On unitary equivalence of invariant subspaces of the Dirichlet space

by

KUNYU GUO (Shanghai) and LIANKUO ZHAO (Linfen)

Abstract. It is shown that in the Dirichlet space D, two invariant subspaces M_1, M_2 of the Dirichlet shift M_z are unitarily equivalent only if $M_1 = M_2$.

1. Introduction. Let \mathbb{D} be the open unit disk, and dA the normalized Lebesgue measure on \mathbb{D}. The Dirichlet space D consists of the analytic functions f on \mathbb{D} with finite Dirichlet integral

$$D(f) = \int_{\mathbb{D}} |f'(z)|^2 dA(z).$$

It is easy to verify that $D \subset H^2$, the Hardy space on \mathbb{D}.

Endow D with norm $\| \cdot \|$, $\|

\|

f\n
\|^2 = \| f \|^2 + D(f), \quad f \in D,$

where $\| f \|_2$ is the norm of f in H^2. Then D is a reproducing kernel function space with reproducing kernel

$$K_\lambda(z) = \frac{1}{\lambda z} \log \frac{1}{1 - \lambda z^2}, \quad \lambda, z \in \mathbb{D}.$$ It is well known that K_λ is a complete Nevanlinna–Pick kernel.

Let M_z be the operator of multiplication by $\varphi(z) = z$ on D, called the Dirichlet shift. It is an important operator on D which has been extensively studied, and there is a large literature concerning invariant subspaces of M_z ($[5]-[11]$). We refer the readers to the survey paper $[12]$ for more information about the Dirichlet space D and the Dirichlet shift M_z.

Let $\text{Lat}(M_z, D, \| \cdot \|)$ be the lattice of invariant subspaces of M_z in D. Recall that two invariant subspaces \mathcal{M}_1 and \mathcal{M}_2 of M_z are unitarily equivalent if there exists a unitary operator $U : \mathcal{M}_1 \to \mathcal{M}_2$ such that $UM_z|_{\mathcal{M}_1} = M_z|_{\mathcal{M}_2} U$.

2010 Mathematics Subject Classification: Primary 47A15; Secondary 46E22.

Key words and phrases: Dirichlet space, invariant subspace, unitary equivalence.

DOI: 10.4064/sm196-2-3

© Instytut Matematyczny PAN, 2010
In [7], unitary equivalence of invariant subspaces of \(M_z \) was studied, and it was shown that if two invariant subspaces \(\mathcal{M}_1, \mathcal{M}_2 \) satisfy one of the following conditions:

1. \(\mathcal{M}_1 \) contains an outer function,
2. \(\mathcal{M}_1 \subseteq \mathcal{M}_2 \),

then \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) are unitarily equivalent if and only if \(\mathcal{M}_1 = \mathcal{M}_2 \) [7, Theorem 2].

In this paper, by using some ideas of [11], we prove the following theorem.

Theorem 1.1. Suppose \(\mathcal{M}_1, \mathcal{M}_2 \in \text{Lat}(M_z, \mathcal{D}, \|\cdot\|) \) are unitarily equivalent. Then \(\mathcal{M}_1 = \mathcal{M}_2 \).

Also, endow \(\mathcal{D} \) with the equivalent norm \(\|\cdot\|_0 \),

(1.2) \[\|f\|^2_0 = |f(0)|^2 + D(f), \quad f \in \mathcal{D}. \]

Then the reproducing kernel of \(\mathcal{D} \) is

\[K^0_\lambda(z) = 1 + \log \frac{1}{1 - \lambda z}, \quad \lambda, z \in \mathbb{D}. \]

With the norm \(\|\cdot\|_0 \) on \(\mathcal{D} \), we will show the following theorem.

Theorem 1.2. Let \(\mathcal{M}_1, \mathcal{M}_2 \in \text{Lat}(M_z, \mathcal{D}, \|\cdot\|_0) \). Then they are unitarily equivalent if and only if they are equal.

