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Duality of matrix-weighted Besov spaces

by

Svetlana Roudenko (Durham, NC)

Abstract. We determine the duals of the homogeneous matrix-weighted Besov spaces
Ḃαqp (W ) and ḃαqp (W ) which were previously defined in [5]. If W is a matrix Ap weight, then

the dual of Ḃαqp (W ) can be identified with Ḃ−αq
′

p′ (W−p
′/p) and, similarly, [ḃαqp (W )]∗ ≈

ḃ−αq
′

p′ (W−p
′/p). Moreover, for certain W which may not be in the Ap class, the du-

als of Ḃαqp (W ) and ḃαqp (W ) are determined and expressed in terms of the Besov spaces

Ḃ−αq
′

p′ ({A−1
Q }) and ḃ−αq

′

p′ ({A−1
Q }), which we define in terms of reducing operators {AQ}Q

associated with W . We also develop the basic theory of these reducing operator Besov
spaces. Similar results are shown for inhomogeneous spaces.

1. Introduction. The aim of this paper is to determine the duals of
the Besov function spaces Ḃαq

p (W ) and the corresponding sequence spaces
ḃαqp (W ) for α ∈ R, 0 < q <∞ and 1 < p <∞. Here, W is a matrix weight,
namely, an a.e. invertible map from Rn to the cone M of non-negative
definite operators on a Hilbert space H of dimension m (e.g. H = Cm or
Rm), i.e., for a.e. t ∈ Rn, (W (t)x, x)H ≥ 0 for all x ∈ H.

To understand what properties of W are needed to identify dual spaces,
we will heavily use the technique of reducing operators (for definitions refer
to Section 2 or [5], [10]). Namely, instead of dealing with matrix weights, we
consider a sequence of matrices enumerated by dyadic cubes and establish
properties of Besov spaces with such sequences of matrix weights. Then,
given a matrix W , its reducing operators constitute such a sequence.

Denote by D the collection of dyadic cubes in Rn and for each Q ∈ D
let AQ be a positive-definite (thus, self-adjoint) operator on H. Also denote
by RSD (reducing sequences) the collection of all sequences {AQ}Q∈D of
positive-definite operators on H. An admissible kernel ϕ ∈ A is a function
ϕ ∈ S(Rn) such that supp ϕ̂ ⊆ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ c > 0
if 3/5 ≤ |ξ| ≤ 5/3. Set ϕν(x) = 2νnϕ(2νx) for ν ∈ Z.
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In [5] we introduced the following:

Definition 1.1 (Matrix-weighted Besov space Ḃαq
p (W )). For α ∈ R,

1 ≤ p < ∞, 0 < q ≤ ∞, ϕ ∈ A and W a matrix weight, the Besov space
Ḃαq
p (W ) is the collection of all vector-valued distributions ~f = (f1, . . . , fm)T

with fi ∈ S ′/P(Rn) (the space of tempered distributions modulo polyno-
mials), 1 ≤ i ≤ m, such that

‖~f‖Ḃαqp (W ) = ‖{2να‖ϕν ∗ ~f ‖Lp(W )}ν‖lq
= ‖{‖W 1/p(t) · (ϕν ∗ ~f )(t)‖Lp(dt)}ν‖lαq <∞,

where ϕν ∗ ~f = (ϕν ∗ f1, . . . , ϕν ∗ fm)T.

Suppose W satisfies any of the three conditions:

(A1) W ∈ Ap with 1 < p <∞,
(A2) W is a doubling matrix of order p with p > β, where β is the doubling

exponent of W ,
(A3) W is a diagonal doubling matrix of order p with 1 ≤ p <∞.

(For definitions refer to Section 2.) Then Ḃαq
p (W ) is independent of the

choice of ϕ ∈ A ([5, Theorem 1.8]). If a matrix weight W satisfies none of
(A1)–(A3), then there may be a dependence on ϕ (i.e., Ḃαq

p (W,ϕ)), never-
theless, all results will hold up to a choice of an admissible kernel ϕ.

Here, as a main tool and a useful object by itself, we define the space
Ḃαq
p ({AQ}) with a sequence of discrete weights {AQ}Q:

Definition 1.2 (Averaging matrix-weighted Besov space Ḃαq
p ({AQ})).

For α ∈ R, 1 ≤ p ≤ ∞, 0 < q ≤ ∞, {AQ}Q ∈ RSD and ϕ ∈ A, the
Besov space Ḃαq

p ({AQ}) is the collection of all vector-valued distributions
~f = (f1, . . . , fm)T with fi ∈ S ′/P(Rn), 1 ≤ i ≤ m, such that

‖~f‖Ḃαqp ({AQ}) =
∥∥∥
{

2να
∥∥∥

∑

l(Q)=2−ν
‖AQ · (ϕν ∗ ~f )

∥∥∥
H
χQ‖Lp

}
ν

∥∥∥
lq
<∞,

where l(Q) is the side length of Q.

This space is well defined (i.e., independent of ϕ ∈ A), see Corollary 4.9,
if {AQ}Q is a doubling matrix sequence defined as follows.

Definition 1.3 (Doubling sequence). We say {AQ}Q ∈ RSD is a (dya-
dic) doubling sequence (of order p, 1 ≤ p < ∞) if there exists β ≥ n and
c ≥ 1 such that for all P,Q dyadic

‖AQA−1
P ‖p ≤ c

|P |
|Q| max

(
1,
[
l(Q)
l(P )

]β)(
1 +

dist(P,Q)
max(l(P ), l(Q))

)β
,(1)

where |Q| is the Lebesgue measure of Q and the norm on the left side is the
operator (matrix) norm.
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Observe that if (1) holds for some p, then it holds for 1 ≤ q < p, since
the right-hand side is ≥ 1.

Our main goal is to identify the dual space of Ḃαq
p (W ). For W ∈ Ap

the result can be expressed in terms of matrix weights. However, even for
W 6∈ Ap but satisfying (A2) or (A3), we are able to characterize [Ḃαq

p (W )]∗

in terms of reducing operators. Set 1/p+ 1/p′ = 1 if 1 < p <∞ and p′ =∞
if p = 1; 1/q+1/q′ = 1 if 1 < q <∞ and q′ =∞ if 0 < q ≤ 1. It is important
to emphasize our convention for the duality pairing. In what follows, we say
that a function space Y is a dual of a function space X, and write X∗ ≈ Y ,
in the sense that each y ∈ Y defines an element ly of X∗ via the pairing
ly(x) = (x, y) =

�
Rn〈x(t), y(t)〉 dt and every element of X∗ is of the kind ly

for some y ∈ Y with ‖ly‖ ≈ ‖y‖Y . (For example, [Lp(W )]∗ ≈ Lp
′
(W−p

′/p),
1 < p < ∞, with the pairing (~f,~g ) =

�
Rn〈~f(t), ~g (t)〉H dt; refer to Section 3

for more details.)

Theorem A1. Let α ∈ R, 1 ≤ p < ∞, 0 < q < ∞ and let {AQ}Q be
reducing operators of a matrix weight W .

(2) If W ∈ Ap, 1 < p <∞, then [Ḃαq
p (W )]∗ ≈ Ḃ−αq′p′ (W−p

′/p).

(3) If W satisfies any of (A1)–(A3), then [Ḃαq
p (W )]∗ ≈ Ḃ−αq′p′ ({A−1

Q }).

(For the proof refer to Section 5.)
Our next result identifies the dual space of the sequence (discrete) Besov

space ḃαqp (W ). The connection between ḃαqp (W ) and Ḃαq
p (W ) is that ~f ∈

Ḃαq
p (W ) if and only if the appropriate wavelet coefficient sequence of ~f

belongs to ḃαqp (W ) (see [5] for details). Recall the definitions of ḃαqp (W ) and
ḃαqp ({AQ}) from [5]:

Definition 1.4 (Matrix-weighted sequence Besov space ḃαqp (W )). For
α ∈ R, 1 ≤ p < ∞, 0 < q ≤ ∞ and W a matrix weight, the space
ḃαqp (W ) consists of all vector-valued sequences ~s = {~sQ}Q∈D, where ~sQ =

(s(1)
Q , . . . , s

(m)
Q )T, such that

‖{~sQ}Q‖ḃαqp (W )

=
∥∥∥
{

2να
∥∥∥

∑

l(Q)=2−ν
|Q|−1/2(‖W 1/p(t)~sQ‖H)χQ(t)

∥∥∥
Lp(dt)

}
ν

∥∥∥
lq
<∞.

Definition 1.5 (Averaging matrix-weighted discrete Besov space
ḃαqp ({AQ})). For α ∈ R, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and {AQ}Q ∈ RSD,
the space ḃαqp ({AQ}) consists of all vector-valued sequences {~sQ}Q∈D such
that
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‖{~sQ}Q‖ḃαqp ({AQ}) =
∥∥∥
{

2να
∥∥∥

∑

l(Q)=2−ν
|Q|−1/2(‖AQ~sQ‖H)χQ(t)

∥∥∥
Lp(dt)

}
ν

∥∥∥
lq

= ‖{AQ~sQ}Q‖ḃαqp <∞.
If {AQ}Q is a sequence of reducing operators for a matrix weight W ,

then the norm equivalence

‖~s ‖ḃαqp (W ) ≈ ‖~s ‖ḃαqp ({AQ})(4)

holds for any matrix weight W , α ∈ R, 0 < q ≤ ∞ and 1 ≤ p < ∞ ([5,
Lemma 7.1]). To make notation short, we will write ḃαqp (W ) ≈ ḃαqp ({AQ})
for the norm equivalence.

