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On weak sequential convergence in JB∗-triple duals

by

Leslie J. Bunce (Reading) and Antonio M. Peralta (Granada)

Abstract. We study various Banach space properties of the dual space E∗ of a homo-
geneous Banach space (alias, a JB∗-triple) E. For example, if all primitive M -ideals of E
are maximal, we show that E∗ has the Alternative Dunford–Pettis property (respectively,
the Kadec–Klee property) if and only if all biholomorphic automorphisms of the open
unit ball of E are sequentially weakly continuous (respectively, weakly continuous). Those
E for which E∗ has the weak∗ Kadec–Klee property are characterised by a compactness
condition on E. Whenever it exists, the predual of E is shown to have the Kadec–Klee
property if and only if E is atomic with no infinite spin part.

1. Introduction. Let E be a complex Banach space. It is said that E
has the Kadec–Klee property (the KKP hereafter) if weak sequential con-
vergence in the unit sphere of norm one elements of E implies norm con-
vergence. In other words, the KKP is the Schur property confined to the
unit sphere. When applied to the Dunford–Pettis property this procedure
results in its “alternative” introduced and studied in [21]. Thus E is defined
to have the Alternative Dunford–Pettis property (the DP1 in what follows)
if, whenever (xn) and (%n) are sequences in E and E∗, respectively, where
(%n) is weakly null and xn → x weakly in E with ‖xn‖ = ‖x‖ = 1 for all n,
we have %n(xn)→ 0. Plainly, the KKP implies the DP1 and both properties
are geometric. The geometry of E is entirely determined by the structure
of the group, G, of biholomorphic automorphisms on the open unit ball, D,
of E (cf. [27]). When G acts homogeneously on D, E is termed a JB∗-triple.
The latter comprise an extensive class of complex Banach spaces that in-
cludes all Hilbert spaces, spin factors and C∗-algebras. More generally, given
a complex Hilbert space, every norm closed subspace of B(H) that is also
closed under x 7→ xx∗x is a JB∗-triple.

It was shown in [21] that the DP1 coincides with the usual Dunford–
Pettis property on von Neumann algebras. Modulo infinite-dimensional Hil-
bert spaces and spin factors, which have the DP1 but not the Dunford–Pettis
property, this was extended to JBW∗-triples in [1]. Recently [10] the present
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authors were able to establish that a von Neumann algebra is type I if and
only if its predual has the DP1 and have proceeded to obtain an analogous
characterisation for JBW∗-triple preduals [11]. The latter (see §2 below)
represents the starting point of this paper where we study the DP1 and the
KKP on dual spaces of JB∗-triples elucidating structure and connections
with other convergence properties.

We recall that, as defined in [27], a JB∗-triple is a complex Banach
spaceE with a continuous triple product (a, b, c) 7→ {a, b, c} that is conjugate
linear in b and symmetric bilinear in a and c, and for which each operator
on E of the form D = D(a, a), given by x 7→ {a, a, x}, is hermitian with
non-negative spectrum satisfying ‖D‖ = ‖a‖2 and

D({x, y, z}) = {D(x), y, z} − {x,D(y), z}+ {x, y,D(z)}.
A tripotent of E is an element u satisfying {u, u, u} = u, associated with

which are the mutually orthogonal Peirce projections

P2(u) = Q2
u, P1(u) = 2(D(u, u)− P2(u)), P0(u) = I − P2(u)− P1(u),

where Qu is the conjugate linear operator given by x 7→ {u, x, u}. A non-zero
tripotent u of E is said to be minimal if P2(u)(E) = Cu. If E has a predual,
E∗, then E is said to be a JBW∗-triple. In this case, the predual is unique
and the triple product is separately weak∗-continuous [4]. If H is a complex
Hilbert space, a weak∗ closed subspace of B(H) that is closed under the
triple product {a, b, c} = 1

2(ab∗c+ cb∗a) is a JBW∗-triple known as a JW∗-
triple. The Cartan factors, of which there are six kinds, are key examples
of JBW∗-triples. The rectangular, hermitian and symplectic Cartan factors,
respectively, arise as the weak∗ closed left ideals of B(H), the symmetric and
the antisymmetric operators on H (with respect to a conjugation, where H
is a complex Hilbert space). The spin factors comprise a fourth kind. The
exceptional factors of dimensions 16 and 27 are the remaining two.

