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When is the Haar measure a Pietsch measure
for nonlinear mappings?

by

Geraldo Botelho (Uberlândia), Daniel Pellegrino (João Pessoa),
Pilar Rueda (Valencia), Joedson Santos (Itabaiana)

and Juan Benigno Seoane-Sepúlveda (Madrid)

Abstract. We show that, as in the linear case, the normalized Haar measure on
a compact topological group G is a Pietsch measure for nonlinear summing mappings
on closed translation invariant subspaces of C(G). This answers a question posed to the
authors by J. Diestel. We also show that our result applies to several well-studied classes
of nonlinear summing mappings. In the final section some problems are proposed.

1. Introduction. The Haar measure on a compact topological group G
is simply a Radon measure σG on the Borel sets of G which is translation
invariant, that is, σG(gB) = σG(B) for every Borel set B and every g ∈ G.
A well-known fact, essentially proved by A. Haar [13] in 1933 (see also [5,
19, 24, 25]), is that there is only one normalized Haar measure on G. In
the same year (in fact in the same issue of Annals of Mathematics), J. von
Neumann [18] used Haar’s Theorem to solve Hilbert’s fifth problem in the
case of compact groups. The uniqueness of the normalized Haar measure will
be used later in this paper.

A cornerstone of the theory of absolutely summing operators, the Pietsch
Domination Theorem, asserts that a continuous linear operator v : X1 → X2

between Banach spaces is absolutely p-summing if and only if there is a
constant C > 0 and a Borel probability measure µ on the closed unit ball of
the dual of X1, (BX∗1 , σ(X

∗
1 , X1)), such that

(1.1) ‖v(x)‖ ≤ C
( �

BX∗1

|ϕ(x)|p dµ(ϕ)
)1/p

for every x ∈ X1. Such a measure µ is said to be a Pietsch measure for v.

2010 Mathematics Subject Classification: Primary 28C10; Secondary 47B10.
Key words and phrases: Haar measure, Pietsch measure.

DOI: 10.4064/sm213-3-5 [275] c© Instytut Matematyczny PAN, 2012



276 G. Botelho et al.

When X1 = C(K) for some compact Hausdorff space, a simple reformu-
lation of the Pietsch Domination Theorem tells us that a continuous linear
operator v : C(K) → X2 is absolutely p-summing if and only if there is a
constant C > 0 and a Borel probability measure µ on the Borel sets of K
such that

‖v(f)‖ ≤ C
( �

K

|f(z)|p dµ(z)
)1/p

for every f ∈ C(K). The measure µ above is also called a Pietsch measure
for v.

The Pietsch Domination Theorem has analogs in different contexts, in-
cluding versions for classes of absolutely summing nonlinear operators (see,
for example, [1, 6, 7, 9, 10, 15, 22]). Recently, in [4, 21, 23] the concept of
R-S-abstract p-summing mapping was introduced in such a way that several
previous known versions of the Pietsch Domination Theorem can be regarded
as particular instances of one single result.

It is interesting to mention that in most of the cases we have almost
no structural information on the Pietsch measures and, as mentioned in
[8, p. 56], “in general its existence is accessible only by transfinite means”.
Nevertheless in the important case when X1 = C(G) and G is a compact
Hausdorff topological group, the precise nature of the Pietsch measure is
known: motivated by results from [12, 20], in [8, p. 56] it is proved that if G
is a compact topological group, then the normalized Haar measure on G is
a Pietsch measure for any translation invariant p-summing linear operator
on a closed translation invariant subspace of C(G) that separates points
of G (cf. Theorem 2.2). The particular case in which G is the circle group
{z ∈ C : |z| = 1} is used in [14].

J. Diestel posed to the authors the question whether, as in the linear
case, in this more general context of [4, 21] the normalized Haar measure
on a compact topological group G is still a Pietsch measure for any transla-
tion invariant (not necessarily linear) R-S-abstract p-summing mapping on
a closed invariant subspace of C(G). The precise meaning of the terms used
will be clarified in the next section.

