
STUDIA MATHEMATICA 149 (2) (2002)

Squeezing the Sierpiński sponge

by

Tadeusz Iwaniec (Syracuse, NY) and Gaven Martin (Auckland)

Abstract. We give an example relating to the regularity properties of mappings with
finite distortion. This example suggests conditions to be imposed on the distortion function
in order to avoid “cavitation in measure”.

1. Introduction. Recently a cohesive theory of mappings of finite dis-
tortion has begun to emerge as a generalization of the theory of quasicon-
formal mappings. The connections with non-linear elasticity as developed
by Antman and Ball [1, 3] are a primary motivation for this extension of
the classical theory. Mappings of finite distortion appear naturally as the
minimizers of certain non-linear stored energy functionals. The regularity
properties of these solutions are issues of fundamental importance in the
theory. Here we provide an example which appears to us to lead naturally
to a precise conjecture relating the integrability properties of a distortion
functions and the associated geometric properties of the mapping. Let us
first give a definition.

Definition. A mapping f : Ω → Rn is said to have finite distortion if:

(i) f ∈W 1,1
loc (Ω,Rn),

(ii) the Jacobian determinant of f is locally integrable and does not
change sign in Ω,

(iii) there is a measurable distortion function K = K(x) ≥ 1, finite almost
everywhere, such that f satisfies the distortion inequality

(1) |Df(x)|n ≤ K(x)|J(x, f)| a.e. in Ω.

The conditions (i)–(iii) above are not enough to imply f ∈W 1,n
loc (Ω,Rn),

unless of course the distortion K is a bounded function. If K(x) ≤ K, then
f is referred to as a K-quasiregular mapping, or quasiconformal if f is ad-
ditionally a homeomorphism (onto its image); see [15]. There is an extant
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literature concerning the cases when K is not bounded, but well controlled.
For instance, openness and discreteness of such mappings were treated in [7,
11, 12]. Also, if K is bounded by a BMO function, then the interplay between
the dual spaces BMO andH1, or a better space where the Jacobian might lie
[14], can be exploited to develop an interesting theory. See [2, 8, 9, 16] where
the pioneering work of David [4] is extended, particularly in the planar case.

The relevance of the Sobolev space W 1,n
loc (Ω,Rn) in which one looks for

the solutions of the distortion inequality (1) is clear. However, one of the
major advances in the modern theory of quasiconformal mappings relies
fundamentally on the properties of very weak solutions to (1). Very weak
solutions are those which a priori belong to a weaker class than the natural
space W 1,n

loc (Ω,Rn) on which the classical theory is based. The goal in deal-
ing with very weak solutions is to show, using properties of the distortion
function, that in fact they are classical solutions and perhaps in an even
higher Sobolev class, e.g. W 1,n+ε

loc (Ω,Rn). Such improved regularity largely
relies on integrability properties of the Jacobian determinant. We mention
here that estimates for very weak solutions, below the natural exponent n,
are essential in studying the nature of the singularities of mappings of finite
(or even bounded) distortion. These things are discussed in some detail in
our monograph [10].

We further emphasise that the three conditions (i)–(iii) above do not a
priori guarantee that the Jacobian does not vanish on a set of positive mea-
sure. That in certain circumstances, for instance K bounded, the Jacobian
does not vanish on such sets is a deep analytic fact.

There are a few things to note concerning the definition of a mapping
of finite distortion. Because the differential inequality at (1) is assumed
to hold only almost everywhere, the values of K on a set of measure zero
are immaterial. For this reason K is treated as a function which is only
finite almost everywhere. Furthermore, Hadamard’s inequality asserts that
pointwise J(x, f) ≤ |Df(x)|n, thus the assumption K(x) ≥ 1 is imposed on
us.

Here we establish the following theorem.