Let E be a JB∗-triple. We habitually regard E ⊂ E∗∗, the latter being a
JBW∗-triple by [17]. We denote the extreme points of the dual ball E∗1 of E∗

by ∂e(E∗1). For each % in ∂e(E∗1) there is a unique minimal tripotent u(%) in
E∗∗ such that %(u(%)) = 1 and all minimal tripotents arise in this way [22].
The M-ideals of E are precisely its norm closed algebraic ideals [4]. By a
primitive ideal of E is meant a primitive M-ideal, the set of all of which is
denoted by Prim(E). Thus,

Prim(E) = {ψ(%) : % ∈ ∂e(E∗1)},
where for each % ∈ ∂e(E∗1), ψ(%) denotes the largest norm closed ideal (M-
ideal) in ker(%). The corresponding structure map is ψ : ∂e(E∗1)→ Prim(E)
(% 7→ ψ(%)). When ∂e(E∗1) has the weak∗ topology and Prim(E) has the usual
hull-kernel topology, ψ is open and continuous [12]. We refer to [2, 5, 23] for
M-ideal theory in Banach spaces.
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2. The DP1 and KKP in JB∗-triple duals. By [24] the type I
JBW∗-triples are the `∞-sums of A⊗C where A is an abelian von Neumann
algebra and C is a Cartan factor. This notation is to be interpreted as
follows. If C is an exceptional factor, A ⊗ C means just A ⊗ C. Otherwise
A⊗C means the weak∗ closure of A⊗C in the von Neumann tensor product
A⊗B(H) where C is a JW∗-subtriple of B(H).

We shall say that a JBW∗-triple has no infinite spin part if it contains
no non-zero `∞-summand of the form A ⊗ C, where A is an abelian von
Neumann algebra and C is an infinite-dimensional spin factor. An atomic
JBW∗-triple is an `∞-sum of Cartan factors.

Our starting point is the following recently discovered characterisation.

Lemma 2.1. Let E be a JBW∗-triple. Then E∗ has the DP1 if and only
if E is type I with no infinite spin part.

Proof. See [11, Theorem 4.5].

Theorem 2.2. Let E be a JBW∗-triple. Then E∗ has the KKP if and
only if E is atomic with no infinite spin part.

Proof. Let E∗ have the KKP. Then E∗ has the DP1. Thus, by Lemma 2.1
and [24] we may suppose that E is of the form A ⊗ C, where A is an
abelian von Neumann algebra and C is a Cartan factor not equal to an
infinite-dimensional spin factor. Given τ in C∗ with ‖τ‖ = 1, A∗ is linearly
isometric to the norm closed subspace A∗ ⊗ τ of E∗ via % 7→ % ⊗ τ . Since
the KKP is inherited by norm closed subspaces, it follows that A∗ has the
KKP, implying that A satisfies Dell’Antonio’s property U and so is atomic,
by [16, Theorem 2]. Hence, A⊗ C is atomic as required.

Conversely, let E = (
∑
Cα)∞, where each Cα is a Cartan factor not

equal to an infinite-dimensional spin factor. Since, by [21, Theorem 1.9], the
KKP is stable under `1-sums it is enough to show that the predual of each
Cα has the KKP. Thus, fixing Cα = C, say, it may be supposed that C is an
infinite-dimensional rectangular, hermitian or symplectic factor. But then
C∗ is isometric to a subspace of B(H)∗, for some complex Hilbert space H,
and so C∗ has the KKP because B(H)∗ does, by [21, 2.3]. We remark that
the latter fact, for separable H, may also be deduced from [3, Appendix].
This completes the proof.

By Theorem 2.2 together with [13] we have the following.

Corollary 2.3. If E is a JBW∗-triple then E∗ has the KKP if and only
if E∗ has the Radon–Nikodym property and E has no infinite spin part.

