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Exponential and polynomial dichotomies of

operator semigroups on Banach spaces

by

Roland Schnaubelt (Halle)

Abstract. Let A generate a C0-semigroup T (·) on a Banach space X such that the
resolvent R(iτ,A) exists and is uniformly bounded for τ ∈ R. We show that there ex-
ists a closed, possibly unbounded projection P on X commuting with T (t). Moreover,
T (t)x decays exponentially as t → ∞ for x in the range of P and T (t)x exists and de-
cays exponentially as t → −∞ for x in the kernel of P . The domain of P depends on
the Fourier type of X. If R(iτ,A) is only polynomially bounded, one obtains a similar
result with polynomial decay. As an application we study a partial functional differential
equation.

1. Introduction and preliminaries. Exponential stability and di-
chotomy are among the most basic and most important asymptotic proper-
ties of a strongly continuous operator semigroup T (·) on a Banach space X.
One strives to characterize these notions in terms of the generator A of T (·)
which is the given object in most applications. There is a well developed
theory for this problem which nevertheless does not answer several impor-
tant questions. In this paper we want to address one of these open issues,
treating also polynomial dichotomies within the same approach.

To provide the background for our main theorems, let us describe the
relevant known results in this area. Our notation is explained at the end
of this section. We first recall the well known resolvent estimates which are
necessary for exponential stability and dichotomy:

(1.1) T (·) is exponentially stable

⇒ s(A) < 0 and ‖R(λ,A)‖ ≤ c, Reλ ≥ 0,

(1.2) T (·) is exponentially dichotomous

⇒ iR ⊂ ̺(A) and ‖R(iτ, A)‖ ≤ c, τ ∈ R.
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If t 7→ T (t) is continuous in the operator norm for some t > 0, then
the pure spectral criteria s(A) < 0, resp. iR ⊂ ̺(A), already imply the
exponential stability, resp. dichotomy, of T (·) (see e.g. [8, Cor. IV.3.11,
Thm. V.1.17]). In this way exponential stability and dichotomy of, e.g.,
analytic semigroups can be characterized very conveniently. Unfortunately,
for general semigroups these criteria fail even on a Hilbert space X (see
[4, Ex. 5.8], [5, §2.1.5], [8, §IV.3.a], [19, Ex. 1.2.4]). (Some of these exam-
ples arise from wave equations.) On the other hand, on a Hilbert space X
Gearhart’s spectral mapping theorem establishes the converse implications
in (1.1) and (1.2); i.e.,

(1.3) T (·) is exponentially stable

⇔ s(A) < 0 and ‖R(λ,A)‖ ≤ c, Reλ ≥ 0,

(1.4) T (·) is exponentially dichotomous

⇔ iR ⊂ ̺(A) and ‖R(iτ, A)‖ ≤ c, τ ∈ R,

if X is a Hilbert space (see e.g. [5, §2.1], [19, Thm. 2.2.4], and [19, p. 70]
for further references). However, on non-Hilbertian X there are semigroups
violating the implications “⇐” in (1.3) and (1.4) (see [5, §2.1.5], [8, §IV.3.a],
[19], [25, §4]).

Going back to the general case of a C0-semigroup on a Banach space
X without additional regularity properties, one can look for stronger as-
sumptions on the resolvent which imply the exponential stability or
dichotomy of T (·). Such conditions were found in [5, §2.2], [11]–[14],
[18, Thm. A-III-7.10], [24]. However, they are quite sophisticated and (it
seems) difficult to check in applications. Alternatively, one can ask whether
the uniform boundedness of R(λ,A) for λ ∈ iR or Reλ ≥ 0 implies interest-
ing asymptotic properties of the semigroup which are related to stability or
dichotomy. In the case of exponential stability this question was settled in a
line of research culminating in the paper [25] by Weis and Wrobel (see also
[19], [20], [23], [24], and the references therein). Theorem 3.2 and Remark 3.3
of [25] (or [19, Thm. 4.2.4]) show that

(1.5) ‖R(λ,A)‖ ≤ c, Reλ ≥ 0 ⇒ ‖T (t)x‖ ≤Me−εt‖(w −A)βx‖, t ≥ 0,

for β = 1/p−1/p′, x ∈ D((w−A)β), and some constants M, ε > 0. Here w is
a fixed real number larger than the growth bound of T (·), p′ = p/(p−1), and
p ∈ [1, 2] is the Fourier type of X, i.e., the Fourier transform F is bounded
from Lp(R, X) to Lp′(R, X). Clearly, each Banach space has at least Fourier
type p = 1. Hilbert spaces have Fourier type p = 2 by Plancherel’s theorem.
In fact, only Hilbert spaces have Fourier type 2. The space X = Lq(Ω) has
Fourier type p = min{q, q′}. Moreover, uniformly convex Banach spaces have
nontrivial Fourier type p > 1. (See [19, p. 116] for references concerning these
facts.) In particular, (1.5) implies (1.3) if X is a Hilbert space. By means
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of an example it can be shown that the exponent β in (1.5) is optimal (see
[25, §4] or [19, Ex. 4.2.9]).

In Theorem 2.2 we establish a result on exponential dichotomy which is
analogous to the Weis–Wrobel theorem. As in (1.5) we expect exponential
estimates only for x in a space Xα := D((w − A)α), correspondingly the
dichotomy projection P will only be defined on a subspace D(P ) of X con-
taining Xα. This leads us to the following concept which is weaker than the
usual exponential dichotomy (where α = 0 and D(P ) = X).