Theorem 1.1. Let Q = [−1, 1]n denote the unit cube in Rn. There is a
homeomorphism f : Q→ Rn such that

• f is a Lipschitz map and therefore
• f lies in every Sobolev class W 1,p(Q,Rn), 1 ≤ p ≤ ∞,
• f is a mapping of finite distortion,
• H(·, f),KI(·, f) ∈ L logα L(Q) for all α < −1 but not for α = −1,
• KO(·, f) ∈ Lp(Q) for all p < 1/(n− 1) but not for p = 1/(n− 1),
• J(x, f) vanishes on a set S of positive measure,
• f(S) has zero measure.
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Moreover f(Q) = Q and the inverse map g : Q → Q has the following
properties:

• g lies in every Sobolev class W 1,p(Q,Rn), p < n,
• g is a mapping of finite distortion,
• KI(·, g) ∈ Lq if and only if q < n/(n− 1),
• KO(·, g) ∈ Lp if and only if p < n and
• g maps some set of zero measure (and Hausdorff dimension n) onto a

set of positive measure.

Here we are referring to the following distortion functions which we recall
for the reader:

• the linear distortion

(2) H(x, f) = |Df(x)| · |Df(x)−1| = max{|Df(x)ζ| : |ζ| = 1}
min{|Df(x)ζ| : |ζ| = 1} ,

• the outer distortion

(3) KO(x, f) =
|Df(x)|n
J(x, f)

,

• the inner distortion

(4) KI(x, f) = KO(f(x), f−1) =
|D#f(x)|n
J(x, f)n−1 ,

where D#f(x) denotes the n×n matrix whose entries are the (n−1)×(n−1)
minors of Df .

Here and in what follows, the distortion functions of a singular matrix
are assumed to be equal to ∞, except for those of the zero matrix where we
make the convention that they are all equal to 1.

The theorem we are yet to prove, and our belief in the extremality of
the example we present, motivate the conjecture:

Conjecture 1.1. Let f : Ω → Rn be a non-constant mapping of finite
distortion such that

(5) KI(x, f) ∈ LP (Ω)

where
∞�

1

P (s)
ds

s2 =∞.

Then

• J(x, f) > 0 almost everywhere in Ω,
• f is open and discrete,
• if |E| = 0, then |f(E)| = 0.
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Here LP denotes the Orlicz–Sobolev space with norm generated by the
function P . (P (t) = tp gives the usual Lp spaces. See [10] for this and a
discussion of Orlicz–Sobolev spaces with applications in this area.)

The following result from [8] is also pertinent to our discussion. It shows
that in many natural situations the integrability of the Jacobian is auto-
matic; this extends a result of Gehring and Lehto [6] to higher dimensions.

Theorem 1.2. Suppose that the function f : Ω → Rn belongs to the
space W 1,1

loc (Ω,Rn)∩L∞loc(Ω,Rn) and that for some positive integer N there
is some set A of measure zero such that f : Ω \A→ Rn is at most N to 1.
Then J(x, f) ∈ L1

loc(Ω). In particular , we have J(x, f) ∈ L1
loc(Ω) for each

local homeomorphism f ∈W 1,1
loc (Ω,Rn).

2. Squeezing the sponge; the mapping f . The construction of our
mapping f is based on the classical “Sierpiński sponge”, whence the title.
The map we construct squeezes the sponge in an interesting way. The holes,
initially forming a Cantor set of positive volume, get squeezed down to a
set of measure zero. Yet the map is of finite distortion with its distortion
function in a nice class. Let us get on with the construction before pointing
out other nice features of this example.

We make use of the maximum norm in Rn which we denote by

(6) ||x|| = max{|xi| : i = 1, . . . , n}.
As a starting point we consider the cube

Q = {x : ||x|| ≤ 1}
and a sequence {rν}∞ν=1 of positive numbers such that

(7) 1 = r1 > 2r2 > . . . > 2ν−1 rν > . . .

We divide Q up into 2n congruent subcubes denoted by Q
(
a, 1

2r1
)
, where

the centers are given by a =
(
± 1

2 , . . . ,± 1
2

)
=
(
± 1

2r1, . . . ,± 1
2r1
)
, corre-

sponding to an arbitrary choice of signs. We remove from each Q
(
a, 1

2r1
)

the concentric cube Q(a, r2) leaving a rectangular frame:

F1(a) =
{
x : r2 < ||x− a|| ≤ 1

2r1
}
.

