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On unitary equivalence of invariant subspaces of the
Dirichlet space

by

Kunyu Guo (Shanghai) and Liankuo Zhao (Linfen)

Abstract. It is shown that in the Dirichlet space D, two invariant subspaces M1,
M2 of the Dirichlet shift Mz are unitarily equivalent only if M1 = M2.

1. Introduction. Let D be the open unit disk, and dA the normal-
ized Lebesgue measure on D. The Dirichlet space D consists of the analytic
functions f on D with finite Dirichlet integral

D(f) =
�

D
|f ′(z)|2 dA(z).

It is easy to verify that D ⊂ H2, the Hardy space on D.
Endow D with norm ‖ · ‖,

‖f‖2 = ‖f‖22 +D(f), f ∈ D,(1.1)

where ‖f‖2 is the norm of f in H2. Then D is a reproducing kernel function
space with reproducing kernel

Kλ(z) =
1
λ̄z

log
1

1− λ̄z
, λ, z ∈ D.

It is well known that Kλ is a complete Nevanlinna–Pick kernel.
Let Mz be the operator of multiplication by ϕ(z) = z on D, called the

Dirichlet shift. It is an important operator on D which has been extensively
studied, and there is a large literature concerning invariant subspaces of Mz

([5], [6], [7], [8]–[11]). We refer the readers to the survey paper [12] for more
information about the Dirichlet space D and the Dirichlet shift Mz.

Let Lat(Mz,D, ‖ · ‖) be the lattice of invariant subspaces of Mz in D.
Recall that two invariant subspaces M1 and M2 of Mz are unitarily equiv-
alent if there exists a unitary operator U :M1 →M2 such that UMz|M1 =
Mz|M2U .
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In [7], unitary equivalence of invariant subspaces of Mz was studied, and
it was shown that if two invariant subspaces M1, M2 satisfy one of the
following conditions:

1. M1 contains an outer function,
2. M1 ⊆M2,

then M1 and M2 are unitarily equivalent if and only if M1 = M2 [7,
Theorem 2].

In this paper, by using some ideas of [11], we prove the following theorem.

Theorem 1.1. SupposeM1,M2 ∈ Lat(Mz,D, ‖ · ‖) are unitarily equiv-
alent. Then M1 =M2.

Also, endow D with the equivalent norm ‖ · ‖0,

‖f‖20 = |f(0)|2 +D(f), f ∈ D.(1.2)

Then the reproducing kernel of D is

K0
λ(z) = 1 + log

1
1− λ̄z

, λ, z ∈ D.

With the norm ‖ · ‖0 on D, we will show the following theorem.

Theorem 1.2. LetM1,M2 ∈ Lat(Mz,D, ‖·‖0). Then they are unitarily
equivalent if and only if they are equal.

Let H1,2(D) be the completion of{
u ∈ C1(D) : ‖u‖1,2 =

( �

D
|u|2 dA+

�

D

(∣∣∣∣∂u∂z
∣∣∣∣2 +

∣∣∣∣∂u∂z̄
∣∣∣∣2) dA)1/2

<∞
}

with respect to the Sobolev norm ‖·‖1,2 (see [1]). Then the Dirichlet space D
is a closed subspace of H1,2(D) with the norm ‖ · ‖1,

‖f‖21 =
�

D
|f(z)|2 dA(z) +D(f), f ∈ D.(1.3)

We have the following theorem.

Theorem 1.3. LetM1,M2 ∈ Lat(Mz,D, ‖·‖1). Then they are unitarily
equivalent if and only if they are equal.

2. Unitary equivalence of invariant subspaces in the norm ‖ · ‖.
In this section, the norm ‖ · ‖ on D is defined as

‖f‖2 = ‖f‖22 +D(f), f ∈ D,
where ‖f‖2 is the norm of f in H2, and 〈·, ·〉 is the corresponding inner
product on D.

First, we fix some notation and cite some results about invariant sub-
spaces of Mz in D.
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For a set S ⊂ D, let [S] denote the invariant subspace of the Dirich-
let shift Mz generated by S. Let T = ∂D be the unit circle, and dm the
normalized Lebesgue measure on T. We need the following results.