Definition 1.1. Let T (·) be strongly continuous semigroup on a Banach
space X and α ≥ 0. We say that T (·) has an exponential α-dichotomy if
there is a closed projection P on X and constants N, δ > 0 such that

(a) Xα →֒ D(P ), T (t)D(P ) ⊂ D(P ), T (t)Px = PT (t)x, x ∈ D(P ),
(b) T (t) : N (P ) → N (P ) has a bounded inverse, denoted by TQ(−t),
(c) ‖T (t)Px‖≤Ne−δt‖(w−A)αx‖, ‖TQ(−t)(I−P )x‖≤Ne−δt‖(w−A)αx‖

for t ≥ 0 and x ∈ Xα, where we set Q = I−P . We call α and δ the regularity

and decay exponent , respectively.

We note that unbounded splitting projections also occur in the study of
bisectorial operators (see e.g. [17], [22]). However, this is a different situation
insofar as semigroups generated by bisectorial operators are automatically
analytic.

Our main Theorem 2.2 shows that T (·) has an exponential α-dichotomy
if R(iτ, A) exists and is uniformly bounded for τ ∈ R and α > 1/p−1/p′ ≥ 0,
where p ∈ [1, 2] is the Fourier type of X. We can take α = 1 in the case
of a nontrivial Fourier type p > 1 (e.g., if X is uniformly convex). In this
case Definition 1.1(c) gives exponential estimates for x ∈ D(A), i.e., for
classical solutions u(t) = T (t)x of the Cauchy problem. Unfortunately, we
do not quite obtain the exponent α = 1/p− 1/p′ from (1.5). For P = I, our
theorem corresponds to the results of the paper [20], where (1.5) was shown
for β > 1/p−1/p′. Then in [25] additional arguments were developed which
allow one to pass to the equality β = 1/p− 1/p′ in the regularity exponent.
A different approach is contained in the proof of Theorem 4.5.2 of [19]. But
it seems that these techniques do not work in the presence of an unbounded
projection or if one deals with a spectral gap (as in our situation).

We are aware of only one result dealing with dichotomies in the setting of
Theorem 2.2, namely Theorem 5.5 of the paper [7] by deLaubenfels and La-
tushkin. These authors obtain an exponential dichotomy on a Banach space
Z such that D(A2) ⊂ Z ⊂ X assuming that R(λ,A) is bounded on iR.
But it seems that Z is hard to describe conveniently and that it is smaller
than our Xα. The approach of [7] is based on deLaubenfels’ work on regu-
larized functional calculi [6]. (Concerning these calculi we also refer to the
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recent contribution [10] and the fundamental work by McIntosh in e.g. [16]
and [17].) We proceed in a different, rather direct and self-contained way:
The contour integrals (2.8) and (2.2) below define operators on X which
turn out to be equal to T (t)P (w − A)−α and TQ(−t)(I − P )(w − A)−α

and to have the asserted properties. Our reasoning is inspired by methods
from [12], [14], [20] and from the theory of functional calculi. But the verifi-
cation of the exponential estimates in Definition 1.1(c) and the presence of
an unbounded projection pose several new difficulties. We also note that we
do not use the Weis–Wrobel theorem in our arguments (cf. Remark 2.3).

In Example 2.5 we study a parabolic partial differential equation in
Lq(Ω) with a delay in the highest spatial derivatives, based on Theorem 2.2
and our work in [4]. We show that the exponential α-dichotomy follows also
in this case from a resolvent type estimate (where α > |1/q− 1/q′|), and we
give quite explicit sufficient conditions in a special case. Here pure spectral
criteria for exponential dichotomy may fail (see [4, Ex. 5.8]).

In fact, our main Theorem 2.2 is stated in a somewhat more general way
allowing for polynomial growth of R(λ,A) on an open vertical strip around
iR. This extension only affects the value of the regularity exponent α. If
one merely assumes that ‖R(iτ, A)‖ ≤ c(1 + |τ |γ) for all τ ∈ R and some
γ > 0, then it may happen that the spectrum approaches the imaginary
axis at ±i∞. There are various examples arising from wave equations where
σ(A) belongs to the open left half-plane, the semigroup is bounded (thus
s(A) = 0), and T (t)x decays polynomially, but not exponentially as t →
∞ for x ∈ D(A) (see e.g. [1], [3], [15], and the references therein). This
situation was investigated in detail in [3]. To our knowledge there are no
papers treating the case that the generator spectrum σ(A) approaches iR at
±i∞ from the left and the right. We address this point in the third section.
In fact, the arguments of Section 2 can be modified in order to obtain again
a closed projection P with the properties from Definition 1.1 except for (c)
where we now take α > γ + 1/p− 1/p′. In particular we have Xα →֒ D(P ).
Extending the methods of Section 2, we can further show the polynomial
decay on appropriate subspaces (see Theorem 3.1, (3.3), and (3.4)).

Notation and definitions. For Banach spaces X and Y the space of
bounded linear operators is denoted by B(X,Y ), where B(X) := B(X,X).
By D(B), N (B), R(B), σ(B), ̺(B), we designate the domain, kernel,
range, spectrum, and resolvent set of a linear operator B, respectively, and
we set R(λ,B) = (λI − B)−1 = (λ − B)−1. The domain of a linear op-
erator B is always endowed with the graph norm of B. For p ≥ 1 we
set p′ = p/(p − 1) if p > 1 and p′ = ∞ if p = 1. The Fourier trans-
form is defined by Ff(τ) =

T
R
e−iτtf(t) dt, τ ∈ R, for f ∈ L1(R, X).

