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Characterizations of amenable representations
of locally compact groups

by

Michael Yin-Hei Cheng (Waterloo, ON)

Abstract. Let G be a locally compact group and let π be a unitary representation.
We study amenability and H-amenability of π in terms of the weak closure of (π ⊗ π)(G)
and factorization properties of associated coefficient subspaces (or subalgebras) in B(G).
By applying these results, we obtain some new characterizations of amenable groups.

1. Introduction. Let G be a locally compact group and let π be a
unitary representation of G. Denote by λ2 the left regular representation
of G. Bekka and Stokke defined the notion of amenability and H-amenability
of π in [Bek] and [Sto], respectively. It was shown in Bekka’s paper that G is
amenable if and only if λ2 is amenable. A related concept of s-amenability
can be found in [C-L]. The purpose of this paper is to characterize (H-)amen-
ability of π in two different ways.

Firstly, we characterize amenability of π using the weak closure of
(π ⊗ π̄)(G) in VNπ⊗π̄(G). Chou and Xu [C-X] showed that G is amenable
if and only if 0 is not in the weak closure of λ2(G). In the first part of our
paper, we show that this result also holds for a general representation π.

Secondly, we will characterize amenability of π using factorization prop-
erties of A(π), the closed subalgebra generated by the set of matrix coeffi-
cients of π.

Existence of bounded approximate identities in L1(G) is an important
property of L1(G). In particular, it allows us to prove a lot of results by ap-
plying Cohen’s factorization theorem on L1(G) or Banach L1(G)-modules.
The Fourier algebra A(G) is known to be the non-commutative analogue
of L1(G). It is natural to ask when A(G) also admits a bounded approxi-
mate identity. Leptin [Lep2] showed that this happens precisely when G is
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amenable. Thus, a lot of results which hold for L1(G) have non-commutative
analogues for A(G) whenever G is amenable. Surprisingly, these results or
conditions for A(G) actually characterize the amenability of G, or equiva-
lently the amenability of λ2 (see [K-L]). Since A(G) = A(λ2), we would like
to ask if these characterizations of the amenability of λ2 can be generalized
to any unitary representation.

In the second part of this paper, we will concentrate on the study of
the relationship between the existence of bounded approximate identities
or factorization properties of A(π ⊗ π̄) and the amenability of π. As an
application of our results, we are able to give some new characterizations of
amenable groups.

This paper is organized as follows. In Section 3, we prove some basic
properties that characterize the (H-)amenability of π which will be useful
in the sequel. In Section 4, we prove one of the major results in this paper,
namely that π is amenable if and only if 0 is not in the weak closure of
(π ⊗ π̄)(G) in VNπ⊗π̄(G). In Section 5, we prove that the (weak) factor-
ization property of A(π ⊗ π̄) is a sufficient condition for π being amenable.
As a result, we characterize the amenability of π via the (weak) factoriza-
tion property of B(π ⊗ π̄). By taking π = λ2, we obtain a characterization
of the amenability of G using the (weak) factorization property of Br(G),
the reduced Fourier–Stieltjes algebra of G. In Section 6, we prove that π
is amenable if and only if A(G), as a A(π ⊗ π̄)- (or B(π ⊗ π̄))-bimodule,
has a bounded approximate identity. As an application, we show that G
is amenable if and only if A(G), as a Br(G)-bimodule, has a bounded ap-
proximate identity. In Section 7, under certain assumptions on π, we are
able to show that the amenability of π can be characterized by the (weak)
factorization property of A(G) via A(π⊗ π̄). Consequently, we obtain some
new characterizations of the amenability of G.

2. Some preliminaries. In this paper, all groups will be assumed to
be locally compact, and G will denote a locally compact group. A left (resp.
right) Haar measure on G is a non-zero positive Borel regular measure µG
on G such that µG is left (resp. right) translation invariant. Every locally
compact group possesses a left (right) Haar measure, which is unique up
to multiplication by a positive constant. Let mG be a fixed left Haar mea-
sure on G. The definition of Lp(G) can be found in [Fol]. The convolution
operation ∗ on L1(G) is given by

f ∗ g(y) =
�

G

f(yx)g(x−1) dmG(x) a.e.

The involution on L1(G) is given by

f∗(x) = ∆(x−1)f(x−1),
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where ∆ is the modular function of G. We will call the Banach ∗-algebra
L1(G), with the above convolution product and involution, the group algebra
of G.

Let f be a function on G and y ∈ G. We define the left translates of f
through y by

Lyf(x) = f(y−1x).

Let E be a Banach space. We denote the Banach dual space of E by E′.

A unitary representation of G is a homomorphism π from G into the
group U(Hπ) of unitary operators on some non-zero Hilbert space Hπ that
is continuous with respect to the strong operator topology.

Let ΣG be the class of all unitary representations of G.

Let λ2 : G→ B(L2(G)), [λ2(x)(f)](y) := f(x−1y) (x, y ∈ G, f ∈ L2(G)).
Then λ2 is a unitary representation of G, called the left regular representa-
tion of G.

For any f ∈ L1(G), define

‖f‖C∗(G) := sup
π∈ΣG

‖π(f)‖.

It is easily seen that ‖ · ‖C∗(G) is a C∗-norm on L1(G). Let C∗(G) be the

completion of L1(G) under ‖ · ‖C∗(G). Then C∗(G) is called the full group
C∗-algebra or simply the group C∗-algebra of G.