Theorem A2. Let α ∈ R, 0 < q < ∞, 1 ≤ p < ∞ and let {AQ}Q be
reducing operators of a matrix weight W . Then

[ḃαqp (W )]∗ ≈ ḃ−αq′p′ ({A−1
Q }).(5)

Moreover , if W ∈ Ap, 1 < p <∞, then

[ḃαqp (W )]∗ ≈ ḃ−αq′p′ (W−p
′/p).(6)

The paper is organized as follows. In Section 3 we discuss the discrete
Besov space ḃαqp (W ). We use a “one at a time reduction” approach meaning
we reduce the space ḃαqp (W ) in the following order:

ḃαqp (W )→ ḃαqp ({AQ})→ ḃαqp (Rm)→ ḃαqp (R1),

where the last two spaces are unweighted vector-valued and scalar-valued
discrete Besov spaces, and then identify the duals in the opposite order.
A similar approach is used for Ḃαq

p (W ).
The fact that each AQ is constant on each dyadic cube Q allows us to

establish
[ḃαqp ({AQ})]∗ ≈ ḃ−αq

′
p′ ({A−1

Q })(7)

for any {AQ}Q ∈ RSD, α ∈ R, 0 < q < ∞, 1 ≤ p < ∞. If the AQ’s are
generated by a matrix weight W , then combining (4) and (7), we get (5) of
Theorem A2.

In order to connect ḃ−αq
′

p′ ({A−1
Q }) with ḃ−αq

′

p′ ({A#
Q}) ≈ ḃ−αq

′

p′ (W−p
′/p)

(for the definition of A#
Q refer to Section 2) the matrix Ap condition is

needed, though only for one direction of the embedding; the other direction
is automatic. Thus, the following chain of the equivalences holds for ḃαqp (W ):

[ḃαqp (W )]∗
anyW≈ [ḃαqp ({AQ})]∗ ≈ ḃ−αq

′
p′ ({A−1

Q })(8)
Ap≈ ḃ−αq

′
p′ ({A#

Q})
anyW≈ ḃ−αq

′
p′ (W−p

′/p).

This completes the proof of Theorem A2.
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In Section 4 we prove the norm equivalence between Ḃαq
p ({AQ}) and

ḃαqp ({AQ}) for any doubling sequence {AQ}Q. Note that if the AQ’s are
generated by a matrix weight W , then all that is required from the weight
is the doubling condition. (Compare this with conditions (A1)–(A3) from
[5] for the norm equivalence between the original matrix-weighted Besov
spaces.)

For

Q = Qνk =
n∏

i=1

[
ki
2ν
,
ki + 1

2ν

]
,

ν ∈ Z and k ∈ Zn, define ϕQ(x) = |Q|−1/2ϕ(2νx − k) = |Q|1/2ϕν(x − xQ),
where xQ = 2−νk is the lower left corner of Qνk.

Theorem 1.6. Let α ∈ R, 0 < q ≤ ∞, 1 ≤ p < ∞ and {AQ}Q be a
doubling sequence (of order p). Then for ~sQ(~f ) = 〈~f, ϕQ〉,

‖~f ‖Ḃαqp ({AQ}) ≈ ‖{~sQ(~f )}Q‖ḃαqp ({AQ}).

In Section 5 we establish the correspondence between the continuous
Besov spaces Ḃαq

p (W ) and Ḃαq
p ({AQ}).

Lemma 1.7. Let α ∈ R, 0 < q ≤ ∞ and 1 ≤ p < ∞. If W satisfies
any of (A1)–(A3) and {AQ}Q is a sequence of reducing operators generated
by W , then

Ḃαq
p (W ) ≈ Ḃαq

p ({AQ}).
For one direction of the above equivalence it suffices to have W doubling.
In Section 6 it is shown that if {AQ}Q is a doubling sequence of order p,

1 ≤ p <∞, then

[Ḃαq
p ({AQ})]∗ ≈ Ḃ−αq

′
p′ ({A−1

Q }).(9)

Using the above duality and equivalence, we get the following chain:

[Ḃαq
p (W )]∗

(1)
≈ [Ḃαq

p ({AQ})]∗ ≈ Ḃ−αq
′

p′ ({A−1
Q })(10)

Ap≈ Ḃ−αq
′

p′ ({A#
Q})

(4)
≈ Ḃ−αq

′
p′ (W−p

′/p),

where the equivalence (1) holds if W satisfies any of (A1)–(A3) and (4)
holds if W−p

′/p satisfies any of (A1)–(A3) properly adjusted (see Section 2).
The third equivalence holds under the Ap condition. However, the Ap con-
dition is only needed for one direction of the embedding. This proves The-
orem A1.

In the last section we consider inhomogeneous function spaces and trans-
fer all the above theory to the inhomogeneous case.
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2. Definitions and notation. Given a matrix weight W , for each
dyadic cube Q in Rn consider a reducing operator AQ corresponding to the
Lp average over Q of the norm ‖W 1/p · ‖H, i.e.,

‖AQx‖H ≈
(

1
|Q|

�

Q

‖W 1/p(t)x‖pH dt
)1/p

for all x ∈ H.

Thus, we are dealing with a family of norms %t(x) = ‖W 1/p(t)x‖H. By def-
inition, the dual norms are %∗t (x) = ‖W−1/p(t)x‖H and reducing operators
for their Lp

′
averages over a cube Q are

‖A#
Qx‖H ≈

(
1
|Q|

�

Q

‖W−1/p(t)x‖p′H dt
)1/p′

.

In other words, {A#
Q}Q is a reducing sequence for the “dual” matrix weight

W−p
′/p (for more details refer to [10], [5]).

Recall that the matrix Ap condition is ‖A#
Q AQ‖ ≤ c for every cube

Q ⊆ Rn, and the opposite inequality ‖(A#
Q AQ)−1‖ ≤ c always holds as a

simple consequence of Hölder’s inequality: for any x, y ∈ H we have

|(x, y)| ≤
( �

Q

‖W 1/p(t)x‖p dt

|Q|

)1/p( �

Q

‖W−1/p(t)y‖p′ dt|Q|

)1/p′

≈ ‖AQx‖ ‖A#
Qy‖,

which implies ‖AQ x‖ ≥ c‖(A#
Q)−1x‖ for any x ∈ H and, thus, the above

statement follows.
A condition which is weaker than Ap for a matrix weight W is the doub-

ling condition:

Definition 2.1 (Doubling matrix). A matrix weight W : Rn → M is
called a doubling matrix (of order p, 1 ≤ p < ∞), if there exists a constant
c = cp,n such that for any x ∈ H, any δ > 0 and any z ∈ Rn,

�

B2δ(z)

‖W 1/p(t)x‖pH dt ≤ c
�

Bδ(z)

‖W 1/p(t)x‖pH dt,(11)

i.e., the scalar measure wx(t) = ‖W 1/p(t)x‖pH is uniformly doubling and not
identically zero (a.e.). If c = 2β is the smallest constant for which (11) holds,
then β is called the doubling exponent of W .

Observe that if W is a doubling matrix weight (of order p), then {AQ}Q
is a doubling sequence (of order p). The fact that Ap implies doubling in
the scalar case is quite straightforward and can be found in [7]. The vector
case can be found in [6]. Also note that β ≥ n and for the Lebesgue measure
β = n.
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By saying W−p
′/p satisfies any of (A1)–(A3), we mean either W−p

′/p ∈
Ap′ with 1 < p′ < ∞ (which is equivalent to W ∈ Ap, 1 < p < ∞),
or W−p

′/p is a doubling matrix of order p′ with p′ > β∗, where β∗ is the
doubling exponent of W−p

′/p, or W−p
′/p is a diagonal doubling matrix of

order p′ with 1 < p′ <∞.
In order to establish the connection between matrix weighted Besov

spaces and averaging Besov spaces, we use an auxiliary Lp space:

Definition 2.2 (Averaging space Lp({AQ}, ν)). For ν ∈ Z, 1 ≤ p ≤ ∞
and {AQ}Q ∈ RSD, the space Lp({AQ}, ν) consists of all vector-valued
locally integrable functions ~f such that

‖~f ‖Lp({AQ},ν) =
∥∥∥

∑

l(Q)=2−ν
χQ(t)AQ ~f (t)

∥∥∥
Lp(dt)

<∞.

Note that ‖~f ‖Ḃαqp ({AQ}) = ‖{2να‖ϕν ∗ ~f ‖Lp({AQ},ν)}ν‖lq . To make nota-
tion short, define Qν = {Q ∈ D : l(Q) = 2−ν}.

3. Duality of sequence Besov spaces. An important tool that we
need is the duality on lq(X) with X being a Banach space. By definition
lq(X), 0 < q < ∞, is the set of all sequences {fν}ν∈Z with fν ∈ X, ν ∈ Z
such that (

∑
ν∈Z ‖fν‖

q
X)1/q <∞. If 1 ≤ q <∞, then (lq(X))∗ = lq

′
(X∗) (see

[1, Chapter 8]), and if g is a continuous linear functional on lq(X) identified
with {gν}ν∈Z ∈ lq′(X∗), then the duality is represented as

g(f) = (f, g) =
∑

ν∈Z
〈fν , gν〉X ,

where 〈fν , gν〉X = gν(fν) is the pairing between X and X∗. We will mainly
be concerned with X = Lp, 1 ≤ p < ∞, or Lp(W ), 1 < p < ∞, and,
thus, X∗ = Lp

′
or Lp

′
(W−p

′/p), respectively, with the pairing 〈f, g〉X =�
〈f(x), g(x)〉H dx.

If 0 < q < 1, and X = Lp, 1 ≤ p <∞, then (lq(Lp))∗ = l∞(Lp
′
) (see [9,

p. 177]) and the pairing is defined as above.

Theorem 3.1. Let W be a matrix weight , α ∈ R, 0 < q < ∞, 1 < p
<∞. Then

(i) ḃ−αq
′

p′ (W−p
′/p) ⊆ [ḃαqp (W )]∗ always,

(ii) [ḃαqp (W )]∗ ⊆ ḃ−αq′p′ (W−p
′/p) if W ∈ Ap.

We will prove this theorem, which implies (6) of Theorem A2, in several
steps. The use of reducing operators is essential and helps to understand
why certain conditions on the weight W are necessary.
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Proof of (i) of Theorem 3.1. For each ~t ∈ ḃ−αq′p′ (W−p
′/p) define a func-

tional l~t on ḃαqp (W ) by

l~t (~s ) = (~s,~t ) =
∑

Q

〈~sQ,~tQ〉H for any ~s = {~sQ}Q ∈ ḃαqp (W ).