Theorem 2.1. Let M∈ Lat(Mz,D, ‖ · ‖). Then

(i) [8, Theorem 2(c)] M	 zM is one-dimensional.
(ii) [5, Theorem 1] [M	 zM] =M.

Theorem 2.2. Let M∈ Lat(Mz,D, ‖ · ‖). If φ ∈M	 zM, then

(i) [10, Theorem 3.1] φ is a multiplier of D.
(ii) [11, Theorem 2.2(a)] φ′ ∈ N(D), the Nevanlinna class of D.

From Theorem 2.2(ii) and [4, Theorem 5.3], if φ ∈ M 	 zM, then for
a.e. ξ ∈ T, the nontangential limit of φ′ at ξ, φ′(ξ), exists. For f ∈ D and
ξ ∈ T, let f(ξ) be the nontangential limit of f at ξ.

The following lemma comes essentially from the proof of [7, Lemma 2],
which gives a necessary condition for two invariant subspaces to be unitarily
equivalent.

Lemma 2.3. Let M1,M2 ∈ Lat(Mz,D, ‖ · ‖) and U : M1 → M2 be a
unitary operator such that UMz|M1 = Mz|M2U . Then for any f ∈M1 and
g = Uf , |f(ξ)|2 = |g(ξ)|2, a.e. ξ ∈ T.

For f ∈ D and ξ ∈ T, define the local Dirichlet integral of f at ξ by

Dξ(f) =
�

T

∣∣∣∣f(η)− f(ξ)
η − ξ

∣∣∣∣2dm(η),

and set Dξ(f) =∞ if f(ξ) does not exist. See [9] for more information about
the local Dirichlet integral.

A formula of J. Douglas [3] for the Dirichlet integral shows that

D(f) =
�

T
Dξ(f) dm(ξ),

which implies that Dξ(f) ∈ L1(T) whenever f ∈ D.
For f, g ∈ D and ξ ∈ T such that both Dξ(f) and Dξ(g) are finite, define

Dξ(f, g) =
�

T

(f(η)− f(ξ)) (g(η)− g(ξ))
|η − ξ|2

dm(η),

which is called the mixed local Dirichlet integral of f and g at ξ [11]. Then
Dξ(f, g) ∈ L1(T) and Dξ(f) = Dξ(f, f).

The following lemma comes from [11, Lemma 2.1].
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Lemma 2.4. Let f, g ∈ D, λ ∈ D, and α, β ∈ C. Then〈
1

1− λ̄z
f, g

〉
=

�

T

1
1− λ̄ξ

(f(ξ) g(ξ) +Dξ(f, g)) dm(ξ)(2.1)

+
�

T

λ̄ξ

(1− λ̄ξ)2
f(ξ) g(ξ) dm(ξ)

and

(2.2)
�

T

λ̄ξ

(1− λ̄ξ)2
f(ξ) g(ξ) dm(ξ)

=
�

T

λ̄ξ

(1− λ̄ξ)2
(f(ξ)− α) (g(ξ)− β) dm(ξ) + αλ g′(λ).

Proof of Theorem 1.1. The proof will make use of some ideas of the proof
of [11, Lemma 3.1].

Let U :M1 →M2 be a unitary operator such that UMz|M1 = Mz|M2U .
Let ϕ ∈ M1 	 zM1 and ψ = Uϕ. Then it is easy to verify that ψ ∈
M2 	 zM2. By Lemma 2.3,

|ϕ(ξ)|2 = |ψ(ξ)|2, a.e. ξ ∈ T.(2.3)

Since UMz|M1 = Mz|M2U , for λ ∈ D we have〈
1

1− λ̄z
ϕ, ϕ

〉
=
〈

1
1− λ̄z

ψ, ψ

〉
.

By (2.1),

(2.4)
�

T

1
1− λ̄ξ

(|ϕ(ξ)|2 +Dξ(ϕ)) dm(ξ) +
�

T

λ̄ξ

(1− λ̄ξ)2
|ϕ(ξ)|2 dm(ξ)

=
�

T

1
1− λ̄ξ

(|ψ(ξ)|2 +Dξ(ψ)) dm(ξ) +
�

T

λ̄ξ

(1− λ̄ξ)2
|ψ(ξ)|2 dm(ξ).