We write c = c(α, β, . . .) for a generic constant depending on the quan-
tities α, β, . . . .
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Let A be the generator of a C0-semigroup T (·) = (T (t))t≥0 on X. The
spectral bound of A is defined by s(A) = sup{Reλ : λ ∈ σ(A)}, and the
growth bound by ω0(A) = inf{w ∈ R : ∃M : ‖T (t)‖ ≤ Mewt, t ≥ 0}.
We say that T (·) is exponentially stable if ω0(A) < 0. Recall that s(A) ≤
ω0(A) <∞. We fix a number w > ω0(A) and define for α > 0 the fractional
power

(1.6) (w −A)−α =
1

2πi

\
Γ

(w − λ)−αR(λ,A) dλ

where Γ is a piecewise smooth path in the set {λ ∈ C : Reλ > ω0(A),
λ /∈ [w,∞)}, running from ∞e−iφ to ∞eiφ for some 0 < φ < π/2. We fur-
ther set (w − A)0 = I. The operators (w − A)−α are injective, bounded,
and satisfy the power law with respect to α. In particular, (w−A)−α has a
closed inverse denoted by (w − A)α. The domain Xα := D((w − A)α) does
not depend on the choice of w > ω0(A). It is known that Xn = D(An) for
n ∈ N (with equivalent norms) and that Xβ →֒ Xα →֒ X for β ≥ α ≥ 0,
where “→֒” designates a continuous embedding (which is also dense in our
case). Since (w − A)−αT (t) = T (t)(w − A)−α it is easy to see that the re-
striction Aα : X1+α → Xα of A generates the semigroup in Xα given by the
restrictions of T (t) to Xα. Moreover, R(λ,Aα) is the restriction of R(λ,A)
to Xα for λ ∈ ̺(Aα) = ̺(A). We refer to [2] or [8] for proofs of these
facts.

2. Exponential dichotomy. Before presenting our main theorem we
state a standard lemma on closed projections. The proof is given for the
reader’s convenience. Here a “closed projection” P on X is a closed linear
operator such that PD(P ) ⊂ D(P ) and Px = P 2x for x ∈ D(P ). Through-
out we set Q = I − P with D(Q) = D(P ).

Lemma 2.1. If P is a closed projection on a Banach space X, then the

spaces N (P ) = R(Q) and R(P ) = N (Q) are closed in X and in D(P ).
Moreover , D(P ) = N (P ) ⊕R(P ).

Proof. We first observe that Q is also a closed projection on X so that
the kernels N (P ) and N (Q) are closed in X and D(P ). It is clear that
N (Q) ⊂ R(P ). Conversely, a vector y = Px belongs to D(P ) = D(Q) and
Qy = Px− P 2x = 0. As a result, N (P ) = R(Q) and N (Q) = R(I −Q) =
R(P ). To show that D(P ) = N (P )⊕R(P ), we take x ∈ N (P )∩R(P ). Then
x = Px = 0. Further, x ∈ D(P ) can be decomposed into x = Px+(I−P )x ∈
R(P ) + R(Q) = R(P ) + N (P ).

Theorem 2.2. Let A be the generator of a C0-semigroup T (·) on a

Banach space X with Fourier type p ∈ [1, 2].
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(1) Suppose that either

(a) iR ⊂ ̺(A) and ‖R(iτ, A)‖ ≤ C for τ ∈ R and a constant C > 0,
or

(b) {λ ∈ C : |Reλ| ≤ δ} ⊂ ̺(A) and ‖R(λ,A)‖ ≤ C̃(1 + |λ|γ) for

|Reλ| ≤ δ and some constants C̃, δ, γ > 0.

In case (a), we set γ = 0 and take δ ∈ (0, 1/C). Let α > 1/p−1/p′+γ.
Then T (·) has an exponential α-dichotomy with decay exponent δ and

a constant N = N(α).
(2) Conversely , if T (·) has an exponential α-dichotomy with decay ex-

ponent δ0 > 0, then (b) holds with γ = α and every δ ∈ (0, δ0).

Proof. To show the second part of the theorem, assume that T (·) has
an exponential α-dichotomy with decay exponent δ0 > 0, and let x ∈ Xα.
Then the operator

Rλx =

∞\
0

e−λtT (t)Pxdt−
∞\
0

eλtTQ(−t)Qxdt

maps Xα into X and is uniformly bounded for |Reλ| ≤ δ and a fixed
0 < δ < δ0. It is then straightforward to check that Rλx ∈ D(A) and
(λ−A)Rλx = x and that Rλ(λ− A)y = y for y ∈ X1+α. Hence, λ ∈ ̺(Aα)
= ̺(A), where Aα is the part of A in Xα, and R(λ,A) is an extension of Rλ.
Property (b) now follows from [14, Lem. 3.2] and the uniform boundedness
of R(λ,A)(w −A)−α = Rλ(w −A)−α for |Reλ| ≤ δ.

We prove the first part of Theorem 2.2 in four steps. We first observe
that assumption (a) implies (b) with γ = 0 and some 0 < δ < 1/C by a
standard perturbation argument. We fix numbers α > 1/p−1/p′+γ ≥ γ ≥ 0,
0 ≤ a ≤ δ, and max{δ, ω0(A)} < w̃ < w. Hence, ‖R(λ,A)‖ ≤ c for Reλ ≥ w̃.