Let B(G) := {x 7→ 〈π(x)ξ, η〉 : π ∈ ΣG, ξ, η ∈ Hπ} be the Fourier–
Stieltjes algebra of G. Then B(G) is a commutative Banach algebra with
the pointwise multiplication and norm given by

‖u‖B(G) = inf{‖ξ‖ ‖η‖ : u(x) = 〈π(x)ξ, η〉, π ∈ ΣG, ξ, η ∈ Hπ}.

The big group algebra or the group W ∗-algebra, W ∗(G), is defined as the
enveloping von Neumann algebra of C∗(G). Note that B(G)′ = W ∗(G). See
[Eym] for more details.

Let VN(G) be the von Neumann algebra generated by the image of
λ2 in B(L2(G)). It is called the group von Neumann algebra of G. It is
proved by Eymard [Eym] that the dual Banach space of A(G) is isometrically
isomorphic to VN(G). For u ∈ A(G) and T ∈ VN(G), define u · T ∈ VN(G)
by 〈u · T, v〉 = 〈T, uv〉, v ∈ A(G).

Suppose that π is a unitary representation of G. Let Fπ(G) = span {x 7→
〈π(x)ξ, η〉 : ξ, η ∈ Hπ}. Then Aπ(G), the Fourier space associated to π, is
defined to be the closure of Fπ(G) in the Banach space B(G). For any repre-
sentation π of G, define VNπ(G) to be the von Neumann algebra generated
by π(G) (or π(L1(G))) in L(Hπ). We have Aπ(G)′ = VNπ(G). If π = λ2,
then Aπ(G) = A(G) = Fπ(G) and VNπ(G) = VN(G). For each u ∈ Aπ(G),
there exist some nets (ξn) and (ηn) in Hπ such that
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u(x) =

∞∑
n=1

〈π(x)ξn, ηn〉 and ‖u‖ =

∞∑
n=1

‖ξn‖ ‖ηn‖.

The reduced Fourier space associated to π, Bπ(G), is defined to be the weak∗

closure of Aπ(G) in B(G). For further details, see [Ars].
If π = λ2, then Br(G) = Bλ2(G) is called the reduced Fourier–Stieltjes

algebra of G.
For the definition of weak equivalence and quasi-equivalence, see [Ars],

and [Dix] and [Eym] for more details.

3. Some basic characterizations of amenable and H-amenable
representations. For the definitions of H-amenability and amenability of
unitary representations, we refer the readers to [Bek] and [Sto]. The following
proposition, which can be found in [Bek, Theorem 5.1] and [Sto, Proposi-
tion 2.6], will be useful. One can actually use these results to define H-amena-
bility and amenability by using weak containments of representations.

Proposition 3.1. Let G be a locally compact group and π be a unitary
representation of G. We have

(a) π is H-amenable if and only if the trivial representation 1 of G is
weakly contained in π.

(b) π is amenable if and only if the trivial representation 1 of G is weakly
contained in π ⊗ π̄.

Let π be a unitary representation of G. Let A(π) (resp. B(π)) be the
closed subalgebra in B(G) generated by Aπ(G) (resp. Bπ(G)). Also, let
VN(π) be the dual space of A(π). It is easy to see that

A(π) = Aτπ(G) where τπ =
∞⊕
n=1

π⊗n.

Lemma 3.2. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is H-amenable.
(b) π̄ is H-amenable.
(c) π ⊕ π̄ is H-amenable.

Proof. Observe that π is H-amenable if and only if 1 ∈ Bπ(G) (see [Sto,
Proposition 2.6]). Also, Bπ̄(G) = {ū : u ∈ Bπ(G)}. The equivalence of (a)
and (b) follows immediately. The rest follows from [Sto, Proposition 2.4].

Theorem 3.3. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is H-amenable.
(b) ‖f‖1 = ‖π(f)‖ for any f ∈ L1(G)+.
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(c) ‖µ‖ = ‖π(µ)‖ for any µ ∈M(G)+.
(d) There exists M > 0 such that∣∣∣� f ∣∣∣ ≤M‖π(f)‖ for any f ∈ L1(G).

(e) There exists M > 0 such that

|µ(G)| ≤M‖π(µ)‖ for any µ ∈M(G).

(f) There exists M > 0 such that

‖f‖1 ≤M‖π(f)‖ for any f ∈ L1(G)+.

(g) There exists M > 0 such that

‖µ‖ ≤M‖π(µ)‖ for any µ ∈M(G)+.

Proof. The implication (a)⇒(e) follows from [Eym, Lemma 1.23]. Also,
it is easy to check that (e)⇒(d)⇒(f) and (e)⇒(g)⇒(f).

We will first show that (f)⇒(b). Suppose that (f) holds. Let f ∈ L1(G)+.
By replacing f by f ∗ f∗, we have∣∣∣� f ∣∣∣2 =

∣∣∣� f ∗ f∗∣∣∣ ≤M‖π(f ∗ f∗)‖ = M‖π(f)‖2.

Therefore, by induction, we have |
	
f | ≤M1/2n‖π(f)‖ for any natural num-

ber n. So, |
	
f | ≤ ‖π(f)‖. Since ‖π(f)‖ ≤ ‖f‖1, this implies

‖π(f)‖ = ‖f‖1 for any f ∈ L1(G)+.

Therefore, (b) holds. One can use a similar argument to show that (g)⇒(c).

The implication (c)⇒(b) is clear.

It remains to show (b)⇒(a). If f ∈ L1(G) is real, write f = f+ − f−.
We have∣∣∣� f ∣∣∣ =

∣∣∣� f+ −
�
f−
∣∣∣ = | ‖π(f+)‖ − ‖π(f−)‖ | ≤ ‖π(f+)− π(f−)‖ = ‖π(f)‖.

