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Dual spaces generated by the interior of
the set of norm attaining functionals

by

Maria D. Acosta, Julio Becerra Guerrero and
Manuel Ruiz Galán (Granada)

Abstract. We characterize some isomorphic properties of Banach spaces in terms
of the set of norm attaining functionals. The main result states that a Banach space is
reflexive as soon as it does not contain `1 and the dual unit ball is the w∗-closure of the
convex hull of elements contained in the “uniform” interior of the set of norm attaining
functionals. By assuming a very weak isometric condition (lack of roughness) instead of
not containing `1, we also obtain a similar result. As a consequence of the first result, a
convex-transitive Banach space not containing `1 and such that the set of norm attaining
functionals has nonempty interior is in fact superreflexive.

Introduction. James’ Theorem states that a Banach space X is reflex-
ive as soon as the set NA(X) of norm attaining functionals coincides with
the dual space X∗ [13]. A result due to Bourgain and Stegall states that
NA(X) is of first Baire category if X is separable and the unit ball is not
dentable (see [5, Problem 3.5.6]). Kenderov, Moors and Sciffer showed the
same result for C(K) (K infinite and compact) [15, Theorem 4].

There are also characterizations of reflexivity by assuming non-empty
interior of the set of norm attaining functionals for topologies weaker than
the norm topology. For instance, Debs, Godefroy and Saint-Raymond proved
that a separable space X such that the w∗-interior of NA(X) relative to the
dual unit sphere SX∗ is not empty, is reflexive [6, Lemma 11]. Jiménez
Sevilla and Moreno showed the same result for any Banach space X [14,
Proposition 3.2]. A result by Petunin and Plichko is along the same lines:
a separable Banach space X is isometric to a dual space whenever there
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is a closed and weak∗ dense subspace of X∗ contained in the set of norm
attaining functionals [16].

Assuming that NA(X) has nontrivial (norm) interior, no isomorphic as-
sumption can imply reflexivity of X. As a matter of fact, every Banach
space can be equivalently renormed so as to have nonempty interior of the
set of norm attaining functionals [1]. However, it was proven by Acosta and
Ruiz Galán that a separable Banach space X that is very smooth or satisfies
the Mazur intersection property has to be reflexive if NA(X) has nonempty
interior [1]. Jiménez and Moreno showed the same result for spaces with the
Mazur intersection property without the assumption of separability [14].
Acosta and Ruiz Galán showed that, for a space with Hahn–Banach smooth
norm, either X is reflexive or NA(X) has empty interior [2].

In this note, we get results along the same lines, but assuming an isomor-
phic hypothesis on the space and a condition stating that the dual unit ball
is generated by a subset of the interior of NA(X) (Theorem 1). We show
that any Banach space X can be equivalently renormed so that the dual
unit ball is the w∗-closure of the elements of the unit sphere in the interior
of NA(X).

Afterwards, we prove that an isometric condition (nonroughness of the
space) and the generation by the w∗-closure of the convex hull of the points
in the dual unit ball contained in the “uniform” norm interior of NA(X)
also imply reflexivity (Proposition 4). As a consequence, the previous result
is valid for any Asplund space. Also we exhibit an example of a space X,
isomorphic to c0 and satisfying a certain condition of differentiability of the
norm (weaker than Fréchet), such that NA(X) has nonempty interior. This
example answers in the negative an open question posed in [2].

Results. We will assume that the spaces considered are real, but the
results also hold in the complex case and the adaptation of the proofs is
immediate.

In the following, X will be a Banach space, BX and SX the closed unit
ball and the unit sphere of X, respectively. X∗ will be the topological dual
of X and NA(X) ⊆ X∗ the subset of norm attaining functionals. For r > 0
we will write

NAr(X) := {x∗ ∈ X∗ : x∗ + rBX∗ ⊂ NA(X)}.
As mentioned in the introduction, no isomorphic condition can imply

reflexivity, even if we assume that the set of norm attaining functionals has
nonempty interior. Up to now, all the relevant results (except James’ Theo-
rem) use an additional isometric assumption. Here we will use an isomorphic
condition and a stronger assumption on the set of norm attaining functionals
to get a new characterization of reflexivity.
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Theorem 1. Let X be a Banach space not containing an isomorphic
copy of `1 and assume that for some r > 0,

BX∗ = cow
∗{x∗ ∈ SX∗ : x∗ + rBX∗ ⊂ NA(X)},

where cow
∗

denotes the w∗-closure of the convex hull. Then X is reflexive.