The calculations below show that this sum converges and l~t ∈ [ḃαqp (W )]∗:

(12)
∣∣∣
∑

Q

〈~sQ,~tQ〉H
∣∣∣

≤
∑

ν∈Z

�

Rn

∑

Q∈Qν
|Q|−1|〈W−1/p(x)W 1/p(x)~sQ,~tQ〉H|χQ(x) dx.

Using the self-adjointness of W and the Cauchy–Schwarz inequality, we
bound (12) by

∑

ν∈Z

�

Rn

∑

Q∈Qν
(|Q|−α/n−1/2χQ(x)‖W 1/p(x)~sQ‖H)

× (|Q|α/n−1/2χQ(x)‖W−1/p(x)~tQ‖H) dx.

Applying Hölder’s inequality several times, we estimate l~t (~s ) by

(13)
∑

ν∈Z

�

Rn

( ∑

Q∈Qν
(|Q|−α/n−1/2χQ(x)‖W 1/p(x)~sQ‖H)p

)1/p

×
( ∑

Q∈Qν
(|Q|α/n−1/2χQ(x)‖W−1/p(x)~tQ‖H)p

′
)1/p′

dx

≤
∑

ν∈Z

∥∥∥
∑

Q∈Qν
|Q|−α/n−1/2χQ~sQ

∥∥∥
Lp(W )

∥∥∥
∑

Q∈Qν
|Q|α/n−1/2χQ~tQ

∥∥∥
Lp
′ (W−p′/p)

≤ ‖~s ‖ḃαqp (W )‖~t ‖ḃ−αq′
p′ (W−p′/p)

,

for 1 < q <∞. In the case of 0 < q ≤ 1, we bound (13) by

‖~s ‖ḃα1
p (W )‖~t ‖ḃ−α∞

p′ (W−p′/p).

Since lq is embedded into l1 when 0 < q ≤ 1, we estimate the previous
product by ‖~s ‖ḃαqp (W )‖~t ‖ḃ−α∞

p′ (W−p′/p).

In terms of reducing operators (or using (4)) the previous lemma states

ḃ−αq
′

p′ ({A#
Q}) ⊆ [ḃαqp ({AQ})]∗.(14)

If we follow along the lines of the proof again but instead of W−1/p(t)W 1/p(t)
in (12) use A−1

Q AQ, then we obtain the following statement.
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Lemma 3.2. Let α ∈ R, 0 < q < ∞, 1 ≤ p < ∞ and {AQ}Q ∈ RSD.
Then

ḃ−αq
′

p′ ({A−1
Q }) ⊆ [ḃαqp ({AQ})]∗.(15)

In fact, if only we have proven (15), then (14) (and equivalently part (i)
of Theorem 3.1) could have been obtained as a consequence of (15) and [5,
Corollary 7.4], i.e.,

ḃ−αq
′

p′ ({A#
Q}) ⊆ ḃ

−αq′
p′ ({A−1

Q }) ⊆ [ḃαqp ({AQ})]∗.(16)

Observe that (15) holds for any {AQ}Q ∈ RSD, not necessarily generated
by W .

Now we will study the opposite embeddings. By Lemma 3.3 below, we
will get

[ḃαqp ({AQ})]∗ ⊆ ḃ−αq
′

p′ ({A−1
Q })(17)

without any additional assumptions on the sequence {AQ}Q. Note that com-
bining (15) and (17), we obtain (7). If we apply [5, Corollary 7.4] again, (17)
is continued as

[ḃαqp ({AQ})]∗ ⊆ ḃ−αq
′

p′ ({A−1
Q })

Ap
⊆ ḃ−αq

′
p′ ({A#

Q}) ≈ ḃ
−αq′
p′ (W−p

′/p)

with the second embedding being held under the Ap condition. Thus, the
embedding (ii) of Theorem 3.1 holds if W ∈ Ap.

Lemma 3.3. Let {AQ}Q ∈ RSD, α ∈ R, 0 < q < ∞, 1 ≤ p < ∞. Then
(17) holds.

Proof. Let l ∈ [ḃαqp ({AQ})]∗. We show that there exists ~t ∈ ḃ−αq′p′ ({A−1
Q })

such that for any ~s ∈ ḃαqp ({AQ}),
l(~s ) = (~s,~t ) =

∑

Q

〈~sQ,~tQ〉H and ‖~t ‖
ḃ−αq

′
p′ ({A−1

Q })
≤ ‖l‖.

Let ~e (k)
J denote a vector-valued sequence enumerated by dyadic cubes such

that in the kth component (kth row) of this vector the Jth entry (corre-
sponding to the dyadic cube J) is equal to 1 and all other entries are zero:

~e
(k)
J =(. . . , {0}Q, . . . , {. . . 0 . . . 1Jth entry . . . 0 . . .}Q (kth row), . . . , {0}Q, . . .)T.

Now if ~s has only finitely many non-zero entries, i.e.,

~s =
∑

{Q}finite

m∑

k=1

s
(k)
Q ~e

(k)
Q ,

then by linearity

l(~s ) =
∑

{Q}finite

m∑

k=1

s
(k)
Q l(~e (k)

Q ) =:
∑

{Q}finite

m∑

k=1

s
(k)
Q t

(k)
Q .
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By continuity, since finitely non-zero sequences are dense (p, q <∞), we get

l(~s ) =
∑

Q∈D

m∑

k=1

s
(k)
Q t

(k)
Q =

∑

Q∈D
〈~sQ,~tQ〉H for any ~s ∈ ḃαqp ({AQ}).

Now everything is set up to show that ~t := ({t(1)
Q }Q, . . . , {t

(m)
Q }Q)T ∈

ḃ−αq
′

p′ ({A−1
Q }). For ~̃s ∈ ḃαqp (Rm), set ~sQ = A−1

Q
~̃s and define

l̃(~̃s ) := l({A−1
Q
~̃sQ}Q) = l({~sQ}Q) =

∑

Q

〈~sQ,~tQ〉H

=
∑

Q

〈AQ~sQ, A−1
Q
~tQ〉H =

∑

Q

〈~̃sQ,~̃tQ〉H,

where ~̃tQ = A−1
Q
~tQ. By the above,

|l̃(~̃s )| ≤ c‖{~sQ}Q‖ḃαqp ({AQ}) = c‖{~̃sQ}Q‖ḃαqp (Rm),

i.e., l induces a continuous linear functional l̃ on ḃαqp (Rm). By Lemma 3.4

below, {~̃tQ}Q ∈ ḃ−αq
′

p′ (Rm). Since the inside Lp
′
-norm of the ḃ−αq

′
p′ (Rm)-norm

of ~̃t is ∥∥∥
∑

Q∈Qν
|Q|−1/2~̃tQχQ

∥∥∥
Lp′

=
∥∥∥
∑

Q∈Qν
|Q|−1/2‖A−1

Q
~tQ‖HχQ

∥∥∥
Lp′

=
∥∥∥
∑

Q∈Qν
|Q|−1/2~tQχQ

∥∥∥
Lp
′ ({A−1

Q })
,

~t ∈ ḃ−αq′p′ ({A−1
Q }) and the lemma is proved.

Lemma 3.4. Let α ∈ R, 0 < q <∞, 1 ≤ p <∞. Then

[ḃαqp (Rm)]∗ ≈ ḃ−αq′p′ (Rm).(18)

Proof. It only suffices to show the scalar case (m = 1) of (18), since
~s ∈ ḃαqp (Rm) means that each component s(i) belongs to ḃαqp and by making
zero all but one of the components of an arbitrary ~s we obtain (18).

The embedding [ḃαqp ]∗ ⊇ ḃ−αq′p′ is a trivial application of Hölder’s inequal-

ity plus the embedding ḃαqp → ḃα1
p for q < 1, so we only concentrate on the

opposite embedding.
Suppose l ∈ [ḃαqp ]∗. Using linearity and continuity, l can be represented

by some sequence {tQ}Q as l(s) =
∑

Q sQtQ for any s = {sQ} ∈ ḃαqp and

|l(s)| =
∣∣∣
∑

Q

sQtQ

∣∣∣ ≤ ‖l‖ ‖s‖ḃαqp .(19)
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Case q ≥ 1. For each ν ∈ Z let fν(s)(x) =
∑

Q∈Qν |Q|−α/n−1/2sQχQ(x).

Define a map I : ḃαqp → lq(Lp) by I(s)={fν(s)}ν∈Z. Observe that ‖I(s)‖lq(Lp)
= ‖s‖ḃαqp , in other words, by the natural construction I is a linear isometry

onto the subspace I(ḃαqp ) of lq(Lp). Then l induces a continuous linear func-
tional l̃ on I(ḃαqp ) ⊆ lq(Lp) (continuous in lq(Lp)-norm) by l̃(I(s)) = l(s).
Since lq(Lp) is a Banach space, by the Hahn–Banach Theorem l̃ extends to
a continuous linear functional l̃ext on all of lq(Lp) with ‖l̃ext‖ = ‖l̃‖ ≤ ‖l‖.
Since [lq(Lp)]∗ = lq

′
(Lp

′
), l̃ext is represented by a sequence g = {gν}ν∈Z ∈

lq
′
(Lp

′
) with ‖g‖ = ‖{gν}ν‖lq′(Lp′ ) ≤ ‖l‖ and

∑

Q

sQtQ = l(s) = l̃({fν(s)}) =
∑

ν∈Z

�

Rn
fν(s)(x)gν(x) dx for any ~s ∈ ḃαqp ,

or ∑

Q

sQtQ =
∑

ν∈Z

∑

Q∈Qν
|Q|−α/n−1/2sQ

�

Q

gν(x) dx.