Note that ‖π(f)‖ = ‖(π ⊕ π̄)(f)‖ for any real-valued f ∈ L1(G).

Also, we have ‖(π ⊕ π̄)(f)‖ = ‖(π ⊕ π̄)(f̄)‖ for any f ∈ L1(G).

For general f ∈ L1(G), we have∣∣∣� f ∣∣∣ =

∣∣∣∣� f + f̄

2
+ i

� f − f̄
2i

∣∣∣∣ ≤ ∣∣∣∣� f + f̄

2

∣∣∣∣+

∣∣∣∣� f − f̄2i

∣∣∣∣
≤
∥∥∥∥π(f + f̄

2

)∥∥∥∥+

∥∥∥∥π(f − f̄2i

)∥∥∥∥
=

∥∥∥∥(π ⊕ π̄)

(
f + f̄

2

)∥∥∥∥+

∥∥∥∥(π ⊕ π̄)

(
f − f̄

2i

)∥∥∥∥
≤ 1

2
[2‖(π ⊕ π̄)(f)‖+ 2‖(π ⊕ π̄)(f̄)‖] = 2‖(π ⊕ π̄)(f)‖.
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By using the same argument found in (f)⇒(b), one can show that∣∣∣� f ∣∣∣ ≤ ‖(π ⊕ π̄)(f)‖ for any f ∈ L1(G).

This is equivalent to saying that the trivial representation is weakly con-
tained in π ⊕ π̄ (see [Eym]). By Lemma 3.2, π is H-amenable.

Remark 3.4. The results are well-known if π = λ2, and can be found
in [Gre] for example. However, we cannot use exactly the same proofs since
π is in general not self-adjoint.

Let Gd be the group G equipped with discrete topology. Recall that ([Sto,
Definition 2.1]) π is Hd-amenable if πd, the representation π viewed as a
representation of Gd, is H-amenable. We have the following characterization
of Hd-amenable representations.

Corollary 3.5. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is Hd-amenable.
(b) ‖f‖1 = ‖π(f)‖ for any f ∈ l1(G)+.
(c) There exists M > 0 such that∣∣∣∑ f(s)

∣∣∣ ≤M‖π(f)‖ for any f ∈ l1(G).

(d) There exists M > 0 such that

‖f‖1 ≤M‖π(f)‖ for any f ∈ l1(G)+.

We now give another characterization of H-amenability which is of inde-
pendent interest.

Lemma 3.6. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is H-amenable.
(b) There exists a net (ξα) in the unit ball of Hπ such that

‖π(µ)ξα − ξα‖ → 0 for any µ ∈M(G)+
1 .

(c) There exists a net (ξα) in the unit ball of Hπ such that

‖π(f)ξα − ξα‖ → 0 for any f ∈ L1(G)+
1 .

(d) There exists a net (ξα) in the unit ball of Hπ such that

〈π(µ)ξα − ξα, η〉 → 0 for any µ ∈M(G)+
1 , η ∈ Hπ.

(e) There exists a net (ξα) in the unit ball of Hπ such that

〈π(f)ξα − ξα, η〉 → 0 for any f ∈ L1(G)+
1 , η ∈ Hπ.

Proof. We first prove (a)⇒(d). Without loss of generality, assume that
µ has compact support. Let K = supp(µ). By definition, there exists (ξα)
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in the unit ball of Hπ such that

‖π(x)ξα − ξα‖ → 0 uniformly on K.

Therefore, for any η ∈ Hπ, we have

|〈π(µ)ξα − ξα, η〉| =
∣∣∣ �
K

〈π(x)ξα − ξα, η〉 dµ(x)
∣∣∣ ≤ ‖µ‖ ‖π(x)ξα − ξα‖ ‖η‖ → 0.

It is obvious that (d)⇒(e) and (b)⇒(c). By Namioka’s argument (see [Gre,
Theorem 2.4.2]), one can show that (d)⇒(b) and (e)⇒(c). We will show
(e)⇒(c) as an example.

Let E =
∏
{Hπ : f ∈ L1(G)+

1 }. Define a map T : Hπ → E by

T (ξ)(f) = π(f)(ξ)− ξ.
It is easy to check that T (Hπ,1) is convex. Note that the weak topology of
E is the product topology of Hilbert spaces Hπ, and the weak closure and
the norm closure of a convex subset coincide. By our assumption in (e), we
have

0 ∈ weak-cl(T (Hπ,1)) = norm-cl(T (Hπ,1)).

Therefore, there exists a net (ξα) in the unit ball of Hπ such that

‖π(f)ξα − ξα‖ → 0 for any f ∈ L1(G)+
1 .

Finally, suppose that (c) holds. Let wξα be the state on VNπ(G) defined
by

wξα(T ) = 〈Tξα, ξα〉 for any T ∈ VNπ(G).

Let w be a weak∗-limit point of wξα in VNπ(G)′. Then it is clear that

w(π(f)T ) = w(T ) for any T ∈ VNπ(G), f ∈ L1(G).

Thus, VNπ(G) has a π-TRIM as defined in [Sto, Section 3]. Therefore, π is
H-amenable by [Sto, Proposition 3.1].

Remark 3.7. If π = λ2, the results are well-known and can be found in
[Gre] or [Pat] for example.

4. Weak closure of π(G). We quote the following result for conve-
nience (see [Sto]).

Lemma 4.1. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is H-amenable.
(b) There is a state Φ on VNπ(G) such that Φ(π(µ)) = µ(G) for any

µ ∈M(G).

