfies the con-
dition (?). Then there exists an s-podal point in the similarity orbit
orbs([fM ]) if and only if f can be factorized as f = φh where φ is in
H∞(Dn), and bounded below on T n, and h is H-outer.

Corollary 2.12. Let I be an ideal and I = pL be its Beurling form.
Then there exists an s-podal point in the similarity orbit orbs([I]) if and
only if p = φh where φ is in H∞(Dn), and bounded below on T n, and h is
H-outer.

Proof of Theorem 2.11. First assume that f has a factorization as de-
scribed in Theorem 2.11. By Theorem 2.7, [φ−1fM ] is s-podal. Notice that

Mφ : [φ−1fM ]→ [fM ]

is a similarity between [φ−1fM ] and [fM ]. This says that there exists an
s-podal point in the similarity orbit orbs([fM ]).

Conversely, if there exists an s-podal point in orbs([fM ]), say N , then
there exists a φ ∈ H∞(Dn) which is bounded below on T n such that
[fM ] = φN . Theorem 2.7 implies that φ−1f is H-outer in H2(Dn). So,
f has the desired factorization.

It is easy to see that each s-podal subspace is podal. We do not know if
there exists a podal subspace M which is not s-podal. This would mean that
M is the maximum in the unitary orbit orbu(M), but not in the similarity
orbit orbs(M). If we consider a principal invariant subspace [f ], then [f ] is
podal if and only if for every unimodular function η (i.e. |η| = 1 a.e. on T n),
the relation ηf ∈ H2(Dn) implies η is an inner function. Therefore, for a
principal invariant subspace [f ], the above problem can be stated as follows:
if f has the property that for any g ∈ H2(Dn) with |g| = |f | a.e. on T n,
g is necessarily factorized as the product of f and an inner function, is f
H-outer?

To clarify this problem, let us recall that on the unit disk, the Adamyan–
Arov–Krein theorem says that for φ ∈ L∞, if the coset φ+H∞(D) contains
two functions of unit norm, then it contains a function ψ such that |ψ| = 1
almost everywhere on T [Gar, Th. 4.3]. Supposee one could generalize the
Adamyan–Arov–Krein theorem to the polydisk; then the problem mentioned
above would have an affirmative answer. Indeed, if φf ∈ H2(Dn) (we may
suppose ‖φ‖∞ < 1), then φ+H∞(Dn) contains two functions of unit norm,
and hence contains a function η such that |η| = 1 a.e. on T n. This leads to
the desired conclusion.
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However, on the polydisk, the Adamyan–Arov–Krein theorem is not
valid. Rudin constructed a counterexample on the unit ball Bn of Cn, n > 1
(see [Ru3, Example 13.10]). It is easy to see that a slight modification yields
a counterexample on the polydisk. However, this does not mean that the
answer to the above problem is negative.

Let f ∈ H2(Dn). We say that f is G-outer if for any g ∈ H2(Dn) with
|g| = |f | a.e. on T n, g is necessarily factorized as the product of f and an
inner function. Equivalently, f is G-outer if for every unimodular function
φ, the relation φf ∈ H2(Dn) implies φ is an inner function.

Similarly to Theorem 2.11, we have

Theorem 2.13. Assume that a subspace M satisfies the condition (?).
Then there exists a podal point in the unitary orbit orbu[fM ] if and only
if f can be factorized as f = φh where φ is an inner function and h is
G-outer.

Corollary 2.14. Let I be an ideal and I = pL be its Beurling form.
Then there exists a podal point in the unitary orbit orbu[I] if and only if
p = φh where φ is a rational inner function and h is a G-outer rational
function.

Proof. We only need to prove that φ is a rational inner function. From
the equality p = φh, one sees that for almost all w ∈ T n, the slice function
φw(z) = φ(zw) is a finite Blaschke product. The reason is that the slice
function pw(z) is a polynomial in one variable. By [Ru1, Th. 5.2.4], we see
that φ is a rational inner function, completing the proof.

Corollary 2.15. Let p be an irreducible polynomial which is not a
monomial , such that p 6= cλpp on Tn for any constant c. If both p and
λpp have zeros in Dn, then the unitary orbit orbu([p]) contains no podal
point.