Let \(H^{1,2}(\mathbb{D}) \) be the completion of

\[\left\{ u \in C^1(\mathbb{D}) : \|u\|_{1,2} = \left(\int_{\mathbb{D}} |u|^2 \, dA + \int_{\mathbb{D}} \left(\left| \frac{\partial u}{\partial z} \right|^2 + \left| \frac{\partial u}{\partial \bar{z}} \right|^2 \right) \, dA \right)^{1/2} < \infty \right\} \]

with respect to the Sobolev norm \(\|\cdot\|_{1,2} \) (see [11]). Then the Dirichlet space \(\mathcal{D} \) is a closed subspace of \(H^{1,2}(\mathbb{D}) \) with the norm \(\|\cdot\|_1 \),

(1.3) \[\|f\|^2_1 = \int_{\mathbb{D}} |f(z)|^2 \, dA(z) + D(f), \quad f \in \mathcal{D}. \]

We have the following theorem.

Theorem 1.3. Let \(\mathcal{M}_1, \mathcal{M}_2 \in \text{Lat}(M_z, \mathcal{D}, \|\cdot\|_1) \). Then they are unitarily equivalent if and only if they are equal.

2. **Unitary equivalence of invariant subspaces in the norm \(\|\cdot\| \).**

In this section, the norm \(\|\cdot\| \) on \(\mathcal{D} \) is defined as

\[\|f\|^2 = \|f\|^2_2 + D(f), \quad f \in \mathcal{D}, \]

where \(\|f\|_2 \) is the norm of \(f \) in \(H^2 \), and \(\langle \cdot, \cdot \rangle \) is the corresponding inner product on \(\mathcal{D} \).

First, we fix some notation and cite some results about invariant subspaces of \(M_z \) in \(\mathcal{D} \).
For a set $S \subset \mathcal{D}$, let $[S]$ denote the invariant subspace of the Dirichlet shift M_z generated by S. Let $\mathbb{T} = \partial \mathbb{D}$ be the unit circle, and dm the normalized Lebesgue measure on \mathbb{T}. We need the following results.

Theorem 2.1. Let $\mathcal{M} \in \text{Lat}(M_z, \mathcal{D}, \| \cdot \|)$. Then

(i) [8, Theorem 2(c)] $\mathcal{M} \ominus z\mathcal{M}$ is one-dimensional.

(ii) [5, Theorem 1] $[\mathcal{M} \ominus z\mathcal{M}] = \mathcal{M}$.

Theorem 2.2. Let $\mathcal{M} \in \text{Lat}(M_z, \mathcal{D}, \| \cdot \|)$. If $\phi \in \mathcal{M} \ominus z\mathcal{M}$, then

(i) [10, Theorem 3.1] ϕ is a multiplier of \mathcal{D}.

(ii) [11, Theorem 2.2(a)] $\phi' \in N(\mathcal{D})$, the Nevanlinna class of \mathcal{D}.

From Theorem 2.2(ii) and [4, Theorem 5.3], if $\phi \in \mathcal{M} \ominus z\mathcal{M}$, then for a.e. $\xi \in \mathbb{T}$, the nontangential limit of ϕ' at ξ, $\phi'((\xi))$, exists. For $f \in \mathcal{D}$ and $\xi \in \mathbb{T}$, let $f(\xi)$ be the nontangential limit of f at ξ.

The following lemma comes essentially from the proof of [7, Lemma 2], which gives a necessary condition for two invariant subspaces to be unitarily equivalent.

Lemma 2.3. Let $\mathcal{M}_1, \mathcal{M}_2 \in \text{Lat}(M_z, \mathcal{D}, \| \cdot \|)$ and $U : \mathcal{M}_1 \to \mathcal{M}_2$ be a unitary operator such that $UM_z|_{\mathcal{M}_1} = M_z|_{\mathcal{M}_2}U$. Then for any $f \in \mathcal{M}_1$ and $g = Uf$, $|f(\xi)|^2 = |g(\xi)|^2$, a.e. $\xi \in \mathbb{T}$.