Let W ∗π (G) be the enveloping von Neumann algebra of C∗π(G). Then
W ∗π (G) is the dual space of Bπ(G). Let ωπ be the universal representation
of C∗π(G). We have Bπ(G) = Aωπ(G) and W ∗π (G) = VNωπ(G) (see [Ars]).
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Lemma 4.2. Let G be a locally compact group, and let π be a unitary
representation of G. For any u ∈ Bπ(G), the map

Φu : M(G)→ C, µ 7→
�
u dµ(x),

is bounded if M(G) is equipped with the norm topology of VNπ(G).

Proof. Consider the map

Ψu : W ∗π (G)→ C, T 7→ 〈T, u〉.
The (W ∗π (G), Bπ(G)) = (VNωπ(G), Aωπ(G)) duality gives

|Φu(µ)| =
∣∣∣�u dµ∣∣∣ ≤ |〈ωπ(µ), u〉| ≤ ‖ωπ(µ)‖ ‖u‖Bπ(G) = ‖π(µ)‖ ‖u‖Bπ(G).

Note that the last equality holds because π and ωπ are weakly equivalent.

Theorem 4.3. Let G be a locally compact group, and let π be a unitary
representation of G. Consider the following conditions:

(a) π is H-amenable.
(b) ‖T‖ = 1 for any T ∈ co(π(G)).
(c) 0 /∈ weak-cl(π(G)).
(d) There exists ε0 > 0 and Φ ∈ VNπ(G)∗ such that 〈Φ, π(x)〉 ≥ ε0 for

every x ∈ G.
(e) There exists u ∈ Bπ(G) such that u(xα) is not convergent to 0 for

any net (xα) in G.

Then (a)⇒(b)⇒(c), (a)⇒(d)⇒(c) and (a)⇒(e)⇒(c).

Proof. (a)⇒(b) follows from Theorem 3.3.
(a)⇒(d) follows directly from Lemma 4.1.
(a)⇒(e) is true since 1 ∈ B(π) if π is H-amenable.
(b)⇒(c). Suppose that (c) is not true. Then

0 ∈ weak-cl(co(π(G)) = norm-cl(co(π(G))).

This contradicts (b).
(d)⇒(c). Assume that (c) is false. There exists a net {xα} in G such

that π(xα)→ 0 weakly in VNπ(G). This contradicts (e).
(e)⇒(c). For any u ∈ Bπ(G), let Φu be as defined in Lemma 4.2. Let

Ψu be a Hahn–Banach extension of Φu to VNπ(G). Assume that (c) is false.
There exists a net {xα} in G such that π(xα)→ 0 weakly in VNπ(G). Then

u(xα) = 〈Φu, xα〉 = 〈Ψu, xα〉 → 0.

Lemma 4.4. If ‖T‖ = 1 for any T ∈ co(π(G)), then π is Hd-amenable.

Proof. We will show that ‖f‖1 = ‖πd(f)‖ for every f ∈ l1(G)+, and
apply Corollary 3.5. By scaling, we may assume that f ∈ l1(G)+

1 . Take
(fn) to be a sequence of finitely supported functions in l1(G)+

1 such that
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‖fn−f‖ → 0. Then each πd(fn) is in co(π(G)), so ‖πd(f)‖ = lim ‖πd(fn)‖ =
lim 1 = 1 as needed.

Theorem 4.5. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is amenable.
(b) ‖T‖ = 1 for any T ∈ co(π ⊗ π̄(G)).
(c) ‖T‖ = 1 for any T ∈ co(τπ⊗π̄(G)).
(d) 0 /∈ weak-cl(π ⊗ π̄(G)).
(e) 0 /∈ weak-cl(τπ⊗π̄(G)).
(f) There exist ε0 > 0 and Φ ∈ VNπ⊗π̄(G)∗ such that 〈Φ, π ⊗ π̄(x)〉 ≥ ε0

for every x ∈ G.
(g) There exist ε0 > 0 and Φ ∈ VN(π ⊗ π̄)∗ such that 〈Φ, τπ⊗π̄(x)〉 ≥ ε0

for every x ∈ G.
(h) There exists u ∈ Bπ⊗π̄(G) such that u(xα) is not convergent to 0 for

any net (xα) in G.
(i) There exists u ∈ B(π⊗ π̄) such that u(xα) is not convergent to 0 for

any net (xα) in G.

Proof. By Theorem 4.3, we have the following implications: (a)⇒(b)⇒(d),
(a)⇒(f)⇒(d), (a)⇒(h)⇒(d) and (i)⇒(e). It is easy to check that (e)⇒(d)
and (h)⇒(i).

We will first prove (d)⇒(g). Since 0 /∈ weak-cl(π ⊗ π̄(G)), there exist
Φ1, . . . , Φk ∈ VNπ⊗π̄(G)∗1 and ε > 0 such that

π ⊗ π̄(G) ∩
k⋂
i=1

{T ∈ VNπ⊗π̄(G) : |〈Φi, T 〉| ≤
√
ε} = ∅.

Therefore,

G =
k⋃
i=1

{x ∈ G : |〈Φi, π ⊗ π̄(x)〉|2 ≥ ε}.

Hence,
k∑
i=1

|〈Φi, π ⊗ π̄(x)〉|2 ≥ ε for any x ∈ G.