Proof. We argue by contradiction. Assume that X is not reflexive. Since
X does not contain `1, X does not have the Grothendieck property (see [19,
Theorem 1] or [12, Proposition 1]). Hence, there exists a w∗-null sequence
{x∗n} in SX∗ which is not weakly null. If Φ ∈ BX∗∗∗ \ {0} is a σ(X∗∗∗,X∗∗)-
cluster point of {x∗n}, it is clear that Φ(X) = {0}. If x∗ ∈ SX∗ ∩ NAr(X)
and x∗∗ ∈ SX∗∗ , we can assume, by passing to a subsequence if necessary,
that

x∗∗(x∗n)→ Φ(x∗∗).

Now it follows from Simons’ inequality ([7, Lemma I.3.7]) for the functions
fn := x∗ + rx∗n and the sets BX ⊆ BX∗∗ that

x∗∗(x∗) + rΦ(x∗∗) ≤ 1, ∀x∗∗ ∈ SX∗∗ ,
that is,

(1) x∗∗(x∗) + rΦ(x∗∗) ≤ ‖x∗∗‖, ∀x∗∗ ∈ X∗∗.
Now, fix x∗∗0 ∈ SX∗∗ and ε > 0. By using again the fact that X does not
contain `1 and [18, Theorem 10] (or [10, Theorem 1]) there are x0 ∈ SX and
α > 0 so that

(2) Oscx∗∗0 (S(BX∗ , x0, α)) < ε,

where S(BX∗ , x0, α) = {x∗ ∈ BX∗ : x∗(x0) > 1 − α} and Osc denotes
oscillation (i.e. sup− inf).

Since ‖x0‖ = 1, by assumption there is a sequence {x∗n} in X∗ such that

(3) x∗n(x0)→ 1 and x∗n ∈ NAr(X) ∩ SX∗ , ∀n.
Choose a w∗-cluster point x∗∗∗ ∈ X∗∗∗ of {x∗n}. By (3) we can apply

inequality (1) to each x∗n and the element x0 + tx∗∗0 for any t > 0, so

x∗n(x0) + tx∗∗0 (x∗n) + rtΦ(x∗∗0 ) ≤ ‖x0 + tx∗∗0 ‖.
Since x∗∗∗ is a w∗-cluster point of {x∗n}, it follows from (3) that

1 + tx∗∗∗(x∗∗0 ) + rtΦ(x∗∗0 ) ≤ ‖x0 + tx∗∗0 ‖,
that is,

(4) x∗∗∗(x∗∗0 ) + rΦ(x∗∗0 ) ≤ ‖x0 + tx∗∗0 ‖ − 1
t

, ∀t > 0.

We have limt→0+ (‖x0 + tx∗∗0 ‖ − 1)/t=maxV (x0, x
∗∗
0 ) ([8, Theorem V.9.5]),

where

V (x0, x
∗∗
0 ) = {y∗∗∗(x∗∗0 ) : y∗∗∗ ∈ SX∗∗∗ , y∗∗∗(x0) = 1}.
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By Goldstine’s Theorem the slice S(BX∗ , x0, α) is w∗-dense in the slice
S(BX∗∗∗ , x0, α), so

Oscx∗∗0 (S(BX∗∗∗ , x0, α)) = Oscx∗∗0 (S(BX∗ , x0, α)).

Since x∗∗∗ is a w∗-cluster point of {x∗n}, (3) gives us x∗∗∗(x0) = 1. By (2),
(4) and the previous observation we get

x∗∗∗(x∗∗0 ) + rΦ(x∗∗0 ) ≤ maxV (x0, x
∗∗
0 ) ≤ x∗∗∗(x∗∗0 ) + ε.

The inequality rΦ(x∗∗0 ) ≤ ε, valid for any ε > 0 and x∗∗0 ∈ SX∗∗ , gives Φ = 0,
a contradiction.

It has been known before that the condition NAr(X) 6= ∅ does not suffice
to get reflexivity of the space. To show that the first condition imposed
(X 6⊃ `1) is needed, let us consider the next basic example:

Remark 2. For X = `1,

BX∗ = cow
∗
(NA1/2(X) ∩ SX∗).

Proof. Clearly, the convex hull of the points in SX∗ with finite sup-
port is w∗-dense in BX∗ . Fix one such point z0 ∈ SX∗ . If z ∈ SX∗ and
‖z − z0‖ ≤ 1/2, then |z(n)| ≤ 1/2 for every n 6∈ supp z0, while |z(k)| ≥ 1/2
for some k ∈ supp z0 and therefore z ∈ NA(X).