In this paper we solve Diestel’s question in the positive. We show in
Section 3 that the answer is affirmative provided two natural and general
conditions are satisfied (cf. Theorem 3.1). In Section 4 we show that several
usual classes of R-S-abstract summing (linear and nonlinear) mappings enjoy
these two conditions, confirming that Diestel’s question has a positive answer
in several important cases. In particular, we improve the original linear result
from [8] by showing that the assumption that F separates points of G can
be dropped (cf. Theorem 4.2). However there are still some open questions
which we detail in the final section.
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2. Preliminaries and background. Henceforth G denotes a (not nec-
essarily abelian) compact Hausdorff topological group. For the operation on
G we use multiplicative notation. The symbol C(G) stands for the Banach
space of continuous functions f : G→ K, where K = R or C, endowed with
the usual sup norm.

Definition 2.1.

(a) A nonempty set F ⊂ C(G) is (left) translation invariant if

{T φ : T ∈ F and φ ∈ G} ⊂ F,
where T φ(ϕ) := T (φϕ).

(b) Let X be any set and F be a closed translation invariant subset of
C(G). A map u : F → X is translation invariant if u(T ) = u(T φ) for
all φ ∈ G and T ∈ F .

(c) A set F ⊂ C(G) is said to separate points of G if for all x, y ∈ G,
x 6= y, there exists T ∈ F such that T (x) 6= T (y).

The following version of the Pietsch Domination Theorem appears in
[8, p. 56] (by πp(u) we denote the p-summing norm of the operator u):

Theorem 2.2. If X is a Banach space, G is a compact Hausdorff topo-
logical group, F is a closed translation invariant subspace of C(G) that sepa-
rates points of G, and u : F → X is a translation invariant p-summing linear
operator, then the normalized Haar measure σG on G is a Pietsch measure
for u in the sense that

‖u(f)‖ ≤ πp(u)
( �

G

|f(x)|p dσG(x)
)1/p

for every f ∈ F.

Remark 2.3. The assumption that F separates points of G is missing
in [8]. To understand where this assumption is needed in the proof provided
in [8], see Subsection 4.1. In that same subsection we provide a proof that
does not require this extra assumption.

Next, we describe the general Pietsch Domination Theorem proved in
[4, 21]. Let X, Y and E be (arbitrary) sets, and H be a family of mappings
from Y to X. Let also Z be a Banach space and K be a compact Hausdorff
topological space. Assume that S : H×E ×Z → [0,∞) is an arbitrary map
and R : K × E × Z → [0,∞) is so that

Rx,b(ϕ) := R(ϕ, x, b)

is continuous on K for all (x, b) ∈ E × Z. For 0 < p <∞, a mapping f ∈ H
is said to be R-S-abstract p-summing if there is a constant C > 0 so that( m∑

j=1

S(f, xj , bj)
p
)1/p

≤ C
(
sup
ϕ∈K

m∑
j=1

R(ϕ, xj , bj)
p
)1/p

,
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for all (xj , bj) ∈ E × Z, j = 1, . . . ,m and m ∈ N. The infimum of such con-
stants C is denoted by πRS,p(f). The Unified Pietsch Domination Theorem
[4, 21] reads as follows:

Theorem 2.4. Let R and S be as above, 0 < p < ∞ and f ∈ H. Then
f is R-S-abstract p-summing if and only if there is a constant C > 0 and a
regular Borel probability measure µ on K such that

(2.1) S(f, x, b) ≤ C
( �

K

R(ϕ, x, b)p dµ(ϕ)
)1/p

for all (x, b) ∈ E × Z. Moreover, the infimum of such constants C equals
πRS,p(f). Such a measure µ is called an R-S-abstract measure for f .

Thus, J. Diestel’s question concerns the validity of Theorem 2.2 in the
context of Theorem 2.4.

3. Main result. In this section we shall keep the notation of the previous
one. In our main result (Theorem 3.1 below) we have identified two natural
conditions on R and S under which Diestel’s question has a positive answer:

Theorem 3.1. Let R and S be as above, 0 < p <∞, and u : Y → X be
a map in H. Further assume that

(i) K = G is a compact topological group and E is a closed translation
invariant subspace of C(G),

(ii) R(ϕ, T φ, b) ≤ R(φϕ, T, b) for all (T, b) ∈ E × Z and ϕ, φ ∈ G, and
(iii) the map Su,b : E → (0,∞) defined by Su,b(T ) = S(u, T, b) is trans-

lation invariant for every b ∈ Z.