Various structure in JB∗-triples is brought into focus when properties
discussed above are imposed upon dual spaces. A composition series {Jλ :
0 ≤ λ ≤ α} in a JB∗-triple E is a strictly increasing family of norm closed
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ideals of E indexed by a segment of ordinals satisfying (i) J0 = {0} and
Jα = E, and (ii) if λ is a limit ordinal then Jλ is the norm closure of the union
of {Jµ : µ < λ}. If G denotes the group of biholomorphic automorphisms of
the open unit ball of E, then E is said to be sequentially weakly continuous
if every element of G is sequentially weakly continuous (i.e. preserves weak
sequential limits). If all elements of G are weakly continuous then E is defined
to be weakly continuous.

Weak (sequential) continuity of this kind has been extensively studied
in [25, 26, 28] and also in [9].

By a quotient of a JB∗-triple E we shall mean E/J for some norm
closed ideal J of E. An elementary JB∗-triple is the norm closed ideal,
J(C), of a Cartan factor C generated by its minimal tripotents. We note
that J(C)∗∗ = C.

Lemma 2.4. A JB∗-triple E has no infinite-dimensional spin factor quo-
tients if and only if E∗∗ has no infinite spin part.

Proof. See [9, Theorem 4.4].

Proposition 2.5. The following are equivalent for a JB∗-triple E:

(a) E∗ has the KKP ;
(b) E∗ has the Radon–Nikodym property and E has no infinite-dimen-

sional spin factor quotients;
(c) E has a composition series {Jλ : 0 ≤ λ ≤ α} such that for each λ < α,

Jλ+1/Jλ is an elementary JB∗-triple not equal to an infinite-dimensional
spin factor.

Proof. The equivalence of (a) and (b) follows from Corollary 2.3 and
Lemma 2.4. The latter together with [7, Theorem 3.4] implies that (b) and
(c) are equivalent.

A DP1 analogue of Proposition 2.5 is availed by the following.

Lemma 2.6. The following are equivalent for a JB∗-triple E:

(a) E is sequentially weakly continuous;
(b) every primitive ideal of E is maximal and E∗∗ is type I with no

infinite spin part ;
(c) every primitive quotient of E is an elementary JB∗-triple not equal

to an infinite-dimensional spin factor.

Proof. See [9, Theorem 5.5].

Proposition 2.7. Let E be a JB∗-triple. Then E∗ has the DP1 if and
only if E has a composition series {Jλ : 0 ≤ λ ≤ α} such that , for each
λ < α, Jλ+1/Jλ is sequentially weakly continuous.
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Proof. Suppose E∗ has the DP1. By Lemmas 2.1 and 2.4, E∗∗ is type I
and E has no infinite-dimensional spin factor quotients. Since every norm
closed ideal and quotient of E inherits the latter condition, it follows from
[9, Proposition 3.5] that E has a composition series for which each successive
quotient satisfies the condition of Lemma 2.6(c), as required.

Conversely, if E has a composition series of the kind described in the
statement, then E∗∗ is linearly isometric to the `∞-sum of the (Jλ+1/Jλ)∗∗

so that E∗∗ is type I with no infinite spin part, as follows from (a)⇒(c) of
Lemma 2.6, whence E∗ has the DP1 by Lemma 2.1.

By a standard argument (cf. [18, 4.3.5]) if E is a JB∗-triple with a com-
position series {Jλ : 0 ≤ λ ≤ α} and F is a JB∗-subtriple of E, then
{F∩Jλ : 0 ≤ λ ≤ α} is a composition series of F and each (F∩Jλ+1)/(F∩Jλ)
is realisable as a JB∗-subtriple of Jλ+1/Jλ.

Corollary 2.8. Let F be a JB∗-subtriple of a JB∗-triple E.

(a) If E∗ has the DP1 , then F ∗ has the DP1.
(b) If E∗ has the KKP , then F ∗ has the KKP.

Proof. (a) Since sequential weak continuity is inherited by JB∗-subtriples
and by quotients this follows from the preceding remark and Proposition 2.7.

(b) If E∗ has the KKP then it has the DP1 so that via (a) and its
argument together with Proposition 2.5(a)⇔(c), F has a composition series
in which successive quotients are JB∗-subtriples of non-infinite-dimensional
spin factor elementary JB∗-triples. But JB∗-subtriples of the latter kind are
themselves C0-sums of JB∗-triples of the same kind [8]. It follows that F has
a composition series of the kind described in Proposition 2.5(c), whence the
result.

