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Uniqueness of measure extensions in Banah spaesby
J. Rodŕiguez and G. Vera (Muria)Abstrat. Let X be a Banah spae, B ⊂ BX∗ a norming set and T(X, B) thetopology on X of pointwise onvergene on B. We study the following question: given two(non-negative, ountably additive and �nite) measures µ1 and µ2 on Baire(X, w) whihoinide on Baire(X, T(X, B)), does it follow that µ1 = µ2? It turns out that this isnot true in general, although the answer is a�rmative provided that both µ1 and µ2 areonvexly τ -additive (e.g. when X has the Pettis Integral Property). For a Banah spae Ynot ontaining isomorphi opies of ℓ1, we show that Y ∗ has the Pettis Integral Propertyif and only if every measure on Baire(Y ∗, w∗) admits a unique extension to Baire(Y ∗, w).We also disuss the oinidene of the two σ-algebras involved in suh results. Some otherappliations are given.1. Introdution. All the measures onsidered in this paper are non-negative, ountably additive and �nite. A basi question in measure theoryis the following: Given two σ-algebras Σ′ ⊂ Σ on a set Ω and two measures

µ1 and µ2 on Σ suh that µ1|Σ′ = µ2|Σ′ , when does it follow that µ1 =µ2?The purpose of this paper is to disuss this problem in the setting of Baire
σ-algebras of weak topologies in Banah spaes. More preisely, we are on-erned with

Σ′ = Baire(X, T(X, B)) ⊂ Σ = Baire(X, w),where X is a Banah spae, B ⊂ BX∗ is a norming set and T(X, B) is thetopology on X of pointwise onvergene on B, whih is weaker than the weaktopology w = T(X, BX∗) (for all unexplained notation and terminology, werefer the reader to the end of this setion). We emphasize that the Baire σ-algebra of a loally onvex spae endowed with its weak topology is exatlythe σ-algebra generated by all the elements of the topologial dual [7℄. Inpartiular, Baire(X, T(X, B)) is the σ-algebra on X generated by B.2000 Mathematis Subjet Classi�ation: 28A20, 28B05, 28C15, 46B26, 46G10.Key words and phrases: measure extension, Baire measure, Banah spae, Pettisintegral.This researh was partially supported by the grants BFM2002-01719 of MCyT (Spain)and 00690/PI/04 of Fundaión Sénea (CARM, Spain). The �rst named author was alsopartially supported by a FPU grant of MEC (Spain).[139℄



140 J. Rodríguez and G. VeraWe next summarize the ontent of this paper. Setion 2 plays an auxil-iary role and is devoted to providing, in a general measure-theoreti setting,a riterion for the uniqueness of measure extensions (Theorem 2.7) whihan be applied suessfully in Setion 3 within the framework of weak Bairemeasures in Banah spaes. Our approah relies on Edgar's work [9℄ (goingbak to [17℄) about the ontinuity of the integral over a uniformly integrableset of funtions endowed with the pointwise onvergene topology.In Setion 3 our main results are proved. It turns out that there is a loserelationship between the theory of the Pettis integral and the problems on-sidered in this work. Following [22℄, we say that a measure µ on Baire(X, w) isonvexly τ -additive if for eah dereasing net (Cα) of onvex losed elementsof Baire(X, w) with ⋂
α Cα = ∅, we have limα µ(Cα) = 0. It is well knownthat a salarly bounded funtion f de�ned on a measure spae (Λ,S, ν)with values in X is Pettis integrable if and only if the image measure νf−1on Baire(X, w) is onvexly τ -additive [26, 5-2-4℄. Thus, X has the Pettis In-tegral Property (PIP) if and only if every measure on Baire(X, w) is onvexly

τ -additive (Remark 3.3). As an immediate appliation of the results provedin Setion 2, we show that the question raised in the �rst paragraph has af-�rmative answer for Σ′ = Baire(X, T(X, B)) ⊂ Σ = Baire(X, w) providedthat both µ1 and µ2 are onvexly τ -additive (Theorem 3.2).Of ourse, the previous result is not of interest when
Baire(X, T(X, B)) = Baire(X, w).Remember that this equality holds, for instane, whenever (BX∗ , weak∗) isangeli. In Subsetion 3.1 we study the oinidene of both σ-algebras, in-luding examples of Banah spaes with the PIP for whih Baire(X, T(X,B))

6= Baire(X, w). Our attention is mainly foused on the ase in whih X = Y ∗and B = BY , where Y is a Banah spae. (Note that w∗ = T(Y ∗, B) is justthe weak∗ topology on Y ∗.) We prove that Baire(Y ∗, w∗) = Baire(Y ∗, w) ifand only if Y is sequentially dense in (Y ∗∗, weak∗) (Proposition 3.9) and thatthese onditions are satis�ed whenever Y ∗ has property (C) (Corollary 3.10).The uniqueness of measure extensions in the setting of dual Banahspaes is analyzed in Subsetion 3.2. We onsider the following lass of spaes.Definition 1.1. Let Y be a Banah spae. We say that Y ∗ has theUniqueness of Measure Extensions Property (UMEP for short) if for everypair of measures µ1 and µ2 on Baire(Y ∗, w) we have
µ1|Baire(Y ∗,w∗) = µ2|Baire(Y ∗,w∗) ⇒ µ1 = µ2.In view of the omments above, every dual Banah spae Y ∗ with thePIP has the UMEP. Furthermore, our Theorem 3.17 states that the onverseholds when Y does not ontain subspaes isomorphi to ℓ1. We also show thatin general every dual Banah spae with the UMEP is realompat for its



Uniqueness of measure extensions 141weak topology (Proposition 3.18). The onverse is not true in general, sine
ℓ∞ fails the UMEP (Example 3.19).Notation and terminology. For all unexplained terminology and notationwe refer the reader to the standard referenes [11℄ (Banah spaes), [13℄(topologial measure theory) and [26℄ (Pettis integral).Given a set Ω, we write Tp(Ω) (or simply Tp) to denote the topologyon R