For $f \in \mathcal{D}$ and $\xi \in \mathbb{T}$, define the **local Dirichlet integral** of f at ξ by

$$D_\xi(f) = \int_{\mathbb{T}} \left| \frac{f(\eta) - f(\xi)}{\eta - \xi} \right|^2 dm(\eta),$$

and set $D_\xi(f) = \infty$ if $f(\xi)$ does not exist. See [9] for more information about the local Dirichlet integral.

$$D(f) = \int_{\mathbb{T}} D_\xi(f) dm(\xi),$$

which implies that $D_\xi(f) \in L^1(\mathbb{T})$ whenever $f \in \mathcal{D}$.

For $f, g \in \mathcal{D}$ and $\xi \in \mathbb{T}$ such that both $D_\xi(f)$ and $D_\xi(g)$ are finite, define

$$D_\xi(f, g) = \int_{\mathbb{T}} \frac{(f(\eta) - f(\xi))(g(\eta) - g(\xi))}{|\eta - \xi|^2} dm(\eta),$$

which is called the **mixed local Dirichlet integral** of f and g at ξ [11]. Then $D_\xi(f, g) \in L^1(\mathbb{T})$ and $D_\xi(f) = D_\xi(f, f)$.

The following lemma comes from [11, Lemma 2.1].
Lemma 2.4. Let \(f, g \in \mathcal{D}, \lambda \in \mathbb{D}, \) and \(\alpha, \beta \in \mathbb{C}. \) Then

\[
\langle \frac{1}{1 - \lambda z} f, g \rangle = \int_T \frac{1}{1 - \lambda \xi} (f(\xi) \overline{g(\xi)} + D_\xi(f, g)) \, dm(\xi)
+ \int_T \frac{\lambda \xi}{(1 - \lambda \xi)^2} f(\xi) \overline{g(\xi)} \, dm(\xi)
\]

and

\[
\int_T \frac{\lambda \xi}{(1 - \lambda \xi)^2} f(\xi) \overline{g(\xi)} \, dm(\xi) = \int_T \frac{\lambda \xi}{(1 - \lambda \xi)^2} (f(\xi) - \alpha)(g(\xi) - \beta) \, dm(\xi) + \alpha \lambda g'(\lambda).
\]

Proof of Theorem 1.1. The proof will make use of some ideas of the proof of [11, Lemma 3.1].

Let \(U : \mathcal{M}_1 \to \mathcal{M}_2 \) be a unitary operator such that \(UM_z|_{\mathcal{M}_1} = M_z|_{\mathcal{M}_2} U. \) Let \(\varphi \in \mathcal{M}_1 \ominus z\mathcal{M}_1 \) and \(\psi = U \varphi. \) Then it is easy to verify that \(\psi \in \mathcal{M}_2 \ominus z\mathcal{M}_2. \) By Lemma 2.3,

\[
|\varphi(\xi)|^2 = |\psi(\xi)|^2, \quad \text{a.e. } \xi \in \mathbb{T}.
\]

Since \(UM_z|_{\mathcal{M}_1} = M_z|_{\mathcal{M}_2} U, \) for \(\lambda \in \mathbb{D} \) we have

\[
\left\langle \frac{1}{1 - \lambda z} \varphi, \varphi \right\rangle = \left\langle \frac{1}{1 - \lambda z} \psi, \psi \right\rangle.
\]

By (2.1),

\[
\int_T \frac{1}{1 - \lambda \xi} (|\varphi(\xi)|^2 + D_\xi(\varphi)) \, dm(\xi) + \int_T \frac{\lambda \xi}{(1 - \lambda \xi)^2} |\varphi(\xi)|^2 \, dm(\xi)
= \int_T \frac{1}{1 - \lambda \xi} (|\psi(\xi)|^2 + D_\xi(\psi)) \, dm(\xi) + \int_T \frac{\lambda \xi}{(1 - \lambda \xi)^2} |\psi(\xi)|^2 \, dm(\xi).
\]

By (2.3) and (2.4), we obtain

\[
\int_T \frac{1}{1 - \lambda \xi} D_\xi(\varphi) \, dm(\xi) = \int_T \frac{1}{1 - \lambda \xi} D_\xi(\psi) \, dm(\xi).
\]

Taking \(\lambda = 0 \) in (2.5), we have

\[
\int_T D_\xi(\varphi) \, dm(\xi) = \int_T D_\xi(\psi) \, dm(\xi).
\]