Remark. The analogues of 2.8(a), (b) for preduals of JBW∗-triples are
false. Any non-type I JW∗-triple E can be realised as a JW∗-subtriple of
B(H) for some complex Hilbert space H. But B(H)∗ has the KKP whereas
E∗ (by Lemma 2.1) does not ever have the DP1.

In the next result part (a) is a consequence of Lemma 2.1 together with
Lemma 2.6(b)⇒(a) and (b) follows from Theorem 2.2 combined with [28,
Theorem 5.7] to give a direct comparison of the above phenomena in a
significant case.

Proposition 2.9. Let E be a JB∗-triple for which every primitive ideal
is maximal. Then

(a) E∗ has the DP1 if and only if E is sequentially weakly continuous.
(b) E∗ has the KKP if and only if E is weakly continuous.

A JBW∗-triple E is said to be σ-finite if every family of mutually or-
thogonal tripotents in E is at most countable. Such JBW∗-triples have been
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studied in [20]. On the bidual of a JB∗-triple σ-finiteness is a strong condi-
tion revealing structures similar to those discussed above, as we shall now
see.

First we recall, [27], that the JB∗-subtriple generated by an element x in
a JB∗-triple E is linearly isometric to C0(Sx), where Sx, the triple spectrum
of x, is a locally compact Hausdorff space of [0,∞) with Sx ∪ {0} compact.
This notation is retained in the next result and thereafter.

Theorem 2.10. The following are equivalent for a JB∗-triple E:

(a) E∗∗ is σ-finite;
(b) E∗∗ is atomic and σ-finite;
(c) E has a countable composition series (Jλ)0≤λ≤α, where each Jλ+1/Jλ

is an elementary JB∗-triple of countable rank.

Hence, if E is separable, then E∗ has the KKP if and only if E∗∗ is
σ-finite with no infinite spin part.

Proof. If (c) holds then E∗∗ is linearly isometric to the countable `∞-
sum of the necessarily σ-finite Cartan factors (Jλ+1/Jλ)∗∗, implying the
condition (b). The implication (b)⇒(a) being obvious, it remains to show
(a)⇒(c).

Let E∗∗ be σ-finite and let x ∈ E. Since C0(Sx) is linearly isometric
to a JB∗-subtriple of E, C0(Sx)∗∗ is linearly isometric to a JBW∗-subtriple
of E∗∗ and so is σ-finite. Since the support projections, in C0(Sx)∗∗, of the
evaluation maps on C0(Sx) are mutually orthogonal, Sx must be countable.
Thus, (c) now follows from [8, Theorem 3.4] and [9, Theorem 4.5].

Remark 2.11. Non-separable spin factors and rectangular Cartan fac-
tors of the form B(H,K), where H is non-separable and K is separable,
are σ-finite with non-separable elementary ideal. All other σ-finite Cartan
factors have separable elementary ideal. Thus, if E∗∗ is σ-finite and contains
no Cartan factor `∞-summands of the first kind mentioned above, then E∗

is norm separable. Hence, in this case, if E∗∗ is σ-finite then E is separable
if and only if E∗ is separable.

We conclude this section with two observations.

Proposition 2.12. Let E be a JB∗-triple. Then

(a) E has a largest norm closed ideal J for which J∗ has the DP1 ;
(b) E has a largest norm closed ideal J for which J∗ has the KKP.

Proof. (a) Let K be the largest weak∗ closed ideal of E∗∗ that is a type I
JBW∗-triple with no infinite spin part and let J = E ∩K. Then J∗ has the
DP1, by Lemma 2.1, since J∗∗ is a weak∗ closed ideal of K. Conversely, let I
be a norm closed ideal of E such that I∗ has the DP1. A further application
of Lemma 2.1 gives I∗∗ ⊂ K so that I = I∗∗ ∩ E ⊂ K ∩ E = J .
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(b) Via Theorem 2.2, the proof is similar.

Proposition 2.13. Let E be a JB∗-triple with the KKP. Then E is
finite-dimensional or a spin factor or a Hilbert space.

Proof. Given x ∈ E, the commutative C∗-algebra C0(Sx) has the KKP
and so is finite-dimensional by [21, Theorem 3.4], implying that Sx is finite.
By [8, Proposition 4.5(iii)] and [14, Theorem 6], this implies that E is re-
flexive. In particular, E is a JBW∗-triple and the result is now immediate
from [1, Corollary 3].