Let (uiα)α be a net in the unit ball of Aπ⊗π̄(G) such that uiα → Φi in the

weak∗ topology. Let viα = uiαu
i
α. Then the net (viα)α is in the unit ball of

A(π⊗ π̄). Without loss of generality, we may assume that (viα) converges to
Ψi ∈ VN(π ⊗ π̄) in the weak∗ topology. Then

|〈Φi, π ⊗ π̄(x)〉|2 = lim
α
|uiα(x)|2 = lim

α
vα,i(x) = 〈Ψi, τπ⊗π̄(x)〉
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Let Φ = (
∑k

i=1 Ψi)/k. Then

〈Φ, τπ⊗π̄(x)〉 =
1

k

k∑
i=1

〈Ψi, τπ⊗π̄(x)〉 =
1

k

k∑
i=1

|〈Φi, π ⊗ π̄(x)〉|2 ≥ ε

k

for any x ∈ G.
We now show that (g)⇒(c). Let T ∈ co(τπ⊗π̄(G)). Without loss of gen-

erality, we may assume that ‖Φ‖ = 1 in (g). Thus, we have

1 ≥ ‖T‖ ≥ 〈Φ, τπ⊗π̄(x)〉 ≥ ε0.
Since co(τπ⊗π̄(G)) is a semigroup, we have, for any natural number k,

1 ≥ ‖T‖k ≥ ‖T k‖ ≥ ε0.
Therefore, ‖T‖ = 1.

Finally, we have to show (c)⇒(a). By Lemma 4.4, (τπ⊗π̄)d is amenable.
Observe that Aτπ⊗τπ̄ is an algebra containing uv̄ for u, v ∈ Fπ, so Aτπ⊗π̄ =
A(π⊗ π̄) is contained in Aτπ⊗τπ̄ . Therefore, (τπ⊗π̄)d is quasi-equivalent to a
subrepresentation of (τπ⊗τπ̄)d and hence (τπ⊗τπ̄)d is H-amenable. However,
this is equivalent to saying that π is amenable by [Sto, Corollary 2.8 and
Lemma 4.2].

Remark 4.6. Theorem 4.3 is a generalization of some results in [C-X].
Part of the proof of Theorem 4.5 is inspired by the proof of [C-X, Proposi-
tion 2.4].

5. Factorization properties in A[π] and B[π]. Note that B(G) has
a natural involution or ∗-operation, namely the complex conjugation. Let
A[π] (resp. B[π]) be the closed ∗-subalgebra in B(G) generated by Aπ(G)
(resp. Bπ(G)). It is not hard to see that

A[π] = A(π ⊕ π̄) = Aρπ(G) where ρπ = τπ⊕π̄ =

∞⊕
n=1

(π ⊕ π̄)⊗n.

The following lemma is easy to prove (see [Bek, Theorem 1.3(iii)]).

Lemma 5.1. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is amenable.
(b) π̄ is amenable.
(c) π ⊕ π̄ is amenable.

The following proposition is a direct consequence of the above lemma
and [Sto, Lemma 4.2].

Proposition 5.2. Let G be a locally compact group, and let π be a
unitary representation of G. The following conditions are equivalent:
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(a) π is amenable.
(b) ρπ is amenable.

A Banach algebra A of complex-valued continuous functions on a topo-
logical space X is said to be weakly self-adjoint if there exists K0 > 0 such
that for each f ∈ A, we have

|f |2 ∈ A and ‖ |f |2 ‖A ≤ K0‖f‖2A.
Put S(A) = {x ∈ X : f(x) 6= 0 for some f ∈ A}.

Let π be a unitary representation of G. It is clear that A[π] is a weakly
self-adjoint Banach algebra on G and S(A[π]) = G.

A Banach algebra A is said to factorize (resp. factorize weakly) if A = AA
(resp. A = span(AA)). We quote the following result ([F-G-L, Theorem 1.3])
for convenience:

Theorem 5.3. Let A be a weakly self-adjoint Banach algebra of complex-
valued functions. Suppose that A factorizes weakly. Then there exists C > 0
such that for each compact subset K ⊆ S(A) there is an f ∈ A such that

f ≥ 1 on K, f ≥ 0 on S(A) and ‖f‖ ≤ C.
Theorem 5.4. Let G be a locally compact group, and let π be a unitary

representation of G. Consider the following conditions:

(a) A[π] has a bounded approximate identity.
(b) A[π] factorizes.
(c) A[π] factorizes weakly.
(d) ρπ is H-amenable.

Then (a)⇒(b)⇒(c)⇒(d).

Proof. We only need to show (c)⇒(d). By Theorem 5.3, there exists
C > 0 such that for each compact subset K ⊆ G there is an f ∈ A[π] such
that

f ≥ 1 on K, f ≥ 0 on G and ‖f‖ ≤ C.
For any g ∈ L1(G)+, we have�

G

fg = |〈ρπ(g), f〉| ≤ ‖ρπ(g)‖ ‖f‖A[π].

This implies �

K

g ≤ C‖ρπ(g)‖.

By regularity of the Haar measure, we have�

G

g ≤ C‖ρπ(g)‖.

By Theorem 3.3, ρπ is H-amenable.
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Remark 5.5. The above proof follows an idea in [Los, Proposition 2].

Corollary 5.6. Let G be a locally compact group, and let π be a unitary
representation of G. Consider the following conditions:

(a) A(π ⊗ π̄) has a bounded approximate identity.
(b) A(π ⊗ π̄) factorizes.
(c) A(π ⊗ π̄) factorizes weakly.
(d) π is amenable.

Then (a)⇒(b)⇒(c)⇒(d).

Proof. Note that π ⊗ π̄ is quasi-equivalent to its conjugate. Also, τπ⊗π̄
is amenable if and only if π is amenable (see [Sto, Lemma 4.2]).

Remark 5.7. The implication (a)⇒(d) is given in [Sto, Theorem 4.3].
The above gives a new approach to prove this result.

Of course, B(π ⊗ π̄) = B[π ⊗ π̄] since π ⊗ π̄ is weakly equivalent to its
conjugate.