Taking sQ = 0 for all but one cube, we get tQ = |Q|−α/n+1/2〈gν〉Q. Using
Hölder’s inequality, we have

‖t‖
ḃ−αq

′
p′

=
∥∥∥
{∥∥∥

∑

Q∈Qν
〈gν〉QχQ

∥∥∥
Lp
′

}
ν

∥∥∥
lq
′ ≤ ‖{~gν}ν‖lq′(Lp′ ) ≤ ‖l‖.

Case 0 < q < 1. Suppose 1 < p < ∞. Fix ν ∈ Z and let Fν denote a
finite collection of cubes from Qν . Set τν =

∑
Q∈Fν (|Q|α/n−1/2+1/p′ |tQ|)p

′
.

Since the sum is finite, τν < ∞. Let sQ = |Q|(α/n−1/2+1/p′)p′ |tQ|p
′−2tQ if

Q ∈ Fν and tQ 6= 0; otherwise let sQ = 0. Note that ‖{sQ}Q‖ḃαqp = τ
1/p
ν .

Observe that
∑

Q sQtQ = τν , and by (19), τν ≤ ‖l‖ ‖s‖ḃαqp = ‖l‖ τ 1/p
ν . Since

τν is finite, we get τ 1/p′
ν ≤ ‖l‖ and the estimate holds independently of the

collection Fν taken. Hence, we can pass to the limit from Fν to Qν . Then,

‖t‖ḃ−α∞
p′

= sup
ν∈Z

( ∑

Q∈Qν
(|Q|α/n−1/2+1/p′ |tQ|)p

′
)1/p′

= sup
ν∈Z

τ1/p′
ν ≤ ‖l‖ or t ∈ ḃ−α∞p′ .

Now assume p = 1. Fix P ∈ D and define s(P ) = {s(P )
Q }Q by s

(P )
Q =

|Q|α/n−1/2 sgn tQ if Q = P and s
(P )
Q = 0 otherwise. Then ‖{s(P )

Q }Q‖ḃαq1
= 1

and |P |α/n−1/2|tP | =
∑

Q s
(P )
Q tQ = l(s(P )) ≤ ‖l‖ ‖{s(P )

Q }Q‖ḃαq1
= ‖l‖ for any

P ∈ D. Hence,

‖t‖ḃ−α∞∞ = sup
P∈D
|P |α/n−1/2|tP | ≤ ‖l‖ or t ∈ ḃ−α∞∞ .
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4. Equivalence of sequence and discrete averaging Besov spaces.
In this section we discuss norm equivalence between Ḃαq

p ({AQ}) and
ḃαqp ({AQ}). We suppose α ∈ R, 0 < q ≤ ∞ and 1 ≤ p <∞ for all statements
in this section. If q =∞, then set q′ = 1.

Definition 4.1. For ν ∈ Z let Eν = {~f : fi ∈ S ′ with supp f̂i ⊆ {ξ ∈
Rn : |ξ| ≤ 2ν+1}, i = 1, . . . ,m}.

The following decomposition of an exponential type function is a useful
tool in studying the norm equivalence (for the proof the reader is referred
to [3, p. 55]):

Lemma 4.2. Suppose that g ∈ S ′(Rn), h ∈ S(Rn) and supp ĝ, supp ĥ ⊆
{|ξ| < 2νπ} for some ν ∈ Z. Then

(g ∗ h)(x) =
∑

k∈Zn
2−νng(2−νk)h(x− 2−νk).(20)

Let Γ = {γ ∈ S : γ̂ = 1 on {ξ ∈ Rn : |ξ| ≤ 2} and supp γ̂ ⊆ {ξ ∈
Rn : |ξ| < π}}. Define γν(x) = 2νnγ(2νx) for ν ∈ Z. Since γ̂ν = γ̂(2νξ),
supp γ̂ν ⊆ {ξ ∈ Rn : |ξ| < 2νπ}.

Lemma 4.3. For ν ∈ Z let ~g ∈ Eν and fix x ∈ Qνk, where k ∈ Zn. Then
for any y ∈ Rn and γ ∈ Γ ,

~g (y) =
∑

l∈Zn
2−νn~g (2−ν l + x)γν(y − (2−ν l + x)).(21)

Proof. Denote ~g x(y) = ~g (y + x). Trivially, ~g (y) = ~g x(y − x). Note
that (~g x)∧(ξ) = eixξ~̂g(ξ), and so supp (~g x)∧ = supp ~̂g. Therefore, by (20)
applied to ~g x,

~g (y) = ~g x(y − x) =
∑

l∈Zn
2−νn~g x(2−ν l)γν(y − x− 2−ν l),

which is (21).

Lemma 4.4. If {AQ} is a doubling sequence of order p, then for ~sQ =
〈~f , ϕQ〉,

‖{~sQ}Q‖ḃαqp ({AQ}) ≤ c‖~f ‖Ḃαqp ({AQ}).(22)

Proof. Note that ~sQ = |Q|1/2(ϕ̃ν ∗ ~f )(2−νk) for Q = Qνk, where ϕ̃(x) =
ϕ(−x). Let ‖{~sQ}Q‖ḃαqp ({AQ}) =: ‖{J1/p

ν }ν‖lαq , where

Jν =
∑

k∈Zn

�

Qνk

‖AQνk(ϕ̃ν ∗ ~f )(2−νk)‖p dx.(23)

Since ϕ̃ν ∗ ~f ∈ Eν , Lemma 4.3 implies

(ϕ̃ν ∗ ~f )(2−νk) =
∑

l∈Zn
(ϕ̃ν ∗ ~f )(2−ν l + x)γ(k − l − 2νx), x ∈ Qνk,
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for some γ ∈ Γ . Then

Jν ≤
∑

k∈Zn

�

Qνk

(∑

l∈Zn
‖AQνk(ϕ̃ν ∗ ~f )(2−ν l + x)‖ |γ(k − l − 2νx)|

)p
dx

≤ c
∑

k∈Zn

�

Qνk

(∑

l∈Zn

‖AQνk(ϕ̃ν ∗ ~f )(2−νl + x)‖
(1 + |k − l − 2νx|)M

)p
dx

for some M > β + n. Using the discrete Hölder inequality and the fact that
M > n, we bring the pth power inside the sum on l (for p > 1). Furthermore,
since {AQ}Q is doubling, (1) implies

‖AQνk~u ‖p ≤ c(1 + |l|)β‖AQν(k+l)~u ‖p for any ~u ∈ H.(24)

Thus,

Jν ≤ c
∑

k∈Zn

�

Qνk

∑

l∈Zn

(1 + |l|)β‖AQν(k+l)(ϕ̃ν ∗ ~f )(2−νl + x)‖p
(1 + |k − l − 2νx|)M dx.

Changing variable (t = x+ 2−ν l) and reindexing the sum on l, we get

Jν ≤ c
∑

k∈Zn

�

Qνl

∑

l∈Zn
(1 + |k − l|)β−M‖AQνl(ϕ̃ν ∗ ~f )(t)‖p dt

≤ c
∑

l∈Zn

�

Qνl

‖AQνl(ϕ̃ν ∗ ~f )(t)‖p dt = c‖ϕ̃ν ∗ ~f ‖Lp({AQ},ν)

(the sum on k converges since M − β > n). Thus,

‖{~sQ}Q‖ḃαqp ({AQ}) ≤ c‖~f ‖Ḃαqp ({AQ},ϕ̃).

Now we need the independence of the space Ḃαq
p ({AQ}) of the choice of ϕ

(or ϕ̃). We apply the same strategy as in [5, Theorem 6.6], namely, we use
the proof of Corollary 4.9 below, which will imply that the last expression
is equivalent to c‖~f ‖Ḃαqp ({AQ},ϕ) and, thus, (22) is proved.

Corollary 4.5. If {AQ} is a doubling sequence of order p, then for
~sQ = 〈~f , ϕQ〉,

‖{~sQ}Q‖ḃαqp ({A−1
Q })
≤ c‖~f ‖Ḃαqp ({A−1

Q })(25)

and

‖{~sQ}Q‖ḃ−αq′
p′ ({A−1

Q })
≤ c‖~f ‖

Ḃ−αq
′

p′ ({A−1
Q })

.(26)

Proof. For (25) repeat the previous proof with each AQ replaced by A−1
Q

and instead of the estimate (24) use

‖A−1
Qνk

~u ‖p ≤ c(1 + |l|)β‖A−1
Qν(k+l)

~u ‖p for any ~u ∈ H,(27)
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which follows from the doubling property (1) and duality

‖A−1
Q ~u ‖ = sup

~v 6=0

|(~u,~v )|
‖AQ~v ‖

.

For (26) use the obvious replacements for α, p, q and AQ. If 1 < p <∞,
choose M > βp′/p+ n and replace (24) by

‖A−1
Qνk

~u ‖p′ ≤ c(1 + |l|)βp′/p ‖A−1
Qν(k+l)

~u ‖p′ for any ~u ∈ H,(28)

which is obtained from (27) by raising to the power p′/p. If p = 1 (p′ =∞),
then replace (23) with the L∞ norm:

Jν = sup
x∈Rn

∑

k∈Zn
‖A−1

Qνk
(ϕ̃ν ∗ ~f )(2−νk)‖χQνk(x)

and use (27) instead of (24) to get

Jν ≤ c sup
t∈Rn

∑

l∈Zn
‖A−1

Qνl
(ϕ̃ν ∗ ~f )(t)‖χQνl(t) = c‖ϕ̃ν ∗ ~f ‖L∞({A−1

Q },ν).

Recall that for each admissible ϕ ∈ A there exists ψ ∈ A (see [3, Lem-
ma 6.9]) such that

∑

ν∈Z
ϕ̂(2νξ) · ψ̂(2νξ) = 1 if ξ 6= 0.(29)

A pair (ϕ,ψ) with ϕ,ψ ∈ A and the property (29) is referred to as a pair of
mutually admissible kernels.