3. The weak∗ Kadec–Klee property. If X is a Banach space, let
S(X∗1 ) denote the unit sphere of norm one elements in X∗.

Definition 3.1. Let X be a Banach space. The dual space, X∗, is said
to have the weak∗ Kadec–Klee property (W∗KKP in what follows) if weak∗

sequential convergence in S(X∗1 ) implies norm convergence.

By [19, Theorem 2.6], if I is a norm closed inner ideal of a JB∗-triple E,
then each % ∈ S(I∗1 ) has a unique extension % ∈ S(E∗1). We retain this
notation in the following, the statement and proof of which is reminiscent
of [15, Lemma 1].

Lemma 3.2. Let I be a norm closed inner ideal in a JB∗-triple E. Then
the unique extension map, from S(I∗1 ) to S(E∗1), is weak∗-continuous.

Proof. Let %α → % in the σ(I∗, I)-topology in S(I∗1 ). To show continuity
it is enough to show that there is a subnet %β → % in the σ(E∗, E)-topology.
But there is a subnet %β → τ in the σ(E∗, E)-topology with τ ∈ E∗1 . Since
τ |I = %, we have ‖τ‖ = 1 so that τ = % by the above-mentioned uniqueness,
as required.

Corollary 3.3. Let I be a norm closed inner ideal in a JB∗-triple E
such that E∗ has the W∗KKP. Then I∗ has the W∗KKP .

Proof. This follows from Lemma 3.2.

We recall that a JB∗-triple E is defined to be a compact JB∗-triple if
the conjugate linear operator, x 7→ {a, x, a}, is compact for each a ∈ E.
Such JB∗-triples have been studied in [8, 6]. By [8, Theorems 3.4, 3.6] or
[6, Theorem 18] a JB∗-triple E is compact if and only if E is a C0-sum of
elementary JB∗-triples Ei, where no Ei is an infinite-dimensional spin factor.
In this case, E∗∗ is the `∞-sum of the Cartan factors E∗∗i . Since, then, E is
an ideal of E∗∗, Lemma 3.2 entails, for example, that weak∗ convergence in
S(E∗1) implies weak convergence. Therefore, by Theorem 2.2, we have the
following.

Lemma 3.4. If E is a compact JB∗-triple, then E∗ has the W∗KKP.
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Elements %, τ in ∂e(E∗1), where E is a JB∗-triple, are orthogonal if the
tripotents u(%), u(τ) are orthogonal, in which case ‖% − τ‖ = 2 (since
(%− τ)(u(%)− u(τ)) = 2).

Lemma 3.5. Every separable JB∗-triple E such that E∗ has the W∗KKP
is a compact JB∗-triple.

Proof. Since E∗ has the W∗KKP it has the KKP and so contains a
non-zero elementary compact JB∗-triple ideal by Proposition 2.5 ((a)⇒(c)).
Let J be the C0-sum of all such ideals of E. Then J is compact and we must
show that J = E. In order to obtain a contradiction, suppose that J 6= E.

We have ∂e(E∗1) = X ∪ Y , where

X = {% ∈ ∂e(E∗1) : %(J) 6= 0} and Y = {% ∈ ∂e(E∗1) : %(J) = 0},
the latter being weak∗ closed in ∂e(E∗1). If X is weak∗ closed in ∂e(E∗1) then
Y is open so that ψ(Y ) is open in Prim(E), where

ψ : ∂e(E∗1)→ Prim(E)

is the structure map (see Introduction). This would imply that E = I ⊕ J
for some non-zero norm closed ideal I of E. Since I∗ has the W∗KKP, this
would further imply that I contains a non-zero compact elementary ideal
orthogonal to J , a contradiction. Therefore, X is not weak∗ closed and so,
since the unit ball of E∗1 is metrisable, there is a sequence (%n) in X with
weak∗ limit % in Y . But % is orthogonal to each %n giving ‖%n − %‖ = 2, for
all n, and we have arrived at the desired contradiction.

Lemma 3.6. Let E be a compact JB∗-triple and let (%n) be an infinite
mutually orthogonal sequence in ∂e(E∗1). Then (%n) is weak∗ null.