Ω of pointwise onvergene on Ω. We denote by σ(F) the σ-algebraon Ω generated by a family F ⊂ R
Ω (i.e. the smallest one for whih eahelement of F is measurable). As usual, co(F) (resp. aco(F)) stands for theonvex (resp. absolutely onvex) hull of F in R

Ω .Let (T, T) be a ompletely regular Hausdor� topologial spae. We de-note by Baire(T, T) (resp. Borel(T, T)) the σ-algebra on T generated bythe family of all real-valued ontinuous funtions on T (resp. losed sub-sets of T ). We write Mσ(T, T) to denote the family of all measures on
Baire(T, T). We say that µ ∈ Mσ(T, T) is tight if µ(T ) = sup{µ∗(K) :
K ⊂ T , K is ompat}, where µ∗ stands for the outer measure indued by µ.A measure ν on Borel(T, T) is alled a Radon measure if ν(E) = sup{ν(K) :
K ⊂ E, K is ompat} for every E ∈ Borel(T, T). It is well known thatevery tight measure on Baire(T, T) an be extended (in a unique way) toa Radon measure on Borel(T, T). The σ-algebra made up of all universallymeasurable subsets of T (i.e. those whih are measurable with respet toeah Radon measure on Borel(T, T)) will be denoted by Univ(T, T). Reallthat (T, T) is alled angeli if eah relatively ountably ompat set A ⊂ Tis relatively ompat and for every t ∈ A there is a sequene in A onvergingto t.All our Banah spaes Z are assumed to be real. We write BZ to denotethe losed unit ball of Z. As usual, Z∗ stands for the topologial dual of Z.Given z ∈ Z and z∗ ∈ Z∗, we sometimes write 〈z∗, z〉 instead of z∗(z). Weidentify Z as a losed subspae of Z∗∗ by means of the anonial isometry.A set B ⊂ BZ∗ is said to be norming if ‖z‖ = sup{|z∗(z)| : z∗ ∈ B}for every z ∈ Z. The topology T(Z, B) is the oarsest one for whih eahelement of B is ontinuous. We write Z 6⊃ ℓ1 if Z does not ontain subspaesisomorphi to ℓ1. Reall that Z has property (C) (introdued by Corson [3℄)if every family of losed onvex subsets of Z with empty intersetion ontainsa ountable subfamily with empty intersetion.Given a measure spae (Ω, Σ, µ), we write L1(µ) to denote the spae ofall Σ-measurable and µ-integrable real-valued funtions de�ned on Ω, and
L1(µ) for the orresponding Banah spae of equivalene lasses with itsusual norm ‖ · ‖1. A set H ⊂ L1(µ) is uniformly integrable if it is ‖ · ‖1-bounded and for eah ε > 0 there is δ > 0 suh that suph∈H

T
E
|h| dµ ≤ εwhenever µ(E) ≤ δ. A funtion f : Ω → Z is said to be



142 J. Rodríguez and G. Vera(i) salarly measurable if the omposition 〈z∗, f〉 is Σ-measurable forevery z∗ ∈ Z∗;(ii) salarly bounded if it is salarly measurable and there is M > 0 suhthat for every z∗ ∈ BZ∗ we have |〈z∗, f〉| ≤ M µ-a.e.;(iii) Pettis integrable if 〈z∗, f〉 ∈ L1(µ) for every z∗ ∈ Z∗ and for eah
E ∈ Σ there is zE ∈ Z suh that T

E
〈z∗, f〉 dµ = z∗(zE) for every

z∗ ∈ Z∗.We say that Z has the µ-PIP if eah salarly bounded funtion from Ω to Zis Pettis integrable. The spae Z has the Pettis Integral Property if it hasthe µ-PIP for every measure spae (Ω, Σ, µ). It is known that
(BZ∗ , weak∗) angeli ⇒ Z has property (C) ⇒ Z has the PIP,and none of the reverse impliations holds in general (see [8, 23, 26℄).2. A riterion for the uniqueness of measure extensions. In orderto deal with Theorem 2.7 we need some preliminary work, whih we havedivided into a sequene of lemmas for the onveniene of the reader.Definition 2.1. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω.(1) Let M be a family of measures on Σ. We say that Σ′ has the unique-ness property with respet to M if for every pair µ1, µ2 ∈ M we have

µ1|Σ′ = µ2|Σ′ ⇒ µ1 = µ2.(2) We say that a measure µ on Σ is approximated by Σ′ if for every
E ∈ Σ there is B ∈ Σ′ suh that µ(E △ B) = 0.Lemma 2.2. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω, and M a familyof measures on Σ suh that µ1 + µ2 ∈ M for every µ1, µ2 ∈ M. Supposethat every element of M is approximated by Σ′. Then Σ′ has the uniquenessproperty with respet to M.Proof. Fix µ1, µ2 ∈ M suh that µ1|Σ′ = µ2|Σ′ . Sine µ := µ1 + µ2belongs to M, for eah E ∈ Σ there is B ∈ Σ′ suh that µ(E △ B) = 0,hene µ1(E△B) = µ2(E△B) = 0 and therefore µ1(E) = µ1(B) = µ2(B) =

µ2(E).It is worth pointing out that the onverse of Lemma 2.2 holds true underertain additional assumptions on the family of measures, as we show inCorollary 2.3 below. Given two σ-algebras Σ′ ⊂ Σ on a set Ω and a measure
µ′ on Σ′, we write ca(µ′, Σ) for the onvex set of all measures µ on Σ suhthat µ|Σ′ = µ′. A well known result of R. G. Douglas (see [4, 21℄) states thata measure µ ∈ ca(µ′, Σ) is an extreme point of ca(µ′, Σ) if and only if µ isapproximated by Σ′.



