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On the Kleinecke–Shirokov Theorem
for families of derivations

by

Victor S. Shulman (Vologda) and Yurĭı V. Turovskĭı (Baku)

Abstract. It is proved that Riesz elements in the intersection of the kernel and the
closure of the image of a family of derivations on a Banach algebra are quasinilpotent.
Some related results are obtained.

The celebrated Kleinecke–Shirokov Theorem ([7], [14]) states that the
elements in the intersection of the kernel and the image of a bounded deriva-
tion of a Banach algebra are quasinilpotent. M. Thomas [15] proved that this
theorem remains true for unbounded derivations. In general, “image” here
cannot be replaced by “closure of the image” and “derivation” by “family
of derivations”. Indeed, there is an inner derivation of the algebra B(H) of
all operators on a Hilbert space H such that the identity operator 1 belongs
to the closure of its range [2]; furthermore, if T is an operator which is not
the sum of a nonzero scalar multiple of the identity and a compact oper-
ator, then T and 1 − T belong to the images of some inner derivations of
B(H) (cf. [4]), whence 1 belongs to the sum of their images (and also to the
intersection of their kernels).

Our aim is to show that for Riesz elements (in particular, for Riesz
operators) the situation is much better.

We assume that all algebras and spaces in question are complex. Let
X,Xα be linear spaces for all α ∈ Λ (Λ is some set). For a family M = (Tα)
of linear maps Tα : X → Xα we denote by KerM the intersection of kernels
of all Tα. If Y is a subspace of X then M |Y denotes the family (Tα|Y )
of restrictions of all Tα to Y . Also, for a family N = (Sα) of linear maps
Sα : Xα → X we denote by ImN the linear span of the union of their
images.

Recall that a derivation of an algebra A is a linear operator d : A → A
satisfying the Leibniz rule d(ab) = ad(b) + d(a)b for all a, b ∈ A. Given an
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element a ∈ A, let La and Ra be the corresponding multiplication operators
on A defined by Lax = ax and Rax = xa for all x ∈ A. A derivation d of A
is called inner if there exists an element a ∈ A such that d = La−Ra; in this
case d is usually denoted by ad a. An element a ∈ A is called a finite rank
element if LaRa is a finite rank operator on the space A. If an algebra A is
not unital then the spectrum σ(a) of an element a of A is taken with respect
to the algebra A† obtained from A by adjoining the identity element 1. Any
derivation d of A uniquely extends to a derivation of A† (one should only set
d(1) = 0). So in what follows we may assume in our proofs that an algebra
in question has the identity element.

We call a Hausdorff linear topology τ on A admissible if the multiplica-
tion on A is separately continuous with respect to τ (that means that La
and Ra are continuous for all a ∈ A).

Now let A be a Banach algebra. An element a ∈ A is called a Riesz
element (resp. compact element) if LaRa is a Riesz operator (resp. compact
operator) on the Banach space A. Another definition of Riesz elements may
be found in [3].

We need some simple lemmas. In what follows B(X) is the algebra of all
bounded operators on a Banach space X.

Lemma 1. Let λ be an isolated point of the spectrum σ(T ) of an operator
T ∈ B(X) and Q the Riesz projection of T corresponding to λ. If there exists
a projection P in B(X) such that PT = TP and (T −λ)P is quasinilpotent
then P = PQ = QP .

Proof. As is well known, Q is the limit of a sequence of polynomials in T .
Hence PQ = QP . Since

QX = {x ∈ X : lim ‖(T − λ)nx‖1/n = 0}
(see Section 149 of [11]) and

‖(T − λ)nPx‖1/n ≤ ‖(TP − λP )n‖1/n‖x‖1/n → 0

as n→∞, we conclude that Px = QPx for every x ∈ X, i.e. P = QP .

The proof of the following lemma is a modification of the proof given in
[1] for the case of compact elements.

Lemma 2. Let A be a Banach algebra, and let a ∈ A be a Riesz element.
Then all nonzero points of σ(a) are isolated in σ(a).

Proof. If we adjoin the identity element to A then a remains a Riesz
element. So one may suppose that A is unital. Let B be a maximal com-
mutative subset of A containing a. Then, by Theorem 1.6.14 of [10], B is a
closed commutative subalgebra of A such that, in particular, σB(a2) = σ(a2)
(σB is the spectrum with respect to B). Since B is an invariant subspace for
LaRa and σ(LaRa) is countable, σ((LaRa)|B) ⊂ σ(LaRa) by Theorem 0.8
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of [9] and therefore all nonzero points of σ((LaRa)|B) are isolated. On the
other hand, σ((LaRa)|B) = σ(La2|B) = σB(a2) = σ(a2). Using the spec-
tral mapping theorem (for instance, see Theorem 0.5 of [9]) we find that all
nonzero points of σ(a) are also isolated.