Also, the second assumption imposed in Theorem 1 is needed:

Proposition 3. For any Banach space Z, there is a Banach space X
isomorphic to Z so that

BX∗ = co
(⋃

r>0

[NAr(X) ∩ SX∗ ]
)
.

Proof. Of course, we can assume that dimZ ≥ 2. Let M be a closed
linear subspace of Z and 0 6= z0 ∈ Z so that Z = Rz0 ⊕M and consider

X = Rz0 ⊕1 M,

that is, BX = co{±z0 ∪BM} and so

|x∗| = max{|x∗(z0)|, ‖x∗|M‖},
where ‖ ‖ is the original norm on Z and | | denotes the new norm.

Define the functional z∗0 by

z∗0(z0) = 1, z∗0(m) = 0, ∀m ∈M.

Clearly, |z∗0 | = 1, and for any x∗ ∈ X∗ with |x∗| ≤ 1 we have

x∗ =
1 + x∗(z0)

2
(z∗0 + x∗PM ) +

1− x∗(z0)
2

(−z∗0 + x∗PM ),

where PM is the natural projection from X to M . Since



Norm attaining functionals 179

|z∗0 + x∗PM | = |−z∗0 + x∗PM | = max{|z∗0(z0)|, ‖x∗|M‖} = 1,

we have proved that BX∗ ⊆ co{x∗ ∈ BX∗ : |x∗(z0)| = 1}.
It is enough to approximate each element x∗0 in BX∗ satisfying x∗0(z0) = 1

by functionals in the interior of NA(X). For such an x∗0, if we take

x∗n = z∗0 +
(

1− 1
n

)
x∗0PM (n ∈ N),

we get
x∗0 = lim

n
x∗n.

Since |x∗n| = max{|x∗n(z0)|, (1− 1/n)‖x∗n|M‖} and

(1− 1/n)‖x∗n|M‖ ≤ 1− 1/n < 1 = |x∗n(z0)|,
the same inequality holds in some open set containing x∗n. That is, there is
an open set of norm attaining functionals containing x∗n.

By looking carefully at the proof of Theorem 1, one may think that
the existence in the dual space of slices with small diameter (a stronger
assumption than condition (2) appearing in the proof of Theorem 1) could
make a similar result hold. We will get a new result in this direction by
assuming that the space is nonrough (instead of not containing `1). First of
all, recall that the norm ‖ · ‖ on a Banach space is rough if for some ε > 0,

lim sup
h→0

‖x+ h‖+ ‖x− h‖ − 2‖x‖
‖h‖ ≥ ε, ∀x ∈ X.

Note that Asplund spaces admit no equivalent rough norm.
By assuming a condition on the size of NA(X)—satisfied by `1—and a

geometric assumption on X, we will get reflexivity.

Proposition 4. A Banach space X is reflexive if , and only if , its norm
is not rough and for some r > 0,

BX∗ = cow
∗
(NAr(X) ∩ SX∗).

Proof. A reflexive space is Asplund, so the norm is not rough and clearly
satisfies the second condition since NA(X) = X∗. Assume now that the norm
of X is not rough and the dual unit ball can be generated by NAr(X) as
above. [7, Proposition I.1.11] yields x ∈ SX and α > 0 satisfying

diamS(BX∗ , x, α) < r,

where S(BX∗ , x, α) is the w∗-slice given by

S(BX∗ , x, α) = {x∗ ∈ BX∗ : x∗(x) > 1− α}.
By using the second assumption and the definition of S(BX∗ , x, α), it

follows that S(BX∗ , x, α) contains some element x∗ ∈ SX∗∩NAr(X). There-
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fore,
S(BX∗ , x, α) ⊂ x∗ + rBX∗ ⊂ NA(X)

and by [14, Lemma 3.1], X is reflexive.

Corollary 5. X is reflexive if , and only if , the following conditions
are satisfied :

(i) X is Asplund or at least its norm is Fréchet differentiable at some
point.

(ii) There is r > 0 such that

BX∗ = cow
∗
(NAr(X) ∩ SX∗).

It is known that Banach spaces X with the Mazur intersection property
such that NA(X) has nonempty interior, are reflexive [14, Proposition 3.3].
In Proposition 4 we assumed a weaker condition on the space and a stronger
assumption on NA(X).

Note that there are nonreflexive Asplund spaces X with NA(X) having
nonempty interior. In fact, we will give an example of a space X isomorphic
to c0 such that the interior of NA(X) is not empty and the norm of X
satisfies a certain differentiability condition. Recall that the norm ‖ · ‖ on a
Banach space X is strongly subdifferentiable (see [9, 11]) at a point u ∈ SX
if

lim
α→0+

‖u+ αx‖ − 1
α

= τ(u, x) uniformly for x ∈ BX .