Uniqueness of measure extensions 143Corollary 2.3. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω and M afamily of measures on Σ with the following properties:
• µ1 + µ2 ∈ M for every µ1, µ2 ∈ M;
• if ν ∈ M and µ is a measure on Σ suh that µ ≤ ν, then µ ∈ M.Then Σ′ has the uniqueness property with respet to M if and only if everyelement of M is approximated by Σ′.Proof. It only remains to show the only if part. So assume that Σ′ hasthe uniqueness property with respet to M and �x µ ∈ M. We laim that

µ is an extreme point of ca(µ|Σ′ , Σ). Indeed, write µ = (µ1 + µ2)/2, where
µ1, µ2 ∈ ca(µ|Σ′ , Σ). Sine µi ≤ µ1 + µ2 = µ + µ ∈ M for i = 1, 2, we inferthat µ1, µ2 ∈ M and therefore µ1 = µ2. This proves the laim. An appeal toDouglas' aforementioned result now ensures that µ is approximated by Σ′.The following lemma provides a useful su�ient ondition for a measureto be approximated by a sub-σ-algebra.Lemma 2.4. Let Ω be a set , F ′ ⊂ F ⊂ R

Ω two families, and µ a measureon σ(F). Suppose that for eah f ∈ F there is a sequene (fn) in F ′ thatonverges to f µ-a.e. Then µ is approximated by σ(F ′).Proof. It is easy to hek that the family
A = {E ∈ σ(F) : there is B ∈ σ(F ′) suh that µ(E △ B) = 0}is a σ-algebra on Ω ontained in σ(F). Therefore, in order to show that

A = σ(F) it su�es to prove that eah f ∈ F is A-measurable. To this end,�x f ∈ F , t ∈ R and de�ne H := {ω ∈ Ω : f(ω) > t}. By the assumption,there is a sequene (fn) in F ′ that onverges to f µ-a.e. Fix F ∈ Σ suhthat µ(Ω \ F ) = 0 and limn fn(ω) = f(ω) for every ω ∈ F . The set
B :=

∞⋃

n=1

∞⋃

m=1

⋂

k≥m

{ω ∈ Ω : fk(ω) > t + 1/n}

belongs to σ(F ′) and satis�es B ∩ F = H ∩ F , hene µ(H△B) = 0 andtherefore H ∈ A. As t ∈ R is arbitrary, f is A-measurable. The proof is�nished.The notion of F -smooth measure de�ned below inludes as partiularases the onvexly τ -additive weak Baire measures on Banah spaes (seeLemma 3.1 in Setion 3) as well as the τ -additive Baire measures on om-pletely regular Hausdor� topologial spaes.Definition 2.5. Let (Ω, Σ) be a measurable spae and F ⊂ R
Ω a familyof Σ-measurable funtions. Denote by ZF the olletion of all �nite inter-setions of sets of the form {ω ∈ Ω : f(ω) ≤ g(ω) + t}, where f, g ∈ F and



144 J. Rodríguez and G. Vera
t ∈ R. A measure µ on Σ is said to be F -smooth if for eah dereasing net
(Zα) of elements of ZF with ⋂

α Zα = ∅, we have limα µ(Zα) = 0.Our interest in onsidering F -smooth measures is motivated by the �sep-aration property� isolated in Lemma 2.6, whih will allow us to use a resultof Edgar [9℄ regarding the ontinuity of the �identity� mapping
I : (F , Tp) → (L1(µ), weak)(that sends eah funtion to its equivalene lass) when F is a Tp-ountablyompat, onvex and uniformly integrable subset of L1(µ).Lemma 2.6. Let (Ω, Σ) be a measurable spae, F ⊂ R

Ω a family of
Σ-measurable funtions and µ an F-smooth measure on Σ. Let S :=⋂
{Z ∈ ZF : µ(Ω \ Z) = 0}. Then for every pair f, g ∈ F we have

f |S = g|S ⇔ f = g µ-a.e.Proof. Notie that the family C := {Z ∈ ZF : µ(Ω \ Z) = 0} is non-empty and losed under �nite intersetions. Fix f, g ∈ F . If f = g µ-a.e.,then Z := {ω ∈ Ω : f(ω) = g(ω)} ∈ C, so S ⊂ Z and therefore f |S = g|S.Conversely, suppose that f |S = g|S and �x n ∈ N. De�ne
Cn := {ω ∈ Ω : f(ω) ≥ g(ω) + 1/n} ∈ ZF .Sine the family Cn := {Z ∩ Cn : Z ∈ C} ⊂ ZF is losed under �niteintersetions and ⋂

Cn = S ∩ Cn = ∅, we an apply the F -smoothness of µto dedue that µ(Cn) = inf{µ(Z ∩ Cn) : Z ∈ C} = 0. As n ∈ N is arbitrary,
f ≤ g µ-a.e. A similar argument yields f ≥ g µ-a.e., ompleting the proof.Given a measure spae (Ω, Σ, µ) and A ∈ Σ, we write µA to denote themeasure on Σ de�ned by µA(E) := µ(E ∩ A).Theorem 2.7. Let Ω be a set and F ′ ⊂ F ⊂ R

Ω two families of fun-tions suh that
• F is onvex and Tp-ountably ompat ;
• F ′ is Tp-dense in F .Then σ(F ′) has the uniqueness property with respet to the family of all

F-smooth measures on σ(F).Proof. Sine the sum of any two F -smooth measures on σ(F) is again
F -smooth, Lemmas 2.2 and 2.4 say that in order to prove the result it suf-�es to hek that eah F -smooth measure µ on σ(F) satis�es the followingondition: for every f ∈ F there is a sequene (fn) in F ′ that onverges to f
µ-a.e. We divide the proof into two steps.
Step 1. Suppose that F is a uniformly integrable subset of L1(µ). Sine

µ is F -smooth, Lemma 2.6 ensures that there is a set S ⊂ Ω suh that for



Uniqueness of measure extensions 145every f, g ∈ F we have
f |S = g|S ⇔ f = g µ-a.e.By the assumption, F is onvex and Tp-ountably ompat, so we an apply[9, Proposition 3℄ to dedue that the �identity� mapping
I : (F , Tp) → (L1(µ), weak)(that sends eah funtion to its equivalene lass) is ontinuous. Sine F isonvex, F ′ ⊂ co(F ′) ⊂ F and we an suppose without loss of generality that