Step 1: First part of the construction of TQ(−t)Q. We define the path
ΓQ = (w̃ + [−i∞,+i∞]) ∪ (a + [+i∞,−i∞]) which is oriented counter-
clockwise. Let x ∈ D(A) and t ≥ 0. Since

R(λ,A)x = (w − λ)−1(R(λ,A) −R(w,A))(w −A)x(2.1)

= O(|λ|γ−1), |Imλ| → ∞,

for |Reλ| ≤ δ or Reλ = w̃ the integral

(2.2) GQ(t)x =
1

2πi

\
ΓQ

e−λt(w − λ)−αR(λ,A)x dλ

converges absolutely. Consider the counter-clockwise oriented rectangular
path Γn with vertices w̃ ± in and a± in. For s ∈ [0, t] we then obtain
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(2.3) T (s)GQ(t)x = GQ(t)T (s)x

=
1

2πi

\
ΓQ

e−λ(t−s)(w − λ)−α
[
R(λ,A)x−

s\
0

e−λrT (r)x dr
]
dλ

= GQ(t− s)x− lim
n→∞

1

2πi

\
Γn

e−λ(t−s)(w − λ)−α
s\
0

e−λrT (r)x dr dλ

= GQ(t− s)x,

where we have used Cauchy’s theorem and
s\
0

e−λrT (r)x dr = (e−λsT (s) − I)R(λ,A)x = O(|λ|γ−1)

on ΓQ as |Imλ| → ∞ due to (2.1). We define

(2.4) Q̃x := GQ(0)x

=
1

2πi

−i∞\
+i∞

(w − λ)−αR(λ,A)x dλ+
1

2πi

w̃+i∞\
w̃−i∞

(w − λ)−αR(λ,A)x dλ

= −
1

2πi

+i∞\
−i∞

(w − λ)−αR(λ,A)x dλ+ (w −A)−αx

for x ∈ D(A). The last equality follows from a standard deformation of the
path [w̃ − i∞, w̃ + i∞] to the path Γ from (1.6).

Observe that the function t 7→ Tw̃(t) :=e−w̃tT (t) belongs to L2(R+,B(X)).
Since R(w̃ + iτ, A)x = (FTw̃(·)x)(τ) and p is the Fourier type of X, we
obtain R(w̃+ i·, A)x ∈ Lp′(R, X) with p′-norm less than c‖x‖. The resolvent
equation further yields

‖R(a+ iτ, A)x‖ = ‖[I + (w̃ − a)R(a+ iτ, A)]R(w̃ + iτ, A)x‖(2.5)

≤ c(1 + |τ |)γ ‖R(w̃ + iτ, A)x‖

for τ ∈ R. We set

f(λ) = (w − λ)−αR(λ,A)x =

{
f1(τ), λ = a+ iτ, τ ∈ R,

f2(τ), λ = w̃ + iτ, τ ∈ R.

Let p ∈ (1, 2]. Then Hölder’s inequality, estimate (2.5), and the inequality
(−α+ γ)pp′(p′ − p)−1 < −1 yield

(2.6)
\
R

‖f1(τ)‖
p dτ

≤ c
[\

R

‖R(w̃+ iτ, A)x‖p′ dτ
]p/p′[\

R

(1+ |τ |)(−α+γ)pp′/(p′−p) dτ
](p′−p)/p′

≤ c(α)‖x‖p.
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The function f2 can be estimated similarly. Thus the identity

2πeatGQ(t)x =
1

i

\
ΓQ

e(a−λ)t(w − λ)−αR(λ,A)x dλ

= −(Ff1)(t) + e(a−w̃)t (Ff2)(t),

inequality (2.6), and the Fourier type of X imply that
∞\
0

‖eatGQ(t)x‖p′ dt ≤ c(‖f1‖
p′

p + ‖f2‖
p′

p ) ≤ c(α)‖x‖p′ .

From this estimate and formula (2.3) we then deduce

‖earGQ(r)x‖p′ ≤
1\
0

ep′a(r+s)‖T (s)‖p′ ‖GQ(r + s)x‖p′ ds

≤ c

r+1\
r

‖eatGQ(t)x‖p′ dt ≤ c(α)‖x‖p′

for r ≥ 0 and x ∈ D(A). Therefore we can extend GQ(t) to a bounded
operator on X denoted by the same symbol and satisfying

(2.7) ‖GQ(t)‖ ≤ c(α)e−δt, t ≥ 0,

where we let a = δ. In particular, the extension Q̃ : X → X is bounded.
The same results hold for p = 1 by an analogous, but simpler argument.

Step 2: Construction of T (t)P . We define for x ∈ D(A) and t ≥ 0 the
operator

(2.8) GP (t)x =
1

2πi

−a+i∞\
−a−i∞

eλt(w − λ)−αR(λ,A)x dλ.