Since the Poisson kernel is

\[
P_\lambda(\xi) = \frac{1 - |\lambda|^2}{|1 - \lambda \xi|} = 2 \text{Re} \left(\frac{1}{1 - \lambda \xi} \right) - 1,
\]
by (2.5) and (2.6) we get
\[\int_{\mathbb{T}} P_\lambda(\xi) D_\xi(\varphi) \, dm(\xi) = \int_{\mathbb{T}} P_\lambda(\xi) D_\xi(\psi) \, dm(\xi). \]

Since \(D_\xi(\varphi), D_\xi(\psi) \in L^1(\mathbb{T}) \), it follows that
\[(2.7) \quad D_\xi(\varphi) = D_\xi(\psi), \quad \text{a.e. } \xi \in \mathbb{T}. \]

On the other hand, by (2.3), we have
\[\int_{\mathbb{T}} \frac{\bar{\lambda}}{(1 - \lambda \xi)^2} |\varphi(\xi)|^2 \, dm(\xi) = \int_{\mathbb{T}} \frac{\bar{\lambda}}{(1 - \lambda \xi)^2} |\psi(\xi)|^2 \, dm(\xi). \]

Then by (2.2), for \(\alpha, \beta \in \mathbb{C} \),
\[\int_{\mathbb{T}} \frac{\bar{\lambda}}{(1 - \lambda \xi)^2} |\varphi(\xi) - \alpha|^2 \, dm(\xi) + \alpha \bar{\lambda} \varphi'(\lambda) \]
\[= \int_{\mathbb{T}} \frac{\bar{\lambda}}{(1 - \lambda \xi)^2} |\psi(\xi) - \beta|^2 \, dm(\xi) + \beta \bar{\lambda} \psi'(\lambda). \]

In particular, for \(\eta \in \mathbb{T} \) such that \(\varphi(\eta), \psi(\eta), \varphi'(\eta), \psi'(\eta), D_\eta(\varphi) \) and \(D_\eta(\psi) \)
are finite, taking \(\alpha = \varphi(\eta) \) and \(\beta = \psi(\eta) \), we have
\[(2.8) \quad \int_{\mathbb{T}} \frac{\bar{\lambda}}{(1 - \lambda \xi)^2} |\xi - \eta|^2 |\varphi(\xi) - \varphi(\eta)|^2 \, dm(\xi) + \varphi(\eta) \bar{\lambda} \varphi'(\lambda) \]
\[= \int_{\mathbb{T}} \frac{\bar{\lambda}}{(1 - \lambda \xi)^2} |\xi - \eta|^2 |\psi(\xi) - \psi(\eta)|^2 \, dm(\xi) + \psi(\eta) \bar{\lambda} \psi'(\lambda). \]

Since
\[\frac{\bar{\lambda}}{(1 - \lambda \xi)^2} \rightarrow -1 \quad \text{as } \lambda \rightarrow \eta, \]

letting \(\lambda \rightarrow \eta \) nontangentially, it follows from (2.8) and the dominated convergence theorem that
\[-D_\eta(\varphi) + \varphi(\eta) \bar{\eta} \varphi'(\eta) = -D_\eta(\psi) + \psi(\eta) \bar{\eta} \psi'(\eta). \]

Combining this with (2.7), we have
\[(2.9) \quad \varphi(\eta) \bar{\eta} \varphi'(\eta) = \psi(\eta) \bar{\eta} \psi'(\eta), \quad \text{a.e. } \eta \in \mathbb{T}. \]

From (2.3) and (2.9), we get
\[(2.10) \quad \frac{\varphi'(\xi)}{\varphi(\xi)} = \frac{\psi'(\xi)}{\psi(\xi)}, \quad \text{a.e. } \xi \in \mathbb{T}. \]

By Theorem 2.2(ii), both \(\varphi' \) and \(\psi' \) are in \(N(\mathbb{D}) \), and hence combining (2.10) and a simple reasoning shows that
\[\frac{\varphi'(z)}{\varphi(z)} = \frac{\psi'(z)}{\psi(z)}, \quad z \in \mathbb{D}. \]
This implies that $\varphi = c\psi$ for some constant c. By Theorem 2.1, $\mathcal{M}_1 = \mathcal{M}_2$ as desired.