By (2.3) and (2.4), we obtain
�

T

1
1− λ̄ξ

Dξ(ϕ) dm(ξ) =
�

T

1
1− λ̄ξ

Dξ(ψ) dm(ξ).(2.5)

Taking λ = 0 in (2.5), we have�

T
Dξ(ϕ) dm(ξ) =

�

T
Dξ(ψ) dm(ξ).(2.6)

Since the Poisson kernel is

Pλ(ξ) =
1− |λ|2

|1− λ̄ξ|
= 2 Re

(
1

1− λ̄ξ

)
− 1,
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by (2.5) and (2.6) we get�

T
Pλ(ξ)Dξ(ϕ) dm(ξ) =

�

T
Pλ(ξ)Dξ(ψ) dm(ξ).

Since Dξ(ϕ), Dξ(ψ) ∈ L1(T), it follows that

Dξ(ϕ) = Dξ(ψ), a.e. ξ ∈ T.(2.7)

On the other hand, by (2.3), we have
�

T

λ̄ξ

(1− λ̄ξ)2
|ϕ(ξ)|2 dm(ξ) =

�

T

λ̄ξ

(1− λ̄ξ)2
|ψ(ξ)|2 dm(ξ).

Then by (2.2), for α, β ∈ C,
�

T

λ̄ξ

(1− λ̄ξ)2
|ϕ(ξ)− α|2 dm(ξ) + αλϕ′(λ)

=
�

T

λ̄ξ

(1− λ̄ξ)2
|ψ(ξ)− β|2 dm(ξ) + β λψ′(λ).

In particular, for η ∈ T such that ϕ(η), ψ(η), ϕ′(η), ψ′(η), Dη(ϕ) and Dη(ψ)
are finite, taking α = ϕ(η) and β = ψ(η), we have

(2.8)
�

T

λ̄ξ|ξ − η|2

(1− λ̄ξ)2

|ϕ(ξ)− ϕ(η)|2

|ξ − η|2
dm(ξ) + ϕ(η)λϕ′(λ)

=
�

T

λ̄ξ|ξ − η|2

(1− λ̄ξ)2

|ψ(ξ)− ψ(η)|2

|ξ − η|2
dm(ξ) + ψ(η)λψ′(λ).

Since
λ̄ξ|ξ − η|2

(1− λ̄ξ)2
→ −1 as λ→ η,

letting λ→ η nontangentially, it follows from (2.8) and the dominated con-
vergence theorem that

−Dη(ϕ) + ϕ(η) ηϕ′(η) = −Dη(ψ) + ψ(η) ηψ′(η).

Combining this with (2.7), we have

ϕ(η) ηϕ′(η) = ψ(η) ηψ′(η), a.e. η ∈ T.(2.9)

From (2.3) and (2.9), we get
ϕ′(ξ)
ϕ(ξ)

=
ψ′(ξ)
ψ(ξ)

, a.e. ξ ∈ T.(2.10)

By Theorem 2.2(ii), both ϕ′ and ψ′ are in N(D), and hence combining (2.10)
and a simple reasoning shows that

ϕ′(z)
ϕ(z)

=
ψ′(z)
ψ(z)

, z ∈ D.
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This implies that ϕ = cψ for some constant c. By Theorem 2.1, M1 =M2

as desired.

3. Unitary equivalence of invariant subspaces in the norm ‖ · ‖0.
In this section, we consider the Dirichlet space D in the norm ‖ · ‖0,

‖f‖20 = |f(0)|2 +D(f), f ∈ D.
We use 〈 , 〉0 to denote the corresponding inner product.

We begin with a discussion of Carleson’s formula. Let f = BSF be
the canonical factorization of f , where B =

∏∞
j=1

āj

|aj |
aj−z
1−ājz

is a Blaschke
product, S is the singular part of f , and µ the corresponding singular mea-
sure, and F is the outer part of f . Then Carleson’s formula [2] (see also [9,
Corollary 3.6]) is

D(f) =
1

2π

2π�

0

∞∑
n=1

Pαn(eis)|f(eis)|2 ds

+
1

2π

2π�

0

2π�

0

2
|eit − eis|2

dµ(t) |f(eis)|2 ds

+
1

2π

2π�

0

1
2π

2π�

0

(e2u(eit) − e2u(eis))(u(eit)− u(eis))
|eit − eis|2

dt ds

for f ∈ D, where u(eit) = log |f(eit)|, and Pα(eit) is the Poisson kernel.
By Carleson’s formula, it is easy to verify that

‖zf‖20 = D(zf) = ‖f‖22 +D(f) = ‖f‖2, f ∈ D.(3.1)

Proof of Theorem 1.2. By Theorem 1.1, it suffices to prove that if M1

and M2 are unitarily equivalent in the norm ‖ · ‖0, then they are unitarily
equivalent in the norm ‖ · ‖.