If u is an R-S-abstract p-summing mapping, then the normalized Haar mea-
sure on G is an R-S-abstract measure for u.

Proof. By Theorem 2.4 there exists a Borel probability measure µ on G
such that

S(u, T, b) ≤ πRS,p(u)
( �

G

R(ϕ, T, b)p dµ(ϕ)
)1/p

for every (T, b) ∈ E × Z. For each φ ∈ G define µφ ∈ C(G)∗ by

〈µφ, T 〉 := 〈µ, T φ〉

for every T ∈ C(G). Indeed, µφ is a probability measure as

〈µφ, 1G〉 = 〈µ, 1φG〉 =
�

G

1φG dµ = µ(G) = 1,
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where 1G denotes the constant mapping taking the value 1. Now we prove
that µφ is an R-S-abstract measure for u: given (T, b) ∈ E × Z,

S(u, T, b)p = Su,b(T )
p = Su,b(T

φ)p = S(u, T φ, b)p

≤ πRS,p(u)p
�

G

R(ϕ, T φ, b)p dµ(ϕ)

≤ πRS,p(u)p
�

G

R(φϕ, T, b)p dµ(ϕ)

= πRS,p(u)
p
�

G

RT,b(φϕ)
p dµ(ϕ)

= πRS,p(u)
p
�

G

RφT,b(ϕ)
p dµ(ϕ)

= πRS,p(u)
p〈µ, (RpT,b)

φ〉 = πRS,p(u)
p〈µφ, RpT,b〉

= πRS,p(u)
p
�

G

R(ϕ, T, b)p dµφ(ϕ).

Let σG denote the normalized Haar measure on G. As the map φ 7→ µφ is
continuous when C(G)∗ is endowed with the weak∗ topology, there exists a
measure ν ∈ C(G)∗ such that

〈ν, T 〉 =
�

G

〈µφ, T 〉 dσG(φ)

for every T ∈ C(G) (see [8, p. 57]). If T ∈ E, T ≥ 0, then

〈ν, T 〉 =
�

G

〈µφ, T 〉dσG(φ) =
�

G

〈µ, T φ〉 dσG(φ) ≥ 0,

so ν is a non-negative regular Borel measure on G. Moreover, the following
calculation shows that ν is a probability:

〈ν, 1G〉 =
�

G

〈µφ, 1G〉 dσG(φ) =
�

G

1G dσG = 〈σG, 1G〉 = 1.

Since
S(u, T, b)p

πRS,p(u)p
≤

�

G

RT,b(ϕ)
p dµφ(ϕ) = 〈µφ, RpT,b〉

for every (T, b) ∈ E × Z, it follows that

S(u, T, b)p

πRS,p(u)p
=
S(u, T, b)p

πRS,p(u)p

�

G

1G dσG =
�

G

S(u, T, b)p

πRS,p(u)p
1G dσG

≤
�

G

〈µφ, RpT,b〉 dσG(φ) = 〈ν,R
p
T,b〉 =

�

G

RT,b(φ)
p dν(φ)
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for every (T, b) ∈ E×Z. Therefore ν is an R-S-abstract measure for u. Next
we prove that ν is translation invariant: given T ∈ C(G) and φ0 ∈ G,

〈ν, T φ0〉 =
�

G

〈µφ, T φ0〉 dσG(φ) =
�

G

�

G

T φ0(ϕ) dµφ(ϕ) dσG(φ)

=
�

G

�

G

T (φ0φϕ) dµ(ϕ) dσG(φ) =
�

G

�

G

T (φ0φϕ) dσG(φ) dµ(ϕ)

=
�

G

�

G

T (φϕ) dσG(φ) dµ(ϕ) =
�

G

�

G

T (φϕ) dµ(ϕ) dσG(φ)

=
�

G

�

G

T (ϕ) dµφ(ϕ) dσG(φ) =
�

G

〈µφ, T 〉 dσG(φ) = 〈ν, T 〉.