Their union is denoted by

F1 =
⋃
F1(a)

where the union runs over all centers a =
(
± 1

2 , . . . ,± 1
2

)
. Next we repeat this

construction within each cube Q(a, r2). The dyadic subcubes are centered
at the points

a+ 1
2 (±r2, . . . ,±r2) = 1

2 (±r1 ± r2, . . . ,±r1 ± r2).
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The cubes we remove from Q(a, r2) are concentric and have radii r3. We
iterate this procedure generating the following:

The νth generation of centers Aν consists of the 2nν points of the form

a = 1
2 (±r1 ± . . .± rν , . . . ,±r1 ± . . .± rν)

where the signs are chosen arbitrarily. The condition at (7) ensures that
different choices of sign yield different points of Aν . Now at each stage ν
and for every point a ∈ Aν there is an associated rectangular frame

(8) Fν(a) =
{
x : rν+1 < ||x− a|| ≤ 1

2rν
}

and their union is

(9) Fν =
⋃
{Fν(a) : a ∈ Aν}.

Sierpiński’s sponge is simply the union of all the frames

(10) F =
∞⋃

ν=1

Fν .

The complement of the sponge is a Cantor subset of the cube Q:

(11) S = Q \ F.
We shall view S as a singular set. It is easy to see, and important to note, that
any sequence {aν}∞ν=1 of centers in Aν converges to a point in S. Conversely,
every point of S is the limit of exactly one such sequence of centers. It
is therefore convenient to parameterise the points of the Cantor set S by
sequences of centers.

Fig. 1. Sierpiński sponge
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The measure of the set S is easily found to be

(12) |S| = lim
ν→∞

∣∣∣
⋃

a∈Aν
Q
(
a, 1

2rν
)∣∣∣ = lim

ν→∞
2nνrnν .

The “squeezed” Sierpiński sponge will be another such sponge corre-
sponding to a sequence of radii

(13) 1 = r′1 > 2r′2 > . . . > 2ν−1r′ν > . . .

Other terms of this new sponge will simply be tagged with the prime nota-
tion.

We are going to construct a homeomorphism (indeed a Lipschitz map) of
finite distortion whose differential vanishes on the singular set S of positive
measure and nowhere else.

Let

(14) r′ν =
2(ν−1)(ν−2)/2rνν

r1 . . . rν

and note that the condition at (13) is satisfied by the sequence {r′ν} as

r′ν+1

r′ν
=
(
rν+1

rν

)ν
2ν−1 <

2ν−1

2ν
=

1
2
.

We now define the map f on each frame Fν(a) as a “radial stretching” in
the max norm ||·||. That is,

(15) f(x) = αν ||x− a||ν−1(x− a) + a′,

with the constant

αν =
2ν(ν−1)/2

r1 . . . rν
.

It follows from the choice of r′ν that f maps each frame Fν(a) homeo-
morphically onto the corresponding frame F ′ν(a′). Indeed we note that if
||x− a|| = 1

2rν , then

||f(x)− a′|| = 2ν(ν−1)/2
(

1
2rν
)ν

r1 . . . rν
=

1
2
r′ν .

And if ||x− a|| = rν+1, then

||f(x)− a′|| = 2ν(ν−1)/2(rν+1)ν

r1 . . . rν
= r′ν+1.

Similarly, we may verify that two different radial stretchings coincide on the
common boundary of adjacent frames. These stretchings, when restricted to
a common boundary, are similarity transformations, uniquely determined
by the image of a face of the frame.

This piecewise definition of f , frame by frame, leaves us with a homeo-
morphism defined on their union F whose image is F ′. As a final step we
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extend f uniquely to a homeomorphism f : Q → Q as follows. If x ∈ S,
there is a unique sequence aν of nested centers with x = limν→∞ aν . We
put f(x) = limν→∞ a′ν , with the above mentioned correspondence between
aν and a′ν .

Next comes the computation of the differential and the distortion of f .
Let us first examine a generic radial stretching,

(16) h(x) = ||x||ν−1
x, ν ≥ 1.