Again (2.1) shows that the integral converges absolutely. If t = 0, we set

(2.9) P̃ x := GP (0)x =
1

2πi

+i∞\
−i∞

(w − λ)−αR(λ,A)x dλ

(after shifting a to 0). Thus (2.4) implies

(2.10) P̃ x+ Q̃x = (w −A)−αx

for x ∈ D(A). There exists a bounded extension P̃ : X → X due to (2.7)
and (2.10). For x ∈ D(A2) and t ≥ 0 we further compute

GP (t)x =
1

2πi

−a+i∞\
−a−i∞

eλt(w − λ)−α−1(R(λ,A) −R(w,A))(w −A)x dλ

=
1

2πi

−a+i∞\
−a−i∞

eλt(w − λ)−α−1R(λ,A)(w −A)x dλ,
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using the resolvent equation and

(2.11)
1

2πi

−a+i∞\
−a−i∞

eλt(w − λ)−α−1dλ = 0

(which can be shown by applying Cauchy’s theorem to the triangular path
with vertices −a− in, −a+ in, −n ). Because of the identity

d

dt
eλt(w − λ)−α−1R(λ,A)(w −A)x

= eλt(w − λ)−α−1R(λ,A)(w −A)Ax+ eλt(w − λ)−α−1(w −A)x,

equation (2.11), and the closedness of A, the function GP (·)x is continuously
differentiable in X, GP (t)D(A2) ⊂ D(A), and

(2.12)
d

dt
GP (t)x = GP (t)Ax = AGP (t)x, t ≥ 0,

for x ∈ D(A2). Therefore the uniqueness of the Cauchy problem correspond-
ing to A yields

(2.13) GP (t)x = T (t)P̃ x, t ≥ 0,

at first for x ∈ D(A2). Since T (t)P̃ is bounded, we can extend GP (t) to a
bounded operator (denoted by the same symbol) which satisfies (2.13) for

all x ∈ X. We have AP̃x = P̃Ax on D(A2) by (2.12), so that

P̃D(A) ⊂ D(A), AP̃x = P̃Ax for x ∈ D(A),

and hence

(2.14) T (t)P̃ = P̃ T (t), t ≥ 0.

Let p ∈ (1, 2]. As in the first step one shows that

∞\
0

‖eatT (t)P̃x‖p′ dt ≤ c(α)‖x‖p′

for x ∈ D(A). For r ≥ 1, this estimate implies that

‖earT (r)P̃ x‖p′ ≤
1\
0

‖easT (s)‖p′‖ea(r−s) T (r − s)P̃ x‖p′ ds ≤ c(α)‖x‖p′ .

Taking a = δ, we have shown that

(2.15) ‖T (t)P̃‖ ≤ c(α)e−δt, t ≥ 0,

Again, this inequality still holds for p = 1 due to a similar argument.

Step 3: The projection P . We define the bounded operator

(2.16) P = P̃ (w −A)α : Xα → X.
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Observe that the first part of Definition 1.1(c) now follows from (2.15). For
x ∈ X1+α, formula (2.9) and the closedness of the fractional power further

imply that P̃X1+α ⊂ Xα and

Px =
1

2πi

+i∞\
−i∞

(w − λ)−αR(λ,A)(w −A)αx dλ = (w −A)αP̃ x.

Hence, P̃Xα ⊂ Xα and P = (w − A)αP̃ on Xα. Since (w − A)α is closed,
the operator P possesses a closure (denoted by (P,D(P ))) in X. We

further obtain Xα →֒ D(P ), P̃D(P ) ⊂ Xα, P = (w − A)αP̃ on D(P ),
and therefore

(2.17) P̃ = P (w −A)−α, P̃ x = (w −A)−αPx for x ∈ D(P ).

We set Q = I − P . Then the identities (2.10) and (2.17) yield

(2.18) Q̃ = Q(w −A)−α, Q̃x = (w −A)−αQx for x ∈ D(P ).

We are going to show that P is a projection. For x ∈ D(A2) and a > 0 we
calculate

(2.19) P̃ 2x =
1

2πi

−a+i∞\
−a−i∞

1

2πi

+i∞\
−i∞

(w−λ)−α(w−µ)−αR(λ,A)R(µ,A)x dµ dλ

=
1

2πi

−a+i∞\
−a−i∞

(w − λ)−α 1

2πi

+i∞\
−i∞

(w − µ)−α

µ− λ
dµR(λ,A)x dλ

+
1

2πi

+i∞\
−i∞

(w − µ)−α 1

2πi

−a+i∞\
−a−i∞

(w − λ)−α

λ− µ
dλR(µ,A)x dµ

using the resolvent equation and Fubini’s theorem. The integration path
of the scalar λ-integral in the last line can be closed in the left half-plane
where the integrand is holomorphic. Thus the second summand on the right
hand side is equal to 0. In the scalar µ-integral in the first summand, we
use the triangular path with vertices −in, in, −n for large n ∈ N such that
the (fixed) number λ belongs to the interior of the triangle. Then Cauchy’s
integral formula yields

P̃ 2x =
1

2πi

−a+i∞\
−a−i∞

(w − λ)−2αR(λ,A)x dλ(2.20)

=
1

2πi

+i∞\
−i∞

(w − λ)−2αR(λ,A)x dλ.
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On the other hand, by similar arguments we deduce

(2.21) P̃ (w −A)−αx

=
1

2πi

+i∞\
−i∞

1

2πi

\
Γ

(w − λ)−α(w − µ)−αR(λ,A)R(µ,A)x dµ dλ

=
1

2πi

+i∞\
−i∞

(w − λ)−α 1

2πi

\
Γ

(w − µ)−α

µ− λ
dµR(λ,A)x dλ

+
1

2πi

\
Γ

(w − µ)−α 1

2πi

+i∞\
−i∞

(w − λ)−α

λ− µ
dλR(µ,A)x dµ

=
1

2πi

+i∞\
−i∞

(w − λ)−2αR(λ,A)x dλ.

In the first summand of the middle equation we have deformed a bounded
part of the path Γ from (1.6) to a path in {µ : Reµ < w} around the (fixed)
number λ ∈ iR. By approximation, the identities (2.20) and (2.21) can be
extended to all x ∈ X. These two equations and (2.17) then yield

P̃ 2 = P̃ (w −A)−α = (w −A)−αP̃ .