F ′ is onvex as well. Bearing in mind that F ′ is Tp-dense in F , the ontinuityof I yields
I(F) ⊂ I(F ′)

weak
= I(F ′)

‖·‖1

.It follows that for eah f ∈ F there is a sequene (fn) in F ′ suh that
limn ‖fn − f‖1 = 0, and thus we an �nd a subsequene (fnk

) onverging to
f µ-a.e.
Step 2. Sine F is a pointwise bounded (beause it is Tp-ountablyompat) family of σ(F)-measurable funtions, there is a non-negative σ(F)-measurable funtion h ∈ R

Ω suh that for eah f ∈ F we have |f | ≤ h µ-a.e.(see e.g. [10, 4.1.1℄). Therefore, we an �nd a sequene (Ak)
∞
k=1 in σ(F) suhthat for every k ∈ N,

• F is a uniformly integrable subset of L1(µAk
);

• µ(Ω \ Ak) ≤ 1/2k.Given k ∈ N, in view of Step 1 (notie that µAk
is F -smooth) there isa sequene (fk

n)∞n=1 in F ′ onverging to f µAk
-a.e. By Egorov's theorem,there exist Ek ∈ σ(F) with µAk

(Ω \ Ek) ≤ 1/2k and n(k) ∈ N suh that
supω∈Ek

|fk
n(k)(ω) − f(ω)| ≤ 1/k. Fix s ∈ N. We have

Ns :=
∞⋂

l=1

∞⋃

k=l

{ω ∈ Ω : |fk
n(k)(ω) − f(ω)| > 1/s} ⊂

∞⋂

l=s

∞⋃

k=l

(Ω \ Ek),hene Ns ∈ σ(F) satis�es
µ(Ns) ≤

∞∑

k=l

µ(Ω\Ek) ≤
∞∑

k=l

µAk
(Ω\Ek)+

∞∑

k=l

µ(Ω\Ak) ≤
∞∑

k=l

1

2k−1
= 2−l+2

for every l ≥ s and therefore µ(Ns) = 0. Finally, notie that (fk
n(k))

∞
k=1 on-verges to f pointwise on Ω \

⋃∞
s=1 Ns, and so µ-a.e. The proof is omplete.We mention that some other known fats onerning the ontinuity ofthe �identity� mapping J : (F , Tp) → (L1(µ), ‖ · ‖1) (see [9℄ and the surveypaper [28℄ for a thorough study on this subjet) ould be applied in a similarway to dedue results along the line of Theorem 2.7 without the assumptionof onvexity on F .



146 J. Rodríguez and G. Vera3. Uniqueness of extensions in Banah spaes. Theorem 3.2 belowis now an easy onsequene of Theorem 2.7. We �rst need to reall thefollowing well known fat whih we do not �nd in print.Lemma 3.1. Let X be a Banah spae and µ ∈ Mσ(X, w). Then µ isonvexly τ -additive if and only if it is BX∗-smooth (in the sense of De�ni-tion 2.5).Proof. Sine ZBX∗ is made up of losed onvex elements of Baire(X, w),we only have to hek the if part. To this end, we begin with the followinglaim.
Claim. Let C ⊂ X be losed and onvex. Then there is DC ⊂ ZBX∗ suhthat C =

⋂
DC .Indeed, let us onsider the family DC of all elements of ZBX∗ of the form

{x ∈ X : x∗(x) ≤ sup(x∗(C))}, where x∗ ∈ BX∗ and sup(x∗(C)) < ∞. TheHahn�Banah separation theorem ensures that C =
⋂

DC and the Claim isproved.Assume now that µ is BX∗-smooth and �x a dereasing net (Cα) ofonvex losed elements of Baire(X, w) with ⋂
α Cα = ∅. By the Claim above,for eah α we an �nd Dα ⊂ ZBX∗ suh that Cα =

⋂
Dα. Consider now thefamily Z ⊂ ZBX∗ of all �nite intersetions of elements of ⋃

α Dα. Sine Zis losed under �nite intersetions and ⋂
Z =

⋂
α(

⋂
Dα) =

⋂
α Cα = ∅, wean apply the fat that µ is BX∗-smooth to dedue that inf{µ(Z) : Z ∈ Z}

= 0. In order to �nish the proof notie that, given Z ∈ Z, there exist
α1, . . . , αn and Di ∈ Dαi

suh that Z =
⋂n

i=1 Di ⊃
⋂n

i=1 Cαi
. Sine (Cα) isdereasing, there is some α suh that Cα ⊂

⋂n
i=1 Cαi

⊂ Z. It follows that
limα µ(Cα) = 0 and the proof is omplete.Theorem 3.2. Let X be a Banah spae and B ⊂ BX∗ a norming set.Then Baire(X, T(X, B)) has the uniqueness property with respet to the fam-ily of all onvexly τ -additive measures on Baire(X, w).Proof. Sine B is norming, the Hahn�Banah separation theorem ensuresthat aco(B) is weak∗-dense in BX∗ , that is, aco(B) is a Tp(X)-dense subsetof the family BX∗ ⊂ R

X . Bearing in mind that BX∗ is onvex and Tp(X)-ompat (by Alaoglu's theorem), we an apply Theorem 2.7 to onlude that
σ(aco(B)) = Baire(X, T(X, B)) has the uniqueness property with respet tothe family of all BX∗-smooth measures on σ(BX∗) = Baire(X, w).Remark 3.3. A Banah spae X has the PIP if and only if every measureon Baire(X, w) is onvexly τ -additive. Indeed, this is a onsequene of thefat that a salarly bounded X-valued funtion f is Pettis integrable if andonly if the image measure indued by f on Baire(X, w) is onvexly τ -additive(see [26, 5-2-4℄). Notie that, given a measure µ on Baire(X, w), there is a