Because of the various symmetries it suffices to make all the computations
in the region where ||x|| = x1 ≥ 0. Thus h may be assumed to have the form
h(x) = xν−1

1 (x1, . . . , xn) defined on the region |xi| ≤ x1, i = 1, . . . , n. There
we find

Dh(x) = xν−1
1




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


+ (ν − 1)xν−2

1




x1 0 . . . 0
x2 0 . . . 0
...

...
. . .

...
xn 0 . . . 0




and
J(x, h) = ν||x||n(ν−1)

.

The differential of h has n − 2 singular values equal to ||x||ν−1 with the
remaining two singular values, denoted by σ+ and σ−, satisfying

σ+σ− = ν||x||2ν−2
,

C−1||x||ν−1 ≤ σ− ≤ C||x||ν−1
,(17)

C−1ν||x||ν−1 ≤ σ+ ≤ Cν||x||ν−1
,(18)

where C ≤ 2n is a constant depending only on the dimension.
We now go about fixing the parameters. We choose the sequence of radii

(19) rν =
ν + 1
ν 2ν

, ν = 1, 2, . . .

The measure of Q is 2n and the measure of the singular set S is

(20) |S| = lim
ν→∞

2nν
(
ν + 1
ν

)n
2−nν = 1.

The radii of the cubes in the image frames are

r′ν =
1

(ν + 1)2ν−1

(
ν + 1
ν

)ν

and therefore the measure of the set S′ is

(21) |S′| = lim
ν→∞

2nν
(
ν + 1
ν

)n
2−nν−n

1
(ν + 1)n

= 0.
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The mapping f restricted to the frame Fν(a) is

f(x) =
2ν

2

ν + 1
||x− a||ν−1(x− a) + a′

where n− 2 singular values of Df(x) are equal to

(ν + 1)−12ν
2 ||x− a||ν−1

,

while the remaining two singular values satisfy the bounds

2ν
2

2C(ν + 1)
||x− a||ν−1 ≤ σ− ≤

2C 2ν
2

ν + 1
||x− a||ν−1

,

2ν
2

4C
||x− a||ν−1 ≤ σ+ ≤ 2C 2ν

2 ||x− a||ν−1
.

We also estimate the norm of the differential on the frame Fν(a):

|Df(x)| = σ+ ≤ 2C2ν
2 ||x− a||ν−1 ≤ C21+ν2

(
rν
2

)ν−1

≤ 4C
(
ν + 1
ν

)ν−1

≤ 24n.

Similarly

|Df(x)| ≥ 2ν
2

4C
||x− a||ν−1 ≥ 2ν

2

4C
rν−1
ν+1 ≥

1
4n
.

The bound on the differential seems at first surprising since piecewise we
have mapped a rather thin frame to a rather thick frame. Thus the distortion
is large (as we will see in a moment). However, this thick frame is at a much
smaller scale, which gives us the control on the differential we want.

One important feature of Sierpiński’s sponge, as we have constructed it,
is that every pair of points a, b ∈ F = Q\S can be connected by a piecewise
linear curve in F whose segments are parallel to the axes and whose length is
comparable to the euclidean distance between a and b. In fact one can show
that there is such a path γ whose length does not exceed

√
n |a− b|. Such a

curve is found by traversing the boundaries of suitable frames covering the
line segment from a to b. It follows that

|f(a)− f(b)| ≤
�

γ

|Df | ≤ √n ‖Df‖∞|a− b| ≤ 24n3/2|a− b|.

Thus f is Lipschitz. This Lipschitz estimate remains valid in all of Q because
f is continuous and F is dense. According to the Rademacher Theorem, f
is therefore differentiable almost everywhere and its differential is bounded
by 24n3/2. We have already seen that |Df(x)| ≥ 1/(4n) at each point of
differentiability in F . We want to show that Df(a) = 0 at each point of
differentiability a ∈ S. To this end we write {a} =

⋂∞
ν=1 Q(aν , rν+1) for
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an appropriate sequence of centers aν ∈ Aν . On the boundary of each cube
Q(aν , rν+1) there is a point yν such that ||a− yν || ≥ rν+1. Since ||yν − aν || =
rν+1, it follows that ||f(yν) − a′ν || = r′ν+1 as we have already seen. On the
other hand {f(a)} =

⋂∞
ν=1 Q(a′ν , r

′
ν+1). This implies that ||f(a)−a′ν || ≤ r′ν+1

and by the triangle inequality ||f(a)− f(yν)|| ≤ 2r′ν+1. Putting this together
shows

||f(a)− f(yν)||
||a− yν ||

≤ 2r′ν+1

rν+1
=

4
ν + 2

(
ν + 2
ν + 1

)ν
≤ 12

ν
.