Let V :M1 →M2 be a unitary operator such that VMz|M1 = Mz|M2V .
For f ∈M1, let g = V f . It is enough to prove that

‖f‖ = ‖g‖.
Since VMz|M1 = Mz|M2V and V is unitary, we have V (zf) = zg and

‖zf‖0 = ‖zg‖0.
By (3.1), the proof is complete.

4. Unitary equivalence of invariant subspaces in the norm ‖ · ‖1.
In this section, we consider the Dirichlet space D with the norm ‖ · ‖1,

‖f‖21 =
�

D
|f |2 dA+D(f), f ∈ D.
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Let 〈·, ·〉1 be the corresponding inner product. A direct computation shows
that for nonnegative integers n, m with n ≤ m, and f(z) =

∑∞
l=0 alz

l ∈ D,

(4.1) 〈znf, zmf〉1 =
∞∑
k=m

ak−nāk−m〈zk, zk〉1 =
∞∑
k=m

ak−nāk−m

(
1

k + 1
+ k

)
.

Proof of Theorem 1.3. Let f(z) =
∑∞

l=0 alz
l be in D and n, m be non-

negative integers with n ≤ m. Then by (4.1),

〈znf, zmf〉1 =
∞∑
k=m

ak−nāk−m

(
1

k + 1
+ k

)
,(4.2)

〈zn+1f, zm+1f〉1 =
∞∑

k=m+1

ak−(n+1)āk−(m+1)

(
1

k + 1
+ k

)
(4.3)

=
∞∑
k=m

ak−nāk−m

(
1

k + 2
+ k + 1

)
,

and similarly,

〈zn+2f, zm+2f〉1 =
∞∑
k=m

ak−nāk−m

(
1

k + 3
+ k + 2

)
.(4.4)

Taking (4.2)− 2× (4.3) + (4.4) yields

(4.5) 〈znf, zmf〉1 − 2〈zn+1f, zm+1f〉1 + 〈zn+2f, zm+2f〉1

=
∞∑
k=m

2ak−nāk−m
(k + 1)(k + 2)(k + 3)

.

Let U :M1 →M2 be a unitary operator such that UMz|M1 = Mz|M2U .
Suppose f(z) =

∑∞
l=0 alz

l inM1 and g(z) =
∑∞

l=0 blz
l inM2 are such that

Uf = g. Then by (4.5), we have
∞∑
k=m

ak−nāk−m
(k + 1)(k + 2)(k + 3)

=
∞∑
k=m

bk−nb̄k−m
(k + 1)(k + 2)(k + 3)

.(4.6)

It is obvious that D ⊂ L2
a((1−|z|2)2dA(z)), the weighted Bergman space

with the orthonormal basis {((k + 1)(k + 2)(k + 3)/2)1/2zk}∞k=0, and a rou-
tine calculation shows that for h(z) =

∑∞
l=0 clz

l in L2
a((1− |z|2)2dA(z)),

〈znh, zmh〉L2
a((1−|z|2)2dA(z)) =

∞∑
k=m

2ck−nc̄k−m
(k + 1)(k + 2)(k + 3)

.(4.7)

By (4.6) and (4.7), for f ∈M1 and g ∈M2 with Uf = g,

〈znf, zmf〉L2
a((1−|z|2)2dA(z)) = 〈zng, zmg〉L2

a((1−|z|2)2dA(z)).
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This means that [f ] and [g], the invariant subspaces of L2
a((1− |z|2)2dA(z))

generated by f and g, respectively, are unitarily equivalent. Therefore by
Theorem 1 in [7], g = cf for some constant c. This implies that M1 =M2,
completing the proof.
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