Theorem 5.8. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is amenable.
(b) B(π ⊗ π̄) has a bounded approximate identity.
(c) B(π ⊗ π̄) factorizes.
(d) B(π ⊗ π̄) factorizes weakly.

Proof. The implication (a)⇒(b) is proved in [Sto, Theorem 4.5]. Note
that B(π⊗ π̄) = Aρ(G) where ρ = ωρπ⊗π̄ . By Theorem 5.4, it follows directly
that (b)⇒(c)⇒(d).

We have to prove (d)⇒(a). By Theorem 5.4, ρ is H-amenable. Since ρ and
ρπ⊗π̄ are weakly equivalent, the trivial representation is weakly contained
in ρπ⊗π̄. Therefore, π is amenable by Lemma 5.1.

The equivalence of (a) and (b) is just [Sto, Theorem 4.5]. The above
provides a different proof.

Corollary 5.9. Let G be a locally compact group. The following con-
ditions are equivalent:

(a) G is amenable.
(b) Br(G) has a bounded approximate identity.
(c) Br(G) factorizes.
(d) Br(G) factorizes weakly.

Proof. This follows from the fact that λ2 is quasi-equivalent to λ2⊗λ2.

Corollary 5.10. Let G be a locally compact group. The following con-
ditions are equivalent:
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(a) G is amenable.
(b) Br(G) contains a closed non-trivial translation invariant ∗-subalge-

bra which factorizes (weakly).

Proof. Let A be a closed non-trivial translation invariant ∗-subalgebra
which factorizes (weakly). Then A = Aπ(G) = A[π] for some unitary repre-
sentation π (see [Ars]). Therefore, ρπ is H-amenable. But ρπ is also weakly
contained in λ2. Therefore, G is amenable since the trivial representation is
weakly contained in λ2.

6. Existence of bounded approximate identities in A(π)-bimo-
dules. We begin with the general setting: let A be a commutative Banach
algebra, let X, Y be symmetric Banach A-bimodules, and put

MA(X,Y ) = {T ∈ B(X,Y ) : T (a · x) = a · T (x) for any a ∈ A, x ∈ X}.

It is straightforward to show thatMA(X,Y ) is a Banach subspace ofB(X,Y ).

Lemma 6.1. MA(X,Y ∗) and MA(Y,X∗) are isometrically isomorphic.
In particular, MA(X,A∗) and MA(A,X∗) are isometrically isomorphic.

Proof. For any Φ ∈MA(X,Y ∗), define ΓΦ ∈ B(Y,X∗) by

〈x, ΓΦ(y)〉(X,X∗) = 〈Φ(x), y〉(Y ∗,Y ).

For any a ∈ A, we have

〈x, ΓΦ(a · y)〉(X,X∗) = 〈Φ(x), a · y〉(Y ∗,Y ) = 〈a · Φ(x), y〉(Y ∗,Y )

= 〈Φ(a · x), y〉(Y ∗,Y ) = 〈a · x, ΓΦ(y)〉(X,X∗) = 〈x, a · ΓΦ(y)〉(X,X∗)

and

‖ΓΦ‖ = sup{‖ΓΦ(y)‖ : y ∈ Y, ‖y‖ = 1}
= sup{|〈x, ΓΦ(y)〉| : y ∈ Y, ‖y‖ = 1, x ∈ X, ‖x‖ = 1}
= sup{|〈Φ(x), y〉| : y ∈ Y, ‖y‖ = 1, x ∈ X, ‖x‖ = 1}
= sup{‖Φ(x)‖ : x ∈ X, ‖x‖ = 1} = ‖Φ‖.

By symmetry, it is easy to construct the inverse of the map Φ 7→ ΓΦ.

Note that C0(G) is a symmetric Banach A(π)-bimodule via pointwise
multiplications. Therefore, M(G) has a natural dual module structure. Also,
VN(π), as the dual space of A(π), has a natural dual module structure.
Therefore, we obtain the following result:

Corollary 6.2. For any unitary representation π of G, we have

MA(π)(C0(G), VN(π)) ∼= MA(π)(A(π),M(G)).
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We say that X, as a A-bimodule, has a bounded approximate identity in
A if there exists a net (eα) in A such that

‖eα · x− x‖ → 0 and sup
α
‖eα‖A <∞.

Lemma 6.3. Suppose that X, as a A-bimodule, has a bounded approxi-
mate identity in A. Then MA(X,A∗) = MA(A,X∗) and X∗ are topologically
isomorphic.

Proof. Write M = MA(X,A∗) for convenience. Let F ∈ X∗. Define
ΦF : X → A∗ by

〈ΦF (x), a〉(A∗,A) = F (a · x).

It is straightforward to show that ΦF ∈ M . Conversely, let Φ ∈ M . By
Cohen’s factorization theorem and the assumption, for any x ∈ X, there
exist a ∈ A and y ∈ X such that x = a · y. Define

FΦ(x) = 〈Φ(y), a〉(A∗,A).

We need to show that FΦ is well-defined and bounded. Let (eα) ⊆ A be an
approximate identity for X such that supα ‖eα‖A ≤ C for some C > 0.

First of all, we observe that 〈Φ(b · z), a〉(A∗,A) = 〈a · z, ΓΦ(b)〉(X,X∗) for
any x, y ∈ A, z ∈ X where ΓΦ is defined in Lemma 6.1. Now, we have

FΦ(x) = 〈Φ(y), a〉 = lim
α

(〈Φ(y − eα · y), a〉+ 〈Φ(eα · y), a〉)

= lim
α

(〈Φ(y − eα · y), a〉+ 〈a · y, ΓΦ(eα)〉)

= lim
α
〈x, ΓΦ(eα)〉,

so Fφ is well-defined. Moreover, |FΦ(x)| ≤ C‖x‖ ‖ΓΦ‖ = C‖Φ‖ ‖x‖.
The mapping Φ : X∗ → MA(X,A∗), F 7→ ΦF , which appears in the

above proof, is called the canonical embedding of X∗ into MA(X,A∗).