Lemma 4.6. Suppose {AQ}Q is a doubling sequence of order p. Then

‖~f ‖Ḃαqp ({AQ}) ≤ c‖{~sQ(~f )}Q‖ḃαqp ({AQ}).(30)

Proof. Using ~f =
∑

Q ~sQ(~f )ψQ, we get
∥∥∥
∑

Q

~sQ(~f )ψQ
∥∥∥
Ḃαqp ({AQ})

≤
∥∥∥
{∑

µ∈Z

( ∑

l(P )=2−ν

�

P

( ∑

l(Q)=2−µ
‖AP~sQ‖ |(ϕν ∗ ψQ)(x)|

)p
dx
)1/p}

ν

∥∥∥
lαq

=
∥∥∥
{ ν+1∑

µ=ν−1

( ∑

l(P )=2−ν

�

P

( ∑

l(Q)=2−µ
‖AP~sQ‖ |(ϕν ∗ ψQ)(x)|

)p
dx
)1/p}

ν

∥∥∥
lαq

=: ‖{J1/p
ν }ν‖lαq ,

since ϕν ∗ ψQ = 0 if |µ − ν| > 1. Using the convolution estimates (16) and
(17) from [5], we get (for any M > 0)

(31) |(ϕν ∗ψQ)(x)| ≤ cM |Q|−1/2(1 + 2ν |x− xQ|)−M if µ = ν − 1, ν, ν + 1.
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If 1 < p <∞, chooseM = M1+M2 withM1 > β/p+n/p andM2 > n/p′;
if p = 1, letM = M1 > β+n. Then applying the above estimate and Hölder’s
inequality, we obtain

Jν ≤ c
ν+1∑

µ=ν−1

∑

l(P )=2−ν

∑

l(Q)=2−µ
‖AP~sQ‖p|P | |Q|−p/2(1 + 2ν |xP − xQ|)−M1p.

Shifting AP to AQ by doubling, we get

Jν ≤ c
ν+1∑

µ=ν−1

∑

l(Q)=2−µ
|Q|−p/2‖AQ~sQ‖p|Q|

∑

l(P )=2−ν
cβ(1+2ν |xP−xQ|)−M1p+β.

Applying [5, Lemma 5.4] (Summation Lemma) to the sum on P , we have

Jν ≤ c
ν+1∑

µ=ν−1

∑

l(Q)=2−µ
|Q|−p/2‖AQ~sQ‖p|Q|

= c

ν+1∑

µ=ν−1

∥∥∥
∑

l(Q)=2−µ
|Q|−1/2~sQχQ

∥∥∥
Lp({AQ},µ)

.

Combining the estimates for all Jν and reindexing when necessary, we get

‖~f ‖Ḃαqp ({AQ}) ≤ 3c
∥∥∥
{

2να
∥∥∥

∑

l(Q)=2−ν
|Q|−1/2~sQχQ

∥∥∥
Lp({AQ},ν)

}
ν

∥∥∥
lq

= c‖{~sQ}‖ḃαqp ({AQ}).

Remark 4.7. Theorem 1.6 is obtained by combining Lemmas 4.4
and 4.6.

Corollary 4.8. If {AQ}Q is doubling (of order p), then

‖~f ‖Ḃαqp ({A−1
Q })
≤ c‖{~sQ(~f )}Q‖ḃαqp ({A−1

Q })
(32)

and
‖~f ‖

Ḃ−αq
′

p′ ({A−1
Q })
≤ c‖{~sQ(~f )}Q‖ḃ−αq′

p′ ({A−1
Q })

.(33)

Proof. For (32) use the previous proof with the following shifting of AP
to AQ (similar to (27)):

‖A−1
P ~sQ ‖p ≤ cn,β,p (1 + 2ν |xP − xQ|)β ‖A−1

Q ~sQ‖p,(34)

where l(P ) = 2−ν and l(Q) = 2−µ with µ = ν−1, ν or ν+1; for (33) use the
above proof with the indices −α, q′, p′; if 1 < p < ∞, take M > βp′/p + n
and apply (34) raised to the power p′/p; if p′ =∞, then

Jν ≤ sup
x∈Rn

ν+1∑

µ=ν−1

∑

l(P )=2−ν

∑

l(Q)=2−µ
‖A−1

P ~sQ‖ |(ϕν ∗ ψQ)(x)|χP (x).
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Using the convolution estimate (31) (with M = M1 > β + n) and (34) for
shifting A−1

P to A−1
Q , we get

Jν ≤ c
ν+1∑

µ=ν−1

∥∥∥
∑

l(Q)=2−µ
‖A−1

Q ~sQ‖χQ
∥∥∥
L∞
,

which gives (33).

Corollary 4.9. The spaces Ḃαq
p ({AQ}), Ḃαq

p ({A−1
Q }) and Ḃ−αq

′

p′ ({A−1
Q })

are independent of the choice of the admissible kernel if {AQ}Q is doubling
(of order p).

Proof. Repeat the proof of [5, Theorem 1.8] with W replaced by AQ and
use Lemmas 4.4 and 4.6 for the space Ḃαq

p ({AQ}); for the space Ḃαq
p ({A−1

Q })
apply (25) and (32), and for the space Ḃ−αq

′
p′ ({A−1

Q }) use (26) and (33).

5. Properties of averaging Lp spaces. In this section we study the
connection between Lp({AQ}, ν) and Lp(W ), the dual of Lp({AQ}, ν) and
several convolution estimates on Lp({AQ}, ν).

Lemma 5.1. Let W be a doubling matrix weight of order p, 1 ≤ p <∞.
Then for ~f ∈ Eν , ν ∈ Z,

‖~f ‖Lp(W ) ≤ c‖~f ‖Lp({AQ},ν),(35)

where {AQ}Q is a sequence of reducing operators generated by W and c is
independent of ν.

Proof. Using the notation Wν(t) = W (2−νt) and ~fν(t) = ~f (2−νt), we
write

‖~f ‖pLp(W ) =
∑

k∈Zn

�

Qνk

‖W 1/p(t)~f (t)‖p dt =
∑

k∈Zn
2−νn

�

Q0k

‖W 1/p
ν (t)~fν(t)‖p dt.

Since ~fν ∈ E0, there exists γ ∈ Γ such that ~fν = ~fν ∗ γ. Using the decay of
γ and Hölder’s inequality, we get

‖~f ‖pLp(W ) ≤
∑

k∈Zn
2−νn

�

Q0k

∑

m∈Zn

�

Q0m

‖W 1/p
ν (t)~fν(y)‖p

(1 + |m− k|)M dy dt

for some M > β+n. Observe that ‖AQνk ~fν(y)‖p ≈
�
Q0k
‖W 1/p

ν (t)~fν(y)‖p dt.
Using the doubling property of W to shift AQνk to AQνm (see (24)), we
obtain

‖~f ‖pLp(W ) ≤ c
∑

m∈Zn

∑

k∈Zn
2−νn

�

Q0m

(1 + |m− k|)−(M−β)‖AQνm ~fν(y)‖p dy

≤ c
∑

m∈Zn

�

Q0m

‖AQνm ~fν(y)‖p dy,



Duality of matrix-weighted Besov spaces 145

where the sum on k converges sinceM > β+n. Changing variables x = 2−νy,
we get the desired inequality (35).

Corollary 5.2. Let α ∈ R, 0 < q ≤ ∞ and 1 ≤ p < ∞. If W is dou-
bling (of order p) and {AQ}Q is a sequence of reducing operators generated
by W , then

Ḃαq
p ({AQ}) ⊆ Ḃαq

p (W ).

Proof. Since ϕν ∗ ~f ∈ Eν , the previous lemma implies

‖~f ‖Ḃαqp (W ) = ‖{2να‖ϕν ∗ ~f ‖Lp(W )}ν‖lq
≤ c‖{2να‖ϕν ∗ ~f ‖Lp({AQ},ν)}ν‖lq = c‖~f ‖Ḃαqp ({AQ}).

Lemma 5.3. Let 1 ≤ p < ∞ and W satisfy any of (A1)–(A3). Suppose
~f ∈ Eν , ν ∈ Z. Then

‖~f ‖Lp({AQ},ν) ≤ c‖~f ‖Lp(W ),(36)

where {AQ}Q is a sequence of reducing operators produced by W and c is
independent of ν.

Proof. Using the definition of reducing operators, we write

‖~f ‖Lp({AQ},ν) ≈
∑

k∈Zn

�

Qνk

1
|Qνk|

�

Qνk

‖W 1/p(t)~f(x)‖p dt dx

=
∑

k∈Zn

�

Q0k

�

Qνk

‖W 1/p(t)~fν(y)‖p dt dy,

by changing variables x = 2−νy and denoting ~fν(y) = ~f (2−νy). Note that
~fν ∈ E0. Applying the decomposition of an exponential type function (Lem-
ma 4.2) to ~fν = ~fν ∗γ for γ ∈ Γ and Hölder’s inequality (choose M > β+n),
the last expression is bounded by

c
∑

k∈Zn

�

Q0k

�

Qνk

∑

m∈Zn

‖W 1/p(t)~fν(m)‖p
(1 + |y −m|)M dt dy

≤ c
∑

m∈Zn

∑

k∈Zn

1
(1 + |k −m|)M−β

�

Q0k

�

Qνm

‖W 1/p(t)~fν(m)‖p dt dy,

by applying the doubling property of W (any of (A1)–(A3) implies that W
is doubling). Integrating on y and summing on k (M > β + n), we bound
the previous line by

c
∑

m∈Zn

�

Qνm

‖W 1/p(t)~fν(m)‖p dt = c 2−νn
∑

m∈Zn

�

Q0m

‖W 1/p
ν (t)~fν(m)‖p dt,
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again by changing variables. Now applying [5, Lemmas 6.3 and 6.5] (this is
where (A1)–(A3) come into play), we bound the above by c 2−νn‖~fν‖pLp(Wν)

= c‖~f ‖pLp(W ), which gives (36).

Corollary 5.4. Let α ∈ R, 0 < q ≤ ∞ and 1 ≤ p <∞. If W satisfies
any of (A1)–(A3) and {AQ}Q is a sequence of reducing operators generated
by W , then

Ḃαq
p (W ) ⊆ Ḃαq

p ({AQ}).