Hence, R(P̃ 2) ⊂ Xα and P̃ = (w − A)αP̃ 2. Using again formula (2.17) and

the closedness of P , we conclude that P̃X ⊂ D(P ) and P̃ = PP̃ . This
fact leads to P = P 2 on Xα, due to (2.17). As a result, P is a projection.
Combining (2.14) and (2.16) we further deduce T (t)P = PT (t) on Xα, so
that T (t)D(P ) ⊂ D(P ) and T (t)P = PT (t) on D(P ) by approximation.

Step 4: Second part of the construction of TQ(−t)Q. Formula (2.2) im-
plies that GQ(t)X1+α ⊂ Xα and GQ(t)(w − A)αx = (w − A)αGQ(t)x for
x ∈ X1+α and t ≥ 0. Thus GQ(t)Xα ⊂ Xα and GQ(t) commutes with
(w−A)α. For x ∈ X1+α and t ≥ 0, the equalities (2.3) and (2.18) then show
that

(w −A)αGQ(t)T (t)x = (w −A)αQ̃x = Qx,(2.22)

T (t)(w −A)αGQ(t)x = (w −A)αQ̃x = Qx.(2.23)

One can extend (2.22) to D(P ) and (2.23) to Xα. Therefore the restriction
TQ(t) of T (t) to N (P ) = R(Q) is injective; its (closed) inverse is denoted
by TQ(−t). Then (2.23) and an approximation argument yield

GQ(t)x = (w −A)−αTQ(−t)Qx

for x ∈ D(P ). Inserting this identity into (2.22), we see that T (t) :
N (P ) → N (P ) is bijective, and its inverse TQ(−t) : N (P ) → N (P ) is



132 R. Schnaubelt

bounded by the closed graph theorem. Moreover,

TQ(−t)Qx = GQ(t)(w −A)αx, x ∈ Xα,

and the second part of Definition 1.1(c) follows from (2.7).

Remark 2.3. Suppose that the assumptions of Theorem 2.2 hold for
γ = 0. Let Ts(t) be the restriction of T (t) toXs := R(P ). Then the generator
As of this semigroup is the restriction of A to Xs. Definition 1.1(c) implies
that R(λ,As)(w−As)

−α (initially defined for Reλ > ω0(As)) has a bounded
extension F (λ) to Reλ ≥ −δ/2. This means that the spectral bound of the
part of As in D((w−As)

α) is less than −δ/2, and hence s(As) ≤ −δ/2 < 0.
The boundedness of F (λ) = R(λ,As)(w−As)

−α further yields ‖R(λ,As)‖ ≤
c(1 + |λ|α) for Reλ ≥ −δ/2 by [14, Lem. 3.2]. On the other hand, R(λ,As)
is the restriction of R(λ,A) for λ ∈ iR, and thus uniformly bounded on
iR by assumption (a). The Phragmén–Lindelöf principle then implies that
R(λ,As) is uniformly bounded for Reλ ≥ 0. The Weis–Wrobel result (1.5)
now shows that

‖T (t)x‖ ≤ Ne−δt‖(w −A)βx‖, t ≥ 0,

for β = 1/p− 1/p′ and x ∈ R(P ) ∩Xβ. Similar arguments work for the re-
striction −Au of −A to Xu = R(Q) which generates the semigroup TQ(−t),
t ≥ 0, on Xu. Hence

‖TQ(−t)x‖ ≤ Ne−δt‖(w −A)βx‖, t ≥ 0,

for x ∈ R(Q) ∩Xβ. If one wants to derive an estimate for T (t)P as in our
Definition 1.1, then one obtains

‖T (t)Px‖ ≤ Ne−δt‖(w −A)βPx‖ ≤ ce−δt‖(w −A)β+αx‖

for x ∈ Xβ+α with α > 1/p− 1/p′ (and analogously for TQ(−t)Q). Observe
that one looses β = 1/p − 1/p′ in the regularity exponent, and it is thus
necessary to estimate the products T (t)P and TQ(−t)Q in order to prove
Theorem 2.2.

Remark 2.4. Suppose that the assumptions of Theorem 2.2 hold. Ar-
guing as in (2.21), one can verify that

P̃ (w −A)−βx = (w −A)−βP̃ x =
1

2πi

+i∞\
−i∞

(w − λ)−α−βR(λ,A)x dλ

for β > 0 and x ∈ D(A). This identity implies in particular that the projec-
tion P in Theorem 2.2 does not depend on the choice of α > 1/p− 1/p′ + γ.

In the next example we extend Theorem 4.4(a) and Proposition 5.7 from
[4] from an L2 to an Lq setting. Due to the lack of a Weis–Wrobel type result
for dichotomies, we were forced to restrict ourselves to a Hilbert space setting
in [4].
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Example 2.5. Let A = ∆ be the Dirichlet Laplacian with D(A) =

W 2,q(Ω) ∩W 1,q
0 (Ω) =: X1 on X = Lq(Ω) for 1 < q < ∞ and a bounded

domain Ω with a C2 boundary. (In fact, one can replace A by more general
generators of analytic semigroups; see Hypothesis (H) and Proposition 5.7
of [4] for the details.) Let r > 0 and B : [−r, 0] → B(X1, X) be of bounded
variation db such that db([−t, 0]) → 0 as t ց 0. We define the “history
function” ut(θ) = u(t + θ) for u : [−r,∞) → X, t ≥ 0, and θ ∈ [−r, 0]. Let
p ∈ [min{q, q′},max{q, q′}]. For ϕ ∈W 1,p([−r, 0], X1) we study the retarded
problem

(2.24)
u′(t) = Au(t) +

0\
−r

dB(θ)u(t+ θ), t ≥ 0,

u(t) = ϕ(t), t ∈ [−r, 0].