By the uniqueness of the normalized Haar measure σG we conclude that
ν = σG.

Note that the translation invariance is imposed on the map Su,b(·) :=
S(u, ·, b) instead of u. Thus, although in applications we always have the
information that u is translation invariant, a priori our abstract result does
not need this hypothesis. An extremal example shows that in fact this choice
seems to be adequate: if S is the null mapping then obviously no hypothesis
on u : Y → X is needed.

4. Applications. In this section we show that Theorem 3.1 applies to
several usual classes of R-S-abstract summing mappings, including some
well-studied classes of (linear and nonlinear) absolutely summing mappings.

We shall repeatedly use the fact that if G is a compact Hausdorff space
and F is a closed subspace of C(G), then

sup
α∈BF∗

m∑
j=1

|α(Tj)|p = sup
α∈BC(G)∗

m∑
j=1

|α(Tj)|p = sup
x∈G

m∑
j=1

|Tj(x)|p

for all T1, . . . , Tm ∈ F . The first equality follows from the Hahn–Banach The-
orem and the second follows from a canonical argument using point masses
(cf. [8, p. 41]).

4.1. Absolutely summing linear operators. Let us see that, for lin-
ear operators, Theorem 3.1 recovers and generalizes Theorem 2.2. First of
all let us see that the assumption that F separates points of G is crucial in
the proof that [8] provides for Theorem 2.2.

Proposition 4.1. Let K a compact Hausdorff space and let F be a closed
subspace of C(K) that separates points of K. If Y is a Banach space and
u : F → Y is a p-summing linear operator, then there is a Borel probability
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measure µ on K such that

‖u(f)‖p ≤ πp(u)p
�

K

|f(x)|p dµ(x) for every f ∈ F.

Proof. Consider the mapping

δ : K → F ∗, δ(x) = δx : F → K, δx(f) = f(x).

It is easy to see that (i) δ(K) ⊆ BF ∗ , (ii) δ(K) is norming for F , (iii)
δ(K) is weak∗ compact in F ∗. So, by the Pietsch Domination Theorem [8,
Theorem 2.12] there is a Borel probability measure ν on (δ(K), w∗) such
that

‖u(f)‖p ≤ πp(u)p
�

δ(K)

|y(f)|p dν(y) for every f ∈ F.

Since F separates points of K, it follows that δ is injective, and the inverse
function δ−1 : δ(K) → K is obviously measurable with respect to the Borel
sets in K and in (δ(K), w∗). Let µ be the image measure with respect to
δ−1, that is, µ is a Borel measure on K and µ(A) = ν(δ(A)). It is clear that
µ is a probability measure and by [11, Proposition 9.1] we have�

K

|f(x)|p dµ(x) =
�

δ(K)

|f(δ−1(y))|p dν(y) =
�

δ(K)

|δ(δ−1(y))(f)|p dν(y)

=
�

δ(K)

|y(f)|p dν(y) ≥ ‖u(f)‖
p

πp(u)p

for every f ∈ F .

The proof of the proposition above makes it clear that the assumption
that F separates points of G is needed to validate the assertion made in
the first three lines of the proof of [8, Theorem, p. 56]. Let us see that this
assumption can be dropped with the help of Theorem 3.1:

Theorem 4.2. If X is a Banach space, G is a compact Hausdorff topo-
logical group, F is a closed translation invariant subspace of C(G) and
u : F → X is a translation invariant p-summing linear operator, then the
normalized Haar measure σG on G is a Pietsch measure for u in the sense
that

‖u(f)‖ ≤ πp(u)
( �

G

|f(x)|p dσG(x)
)1/p

for every f ∈ F.