Proof. As in the proof of Corollary 5.2, use the fact that ϕν ∗ ~f ∈ Eν
and Lemma 5.3.

Remark 5.5. Combining Corollaries 5.2 and 5.4, we have Lemma 1.7.

In order to establish the dual of Lp({AQ}, ν), 1 < p < ∞, we consider
the following idea:

‖~f ‖pLp({AQ},ν) =
∑

Q∈Qν

�

Q

‖AQ ~f(x)‖pH dx

=
�

Rn

( ∑

Q∈Qν
‖AQ ~f(x)‖HχQ(x)

)p
dx

=
�

Rn

∥∥∥
∑

Q∈Qν
AQχQ(x)~f(x)

∥∥∥
p

H
dx

=:
�

Rn
‖U1/p

ν (x)~f(x)‖pH dx = ‖~f ‖pLp(Uν),

i.e., Lp({AQ}, ν) = Lp(Uν), where Uν(x) =
∑

Q∈Qν A
p
QχQ(x) is a ma-

trix weight. Since the dual [Lp(Uν)]∗ can be identified with Lp
′
(U∗ν ) with

U1/p
ν (x) = (U∗ν )−1/p′(x) (e.g. see [4] or [10]), i.e., U ∗ν (x) =

∑
Q∈Qν A

−p′
Q χQ(x),

we obtain

‖~f ‖p′
Lp
′ (U∗ν )

=
�

Rn

∥∥∥
∑

Q∈Qν
A−1
Q χQ(x)~f(x)

∥∥∥
p′

H
dx

=
∑

Q∈Qν

�

Q

‖A−1
Q
~f(x)‖p′H dx = ‖~f ‖p′

Lp
′ ({A−1

Q },ν)
,

or
[Lp({AQ}, ν)]∗ ≈ Lp′({A−1

Q }, ν).(37)

If p = 1, then the standard duality argument gives

[L1({AQ}, ν)]∗ ≈ L∞({A−1
Q }, ν).

The details are left to the reader.
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The boundedness of the convolution operator with a decaying kernel on
Lp({AQ}, ν) will be helpful in the next section. We establish it here.

Lemma 5.6. Let |Φ(t)| ≤ c/(1 + |t|)M for some M > β/p + n and for
ν ∈ Z define Φν(t) = 2νnΦ(2νt). Let {AQ}Q be a doubling matrix sequence
of order p, 1 ≤ p <∞. Fix λ, µ, ν ∈ Z. Then

(i) ‖Φµ ∗ ~f ‖Lp({AQ},λ) ≤ c0(c1)λ−ν(c2)µ−ν‖~f ‖Lp({AQ},ν),

(ii) ‖Φµ ∗ ~f ‖Lp({A−1
Q },λ) ≤ c0(c3)λ−ν(c2)µ−ν‖~f ‖Lp({A−1

Q },ν),

where c1 = 2n/pχ{λ>ν} + 2(n−β)/pχ{λ≤ν}, c2 = 2nχ{µ>ν} + 2n−Mχ{µ≤ν},
c3 = 2(β−n)/pχ{λ>ν} + 2−n/pχ{λ≤ν}, and c0 is independent of λ, µ and ν.

Proof. Using the decay of Φ, namely,

|Φµ(x− y)| ≤ ck2 2νn/(1 + 2ν |x− y|)M ,

where k2 = 2(µ−ν)nχ{µ>ν} + 2(ν−µ)(M−n)χ{µ≤ν}, we have

‖Φµ ∗ ~f ‖pLp({AQ},λ) =
∑

Q∈Qλ

�

Q

‖AQ(Φµ ∗ ~f )(x)‖p dx

≤
∑

Q∈Qλ

�

Q

( �

Rn
‖AQ ~f(y)‖ |Φµ(x− y)| dy

)p
dx

≤ c
∑

Q∈Qλ

�

Q

( �

Rn

k22νn‖AQ ~f(y)‖
(1 + 2ν |x− y|)M dy

)p
dx

≈ c
∑

k∈Zn

�

Qλk

( ∑

m∈Zn

�

Qνm

k22νn‖AQλk ~f(y)‖
(1 + 2ν |x− xQνm |)M

dy

)p
dx.

Since {AQ}Q is doubling, we “shift” AQλk to AQνm :

‖AQλk ~f(y)‖ ≤ ck1(1 + 2ν |x−xQνm |)β/p‖AQνm ~f(y)‖ for x ∈ Qλk,(38)

where k1 = 2(λ−ν)n/pχ{λ>ν} + 2(ν−λ)(β−n)/pχ{λ≤ν}. Substituting (38) into
the convolution estimate, we get

‖Φµ ∗ ~f ‖pLp({AQ},λ) ≤ c
�

Rn

( ∑

m∈Zn

�

Qνm

k1k22νn‖AQνm ~f(y)‖
(1 + |2νx−m|)M−β/p dy

)p
dx.

Using the discrete Hölder inequality on the sum inside and then Jensen’s
inequality to bring pth power inside the integral (if p > 1), the last line is
bounded above by
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ckp1k
p
2

�

Rn

(∑

l∈Zn

1
(1 + |2νx− l|)M−β/p

)p/p′

×
( ∑

m∈Zn

�

Qνm

2νn‖AQνm ~f(y)‖p
(1 + |2νx−m|)M−β/p dy

)
dx

≤ ckp1k
p
2

∑

m∈Zn

�

Rn

2νn

(1 + |2νx−m|)M−β/p
�

Qνm

‖AQνm ~f(y)‖p dy dx;

since M − β/p > n, the sum on l converges (independently of x). Changing
variables (t = 2νx) and observing that the integral on t converges (indepen-
dently of m), again since M − β/p > n, we obtain

‖Φµ ∗ ~f ‖pLp({AQ},µ) ≤ ck
p
1k

p
2

∑

m∈Zn

�

Qνm

‖AQνm ~f(y)‖p dy.

Put c1 = k
1/(λ−ν)
1 and c2 = k

1/(µ−ν)
2 . Then part (i) is proved.

For the second part observe that (1) (“shift” AQνm to AQλk) together
with

‖A−1
Q ~v ‖ = sup

~u6=0

|(~v, ~u )|
‖AQ~u ‖

implies

‖A−1
Qλk

~f(y)‖ ≤ ck3(1 + 2ν |x− xQνm |)β/p‖A−1
Qνm

~f(y)‖, x ∈ Qλk,(39)

where k3 = 2(λ−ν)(β−n)/pχ{λ>ν}+ 2(ν−λ)n/pχ{λ≤ν}. Note that (39) is similar
to (38), so previous estimates with each AQ replaced by A−1

Q prove (ii) with

c3 = k
1/(λ−ν)
3 .

Remark 5.7. Recall that ‖A−1
Q ~u ‖ ≤ c‖A#

Q~u ‖ for any ~u ∈ H (since

‖(A#
QAQ)−1‖ ≤ c). Suppose that W−p

′/p is a doubling matrix of order p′,
1 < p′ <∞, with the doubling exponent β∗ (instead of the assumption that
W is doubling of order p). Then

‖A−1
Qλk

~f(y)‖ ≤ c‖A#
Qλk

~f(y)‖ ≤ ck∗1(1 + 2ν |x− xQνm |)β
∗/p′‖A#

Qνm
~f(y)‖,

(where k∗1 = 2(λ−ν)n/p′χ{λ>ν}+2(ν−λ)(β∗−n)/p′χ{λ≤ν}, i.e., k1 with β replaced
by β∗ and p by p′) holds instead of (38). Choosing M > β∗/p′ + n in the
previous lemma, we get

(iii) ‖Φµ ∗ ~f ‖Lp({A−1
Q },λ) ≤ c0(c∗1)λ−ν(c2)µ−ν‖~f ‖

Lp({A#
Q},ν), 1 < p <∞.

Remark 5.8. A similar convolution estimate can be proved for Lp(W )
spaces, 1 < p <∞:

‖Φ ∗ ~f ‖Lp(W ) ≤ c‖~f ‖Lp(W ).(40)
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Recall that if Φ were to be a Calderón–Zygmund singular kernel K, then
‖K ∗ ~f ‖Lp(W ) ≤ c‖~f ‖Lp(W ) if W ∈ Ap (see [4], [8], [10]). Conversely, if (40)
holds for every Φ ∈ S, then W ∈ Ap is necessary (see [6]).

6. Duality of continuous Besov spaces. Now we shift our attention
to continuous Besov spaces and our task is to construct [Ḃαq

p ({AQ})]∗ and
eventually [Ḃαq

p (W )]∗.

Lemma 6.1. Let {AQ}Q be a doubling matrix sequence of order p, 1 ≤
p <∞. Let α ∈ R and 0 < q <∞. Then

Ḃ−αq
′

p′ ({A−1
Q }) ⊆ [Ḃαq

p ({AQ})]∗.(41)

Proof. Take ϕ,ψ ∈ A with the mutual property (29). Let ψ̃(x) = ψ(−x).