By virtue of Lemma 2 one may take a Riesz idempotent of a Riesz
element of a Banach algebra A corresponding to a nonzero point of the
spectrum of the element. It is clear that such idempotents belong to A even
if A is not unital.

Lemma 3. Let A be a Banach algebra, and let a ∈ A be a Riesz element ,
λ a nonzero point of σ(a), p a Riesz idempotent of a corresponding to λ.
Then p is a finite rank element.

Proof. It is clear that (a − λ)p is quasinilpotent. Hence L(a−λ)p and
R(a−λ)p are also quasinilpotent. Furthermore, LpRp is clearly a projection
commuting with LaRa, and (LaRa−λ2)LpRp is quasinilpotent because it is
the sum of mutually commuting quasinilpotents L(a−λ)pRap and LλpR(a−λ)p.

We claim that λ2 ∈ σ(LaRa). Indeed, suppose to the contrary that S is
the inverse operator of LaRa − λ2. It is easy to see that

p = Sn[(LaRa − λ2)LpRp]npn

for every integer n > 0. Since ‖p‖ ≥ 1, we obtain

1 ≤ ‖p‖1/n ≤ ‖S‖ · ‖[(LaRa − λ2)LpRp]n‖1/n‖p‖ → 0

as n→∞, a contradiction.
So λ2 ∈ σ(LaRa). Let Q be the Riesz projection of LaRa corresponding

to λ2. Since LaRa is a Riesz operator, Q is an operator of finite rank. By
Lemma 1, LpRp = LpRpQ. Therefore LpRp is an operator of finite rank.

Lemma 4. Let A be a Banach algebra, and let a ∈ A be a Riesz element ,
λ a nonzero point of σ(a), p a Riesz idempotent of a corresponding to λ. If d
is a (not necessarily bounded) derivation of A and d(a) = 0 then d(p) = 0.

Proof. Set T = La, Q = Lp, X1 = QA and X2 = (1 − Q)A. Since the
map b 7→ Lb is a homomorphism from A into B(A), it follows from the
integral representation of Riesz projections and idempotents (see Section
148 of [11]) that Q is a Riesz projection of T corresponding to λ ∈ σ(T ).
Note that X1 = {x ∈ A : lim ‖(T − λ)nx‖1/n = 0} and X1 ∩X2 = (0).

Since (a− λ)p (= p(a− λ)p) is quasinilpotent and belongs to the finite-
dimensional subalgebra pAp, (a−λ)p is nilpotent. So there exists an integer
n > 0 such that (a − λ)np = ((a − λ)p)n = 0. Hence (a − λ)nd(p) =
d((a− λ)np) = 0 and therefore

(T − λ)n((1− p)d(p)) = (a− λ)n(1− p)d(p) = (1− p)(a− λ)nd(p) = 0.
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Then (1−p)d(p) ∈ X1, and also (1−p)d(p) = (1−Q)(d(p)) ∈ X2. Therefore
(1 − p)d(p) = 0. Since ad(p) = d(ap) = d(pa) = d(p)a, we see that d(p)
commutes with p. Thus d(p) = pd(p) = d(p)p. Taking into account

d(p) = d(p2) = pd(p) + d(p)p,

we deduce that d(p) = 0.

Lemma 5. Let A be a Hausdorff topological algebra with respect to some
topology τ (i.e. τ is an admissible topology on the algebra A). Let B be a
subspace of A and Bτ its τ -closure. If p is a finite rank idempotent of A
then pBp = pBτp.

Proof. If C is the τ -closure of pBp then pBp ⊂ pBτp ⊂ C. But pBp is a
finite-dimensional subspace of A. So pBp is closed by Theorem 1.3.2 of [13]
and therefore coincides with C.

Theorem 1. Let D = (dα) be a family of (not necessarily bounded)
derivations of a Banach algebra A. Then, for any admissible topology τ ,
all Riesz elements of A that belong to the intersection of KerD with the
τ -closure of ImD are quasinilpotent.