Uniqueness of measure extensions 147non-dereasing sequene (An) in Baire(X, w) with union X suh that theidentity funtion I : X → X is salarly bounded with respet to eah µAn(see Step 2 of the proof of Theorem 2.7). Thus µ is onvexly τ -additive ifand only if I is Pettis integrable with respet to eah µAn
.The previous remark and Theorem 3.2 have the followingCorollary 3.4. Let X be a Banah spae with the PIP and B ⊂ BX∗a norming set. Then Baire(X, T(X, B)) has the uniqueness property withrespet to Mσ(X, w).3.1. Coinidene of Baire(X, T(X, B)) and Baire(X, w). It is lear that,for a Banah spae X suh that (BX∗ , weak∗) is angeli, the equality

Baire(X, T(X, B)) = Baire(X, w)holds for any norming set B ⊂ BX∗ (sine BX∗ = aco(B)
weak∗). In fat,the same onlusion an be obtained if we only assume that B separates thepoints of X (see [15℄). In partiular, for this lass of Banah spaes (whihontains all weakly ompatly generated and, more generally, all weaklyLindelöf determined spaes, see e.g. [11, Chapters 7 and 8℄) the result isolatedin Corollary 3.4 is futile.In this subsetion we disuss the oinidene of Baire(X, T(X, B)) and

Baire(X, w) in some partiular ases of speial interest. We will need thefollowing lemma, whih might be folklore and is inluded here for the on-veniene of the reader.Lemma 3.5. Let X be a Banah spae and F a subset of X∗. If x∗ ∈ X∗is σ(F )-measurable, then there is a ountable set C ⊂ F suh that
x∗ ∈ span(C)

weak∗

.Proof. Sine x∗ is σ(F )-measurable, there is a ountable set C ⊂ F suhthat x∗ is σ(C)-measurable. Let Σ be the family of all elements A ∈ σ(C)suh that ⋂

y∗∈C

ker y∗ ⊂

{
A if 0 ∈ A,

X \ A if 0 6∈ A.It is easy to hek that Σ is a σ-algebra on X for whih eah y∗ ∈ C is
Σ-measurable, hene Σ = σ(C). It follows that kerx∗ ∈ Σ and therefore⋂

y∗∈C ker y∗ ⊂ kerx∗. From the last inlusion and the Hahn�Banah sep-aration theorem we infer that x∗ belongs to the weak∗-losure of span(C).The proof is omplete.Given a ompat Hausdor� topologial spae K, we write C(K) to denotethe Banah spae of all real-valued ontinuous funtions on K endowed withthe supremum norm. Note that the set B = {δt : t ∈ K} ⊂ BC(K)∗ of �pointmasses� (i.e. δt(h) := h(t)) is norming and that T(C(K), B) = Tp(K). We



148 J. Rodríguez and G. Veranext study the Baire(C(K), Tp(K))-measurability of the �integral� funtional
ι(µ) ∈ C(K)∗, ι(µ)(f) :=

T
K

f dµ, assoiated to a Radon measure µ on K.Proposition 3.6. Let K be a ompat Hausdor� topologial spae and
µ a Radon measure on K. If ι(µ) is Baire(C(K), Tp(K))-measurable, thenthere is a losed separable set F ⊂ K suh that µ(K \ F ) = 0.Proof. In view of Lemma 3.5, there is a ountable set D ⊂ K suh that

ι(µ) ∈ span{δt : t ∈ D}
weak∗

.De�ne F := D and �x t ∈ K \F . By Urysohn's lemma, there is a ontinuousfuntion f : K → [0, 1] suh that f(t) = 1 and f(s) = 0 for every s ∈ F .Given ε > 0, there exist t1, . . . , tn ∈ D and a1, . . . , an ∈ R suh that\
K

f dµ =
∣∣∣
\
K

f dµ −
n∑

i=1

aif(ti)
∣∣∣ =

∣∣∣〈ι(µ), f〉 −
〈 n∑

i=1

aiδti , f
〉∣∣∣ ≤ ε.As ε > 0 is arbitrary, the open set Gt := {s ∈ K : f(s) > 0} satis�es

µ(Gt) = 0. Sine K \ F =
⋃
{Gt : t ∈ K \ F} and µ is a Radon measure, weonlude that µ(K \ F ) = 0. This ompletes the proof.Corollary 3.7. Let K be a ompat Hausdor� topologial spae suhthat

Baire(C(K), Tp(K)) = Baire(C(K), w).Then for eah Radon measure µ on K there is a losed separable set F ⊂ Ksuh that µ(K \ F ) = 0.Example 3.8. Under the ontinuum hypothesis, there exists a om-pat Hausdor� topologial spae K (the so-alled Kunen�Haydon�Talagrandspae) with the following properties (see [19, �5℄): (i) K is �rst-ountable;(ii) K is not separable; (iii) there is a Radon measure µ on K suh that
µ(G) > 0 for every non-empty open set G ⊂ K. On the one hand, (i) impliesthat C(K) has the PIP (see [22, Theorem 3℄). On the other hand, in view of(ii) and (iii), an appeal to Corollary 3.7 establishes that Baire(C(K), Tp(K))
6= Baire(C(K), w).A well known theorem due to Odell and Rosenthal [20℄ (f. [5, Theo-rem 4.1℄) states that a separable Banah spae Y is weak∗-sequentially densein Y ∗∗ if and only if Y 6⊃ ℓ1. In Proposition 3.9 below we apply this result toanalyze the oinidene of Baire(Y ∗, w∗) and Baire(Y ∗, w) for a not neessar-ily separable Banah spae Y . Reall �rst (Haydon [16℄, f. [5, Theorem 6.8℄)that Y 6⊃ ℓ1 if and only if eah y∗∗ ∈ Y ∗∗ is Univ(Y ∗, w∗)-measurable, thatis, if and only if Baire(Y ∗, w) ⊂ Univ(Y ∗, w∗).Proposition 3.9. Let Y be a Banah spae. The following onditionsare equivalent :



Uniqueness of measure extensions 149(i) Y is weak∗-sequentially dense in Y ∗∗;(ii) Baire(Y ∗, w∗) = Baire(Y ∗, w);(iii) Y 6⊃ ℓ1 and for eah y∗∗ ∈ Y ∗∗ there is a ountable set D ⊂ Y suhthat y∗∗ ∈ D
weak∗ .Proof. (i)⇒(ii) is obvious. Let us turn to the proof of (ii)⇒(iii). Sine