A smooth norm satisfying the previous condition at any point u of the unit
sphere is Fréchet differentiable indeed.

The following example also answers in the negative a question posed in
[2, Open Question 1].

Example 6. There is a Banach space X isomorphic to c0 so that the
norm of X is strongly subdifferentiable (at any point of SX) and NA(X)
has nonempty interior. Therefore, X is not reflexive but Asplund.

Proof. It is enough to take asX the space c0 endowed with the equivalent
norm ‖ · ‖ given by

‖x‖ := 1
2 |x(1)|+ max

n≥2
|x(n)| (x ∈ c0).

This norm is strongly subdifferentiable as both the summands are.
If {en} is the usual basis of c0, we consider the open set in X∗ given by

O =
{
x∗ ∈ X∗ : 2|x∗(e1)| >

∞∑

n=2

|x∗(en)|
}
.
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For x∗ ∈ O and x ∈ X we have

|x∗(x)| =
∣∣∣
∞∑

n=1

x∗(en)x(n)
∣∣∣

≤ |x∗(e1)x(1)|+
∞∑

n=2

|x∗(en)|max
n≥2
|x(n)|

≤ 2|x∗(e1)|
(

1
2 |x(1)|+ max

n≥2
|x(n)|

)

≤ 2|x∗(e1)| ‖x‖,
hence ‖x∗‖ ≤ 2|x∗(e1)|. Since ‖2e1‖ = 1, we have ‖x∗‖ = 2|x∗(e1)| and x∗

attains its norm, therefore NA(X) has nonempty interior.

The presence of points with special properties in the interior of NA(X)
and the nonroughness of X force reflexivity. In order to be more precise, we
recall some definitions.

For a Banach spaceX, let G be the group of all surjective linear isometries
on X. The space X is said to be convex-transitive if BX = coG(u) for any
u ∈ SX . The spaces L1[0, 1], L∞[0, 1] and the Calkin algebra are convex-
transitive (see [17, Theorem 9.6.4] and [4, Corollary 4.6]).

Our aim now is to exhibit a class of Banach spaces X which are super-
reflexive in the case where the interior of NA(X) is nonempty.

Proposition 7. Let X be a separable Banach space, which is convex-
transitive and has NA(X) of second Baire category (in the norm topology).
Then X is superreflexive.

Proof. Since X is separable and NA(X) is of second Baire category, the
unit ball of X is dentable (see [5, Theorem 3.5.5 and Problem 3.5.6]). By [7,
Proposition I.1.11], this implies that the norm of X∗ is not rough, and by
using the convex-transitivity of X, X is superreflexive in view of [3, Theorem
3.2].

Proposition 8. Let X be a convex-transitive Banach space not contain-
ing `1 such that NA(X) has nonempty interior. Then X is superreflexive.

Proof. Since NA(X) is a cone with nonempty interior, there is x∗ ∈ SX∗
so that x∗ + rBX∗ ⊂ NA(X) for some r > 0. That is, x∗ ∈ NAr(X) ∩ SX∗ .
As X is convex-transitive, we have

(1) BX∗ = cow
∗( ⋃

T∈G
T ∗x∗

)
.

Now, x∗ + ry∗ ∈ NA(X) for any y∗ ∈ BX∗ , so there is y ∈ SX satisfying

|(x∗ + ry∗)(y)| = ‖x∗ + ry∗‖.
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Then, for any T ∈ G,

T ∗(x∗ + ry∗)(T−1(y)) = (x∗ + ry∗)(y) = ‖x∗ + ry∗‖ = ‖T ∗(x∗ + ry∗)‖
and ‖T−1(y)‖ = ‖y‖ = 1, that is, T ∗(x∗ + ry∗) ∈ NA(X). Since the above
condition holds for any y∗ ∈ BX∗ , and T ∗ is a surjective isometry on X∗,
we have T ∗x∗ ∈ SX∗ ∩NAr(X). By using (1) it follows that

BX∗ = cow
∗
(NAr(X) ∩ SX∗).

Since we are assuming that X does not contain `1, in view of Theorem 1,
X is reflexive. Also, by [3, Theorem 3.2], since X is convex-transitive, it is,
in fact, superreflexive.

The previous positive results suggest the following question:

Open problem 9. Let X be a convex-transitive Banach space such that
NA(X) has nonempty interior. Is X superreflexive?
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