Proof. Let Eτ be the intersection of KerD with the τ -closure of ImD.
It is clear that KerD is a subalgebra of A and that, for any a ∈ KerD and
b ∈ ImD, the elements ab and ba are in ImD. Now if a net (bγ) of elements
of ImD converges to c in the topology τ then the nets (abγ) and (bγa) also
consist of elements of ImD and converge to ac and ca in the topology τ ,
respectively. If, in addition, c ∈ KerD then ac, ca ∈ KerD. This means that
Eτ is an ideal of KerD and therefore it is a subalgebra of A.

Let E be the norm closure of Eτ . Then E is a closed subalgebra of A.
Now if a ∈ E is a Riesz element and σ(a) 6= {0} then the Riesz projection
p of a corresponding to a nonzero point of the spectrum of a belongs to the
closed subalgebra generated by a. Hence p ∈ E. Denote by B the subalgebra
pAp. By Lemma 3, p is a finite rank element of A, so dimB <∞.

Let Wτ be the τ -closure of ImD, and let W be the norm closure of Wτ .
Since E ⊂W , p belongs to W and therefore p is in pWp. On the other hand,
it follows from Lemma 5 that p(ImD)p = pWτp = pWp. Thus p belongs
to p(ImD)p, i.e. p =

∑n
i=1 pdi(ai)p for some finite subfamily (di) ⊂ D. It

is easy to see that all operators d∗i defined on B by d∗i (c) = pdi(c)p for all
c ∈ B are derivations of B. It follows from Lemma 4 that di(p) = 0 for all i.
Hence p =

∑n
i=1 d

∗
i (bi), where bi = paip ∈ B. Then

tr(Lp|B) =
n∑

i=1

tr(Ld∗i (bi)|B) =
n∑

i=1

tr([d∗i , Lbi |B]) = 0
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because the trace of commutators of finite rank operators is equal to zero.
But this is impossible because Lp|B is the identity operator on B and its
trace is equal to dimB 6= 0. So we conclude that a is quasinilpotent.

For the case of inner derivations (with respect to the more special ad-
missible topology τ) the result was obtained in [16]. Previously, in [12], for
the applications in the theory of representations of functional relations, it
was obtained for trace class operators and inner derivations of B(H). An
algebraic version of Theorem 1 for matrix algebras may be found in Lemma
2.4 of [5]. For compact operators, one-element families of inner derivations of
B(H) and the weak sequential topology, the result was obtained in [6]; the
same with respect to the weak topology was obtained in [17]. Some related
topics are discussed in [8].

Theorem 2. Let D = (dα) be a family of (not necessarily bounded)
derivations of a Banach algebra A, B a subspace of A and commB the
commutant of B in A. Then, for any admissible topology τ , all Riesz ele-
ments of A that belong to the intersection of commB with the τ -closure of
Im(D|B) are quasinilpotent.

Proof. Let Wτ be the τ -closure of Im(D|B), b a Riesz element of A and
b ∈Wτ ∩commB. Suppose to the contrary that there exists a nonzero Riesz
idempotent p of b corresponding to a nonzero λ ∈ σ(b). Note that pWτp =
p Im(D|B)p by Lemma 5, so that pbp =

∑n
i=1 pdi(ai)p for some subfamily

(di) of D and all ai ∈ B. Since [b, ai] = 0, we have [ai, p] = [b, p] = 0 for
each i = 1, . . . , n.

Define as above the derivations d∗i of pAp by d∗i (a) = pdi(a)p for all
a ∈ pAp and i = 1, . . . , n. Let ci = paip ∈ pAp for all i. Since pdi(p)p = 0
and aip = pai, it is easy to check that d∗i (ci) = pdi(ai)p and therefore
pbp =

∑n
i=1 d

∗
i (ci). Moreover, it is clear that [pbp, ci] = 0 for all i. Since pAp

is finite-dimensional, all d∗i are bounded derivations of pAp. Now it is easy
to check that

Lpbp|pAp =
n∑

i=1

[Lci |pAp,−d∗i ] and [Lcj |pAp,Lpbp|pAp] = 0

for all j = 1, . . . , n. Then, by Theorem 1, Lpbp|pAp is a quasinilpotent oper-
ator, hence pbp is a quasinilpotent element of pAp and therefore is nilpotent.
Thus there exists an integer n > 0 such that bnp = (pbp)n = 0. On the other
hand, Lp is a Riesz projection of Lb corresponding to λ ∈ σ(Lb) so that
σ(Lb|pA) = {λ} and Lb|pA is invertible. Therefore we obtain a contradic-
tion. So we have p = 0. This proves that b is quasinilpotent.

The authors are indebted to Professor J. Zemánek for useful comments.
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