This problem can be solved using Theorems 7.4–7.6 of [21] which address
even more general equations. In [4] we have developed a semigroup approach
which gives an alternative proof of a part of these theorems. We need the
real interpolation space Y := (X,X1)1−1/p,p. The product space X = Y ×
Lp([−r, 0], Y ) has Fourier type min{q, q′} (see e.g. the proof of [4, Thm. 4.5]).

There is a unique solution u ∈ C1(R+, Y ) ∩W 1,p
loc (R+, X1) of (2.24). There

exists a C0-semigroup T (·) on X satisfying
(
u(t)

ut

)
= T (t)

(
ϕ(0)

ϕ

)
, t ≥ 0,

which is generated by

A =

(
A L

0 d/dθ

)
,

D(A) =

{(
x

ϕ

)
∈ X1 ×W 1,p([−r, 0], X1) : ϕ(0) = x, Lϕ+Ax ∈ Y

}
,

where Lϕ :=
T0
−r dB(θ)ϕ(θ) for ϕ ∈ W 1,p([−r, 0], X1) (see [4, Thm. 3.6]).

In certain cases this semigroup violates the spectral mapping theorem (see
[4, Ex. 5.8]). Set Lλx = L(eλx) for λ ∈ C, x ∈ X1, and eλ(θ) = eλθ,
θ ∈ [−r, 0]. By Proposition 4.3 of [4], λ ∈ C belongs to ̺(A) if and only
if the operator H(λ) = (λ − A − Lλ)−1 exists in B(X,X1). One further
has ‖R(λ,A)‖B(X ) ≤ c(a)‖H(λ)‖B(X,X1) for λ ∈ ̺(A) with Reλ ≥ a. Thus
Theorem 2.2 immediately implies that

sup
τ∈R

‖H(iτ)‖B(X,X1) <∞

⇒ T (·) has an exponential α-dichotomy for α > |1/q − 1/q′|.

Observe that the dichotomy of T (·) means a splitting of both the solutions
u(t) and their history functions ut with decay estimates in the norm of X .
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To obtain a more explicit condition, suppose in addition that B(θ) =
η(θ)A, where η ∈ BV([−r, 0],C). We set

d̂η(λ) =

0\
−r

eλθ dη(θ), λ ∈ C.

Then H(iτ) : X → X1 exists and is uniformly bounded for τ ∈ R pro-
vided that

1 + d̂η(iR) ⊂ {λ ∈ C \ {0} : |arg λ| < ψ or |arg(−λ)| < ψ}

for some 0 < ψ < π/2 (see the proof of Proposition 5.7 of [4]). In this case
we thus obtain an exponential α-dichotomy.

3. Polynomial dichotomy. In this section we assume that A is the
generator of a semigroup T (·) on a Banach space X such that iR ⊂ ̺(A)

and ‖R(iτ, A)‖ ≤ Ĉ (1 + |τ |γ) for τ ∈ R and some γ > 0. We take again
α > γ+1/p−1/p′ where p ∈ [1, 2] is the Fourier type ofX. We want to repeat
the reasoning in Steps 1–4 of the proof of Theorem 2.2 with a = δ = 0. This
can be done literally with the exception of (2.19). Here we have to replace
the path −a+ iR by the path Γ ′ given by

λ = iτ − [2Ĉ (1 + |τ |γ)]−1, τ ∈ R.

Standard perturbation arguments show that Γ ′ ⊂ ̺(A) and

‖R(λ,A)‖ ≤ 2Ĉ (1 + |Imλ|γ) ≤ c(1 + |λ|γ), λ ∈ Γ ′.

The modification of (2.19) can be justified using Cauchy’s integral theorem.
Then one verifies (2.20) as before. Thus we have constructed a closed projec-
tion P on X such that Xα →֒ D(P ), T (t)D(P ) ⊂ D(P ), T (t)Px = PT (t)x
for x ∈ D(P ), and T (t) : N (P ) → N (P ) has the bounded inverse TQ(−t).
Moreover, T (t)P (w − A)−αx and TQ(−t)Q(w − A)−αx, t ≥ 0, are given by
(2.8) and (2.2) with a = 0 if x ∈ D(A), and these operators are uniformly
bounded for t ≥ 0.

We use these formulas in order to derive the desired polynomial decay
estimates, starting with the stable case. First observe that we can replace α
by α+ γ in the above reasoning. Let x ∈ D(A) and t ≥ 1. Then we obtain

tT (t)P (w−A)−α−γx =
1

2πi

+i∞\
−i∞

(
d

dλ
eλt

)
(w − λ)−α−γR(λ,A)x dλ

=
1

2πi

+i∞\
−i∞

eλt(w − λ)−α−γR(λ,A)2x dλ

−
α+γ

2πi

+i∞\
−i∞

eλt(w−λ)−α−γ−1R(λ,A)x dλ

=: J1 +J2,
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integrating by parts in the second equality. It is clear that ‖J2‖ is less
than c‖x‖.