If we now let ν →∞ we conclude Df(a) = 0.
Hence Df(a) = 0 on a subset of S of full measure.
The Jacobian determinant on the frame set Fν(a) is given by

J(x, f) =
ν 2nν

2

(ν + 1)n
||x− a||n(ν−1)

and hence does not vanish. Therefore we can write

(22) |Df(x)|n = KO(x, f)J(x, f)

at all points of Q, where, by convention, KO(a, f) = 1 for a ∈ S. Elsewhere
we see

KO(x, f) =
(σ+)n

J(x, f)
≤ [2C(ν + 1)]ν

ν
≤ (8n)nνn−1

for x ∈ Fν . Thus f is a mapping of finite distortion. Indeed the linear
distortion has the better bound

(23) H(x, f) ≈ σ+

σ−
≈ 4C2(ν + 1) ≈ C(n)ν

for x ∈ Fν with large ν.
It is of interest to compute the inner distortion KI(x, f) of the mapping

f as well. From the singular values above, we find that on each frame Fν ,

(24)
ν

C
≤ KI(x, f) ≤ Cν

for a constant C which depends only on the dimension.
We now investigate the integrability properties of the distortion func-

tions.
Let P be an Orlicz function. We shall estimate the P -norm of K =

KI(x, f). These will be controlled by the estimate at (24). If λ > 0, then by
the integral test for infinite series we find that

�

Q

P (λK) ≈
∞∑

ν=1

P (λν)|Fν |+ |S|P (λ).

Now as

|Fν | = 2nν(rnν − 2nrnν+1) =
(
ν + 1
ν

)n
−
(
ν + 2
ν + 1

)n
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and hence
n

ν(ν + 1)
≤ |Fν | ≤

n 2n−1

ν(ν + 1)

we have the estimate
�

Q

P (λK) ≈
∞∑

ν=1

P (λν)
ν2 ≈

∞�

1

P (λt)
dt

t2
= λ

∞�

λ

P (s)
ds

s2 .

We find therefore that K(x) = KI(x, f) ∈ LP (Q) if and only if
∞�

1

P (s)
ds

s2 <∞

and in this case we have

‖K‖P ≈
1

P (1)

∞�

1

P (s)
ds

s2 .

In particular KI(x, f) ∈ L logα L for all α < −1. However, KI(x, f) 6∈
L log−1 L. The estimate at (23) shows the same is true for the linear distor-
tion function.

In summary, we have found a homeomorphism f : Q → Rn satisfying
the first list of conditions in Theorem 1.1.

2.1. Releasing the sponge; the mapping g. Having squeezed the Sierpiński
sponge and found it to be a very interesting example, it is of considerable
interest to investigate the inverse mapping g = f−1. On each frame F ′ν(a′ν)
we have

g(y) = (ν + 1)1/ν2−ν ||y − a′ν ||1/ν−1(y − a′ν) + aν .

Hence we find that

|Dg(y)| ≤ C 2−ν ||y − a′ν ||1/ν−1 ≤ C 2−ν(r′ν+1)1/ν−1 ≤ Cν.
The measure of F ′ν is computed as

|F ′ν | = 2nν [(r′ν)n − (2r′ν+1)n] ≤ n 2nν(r′ν − 2r′ν+1)(r′ν)n−1

≤ C(n)ν1−n
[

1
ν + 1

(
ν + 1
ν

)ν
− 1
ν + 2

(
ν + 2
ν + 1

)ν]

≤ C(n)
1

νn+1 .