Theorem 6.4. Let G be a locally compact group, and let π be a unitary
representation of G. The following conditions are equivalent:

(a) π is amenable.
(b) A(G), as a Banach A(π ⊗ π̄)-bimodule, has a bounded approximate

identity.
(c) A(G), as a Banach B(π ⊗ π̄)-bimodule, has a bounded approximate

identity.
(d) C0(G), as a Banach A(π ⊗ π̄)-bimodule, has a bounded approximate

identity.
(e) C0(G), as a Banach B(π ⊗ π̄)-bimodule, has a bounded approximate

identity.
(f) The canonical embedding Φ : M(G)→MA(π⊗π̄)(A(π ⊗ π̄),M(G)) is

a continuous isomorphism.
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(g) The canonical embedding Φ : M(G)→MB(π⊗π̄)(B(π ⊗ π̄),M(G)) is
a continuous isomorphism.

Proof. (a)⇒(b)⇒(d). This follows from [Sto, Remark 3.2(3)] and the
fact that A(G) is norm-dense in C0(G).

(d)⇒(f) is a direct consequence of Lemma 6.3.

(f)⇒(a). Let µ ∈M(G)+. Define Φµ ∈MA(π⊗π̄)(A(G), VN(π ⊗ π̄)) by

〈Φµ(f), u〉 =
�
uf dµ for any f ∈ A(G), u ∈ A(π ⊗ π̄).

Write ρ = τπ⊗π̄ for convenience.

For any ξ, η ∈ Hρ,1, f ∈ C0(G), we have

|〈ρ(f · µ)ξ, η〉| =
∣∣∣� 〈ρ(x)ξ, η〉f(x) dµ(x)

∣∣∣ ≤ �
|〈ρ(x)ξ, η〉| |f(x)| dµ(x)

≤
(�
|〈ρ(x)ξ, η〉|2 dµ(x)

)1/2(�
|f(x)|2 dµ(x)

)1/2

≤
(�
〈ρ(x)ξ, η〉〈ρ(x)ξ, η〉 dµ(x)

)1/2
‖f‖∞‖µ‖1/2

=
(�
〈(ρ⊗ ρ̄)(x)ξ ⊗ ξ, η ⊗ η〉 dµ(x)

)1/2
‖f‖∞‖µ‖1/2.

It follows that

|〈ρ(f · µ)ξ, η〉| ≤ (〈(ρ⊗ ρ̄)(µ)ξ ⊗ ξ, η ⊗ η〉)1/2‖f‖∞‖µ‖1/2

≤ ‖ρ⊗ ρ̄)(µ)‖1/2‖f‖∞‖µ‖1/2

≤ ‖ρ(µ)‖1/2‖f‖∞‖µ‖1/2

where the last inequality follows from [Eym, Lemma 1.23] and the fact that
ρ⊗ ρ̄ is quasi-equivalent to a subrepresentation of ρ. Therefore, we have

|〈Φµ(f), u〉| =
∣∣∣�uf dµ∣∣∣ ≤ ‖ρ(f · µ)‖ ‖u‖

≤ ‖ρ(µ)‖1/2‖f‖∞‖µ‖1/2‖u‖,
and hence

‖Φµ‖ ≤ ‖ρ(µ)‖1/2‖µ‖1/2.
By the open mapping theorem and the assumption, there exists K > 0 such
that K‖µ‖ ≤ ‖Φµ‖. Therefore, there exists M > 0 such that

‖µ‖ ≤M‖ρ(µ)‖1/2‖µ‖1/2.
Hence,

‖µ‖ ≤M2‖ρ(µ)‖.
This completes the proof by using Theorem 3.3 and [Sto, Lemma 4.2].

The equivalence of (a), (b), (d) and (f) follows from the equivalence of
(a), (c), (e) and (g) and the fact that τπ⊗π̄ and ωτπ⊗π̄ are weakly equivalent.
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Corollary 6.5. Let G be a locally compact group. The following con-
ditions are equivalent:

(a) G is amenable.
(b) A(G) has a bounded approximate identity.
(c) A(G), as a Banach Br(G)-bimodule, has a bounded approximate iden-

tity.
(d) C0(G), as a Banach A(G)-bimodule, has a bounded approximate iden-

tity.
(e) C0(G), as a Banach Br(G)-bimodule, has a bounded approximate

identity.
(f) The canonical embedding Φ : MA(G)(A(G),M(G)) → M(G) is a

continuous isomorphism.
(g) The canonical embedding Φ : MBr(G)(Br(G),M(G)) → M(G) is a

continuous isomorphism.

Remark 6.6. The equivalence of (a) and (b) can be found in [Lep2].
The above corollary gives another proof of (b)⇒(a).

7. Factorization properties of A(π)-bimodules. The following pro-
position can be proved easily by using [Sto, Remark 3.2(3)] and simple
density arguments. We outline the proof below.

Proposition 7.1. Let G be a locally compact group, and let π be a
unitary representation of G. Consider the following conditions:

(a) π is H-amenable.
(b) A(G) = A(π)A(G).
(c) A(G) = B(π)A(G).
(d) A(G) = span(A(π)A(G)).
(e) A(G) = span(B(π)A(G)).
(f) C0(G) = A(π)C0(G).
(g) C0(G) = B(π)C0(G).
(h) C0(G) = span(A(π)C0(G)).
(i) C0(G) = span(B(π)C0(G)).