Proof. Indeed, since

orbu([p]) = orbu([λpp]),

if orbu([p]) contains a podal point, then Corollary 2.14 implies that there
exist rational inner functions η1, η2 and rational G-outer functions h1, h2
such that

λpp = η1h1, p = η2h2.

It is easy to see that the equality |h1| = |h2| on Tn implies that h1 = h2

(possibly up to a constant factor). Therefore,

λpp

p
=
η1

η2
.
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Let ηi = pi/qi, where pi, qi are relatively prime polynomials for i = 1, 2.
Then

λppp2q1 = pp1q2.

By [Ru1, Th. 5.2.4], the qi have no zeros in Dn, and there exist monomials
τi such that pi = τiqi for i = 1, 2. Obviously, λpp is irreducible and relatively
prime to p. Because q1 has no zero in Dn, we see that p divides p2. This
means that there exists a polynomial r2 such that p2 = pr2. One thus obtains
the equality

λppr2q1 = p1q2.

Note that λpp has zeros in Dn, and hence λpp divides p1. That is, there
is a polynomial r1 such that p1 = λppr1. So, r2q1 = r1q2. Since q2 and
p2 are relatively prime, q2 and r2 are relatively prime. This implies that q2
divides q1. Similarly, q1 divides q2. We thus conclude that there is a constant
c such that q1 = cq2. It follows that

η1

η2
=
cτ1

cτ2
.

Consequently,
cτ1p = cτ2λpp.

Since p and λpp are irreducible, and not monomial, the above equality im-
plies that there exists a constant c such that p = cλpp. This contradicts the
assumptions, and hence orbu([p]) contains no podal point.

Remark 2.16. Let I be an ideal, and I = pL be its Beurling form. If p
satisfies the assumptions in Corollary 2.15, the same reasoning implies that
the unitary orbit orbu([I]) contains no podal point.

Example 2.17. We consider the principal invariant subspace [z+w+α]
of H2(D2), where α is a constant. If α = 0, then z + w is separately outer,
and hence by Corollary 2.8, [z + w] is podal. If |α| ≥ 2, then by [Ge] or
[Guo2], [z +w + α] = H2(D2). For each α with 0 < |α| < 2, there exists no
podal point in the unitary orbit orbu([z+w+α]). Indeed, z+w+α satisfies
the assumption of Corollary 2.15 for such α.

Finally, let us look at the relation between Hankel operators and podal
subspaces. For φ ∈ L∞(Tn), the Hankel operator Hφ : H2(Dn)→ L2(Tn)	
H2(Dn) with symbol φ is defined by

Hφf = (I − P )φf, ∀f ∈ H2(Dn),

where P is the projection from L2(Tn) onto H2(Dn). It is easy to see that
the kernel kerHφ is an invariant subspace. However, in contrast to the case
n = 1, not every invariant subspace is the kernel of some Hankel operator.
In the case n > 1, there is an invariant subspace that is not contained in the
kernel of any Hankel operator. An example is M = (z + w)H2(D2). Indeed,
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if M ⊆ kerHφ, then φ (z + w)H2(D2) ⊆ H2(D2). Since z + w is separately
outer, φ is in H∞(D2), and hence Hφ = 0. In fact, this example implies that
the following general conclusion holds.

Proposition 2.18. Let M be an invariant subspace. Then M is s-podal
if and only if M is not contained in the kernel of any Hankel operator.

Corollary 2.19. Let M = kerHφ. If orbs(M) contains an s-podal
point N , then N = H2(Dn).

Proof. Let N be an s-podal point in orbs(M). Then there is an invertible
function ψ in L∞(Tn) such that M = ψN . Since ψN ⊆ N , by the proof
of Theorem 2.7, ψ ∈ H∞(Dn). Also note that N ⊆ kerHφψ. By Proposi-
tion 2.18, we see that φψ ∈ H∞(Dn). This implies that ψ ∈ kerHφ = M .
Therefore, 1 ∈ N , and hence N = H2(Dn).

Example 2.20. Let f, g be as in Example 2.4. Take M = kerHf/g. Then
orbs(M) contains no s-podal point. Indeed, if N were one, then N = H2(D2)
by Corollary 2.19. It follows that M = φH2(D2) for some φ ∈ H∞(D2).
Therefore (f/g)φ = φ′ ∈ H∞(D2). This contradicts the fact that f/g is not
the quotient of two H∞ functions. For a similar reason, orbu(M) contains
no podal point.
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