Baire(Y ∗, w) = Baire(Y ∗, w∗) ⊂ Borel(Y ∗, w∗) ⊂ Univ(Y ∗, w∗),the aforementioned Haydon's result ensures that Y 6⊃ ℓ1. On the otherhand, given y∗∗ ∈ Y ∗∗, Lemma 3.5 an be applied to �nd a ountable set
C ⊂ Y suh that y∗∗ ∈ span(C)

weak∗ . Clearly, the set D ⊂ Y of all linearombinations of elements of C with rational oe�ients is ountable and
y∗∗ ∈ D

weak∗ . This establishes (ii)⇒(iii).The proof of (iii)⇒(i) is as follows. Fix y∗∗ ∈ Y ∗∗. Take a ountable set
D ⊂ Y suh that y∗∗ ∈ D

weak∗ and de�ne Z := span(D)
‖·‖

⊂ Y . Sine
{y∗ ∈ Y ∗ : y∗(z) = 0 for every z ∈ Z} =

⋂

y∈D

ker y ⊂ ker y∗∗,there exists z∗∗ ∈ Z∗∗ suh that y∗∗ = z∗∗ ◦ r, where r : Y ∗ → Z∗ is the�restrition� operator. Notie that Z is separable and Z 6⊃ ℓ1, so the Odell�Rosenthal theorem allows us to obtain a sequene (zn) in Z ⊂ Y that on-verges to z∗∗ in (Z∗∗, weak∗). Clearly, (zn) onverges to y∗∗ in (Y ∗∗, weak∗).The proof is omplete.The previous proposition an be applied to the lass of dual Banahspaes with property (C). To this end, we use the following haraterizationdue to Pol [23℄: a Banah spae X has property (C) if and only if for every
A ⊂ BX∗ and every x∗ ∈ A

weak∗ there is a ountable set E ⊂ A suh that
x∗ ∈ co(E)

weak∗ .Corollary 3.10. Let Y be a Banah spae suh that Y ∗ has prop-erty (C). Then
Baire(Y ∗, w∗) = Baire(Y ∗, w).Proof. We will hek thatY meets the requirements of Proposition 3.9(iii).On the one hand, sine ℓ∞ fails property (C) and this property is learlyinherited by quotients, we infer that Y 6⊃ ℓ1. On the other hand, given y∗∗ ∈

BY ∗∗ = BY
weak∗ , the previous result of Pol says that there is a ountableset E ⊂ BY suh that y∗∗ ∈ co(E)

weak∗ , and so the set D of all onvexombinations of elements of E with rational oe�ients is ountable and
y∗∗ ∈ D

weak∗ .Remark 3.11. The onverse of the previous orollary holds true for
Y separable. Indeed, if Baire(Y ∗, w∗) = Baire(Y ∗, w), then Y is weak∗-



150 J. Rodríguez and G. Verasequentially dense in Y ∗∗. Thus (BY ∗∗ , weak∗) an be thought of as a sub-spae of the spae (B1(BY ∗ , w∗), Tp(BY ∗)) of all real-valued Baire-1 funtionson (BY ∗ , w∗), whih is angeli sine (BY ∗ , w∗) is a Polish spae (Bourgain,Fremlin and Talagrand [2℄, f. [5, Theorem 4.1℄). Hene (BY ∗∗ , weak∗) isangeli as well and so Y ∗ has property (C).Reall that a ardinal κ is of measure zero (or measure-free) if there is noprobability measure µ on the power set of κ suh that µ({α}) = 0 for every
α < κ. A well known theorem of Ulam (see e.g. [13, 438C℄) asserts that the�rst unountable ordinal, denoted by ω1, is of measure zero. We stress thatit is onsistent with ZFC to assume that every ardinal is of measure zero.For a detailed aount on this subjet we refer the reader to [13, �438℄ andthe referenes therein.Example 3.12. The spae ℓ1(ω1) = c0(ω1)

∗ has the PIP and
Baire(ℓ1(ω1), w

∗) 6= Baire(ℓ1(ω1), w).Proof. ℓ1(ω1) has the PIP beause ω1 is of measure zero (see [8, Theo-rem 5.10℄). On the other hand, sine c0(ω1) is not weak∗-sequentially densein its bidual c0(ω1)
∗∗ = ℓ∞(ω1), we an apply Proposition 3.9 to onludethat Baire(ℓ1(ω1), w
∗) and Baire(ℓ1(ω1), w) are di�erent.In fat, we have Baire(ℓ1(ω1), w) = Borel(ℓ1(ω1), ‖ · ‖) (see [12℄).Example 3.13. The spae C[0, 1]∗ satis�es

Baire(C[0, 1]∗, w∗) 6= Baire(C[0, 1]∗, w),and it has the PIP if and only if the ardinal of the ontinuum is of measurezero.Proof. The last assertion was proved in [8℄. On the other hand, sine
ℓ1 embeds in C[0, 1], we have Baire(C[0, 1]∗, w∗) 6= Baire(C[0, 1]∗, w), byProposition 3.9.3.2. Uniqueness of extensions in dual Banah spaes. In this subse-tion we fous our attention on the lass of dual Banah spaes Y ∗ with theUMEP (in the sense of De�nition 1.1), that is, those for whih Baire(Y ∗, w∗)has the uniqueness property with respet to Mσ(Y ∗, w). As an immediateonsequene of Corollary 3.4 we get the following result.Corollary 3.14. Let Y be a Banah spae. If Y ∗ has the PIP , then
Y ∗ has the UMEP.It turns out that the onverse of the previous orollary holds whenever
Y 6⊃ ℓ1 (Theorem 3.17 below). Reall �rst that, for a Banah spae Y suhthat Y 6⊃ ℓ1, we have