In order to estimate J1, we will use a duality argument. The dual space
X∗ has the same Fourier type as X by [9, Prop. 2.3]. Let X⊙ be the space
of those x∗ ∈ X∗ such that t 7→ T (t)∗x∗ is continuous in X∗. The space X⊙

is T (·)∗-invariant and closed in X∗ (possibly X∗ 6= X⊙), and the restriction
T (·)⊙ of T (·)∗ to X⊙ is generated by the part A⊙ of A∗ in X⊙ (see e.g.
[8, §II.2.6]). Moreover, the growth bounds of T (·), T (·)∗, and T (·)⊙ coincide
by [8, Prop. IV.2.18], and R(λ,A⊙) is the restriction of R(λ,A∗) to X⊙

for Reλ > ω0(A). Note that also X⊙ has Fourier type p. As in Step 1 of
Section 2, we thus obtain

‖R(w̃ + i·, A∗)x∗‖Lp′ (R,X∗) ≤ c‖x∗‖

for x∗ ∈ X⊙. Finally, due to (II.2.1) of [8] we have

‖y‖ ≤ sup{|〈y, x∗〉| : x∗ ∈ X⊙, ‖x∗‖ ≤M}

for y ∈ X, where ‖T (t)‖≤Mewt for t≥ 0. We take x∗ ∈X⊙ with ‖x∗‖≤M .
First let 1 < p < 2. Proceeding as in (2.5), we can estimate

|〈J1, x
∗〉| ≤ c

\
R

|w − iτ |−α−γ |〈R(iτ, A)x,R(iτ, A∗)x∗〉| dτ

≤ c
\
R

(1 + |τ |)−α+γ ‖R(w̃ + iτ, A)x‖ ‖R(w̃ + iτ, A∗)x∗‖ dτ

≤ c
[\

R

(1 + |τ |)(γ−α)p/(2−p) dτ
](2−p)/p

×
[\

R

‖R(w̃ + iτ, A)x‖p′/2 ‖R(w̃ + iτ, A∗)x∗‖p′/2 dτ
]2/p′

≤ c‖R(w̃ + iτ, A)x‖Lp′ (R,X) ‖R(w̃ + iτ, A∗)x‖Lp′ (R,X∗)

≤ c‖x‖ ‖x∗‖ ≤ cM‖x‖

where we have used Hölder’s inequality and the relation

p(γ − α)

2 − p
<

p(p− p′)

(2 − p)pp′
= −1.

As a result, also ‖J1‖ is bounded by c‖x‖. If p = 2, the above estimates
work even in the case α = γ. The proof for p = 1 is similar but simpler. One
can treat TQ(−t)Q in the same way. So we obtain the following result.

Theorem 3.1. Let A be the generator of a C0-semigroup T (·) on a Ba-

nach space X with Fourier type p ∈ [1, 2]. Suppose that iR ⊂ ̺(A) and

‖R(iτ, A)‖ ≤ C(1 + |τ |γ) for τ ∈ R and constants C, γ > 0. Let α >
1/p−1/p′+γ. Then there is a closed projection P on X such that Xα →֒D(P ),
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T (t)D(P ) ⊂ D(P ), T (t)Px = PT (t)x for x ∈ D(P ), T (t) : N (P ) → N (P )
has the bounded inverse TQ(−t), and

(3.1)
‖T (t)Px‖ ≤

N(α)

t
‖(w −A)α+γx‖,

‖TQ(−t)Qx‖ ≤
N(α)

t
‖(w −A)α+γx‖

for t ≥ 1, x ∈ Xα+γ, and a constant N(α) ≥ 0. If p = 2 we may take α = γ
in (3.1). We further have

(3.2)
‖T (t)Px‖ ≤ N ′(α)‖(w −A)αx‖,

‖TQ(−t)Qx‖ ≤ N ′(α)‖(w −A)αx‖

for t ≥ 0, x ∈ Xα, and a constant N ′(α) ≥ 0.

If T (·) is a bounded semigroup, we obtained a similar result in Theo-
rem 3.5 of [3] with P = I and an arbitrary α > 0 in (3.1). The difference in
the regularity exponent is caused by the unboundedness of T (t)P in Theo-
rem 3.1.

Under the assumptions of Theorem 3.1, we easily obtain decay estimates
on the spaces Xβ for each β > 0. First observe that T (t)P and TQ(−t)Q
commute with fractional powers (say, on Xn for a sufficiently large n ∈ N).
Using (3.1), (3.2), and the moment inequality (see e.g. [8, Thm. II.5.34]),
we then deduce for 0 < θ < 1 and t ≥ 1 that

(3.3)
‖T (t)P (w −A)−(α+θγ)‖ ≤ c(α)t−θ,

‖TQ(−t)Q(w −A)−(α+θγ)‖ ≤ c(α)t−θ.

Second, since

T (t)Px = T (t/n)P · · ·T (t/n)Px,

TQ(−t)Qx = TQ(−t/n)Q · · ·TQ(−t/n)Qx,

the estimates (3.1) yield

‖T (t)Px‖ ≤ c(α, n)t−n‖(w −A)(α+γ)nx‖,

‖TQ(−t)Qx‖ ≤ c(α, n)t−n‖(w −A)(α+γ)nx‖

for n ∈ N, t ≥ 1, and x ∈ Xn(α+θ). Interpolating once more, we arrive at

(3.4)
‖T (t)P (w −A)−θ(α+γ)‖ ≤ c(α, θ) t−θ,

‖TQ(−t)Q(w −A)−θ(α+γ)‖ ≤ c(α, θ) t−θ

for θ > 1, t ≥ 1, and a constant c(α, θ) ≥ 0.
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