Proof. For each n, let en denote u(%n), the support tripotent of %n, and
let e denote

∑
n en (in E∗∗). Let f be a minimal tripotent of E∗∗ and let % ∈

∂e(E∗1) with %(f) = 1. We have %(e) =
∑

n %(en), so that %(en)→ 0. Hence,
via [22, Lemma 2.2], since %n, % ∈ ∂e(E∗1) and en and f are respectively,
their support tripotents, we have |%n(f)| = |%(en)| → 0.

Given x ∈ E, let ε > 0. Since E is compact there exists y ∈ E such that
y is a linear combination of a finite number of minimal tripotents in E with
‖x− y‖ ≤ ε. By the above, %n(y)→ 0, so that for all n large enough

|%n(x)| ≤ |%n(x− y)|+ |%n(y)| < 2ε.

Hence, (%n) is weak∗ null.

Given a JB∗-algebra E and x ∈ E with 0 ≤ x ≤ 1, we will denote
by r(x) the range projection of x in E∗∗ (i.e. the least projection in E∗∗

majorising x).

Lemma 3.7. Let J be a norm closed compact ideal of a non-compact
JB∗-algebra E and let E = J +Cx, where x is a positive norm one element
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of E with x(x − 1) ∈ J and r(x) = 1 (in E∗∗). Then E∗ does not have the
W∗KKP.

Proof. We note that J is an essential ideal of E. Indeed, suppose I∩J = 0
for some ideal I of E. Then E = I⊕J and hence I is one-dimensional, which
is a contradiction since E is non-compact. We also note that x + J is a
minimal projection of E/J . Further, x(1−x) =

∑
n λnen for some mutually

orthogonal sequence (en) of minimal tripotents in J and non-negative null
sequence (λn). We have

r(1− x) = r(x)r(1− x) = r(x(1− x)) ≤
∑

en,

so that r(1−x) is a σ-finite projection in E∗∗. If 1−r(1−x) is of finite rank
then E∗∗ must be σ-finite so that E is separable since E is, by construction,
a JB∗-algebra with no infinite spin factor quotients (see Remark 2.11). In
this case the result follows from Lemma 3.5. Thus we may suppose that there
exists an infinite mutually orthogonal sequence, (fn), of minimal projections
in E∗∗ such that fn ≤ 1 − r(1 − x) for all n. For each n, let %n ∈ ∂e(E∗1)
with support fn.

Then, for each n, %n is a pure state of E and fn ≤ 1− r(1− x) ≤ x, so
that %n(x) = 1. Since, by Lemma 3.6, (%n) is weakly null on J , we see that
(%n) has weak∗ limit τ ∈ S(E∗1). But ‖%n − %m‖ = 2 for n 6= m so that (%n)
is not norm convergent.

Given a JB∗-triple E and x ∈ E the norm closed inner ideal, E(x),
generated by x in E can be realised as a JB∗-algebra containing x as a
positive element.

We are now ready to prove the converse of Lemma 3.4.

Theorem 3.8. Let E be a JB∗-triple. Then E∗ has the W ∗KKP if and
only if E is compact.

Proof. Let E∗ have the W∗KKP. As in the proof of Lemma 3.5, E con-
tains an essential norm closed compact ideal, J , equal to the norm closed
ideal generated by the minimal tripotents of E. Suppose that J 6= E. Since
(E/J)∗ has the W∗KKP we can choose a norm one element x of E\J such
that x+J is a minimal tripotent of E/J . Let I denote J ∩E(x), where E(x)
is the norm closed inner ideal of E generated by x. We have

J + E(x) = J + Cx
so that

E(x) = I + Cx,
via the natural linear isometry between E(x)/I and (J + E(x))/J .

Passing to the JB∗-algebra, E(x), we have x ≥ 0 in E(x) and r(x) is
the identity element of (E(x))∗∗. Further, x + J is a projection in E(x)/I
so that x(1− x) ∈ I, and I is a compact ideal of E(x).
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Moreover, E(x) is not compact else x lies in the norm closed linear span
of the minimal projections of E(x) and, since the latter is an inner ideal
of E, this would imply the contradiction that x is in I. Thus, by Lemma 3.7,
(E(x))∗ does not have the W∗KKP and so, by Corollary 3.3, neither does E∗.
Therefore, I = E, as required.
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