Note that ̂̃ψ(ξ) = ψ̂(ξ). Let ~f ∈ Ḃαq
p ({AQ}) and ~g ∈ Ḃ−αq′p′ ({A−1

Q }). First

consider S0 = {f ∈ S : 0 6∈ supp f̂} a dense subspace of Ḃαq
p ({AQ}) (see [6])

and take ~f with (~f )i ∈ S0, i = 1, . . . ,m (and ~g with (~g)i ∈ S ′). Then

~g =
∑

ν∈Z
~g ∗ (ϕν ∗ ψ̃ν) since

∑

ν∈Z
(ϕν ∗ ψ̃ν)∧(ξ) = 1 by (29),

and

~g (~f ) =
∑

ν∈Z
(~g ∗ (ϕν ∗ ψ̃ν), ~f ) =

∑

ν∈Z
((~g ∗ ϕν), (~f ∗ ψν))

=
∑

ν∈Z

∑

Q∈Qν

�

Q

〈AQA−1
Q (~g ∗ ϕν)(x), (~f ∗ ψν)(x)〉H dx

≤
∑

ν∈Z

∑

Q∈Qν

�

Rn
‖A−1

Q (~g ∗ ϕν)(x)‖H ‖AQ(~f ∗ ψν)(x)‖HχQ(x) dx

by the self-adjointness of each AQ and the Cauchy–Schwarz inequality. Using
Hölder’s inequality several times, we obtain

|~g (~f )| ≤
∑

ν∈Z
2να‖(~f ∗ ψν)‖Lp({AQ},ν) · 2−να‖(~g ∗ ϕν)‖Lp′ ({A−1

Q },ν)(42)

≤ ‖{2να‖(~f ∗ ψν)‖Lp({AQ},ν)}ν‖lq
× ‖{2−να‖(~g ∗ ϕν)‖Lp′ ({A−1

Q },ν)}ν‖lq′

if 1 < q <∞, and if 0 < q ≤ 1, we bound (42) by

‖{2να‖(~f ∗ ψν)‖Lp({AQ},ν)}ν‖l1 ‖{2−να‖(~g ∗ ϕν)‖Lp′({A−1
Q },ν)}ν‖l∞

≤ ‖{2να‖(~f ∗ ψν)‖Lp({AQ},ν)}ν‖lq ‖{2−να‖(~g ∗ ϕν)‖Lp′ ({A−1
Q },ν)}ν‖l∞ .
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Combining cases and using the fact that Ḃαq
p ({AQ}) and Ḃ−αq

′
p′ ({A−1

Q }) are
independent of the choice of the admissible kernel if {AQ}Q is doubling
(Corollary 4.9), we get

|~g (~f )| ≤ ‖~f ‖Ḃαqp ({AQ}) ‖~g ‖Ḃ−αq′
p′ ({A−1

Q })
.

Since S0 is dense in Ḃαq
p ({AQ}), we get the above inequality for any ~f ∈

Ḃαq
p ({AQ}). Thus, ~g ∈ Ḃ−αq′p′ ({A−1

Q }) belongs to [Ḃαq
p ({AQ})]∗ and ‖~g ‖oper

≤ ‖~g ‖
Ḃ−αq

′
p′ ({A−1

Q })
.

Lemma 6.2. Let α ∈ R, 1 ≤ p < ∞, 0 < q < ∞ and {AQ}Q be a
doubling sequence of order p. Then

[Ḃαq
p ({AQ})]∗ ⊆ Ḃ−αq

′
p′ ({A−1

Q }).(43)

Proof. Let l∈ [Ḃαq
p ({AQ})]∗. We show that there exists ~g∈ Ḃ−αq′p′ ({A−1

Q })
such that l(~f ) = ~g (~f ) = (~f ,~g ) for any ~f ∈ Ḃαq

p ({AQ}).
Case 1 ≤ q < ∞. Take ~f ∈ Ḃαq

p ({AQ}), and for any ν ∈ Z write
~fν = ~f ∗ ϕν . Set T by T ({ ~fν}ν) = l(~f ), so T is defined on a subspace of
lαq (Lp({AQ}, ν)). Since l is bounded, so is T :

|T ({ ~fν}ν)| = |l(~f )| ≤ c‖~f ‖Ḃαqp ({AQ}) = c‖{ ~fν}ν‖lαq (Lp({AQ},ν)).

Extend T , denote by T̃ the extension onto all of lαq (Lp({AQ}, ν)) (note:
q ≥ 1). Since [lq(X)]∗ ≈ lq

′
(X∗) (cf. Section 3 or [1, Chapter 8]), we have

[lαq (Lp({AQ}, ν))]∗ ≈ l−αq′ ([Lp({AQ}, ν)]∗) ≈ l−αq′ (Lp
′
({A−1

Q }, ν)) by (37).

Thus, there exists a vector-valued sequence {~gν}ν∈Z ∈ l−αq′ (Lp
′
({A−1

Q }, ν))

such that ‖{~gν}ν∈Z‖l−α
q′ (Lp′ ({A−1

Q },ν)) ≤ ‖l‖ and, for any ~f ∈ Ḃαq
p ({AQ}),

l(~f ) = T̃ ({~fν}) = T ({~fν}) = {~gν}({~fν})
=
∑

ν∈Z

�

Rn
〈~fν(x), ~gν(x)〉H dx

=
∑

ν∈Z

�

Rn
〈(f ∗ ϕν)(x), ~gν(x)〉H dx

=
∑

ν∈Z

�

Rn
〈~f (x), (~gν ∗ ϕ̃ν)(x)〉H dx.

Define ~g (x) =
∑

ν∈Z(~gν ∗ ϕ̃ν)(x). Then l(~f ) = (~f,~g ). Moreover, for any
ψ ∈ A (by Corollary 4.9),
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‖~g ‖
Ḃ−αq

′
p′ ({A−1

Q })
≈
∥∥∥
{∥∥∥
∑

ν∈Z
~gν ∗ ϕ̃ν ∗ ψµ

∥∥∥
Lp
′ ({A−1

Q },µ)

}
µ

∥∥∥
l−α
q′

≤
∥∥∥
{∑

ν∈Z
‖~gν ∗ ϕ̃ν ∗ ψµ‖Lp′ ({A−1

Q },µ)

}
µ

∥∥∥
l−α
q′

=
∥∥∥
{ µ+1∑

ν=µ−1

‖~gν ∗ ϕ̃ν ∗ ψµ‖Lp′ ({A−1
Q },µ)

}
µ

∥∥∥
l−α
q′
,

since supp ψ̂µ ⊆ {ξ : 2µ−1 ≤ |ξ| ≤ 2µ+1} and so ϕ̃ν ∗ ψµ = 0 if |µ − ν| > 1.
Reindexing the inner sum, we get

‖~g ‖q′
Ḃ−αq

′
p′ ({A−1

Q })
≤ c

∑

µ∈Z
2−µαq

′
1∑

j=−1

‖~gµ+j ∗ ϕ̃µ ∗ ψµ+j‖q
′

Lp
′ ({A−1

Q },µ)
.

Since {AQ}Q is doubling and the sum on j is finite, we apply Lemma 5.6(ii)
to get

‖~g ‖
Ḃ−αq

′
p′ ({A−1

Q })
≤ c′‖{2−µα‖~gµ‖Lp′ ({A−1

Q },µ)}µ‖lq′ ≤ ‖l‖.

Case 0 < q < 1. Take ~f with ~fi ∈ S0 (0 6∈ supp (~fi)∧). Since ϕ ∈ S0, for
ν ∈ Z by definition of convolution and then boundedness of l, we have

|(l ∗ ϕν)(~f )| = |l(~f ∗ ϕ̃ν)| ≤ ‖l‖ ‖~f ∗ ϕ̃ν‖Ḃαqp ({AQ}).(44)

Note that each component of l ∗ ϕν is a C∞-function and also

‖~f ∗ ϕ̃ν‖Ḃαqp ({AQ}) ≤ 2να
ν+1∑

µ=ν−1

‖~f ∗ ϕ̃ν‖Lp({AQ},µ) ≤ c 2να‖~f ‖Lp({AQ},ν)

by Lemma 5.6(i). Substituting this estimate into (44), we get |(l ∗ϕν)(~f )| ≤
c2να‖l‖ ‖~f ‖Lp({AQ},ν). By duality,

2−να‖l ∗ ϕν‖Lp′ ({A−1
Q },ν) = 2−να sup

~f∈S0

|(l ∗ ϕν)(~f )|
‖~f ‖Lp({AQ},ν)

≤ c‖l‖,

i.e., the functional l∗ϕν can be associated with a function ~gν ∈ Lp′({A−1
Q }, ν)

such that 2−να‖~gν‖Lp′ ({A−1
Q },ν) ≤ c‖l‖. Let ~g =

∑
ν∈Z ~gν ∗ θν , where θ is as

in the atomic decomposition theorem [3, Lemma 5.12] or [2, p. 783], which
implies ~̂g =

∑
ν∈Z l̂ϕ̂ν θ̂ν = l̂·1 and so ~g = l. Observe that ~g ∈ Ḃ−α∞p′ ({A−1

Q }):

‖~g ‖Ḃ−α∞
p′ ({A−1

Q })
= sup

ν∈Z
2−να‖g ∗ ϕν‖Lp′ ({A−1

Q },ν) ≤ c‖l‖.

Thus, the functional l ∈ [Ḃαq
p ({AQ})]∗ can be associated with ~g ∈

Ḃ−α∞p′ ({A−1
Q }) and l(~f ) = (~f,~g ). This completes the proof.
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Summarizing the results of this and the previous section we get the
following embeddings of B-spaces:

Corollary 6.3. Let W be a matrix weight and {AQ}Q its reducing op-
erators. Let α ∈ R, 0 < q <∞ and 1 ≤ p <∞. Then

[Ḃαq
p (W )]∗

(1)
⊆ [Ḃαq

p ({AQ})]∗
(2)
⊆ Ḃ−αq

′
p′ ({A−1

Q })(45)

(3)
⊆ Ḃ−αq

′
p′ ({A#

Q})
(4)
⊆ Ḃ−αq

′
p′ (W−p

′/p),

where

• (1) holds if W is doubling of order p,
• (2) holds if W is doubling of order p,
• (3) holds if W ∈ Ap, 1 < p <∞,
• (4) holds if W−p

′/p is doubling of order p′, 1 < p <∞.

Also,

[Ḃαq
p (W )]∗

(1∗)
⊇ [Ḃαq

p ({AQ})]∗
(2∗)
⊇ Ḃ−αq

′
p′ ({A−1

Q })(46)

(3∗)
⊇ Ḃ−αq

′
p′ ({A#

Q})
(4∗)
⊇ Ḃ−αq

′
p′ (W−p

′/p),

where

• (1∗) holds if W satisfies any of (A1)–(A3),
• (2∗) holds if W is doubling of order p,
• (3∗) holds for any matrix weight W ,
• (4∗) holds if W−p

′/p satisfies any of (A1)–(A3), 1 < p <∞.