Proof. Make the following choice for the parameters of Theorem 3.1:

E = F = Y, K = G, Z = K, H = L(F ;X),

R : G× F ×K→ [0,∞), R(ϕ, T, b) = |T (ϕ)|,
S : L(F ;X)× F ×K→ [0,∞), S(v, T, b) = ‖v(T )‖.
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Given T1, . . . , Tm ∈ F and b1, . . . , bm ∈ K,
m∑
j=1

S(u, Tj , bj)
p =

m∑
j=1

‖u(Tj)‖p ≤ πp(u)p sup
α∈BF∗

m∑
j=1

|α(Tj)|p

= πp(u)
p sup
x∈G

m∑
j=1

|Tj(x)|p = πp(u)
p sup
x∈G

m∑
j=1

R(x, Tj , bj)
p,

which proves that u is R-S-abstract p-summing. Let us see that the condi-
tions of Theorem 3.1 are satisfied:

R(ϕ, T φ, b) = |T φ(ϕ)| = |T (φϕ)| = R(φϕ, T, b)

for all T ∈ F , ϕ, φ ∈ G and b ∈ Z; and since u is translation invariant,

Su,b(T ) = S(u, T, b) = ‖u(T )‖ = ‖u(T φ)‖ = S(u, Tφ, b) = Su,b(T
φ)

for all φ ∈ G and b ∈ Z. So the normalized Haar measure σG on G is an
R-S-abstract measure for u. Then

‖u(T )‖p = S(u, T, b)p ≤ πRS,p(u)p
�

G

R(φ, T, b)p dσG(φ)

= πRS,p(u)
p
�

G

|T (φ)|p dσG(φ)

for every T ∈ F ; therefore σG is a Pietsch measure for u.

4.2. Dominated homogeneous polynomials. For the definition of
dominated homogeneous polynomials and the corresponding Pietsch Dom-
ination Theorem, see [16, Definition 3.2 and Proposition 3.1] or, without
proof, [2, Definition 2.1 and Theorem 3.3].

Let F be a closed translation invariant subspace of C(G) and let
P : F → X be a translation invariant p-dominated n-homogeneous poly-
nomial. Choose

E = F = Y, K = G, Z = K,
H to be the Banach space P(nF ;X) of continuous n-homogeneous polyno-
mials from F to X with the usual sup norm, and

R : G× F ×K→ [0,∞), R(ϕ, T, b) = |T (ϕ)|,
S : P(nF ;X)× F ×K→ [0,∞), S(Q,T, b) = ‖Q(T )‖1/n.

Since P is p-dominated, there is a constant C such that, for all T1, . . . , Tn
∈ F and b1, . . . , bm ∈ K,

k∑
i=1

S(P, Ti, bi)
p =

k∑
i=1

‖P (Ti)‖p/n ≤ Cp sup
ϕ∈BF∗

k∑
i=1

|ϕ(Ti)|p

= Cp sup
ϕ∈K

k∑
i=1

|Ti(ϕ)|p = Cp sup
ϕ∈K

k∑
i=1

R(ϕi, Ti, bi)
p.
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So P is R-S-abstract p-summing. Note also that

R(ϕ, T φ, b) = |T φ(ϕ)| = |T (φϕ)| = R(φϕ, T, b)

for all T ∈ F , ϕ, φ ∈ G and b ∈ Z, and since P is translation invariant,

SP,b(T ) = S(P, T, b) = ‖P (T )‖1/n

= ‖P (T φ)‖1/n = S(P, T φ, b) = SP,b(T
φ)

for all T ∈ F and b ∈ Z. By Theorem 3.1 we find that the normalized Haar
measure σG on G is an R-S-abstract measure for P . Then

‖P (T )‖p = S(P, T, b)p ≤ πRS,p(P )p
�

G

R(φ, T, b)p dσG(φ)

= πRS,p(P )
p
�

G

|T (φ)|p dσG(φ)

for every T ∈ F ; therefore σG is a Pietsch measure for P .

4.3. α-subhomogeneous mappings. For the definition of α-subhomo-
geneous mappings and the corresponding Pietsch Domination Theorem we
refer to [3, Definition 3.1 and Theorem 2.4].

Let F be a closed translation invariant subspace of C(G) and let
f : F → X be a translation invariant α-subhomogeneous (p/α, p)-summing
mapping. Choose

E =F = Y, K =G, Z =K, H = {h : F → X : h is α-subhomogeneous},
R : G× F ×K→ [0,∞), R(ϕ, T, b) = |T (ϕ)|,
S : H× F ×K→ [0,∞), S(h, T, b) = ‖h(T )‖1/α.