Baire(Y ∗, w) ⊂ Univ(Y ∗, w∗),



Uniqueness of measure extensions 151so the ompletion ν̃ of eah Radon measure ν on Borel(Y ∗, w∗) an be re-strited to Baire(Y ∗, w). We will use the notation ν0 = ν̃|Baire(Y ∗,w).Proposition 3.15. Let Y be a Banah spae suh that Y 6⊃ ℓ1 and
µ ∈ Mσ(Y ∗, w). The following onditions are equivalent :(i) there is a Radon measure ν on Borel(Y ∗, w∗) suh that ν0 = µ;(ii) µ is onvexly τ -additive.Proof. For (i)⇒(ii), �x n ∈ N and onsider the restrition νn of ν to

Borel(nBY ∗ , w∗) = {B ∩ nBY ∗ : B ∈ Borel(Y ∗, w∗)}.Sine Y 6⊃ ℓ1, a result of Haydon [16℄ (f. [5, Theorem 6.8℄) ensures that theidentity mapping In : nBY ∗ → Y ∗ is Pettis integrable with respet to theompletion ν̃n of νn. Therefore, its image measure µn := ν̃nI−1
n ∈ Mσ(Y ∗, w)is onvexly τ -additive.To prove that µ is onvexly τ -additive, onsider a dereasing net (Cα)of onvex losed elements of Baire(Y ∗, w) with ⋂

C = ∅. Fix ε > 0 and take
n ∈ N large enough suh that ν(Y ∗ \ nBY ∗) ≤ ε/2. Sine µn is onvexly
τ -additive, we an �nd an α suh that ν̃n(Cα ∩ nBY ∗) = µn(Cα) ≤ ε/2,hene

µ(Cα) = ν0(Cα) = ν̃(Cα ∩ nBY ∗) + ν̃(Cα \ nBY ∗)

= ν̃n(Cα ∩ nBY ∗) + ν̃(Cα \ nBY ∗) ≤ ε.As ε > 0 is arbitrary, limα µ(Cα) = 0. This proves that µ is onvexly τ -additive.Let us turn to the proof of (ii)⇒(i). Sine (Y ∗, w∗) is σ-ompat (i.e.
Y ∗ an be expressed as a union of ountably many w∗-ompat subsets),the restrition µ|Baire(Y ∗,w∗) is tight and therefore it an be extended to aunique Radon measure ν on Borel(Y ∗, w∗). Then both µ and ν0 are on-vexly τ -additive (bear in mind the impliation (i)⇒(ii)) and µ|Baire(Y ∗,w∗) =

ν0|Baire(Y ∗,w∗). An appeal to Theorem 3.2 now establishes that µ = ν0, andthe proof is omplete.The arguments of the proof of (ii)⇒(i) in Proposition 3.15 also allow usto dedue the following orollary.Corollary 3.16. Let Y be a Banah spae suh that Y 6⊃ ℓ1. Then everymeasure on Baire(Y ∗, w∗) an be extended in a unique way to a onvexly
τ -additive measure on Baire(Y ∗, w). If , in addition, Y ∗ has the PIP , thenevery measure on Baire(Y ∗, w∗) an be extended in a unique way to a measureon Baire(Y ∗, w)Theorem 3.17. Let Y be a Banah spae suh that Y 6⊃ ℓ1. Then Y ∗has the PIP if and only if it has the UMEP.



152 J. Rodríguez and G. VeraProof. It only remains to prove the if part. To this end, we will showthat eah µ ∈ Mσ(Y ∗, w) is onvexly τ -additive. Indeed, as in the proof ofthe impliation (ii)⇒(i) in Proposition 3.15, we an �nd a Radon measure νon Borel(Y ∗, w∗) suh that µ|Baire(Y ∗,w∗) = ν0|Baire(Y ∗,w∗). Sine Y ∗ has theUMEP, we get µ = ν0 and an appeal to Proposition 3.15 establishes that µis onvexly τ -additive, as required.A ompletely regular Hausdor� topologial spae (T, T) is said to berealompat if it is homeomorphi to a losed subset of R
I for some set I.A well known result of Hewitt and Shirota (see e.g. [27, Theorem 5, p. 218℄)states that (T, T) is realompat if and only if for eah {0, 1}-valued measure

µ on Baire(T, T) there exists t ∈ T suh that µ(A) = 1 if t ∈ A and µ(A) = 0if t 6∈ A. This haraterization was used in [8℄ (see [6℄ for a orreted proof)to show that every Banah spae X with the PIP is realompat for its weaktopology. We next obtain the same onlusion for any dual Banah spaewith the UMEP.Proposition 3.18. Let Y be a Banah spae. If Y ∗ has the UMEP ,then (Y ∗, w) is realompat.Proof. Fix any µ ∈ Mσ(Y ∗, w) with µ(Baire(Y ∗, w)) = {0, 1}. Sine
µ|Baire(Y ∗,w∗) is tight and takes only the values 0 and 1, it is not di�ult tosee that there exists y∗0 ∈ Y ∗ suh that for every B ∈ Baire(Y ∗, w∗) we have
µ(B) = 1 if y∗0 ∈ B and µ(B) = 0 if y∗0 6∈ B. De�ne µ′ ∈ Mσ(Y ∗, w) by

µ′(A) =

{
1 if y∗0 ∈ A

0 if y∗0 6∈ A
for every A ∈ Baire(Y ∗, w).Sine µ|Baire(Y ∗,w∗) = µ′|Baire(Y ∗,w∗) and Y ∗ has the UMEP, we onludethat µ = µ′. An appeal to the aforementioned haraterization of Hewittand Shirota establishes that (Y ∗, w) is realompat.The onverse of the previous proposition does not hold in general. Indeed,the spae ℓ∞ = (ℓ1)∗ is weakly realompat (see [3, Example 1℄) whereasit fails the UMEP, as we show in Example 3.19 below. This example waspointed out to us by D. H. Fremlin, who has kindly given his permission toinlude it here.We �rst need to introdue the so-alled Talagrand's measure [25℄ (see alsoe.g. [26, Setion 13℄ or [13, �464℄). We identify {0, 1}N with P(N) by means ofthe bijetion ζ : {0, 1}N → P(N) de�ned by ζ((an)) := {n ∈ N : an = 1}. Let

({0, 1}N, Σ, λ) be the omplete probability spae obtained after ompletingthe usual produt probability measure on {0, 1}N. Reall that Talagrand'smeasure, whih we denote by λ1, is a omplete extension of λ to a larger σ-algebra on {0, 1}N, say Σ1 ⊃ Σ, suh that for every free ultra�lter U ⊂ P(N)we have ζ−1(U) ∈ Σ1 and λ1(ζ
−1(U)) = 1.