In terms of a matrix weight W only, (45) and (46) are

[Ḃαq
p (W )]∗ ⊆ Ḃ−αq′p′ (W−p

′/p) if W ∈ Ap, 1 < p <∞,
and

[Ḃαq
p (W )]∗ ⊇ Ḃ−αq′p′ (W−p

′/p)

if W, W−p
′/p satisfy any of (A1)–(A3), 1 < p <∞.

In particular, if W ∈ Ap (and so W−p
′/p ∈ Ap′), then [Ḃαq

p (W )]∗ ≈
Ḃ−αq

′
p′ (W−p

′/p), otherwise (W still satisfies any of (A1)–(A3), otherwise

there may be a dependence on ϕ) [Ḃαq
p (W )]∗ ≈ Ḃ−αq

′
p′ ({A−1

Q }), which com-
pletes the proof of Theorem A1.

7. Duality of inhomogeneous Besov spaces bαqp (W ) and Bαq
p (W ).

Recall that the main difference between homogeneous and inhomogeneous
spaces is that instead of considering all dyadic cubes, we only consider the
ones with side length l(Q) ≤ 1 and the properties of functions corresponding
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to l(Q) = 1 are slightly changed. We start with the sequence spaces. Recall
the definition of the space bαqp (W ).

Definition 7.1 (Inhomogeneous matrix-weighted sequence Besov space
bαqp (W )). For α∈ R, 0 < q ≤ ∞, 1 ≤ p < ∞ and W a matrix weight, the
space bαqp (W ) consists of all vector-valued sequences ~s = {~sQ}l(Q)≤1 such
that

‖~s ‖bαqp (W ) =
∥∥∥
{

2να
∥∥∥

∑

l(Q)=2−ν
|Q|−1/2~sQχQ

∥∥∥
Lp(W )

}
ν≥0

∥∥∥
lq
<∞.

Let RS(I) be the collection of all sequences {AQ}l(Q)≤1 of positive-
definite operators on H. Similar to the homogeneous case, we introduce
the averaging space bαqp ({AQ}).

Definition 7.2 (Inhomogeneous averaging matrix-weighted sequence
Besov space bαqp ({AQ})). For α∈ R, 0< q ≤∞, 1≤ p ≤∞ and {AQ}l(Q)≤1

∈ RS(I), let

bαqp ({AQ}) =
{
~s = {~sQ}l(Q)≤1 :

‖~s ‖bαqp ({AQ}) =
∥∥∥
{

2να
∥∥∥

∑

l(Q)=2−ν
|Q|−1/2~sQχQ

∥∥∥
Lp({AQ},ν)

}
ν≥0

∥∥∥
lq
<∞

}
.

Let ~s ∈ bαqp (W ). Define ~̇s = {~̇sQ}Q∈D by setting ~̇sQ = ~sQ if l(Q) ≤ 1 and
~̇sQ = 0 if l(Q) > 1. Note that ~s is the restriction of ~̇s on bαqp (W ). Applying
(4), we get

‖~s ‖bαqp (W ) = ‖~̇s ‖ḃαqp (W ) ≈ ‖~̇s ‖ḃαqp ({AQ}) = ‖~s ‖bαqp ({AQ}),

which proves the following proposition.

Proposition 7.3. Let α ∈ R, 1 ≤ p < ∞, 0 < q ≤ ∞ and let W be a
matrix weight with reducing operators {AQ}Q. Then

bαqp (W ) ≈ bαqp ({AQ})
in the sense of the norm equivalence.

Note that it is enough to consider reducing operators AQ generated
by a matrix weight W only for dyadic cubes of side length l(Q) ≤ 1, i.e.,
{AQ}l(Q)≤1.

Now we establish the duality.

Theorem A3. Let α ∈ R, 1 ≤ p < ∞, 0 < q < ∞ and let W be a
matrix weight with reducing operators {AQ}l(Q)≤1. Then

[bαqp (W )]∗ ≈ b−αq′p′ ({A−1
Q }).

Moreover , if W ∈ Ap, 1 < p <∞, then

[bαqp (W )]∗ ≈ b−αq′p′ (W−p
′/p).
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To prove this theorem one can simply repeat the arguments from Sec-
tion 3 with proper adjustments (for example, consider sums on ν taken only
over ν ≥ 0). However, we would like to give a simple proof for the embedding

[bαqp ({AQ})]∗ ⊆ b−αq
′

p′ ({A−1
Q }).

Proof. Let l ∈ [bαqp ({AQ})]∗. Let P be the projection from ḃαqp ({AQ}) to
bαqp ({AQ}) defined by restricting a sequence {~sQ}Q∈D to {~sQ}l(Q)≤1. Set l̃

by l̃(~s ) = l(P~s ) for each ~s ∈ ḃαqp ({AQ}). Then l̃ ∈ [ḃαqp ({AQ})]∗, since

|l̃(~s )| = |l(P~s )| ≤ ‖l‖ ‖P~s ‖bαqp ({AQ}) ≤ ‖l‖ ‖~s ‖ḃαqp ({AQ}).

Then by Lemma 3.3 (or, equivalently, by (17)), l̃ is represented by ~̃t ∈
ḃ−αq

′
p′ ({A−1

Q }) such that l̃(~s ) = (~s,~̃t ) and ‖~̃t ‖
ḃ−αq

′
p′ ({A−1

Q })
≤ ‖l̃‖ ≤ ‖l‖. Let

~t = P~̃t. For ~s ∈ bαqp ({AQ}) define ~̇s ∈ ḃαqp ({AQ}) as above (thus, P~̇s = ~s ).
Then

l(~s ) = l̃(~̇s ) = (~̇s,~̃t ) =
∑

l(Q)≤1

~̇sQ
~̃tQ +

∑

l(Q)>1

~̇sQ
~̃tQ =

∑

l(Q)≤1

~̇sQ
~̃tQ = (~s,~t ),

since ~̇sQ = 0 for l(Q) > 1. Moreover, ‖~t ‖
b−αq

′
p′ ({A−1

Q })
≤ ‖~̃t ‖

ḃ−αq
′

p′ ({A−1
Q })

≤
‖l‖.

Consider a class of functions A(I) with properties similar to the ones of
an admissible kernel: Φ ∈ A(I) if Φ ∈ S(Rn), supp Φ̂ ⊆ {ξ ∈ Rn : |ξ| ≤ 2}
and |Φ̂(ξ)| ≥ c > 0 if |ξ| ≤ 5/3. Recall the inhomogeneous space Bαq

p (W )
from [5].

Definition 7.4 (Inhomogeneous matrix-weighted Besov spaceBαq
p (W )).

For α ∈ R, 1 ≤ p <∞, 0 < q ≤ ∞, W a matrix weight, ϕ ∈ A and Φ ∈ A(I),
we define the Besov space Bαq

p (W ) to be the collection of all vector-valued

distributions ~f = (f1, . . . , fm)T with fi ∈ S ′(Rn), 1 ≤ i ≤ m, such that

‖~f ‖Bαqp (W ) = ‖Φ ∗ ~f ‖Lp(W ) + ‖{2να‖ϕν ∗ ~f ‖Lp(W )}ν≥1‖lq <∞.
Analogously, we introduce the averaging space Bαq

p ({AQ}).
Definition 7.5 (Averaging matrix-weighted Besov space Bαq

p ({AQ})).
For α ∈ R, 0 < q ≤ ∞, 1 ≤ p ≤ ∞, ϕ ∈ A, Φ ∈ A(I) and {AQ}l(Q)≤1 ∈
RS(I), let

Bαq
p ({AQ}) = {~f = (f1, . . . , fm)T with fi ∈ S ′(Rn), 1 ≤ i ≤ m :

‖~f ‖Ḃαqp ({AQ}) = ‖Φ ∗ ~f ‖Lp({AQ},0) + ‖{2να‖ϕν ∗ ~f ‖Lp({AQ},ν)}ν≥1‖lq <∞}.
Now the remaining results of Sections 4–6 transfer easily to the inho-

mogeneous Besov spaces by using the properties established in Section 12
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of [5], such as replacing a family {ϕν}ν∈Z with {ϕν}ν∈N ∪ Φ, observing that
Φ ∗ ~f ∈ E0 and summing over ν ≥ 0 (or l(Q) ≤ 1) in all sums. In particular,
we get

Theorem 7.6. Let α ∈ R, 0 < q ≤ ∞, 1 ≤ p < ∞ and let {AQ}l(Q)≤1

be a doubling sequence (of order p). Then for ~sQ(~f ) = 〈~f, ϕQ〉,
‖~f ‖Bαqp ({AQ}) ≈ ‖{~sQ(~f )}l(Q)≤1‖bαqp ({AQ}).

Corollary 7.7. The spaces Bαq
p ({AQ}), Bαq

p ({A−1
Q }) and B−αq

′
p′ ({A−1

Q })
are independent of the choice of the pair of admissible kernels (ϕ,Φ) if
{AQ}l(Q)≤1 is doubling (of order p), 1 ≤ p <∞, α ∈ R, 0 < q ≤ ∞.

Lemma 7.8. Let α ∈ R, 0 < q ≤ ∞ and 1 < p < ∞. If W satisfies any
of (A1)–(A3) and {AQ}l(Q)≤1 is a sequence of reducing operators generated
by W , then

Bαq
p (W ) ≈ Bαq

p ({AQ}).
Theorem A4. Let α ∈ R, 0 < q <∞, 1 ≤ p <∞ and let {AQ}l(Q)≤1 be

reducing operators of a matrix weight W . If W satisfies any of (A1)–(A3),
then

[Bαq
p (W )]∗ ≈ B−αq′p′ ({A−1

Q }).
If W ∈ Ap, 1 < p <∞, then

[Bαq
p (W )]∗ ≈ B−αq′p′ (W−p

′/p).
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