3. Unitary equivalence of invariant subspaces in the norm $\| \cdot \|_0$. In this section, we consider the Dirichlet space \mathcal{D} in the norm $\| \cdot \|_0$,
\[\|f\|_0^2 = |f(0)|^2 + D(f), \quad f \in \mathcal{D}. \]
We use $\langle \cdot, \cdot \rangle_0$ to denote the corresponding inner product.

We begin with a discussion of Carleson’s formula. Let $f = BSF$ be the canonical factorization of f, where $B = \prod_{j=1}^{\infty} \frac{\bar{a}_j}{|a_j|} \frac{a_j - z}{1 - a_j \bar{z}}$ is a Blaschke product, S is the singular part of f, and μ the corresponding singular measure, and F is the outer part of f. Then Carleson’s formula [2] (see also [9, Corollary 3.6]) is
\[D(f) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=1}^{\infty} P_{\alpha_n}(e^{is}) |f(e^{is})|^2 \, ds \]
\[+ \frac{1}{2\pi} \int_0^{2\pi} \int_0^{2\pi} \frac{2}{|e^{it} - e^{is}|^2} \, d\mu(t) |f(e^{is})|^2 \, ds \]
\[+ \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{2\pi} \int_0^{2\pi} \frac{(e^{2u(e^{it})} - e^{2u(e^{is})})(u(e^{it}) - u(e^{is}))}{|e^{it} - e^{is}|^2} \, dt \, ds \]
for $f \in \mathcal{D}$, where $u(e^{it}) = \log |f(e^{it})|$, and $P_{\alpha}(e^{it})$ is the Poisson kernel.

By Carleson’s formula, it is easy to verify that
\[\|zf\|_0^2 = D(zf) = \|f\|_0^2 + D(f) = \|f\|^2, \quad f \in \mathcal{D}. \]

Proof of Theorem 1.2. By Theorem 1.1, it suffices to prove that if \mathcal{M}_1 and \mathcal{M}_2 are unitarily equivalent in the norm $\| \cdot \|_0$, then they are unitarily equivalent in the norm $\| \cdot \|$.

Let $V : \mathcal{M}_1 \to \mathcal{M}_2$ be a unitary operator such that $VM_z|_{\mathcal{M}_1} = M_z|_{\mathcal{M}_2}V$. For $f \in \mathcal{M}_1$, let $g = Vf$. It is enough to prove that
\[\|f\| = \|g\|. \]
Since $VM_z|_{\mathcal{M}_1} = M_z|_{\mathcal{M}_2}V$ and V is unitary, we have $V(zf) = zg$ and
\[\|zf\|_0 = \|zg\|_0. \]
By (3.1), the proof is complete.

4. Unitary equivalence of invariant subspaces in the norm $\| \cdot \|_1$. In this section, we consider the Dirichlet space \mathcal{D} with the norm $\| \cdot \|_1$,
\[\|f\|_1^2 = \int_{\mathcal{D}} |f|^2 \, dA + D(f), \quad f \in \mathcal{D}. \]
Let $\langle \cdot, \cdot \rangle_1$ be the corresponding inner product. A direct computation shows that for nonnegative integers n, m with $n \leq m$, and $f(z) = \sum_{l=0}^{\infty} a_l z^l \in \mathcal{D}$,

\begin{equation}
\langle z^n f, z^m f \rangle_1 = \sum_{k=m}^{\infty} a_{k-n} \overline{a}_{k-m} (z^k, z^k)_1 = \sum_{k=m}^{\infty} a_{k-n} \overline{a}_{k-m} \left(\frac{1}{k+1} + k \right).
\end{equation}