Now let P be an Orlicz function such that

(25)
∞�

1

P (t)
dt

tn+1 <∞.
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Applying the integral test we find

(26)
�

Q

P

( |Dg(y)|
C

)
dy ≤ C(n)

∞�

1

P (t)
dt

tn+1 .

This implies, in particular, that g ∈ W 1,P (Q,Rn) and therefore g too is a
mapping of finite distortion. Also notice that the outer distortion function
of g at the point y = f(x) is KO(y, g) = KI(x, f) ≈ C(n)ν for y ∈ F ′ν .
Reasoning as before we find KO(·, g) ∈ LP (Q), with P as at (25).

There is one final property of g that we want to discuss. The map g
deforms the set F ′ of full measure into the cube Q which has the “hole” S
of positive measure. This phenomenon of cavitation in measure is curious
for mappings of finite distortion which lie in such a reasonable Sobolev-
Orlicz space. A lesson from this example is that the Sobolev–Orlicz class
W 1,P (Ω,Rn) with P satisfying (25) is insufficient to guarantee strong regu-
larity properties of mappings of finite distortion. Note that P (t) = tn−ε, giv-
ing the usual Sobolev spaces W 1,n−ε, satisfies (25). Thus g ∈ W 1,p(Q,Rn)
for all p < n. This shows why we are interested in the Zygmund classes just
below W 1,n.

In our earlier investigations of mappings of finite distortion [10] we have
repeatedly met the condition � ∞1 P (t) dt

tn+1 =∞ as being necessary for many
regularity properties of these mappings.

The question arises just how big the set S′ is. It has zero Lebesgue
measure, but we shall see in a moment that its Hausdorff dimension is n. It
is possible that this is optimal in the sense that the dimension of S ′ should
be n.

To make a more subtle distinction we need to discuss the concept of
weighted Hausdorff measure.

Let α ∈ C[0,∞) be a continuous increasing function with α(0) = 0
and limt→∞ α(t) = ∞. Given a set X in Rn, for each δ > 0 we consider
a countable covering of X by cubes Qi (or balls) of diameter less than δ,
X ⊂ ⋃∞i=1 Qi, and compute the sum

∞∑

i=1

α(diam Qi).

The infimum of all such sums is denoted by Hδα(X). It is clear that for fixed
X and α, the function Hδα(X) is non-decreasing in the parameter δ. The
α-Hausdorff content (or measure) of X is defined to be the limit of this
quantity as δ → 0,

(27) Hα(X) = lim
δ→0
Hδα(X).

Of course the weight function α(t) = tp, 0 < p ≤ n, is most often used and
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gives the usual Hausdorff p-measure, denoted by Hp(·). There is a slight
notational inconsistency here, but it should cause no problems.

For X fixed, Hp(X) is a non-increasing function of p. In this way we
come to define the Hausdorff dimension of X as

dimH(X) = inf{p ≥ 0 : Hp(X) <∞}(28)

= inf{p ≥ 0 : Hp(X) = 0}
= sup{p ≥ 0 : Hp(X) > 0}
= sup{p ≥ 0 : Hp(X) =∞}.

All these identities are readily verified. Of course any subset of Rn has
Hausdorff dimension at most n.

We now turn back to our set S′ of measure zero. We shall show that

(29) 0 < Hα(S′) <∞
where

(30) α(t) =
tn

logn(e+ 1/t)
.

It then follows that dimH(S′) = n. We recall that S′ =
⋂∞
i=1 F

′
ν where the

set F ′ν consists of 2nν cubes of radius 1
2r
′
ν . Hence

2nν∑

i=1

α(diam Qi) = 2nνα(
√
n r′ν) = 2nν

nn/2(r′ν)n

log(e+
√
n r′ν)

≈ C(n)2nν logn(e+ ν 2ν)
(ν 2ν)n

≈ C(n).

That it suffices to consider only this particular cover of S ′ to estimate the
measure relies on fairly elementary properties of Hausdorff measure and can
be found in most texts on Geometric Measure Theory (see [5, 13]). The
point is that S′ is a “regular” set.

In summary, we have found a homeomorphism g : Q → Rn satisfying
the second list of conditions in Theorem 1.1.
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