Then (a)⇒(b)⇒(d)⇒(h)⇒(i) and (a)⇒(c)⇒(e)⇒(i).

Proof. It follows from [Sto, Remark 3.2(3)] that A(G), as a Banach A(π)-
bimodule, has a bounded approximate identity if π is H-amenable. The rest
follows from Cohen’s factorization theorem and the fact that A(G) is norm-
dense in C0(G).

Let Xπ be the subspace of C0(G) defined by

Xπ =
{
h : h =

∞∑
i=1

uigi, ui ∈ B(π), gi ∈ C0(G),

∞∑
i=1

‖ui‖B(G)‖gi‖∞ <∞
}
.
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We define a norm on Xπ by

‖h‖X = inf
{ ∞∑
i=1

‖ui‖B(G)‖gi‖∞ : h =

∞∑
i=1

uigi, ui ∈ B(π), gi ∈ C0(G)
}
.

It is not hard to show that (Xπ, ‖ · ‖X) is a Banach space.

Lemma 7.2. Let π be a C0-representation of G. Suppose that C0(G) has
an approximate identity contained in B(π) which is bounded in the uniform
norm. Then the space MB(π)(C0(G), B(π)∗) = MB(π)(B(π),M(G)) is iso-
metrically isomorphic to X∗π.

Proof. Write B = B(π) and M = MB(C0(G), B∗) for convenience.

Let F ∈ C0(G)∗ = M(G). Define ΦF : C0(G)→ B∗ by

〈ΦF (x), a〉(B∗,B) = F (a · x).

It is straightforward to show that ΦF ∈M and ‖ΦF ‖ ≤ ‖F‖.
Conversely, let Φ ∈ M . Without loss of generality, for any x ∈ Xπ, we

assume that x =
∑n

i=1 ai · yi for some finite sequences (ai)
n
i=1 ⊆ B and

(yi)
n
i=1 ⊆ C0(G). Define

FΦ(x) =

n∑
i=1

〈Φ(yi), ai〉.

Clearly, FΦ is bounded by the definition of the norm of Xπ. We need to show
that FΦ is well-defined. Let (eα) ⊆ B be an approximate identity for C0(G)
such that supα ‖eα‖∞ ≤ C for some C > 0.

First of all, we observe that 〈Φ(b · z), a〉 = 〈a · z, ΓΦ(b)〉 for any x, y ∈ B,
z ∈ C0(G) where ΓΦ is defined in the proof of Lemma 6.1. Now, we have

|FΦ(x)| =
∣∣∣ n∑
i=1

〈Φ(yi), ai〉
∣∣∣ ≤ ∣∣∣ n∑

i=1

〈Φ(yi − eα · yi), ai〉
∣∣∣+
∣∣∣ n∑
i=1

〈Φ(eα · yi), ai〉
∣∣∣

≤ ‖Φ‖
n∑
i=1

‖yi − eα · yi‖X‖ai‖B +
∣∣∣〈 n∑

i=1

ai · yi, ΓΦ(eα)
〉∣∣∣

= ‖Φ‖
n∑
i=1

‖yi − eα · yi‖X‖ai‖B + |〈x, ΓΦ(eα)〉|.

By taking α→∞, it follows that FΦ(0) = 0. Hence, FΦ is well-defined.

It is clear from the definition of the norm ‖ · ‖X that ‖FΦ‖ ≤ ‖Φ‖.

Remark 7.3. The above result and part of the proof are motivated by
[Fig].

A unitary representation π of G is called a C0-representation if Fπ(G) ⊆
C0(G).
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Theorem 7.4. Let π be a C0-representation of G. Suppose that C0(G)
has a bounded approximate identity contained in B(π⊗ π̄). Then the follow-
ing conditions are equivalent:

(a) π is amenable.
(b) A(G) = A(π ⊗ π̄)A(G).
(c) A(G) = B(π ⊗ π̄)A(G).
(d) A(G) = span(A(π ⊗ π̄)A(G)).
(e) A(G) = span(B(π ⊗ π̄)A(G)).
(f) C0(G) = A(π ⊗ π̄)C0(G).
(g) C0(G) = B(π ⊗ π̄)C0(G).
(h) C0(G) = span(A(π ⊗ π̄)C0(G)).
(i) C0(G) = span(B(π ⊗ π̄)C0(G)).

Proof. By Proposition 7.1, we have to show (i)⇒(a). Let ρ = τπ⊗π̄. If (i)
holds, then Xρ = C0(G). Therefore, by the opening mapping theorem, the
norms ‖·‖X and ‖·‖∞ are equivalent. As a result, MB(ρ)(B(ρ),M(G)) = X∗ρ
(see Lemma 7.2) is topologically isomorphic to M(G). In view of the proof
of (g)⇒(a) in Theorem 6.4, the proof is complete.

Remark 7.5. The above result and part of the proof are motivated by
[Neb].

By taking π = λ2, we obtain some new characterizations of amenable
groups.

Corollary 7.6. Let G be a locally compact group. Then the following
conditions are equivalent:

(a) G is amenable.
(b) A(G) = Br(G)A(G).
(c) A(G) = span(Br(G)A(G)).
(d) C0(G) = Br(G)C0(G).
(e) C0(G) = span(Br(G)C0(G)).

Remark 7.7. For general G, we have

A(G) = span(Br(G)A(G)) and C0(G) = span(Br(G)C0(G)).
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