Proof of Theorem 1.3. Let $f(z) = \sum_{l=0}^{\infty} a_l z^l$ be in \mathcal{D} and n, m be nonnegative integers with $n \leq m$. Then by (4.1),

\begin{equation}
\langle z^n f, z^m f \rangle_1 = \sum_{k=m}^{\infty} a_{k-n} \overline{a}_{k-m} \left(\frac{1}{k+1} + k \right),
\end{equation}

\begin{equation}
\langle z^{n+1} f, z^{m+1} f \rangle_1 = \sum_{k=m+1}^{\infty} a_{k-(n+1)} \overline{a}_{k-(m+1)} \left(\frac{1}{k+1} + k \right)
= \sum_{k=m}^{\infty} a_{k-n} \overline{a}_{k-m} \left(\frac{1}{k+2} + k + 1 \right),
\end{equation}

and similarly,

\begin{equation}
\langle z^{n+2} f, z^{m+2} f \rangle_1 = \sum_{k=m}^{\infty} a_{k-n} \overline{a}_{k-m} \left(\frac{1}{k+3} + k + 2 \right).
\end{equation}

Taking (4.2) $- 2 \times (4.3) + (4.4)$ yields

\begin{equation}
\langle z^n f, z^m f \rangle_1 - 2 \langle z^{n+1} f, z^{m+1} f \rangle_1 + \langle z^{n+2} f, z^{m+2} f \rangle_1 = \sum_{k=m}^{\infty} \frac{2a_{k-n} \overline{a}_{k-m}}{(k+1)(k+2)(k+3)}.
\end{equation}

Let $U : \mathcal{M}_1 \rightarrow \mathcal{M}_2$ be a unitary operator such that $UM_2|_{\mathcal{M}_1} = M_2|_{\mathcal{M}_2} U$. Suppose $f(z) = \sum_{l=0}^{\infty} a_l z^l$ in \mathcal{M}_1 and $g(z) = \sum_{l=0}^{\infty} b_l z^l$ in \mathcal{M}_2 are such that $Uf = g$. Then by (4.5), we have

\begin{equation}
\sum_{k=m}^{\infty} \frac{a_{k-n} \overline{a}_{k-m}}{(k+1)(k+2)(k+3)} = \sum_{k=m}^{\infty} \frac{b_{k-n} \overline{b}_{k-m}}{(k+1)(k+2)(k+3)}.
\end{equation}

It is obvious that $\mathcal{D} \subset L^2_{\omega}((1 - |z|^2)^2 dA(z))$, the weighted Bergman space with the orthonormal basis $\{(k+1)(k+2)(k+3) / 2 \}^{\infty}_{k=0}$, and a routine calculation shows that for $h(z) = \sum_{l=0}^{\infty} c_l z^l$ in $L^2_{\omega}((1 - |z|^2)^2 dA(z))$,

\begin{equation}
\langle z^n h, z^m h \rangle L^2_{\omega}((1 - |z|^2)^2 dA(z)) = \sum_{k=m}^{\infty} \frac{2c_{k-n} \overline{c}_{k-m}}{(k+1)(k+2)(k+3)}.
\end{equation}

By (4.6) and (4.7), for $f \in \mathcal{M}_1$ and $g \in \mathcal{M}_2$ with $Uf = g$,

\begin{equation}
\langle z^n f, z^m f \rangle L^2_{\omega}((1 - |z|^2)^2 dA(z)) = \langle z^n g, z^m g \rangle L^2_{\omega}((1 - |z|^2)^2 dA(z)).
\end{equation}
This means that \([f]\) and \([g]\), the invariant subspaces of \(L^2_a((1-|z|^2)^2dA(z))\) generated by \(f\) and \(g\), respectively, are unitarily equivalent. Therefore by Theorem 1 in [7], \(g = cf\) for some constant \(c\). This implies that \(M_1 = M_2\), completing the proof.

Acknowledgements. The author thanks the referee for pointing out equation (3.1), which shortened the proof of Theorem 1.2 significantly.

This work was partially supported by NSFC (10525106) and NKBRC (2006CB805905). The research of L. K. Zhao was also partially supported by NSFC (10971195).

References

Kunyu Guo
School of Mathematics Sciences
Fudan University
Shanghai, 200433, P.R. China
E-mail: kyguo@fudan.edu.cn

Liankuo Zhao (corresponding author)
School of Mathematics and Computer Sciences
Shanxi Normal University
Linfen, 041004, P.R. China
E-mail: lkzhao@sxnu.edu.cn