Uniqueness of measure extensions 153Example 3.19. ℓ∞ does not have the UMEP.Proof. Fremlin and Talagrand [14℄ (f. [26, 13-3-3℄) showed that the iden-tity mapping f : {0, 1}N → ℓ∞ is salarly measurable with respet to λ1.In fat, they proved that for every y∗∗ ∈ ℓ∗∞ there exist y ∈ ℓ1 and α ∈ Rsuh that 〈y∗∗, f〉 = 〈f, y〉+α λ1-a.e. Therefore, we an onsider the induedimage measure µ1 := λ1f
−1 ∈ Mσ(ℓ∞, w).Let φ : {0, 1}N → {0, 1}N be the bijetion given by φ(a) := ζ−1(N\ζ(a)).Then for every B ∈ Σ we have φ(B) ∈ Σ and λ(φ(B)) = λ(B). Moreover,it was shown in [25℄ that Σ1 = {φ(B) : B ∈ Σ1}. Clearly, the funtion λ2 :

Σ1 → [0, 1] given by λ2(A) := λ1(φ(A)) is a omplete measure extending λ.We laim that f is salarly measurable with respet to λ2. Indeed, given
y∗∗ ∈ ℓ∗∞, we already know that there exist y ∈ ℓ1, α ∈ R and B ∈ Σ1 with
λ1(B) = 1 suh that 〈y∗∗, f(b)〉 = 〈y, f(b)〉 + α for every b ∈ B. A simpleomputation yields

〈y∗∗, f(a)〉 = 〈y∗∗,1〉 − 〈y,1〉 + 〈y, f(a)〉 − α for every a ∈ φ(B),where 1 = (1, 1, . . . ) ∈ ℓ∞. Sine λ2(φ(B)) = 1 and 〈y, f〉 is Σ-measurable(notie that f is w∗-ontinuous), we infer that 〈y∗∗, f〉 is measurable withrespet to λ2, as laimed. So we an take the indued image measure µ2 :=
λ2f

−1 ∈ Mσ(ℓ∞, w).On the one hand, sine f−1(B) ∈ Σ for every B ∈ Baire(ℓ∞, w∗) and
λ1|Σ = λ = λ2|Σ , we onlude that µ1|Baire(ℓ∞,w∗) = µ2|Baire(ℓ∞,w∗).On the other hand, �x a free ultra�lter U ⊂ P(N) and onsider its as-soiated funtional x∗∗

U ∈ ℓ∗∞ given by x∗∗
U ((an)) = limn→U an. It is learthat

H := {a ∈ ℓ∞ : x∗∗
U (a) = 1} ∈ Baire(ℓ∞, w)satis�es f−1(H) = ζ−1(U), so µ1(H) = λ1(ζ

−1(U)) = 1, whereas
µ2(H) = λ2(ζ

−1(U))

= λ1({a ∈ {0, 1}N : φ(a) ∈ ζ−1(U)}) = λ1({0, 1}N \ ζ−1(U)) = 0.Therefore, µ1 6= µ2. It follows that ℓ∞ does not have the UMEP.We �nish the paper with some further omments about the PIP and theUMEP in a dual Banah spae Y ∗.Bator asked in [1℄ whether a salarly bounded funtion f de�ned on ameasure spae (Λ,S, ν) with values in Y ∗ is Pettis integrable provided thatthe following ondition (neessary for Pettis integrability) holds:
(∗∗) for eah y∗∗ ∈ Y ∗∗ there exists a bounded sequene (yn) in Y suhthat limn〈yn, f〉 = 〈y∗∗, f〉 ν-a.e.Musiaª and Plebanek [18℄ (assuming the existene of a two-valued measurableardinal) and Stefánsson [24℄ (without additional set-theoreti assumptions)gave examples showing that the answer to Bator's question is negative in



154 J. Rodríguez and G. Verageneral. However, Y ∗ has the ν-PIP if and only if every salarly boundedfuntion f : Λ → Y ∗ satis�es (∗∗) (see [18℄).Next let us translate these fats into the language of measures on
Baire(Y ∗, w). Observe �rst that ondition (∗∗) above is equivalent to sayingthat the image measure νf−1 on Baire(Y ∗, w) has the following property:Definition 3.20. Let Y be a Banah spae and µ ∈ Mσ(Y ∗, w). We saythat µ has the Bator property if for eah y∗∗ ∈ Y ∗∗ there exists a boundedsequene (yn) in Y onverging to y∗∗ µ-a.e.Every onvexly τ -additive measure on Baire(Y ∗, w) has the Bator prop-erty (see the proof of Theorem 2.7), but the onverse does not hold in general(onsider the image measures of the funtions onstruted in [18℄ and [24℄).Aording to the results above, we an now state that Y ∗ has the PIP if andonly if every measure on Baire(Y ∗, w) has the Bator property.Note that every measure on Baire(Y ∗, w) with the Bator property isapproximated by Baire(Y ∗, w∗) (apply Lemma 2.4). Bearing this in mind,the previous haraterization of the PIP should now be ompared with thefollowing straightforward onsequene of Corollary 2.3:Corollary 3.21. Let Y be a Banah spae. Then Y ∗ has the UMEP ifand only if every measure on Baire(Y ∗, w) is approximated by Baire(Y ∗, w∗).One question still unanswered is whether the PIP and the UMEP areequivalent for arbitrary dual Banah spaes.Aknowledgements. The authors are grateful to David Fremlin andMatías Raja for valuable disussions on the subjet of this paper.
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