Since f is α-subhomogeneous and (p/α, p)-summing, there is a constant C
such that, for all T1, . . . , Tk ∈ F and b1, . . . , bk ∈ K,

k∑
i=1

S(f, Ti, bi)
p =

k∑
i=1

‖f(Ti)‖p/α ≤ Cp sup
ϕ∈BF∗

k∑
i=1

|ϕ(Ti)|p

= Cp sup
ϕ∈K

k∑
i=1

|Ti(ϕ)|p = Cp sup
ϕ∈K

k∑
i=1

R(ϕi, Ti, bi)
p.

So f is R-S-abstract p-summing. Note also that

R(ϕ, T φ, b) = |T φ(ϕ)| = |T (φϕ)| = R(φϕ, T, b)

for every T ∈ F , ϕ, φ ∈ G and b ∈ Z, and as f is translation invariant,

Sf,b(T ) = S(f, T, b) = ‖f(T )‖1/α = ‖f(T φ)‖1/α = S(f, T φ, b) = Sf,b(T
φ)
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for every T ∈ F and b ∈ Z. By Theorem 3.1 we infer that the normalized
Haar measure σG on G is an R-S-abstract measure for f . Then

‖f(T )‖p/α = S(f, T, b)p ≤ πRS,p(f)p
�

G

R(φ, T, b)p dσG(φ)

= πRS,p(f)
p
�

G

|T (φ)|p dσG(φ)

for every T ∈ F ; therefore σG is a Pietsch measure for f .

4.4. Absolutely summing arbitrary mappings. Let X and F be
Banach spaces. Following [4, Definition 2.1] (see also [17, Definition 3.1]), an
arbitrary mapping f : F → X is absolutely p-summing at a ∈ F if there is a
C ≥ 0 such that

m∑
j=1

‖f(a+ xj)− f(a)‖p ≤ C sup
ϕ∈BE′

m∑
j=1

|ϕ(xj)|p

for every natural numberm and all x1, . . . , xm ∈ F . The Pietsch Domination
Theorem for absolutely p-summing mappings at a ∈ F can be found in [4,
Theorem 4.2].

Assume that F is a closed translation invariant subspace of C(G) and
let f : F → X be a translation invariant absolutely p-summing mapping at
0 ∈ F . Choose

E = F = Y, K = G, Z = K, H = XF = {h : F → X},
R : G× F ×K→ [0,∞), R(ϕ, T, b) = |T (ϕ)|,
S : H× F ×K→ [0,∞), S(h, T, b) = ‖h(T )− h(0)‖.

Since f is absolutely p-summing at 0 ∈ F , there is a constant C such that,
for all T1, . . . , Tk ∈ F and b1, . . . , bk ∈ K,

k∑
i=1

S(f, Ti, bi)
p =

k∑
i=1

‖f(Ti)− f(0)‖p ≤ Cp sup
ϕ∈BF∗

k∑
i=1

|ϕ(Ti)|p

= Cp sup
ϕ∈K

k∑
i=1

|Ti(ϕ)|p = Cp sup
ϕ∈K

k∑
i=1

R(ϕi, Ti, bi)
p.

So f is R-S-abstract p-summing. Note also that

R(ϕ, T φ, b) = |T φ(ϕ)| = |T (φϕ)| = R(φϕ, T, b)

for all T ∈ F , ϕ, φ ∈ G and b ∈ Z. Since f is translation invariant,

Sf,b(T
φ) = S(f, T φ, b) = ‖f(T φ)− f(0)‖

= ‖f(T )− f(0)‖ = S(f, T, b) = Sf,b(T )
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for all T ∈ F and b ∈ Z. By Theorem 3.1 the normalized Haar measure σG
on G is an R-S-abstract measure for f . Then

‖f(T )− f(0)‖p = S(f, T, b)p ≤ πRS,p(f)p
�

G

R(φ, T, b)p dσG(φ)

= πRS,p(f)
p
�

G

|T (φ)|p dσG(φ)

for every T ∈ F ; therefore σG is a Pietsch measure for f .

5. Open problems. For the definition of Lipschitz p-summing mappings
and the corresponding Pietsch Domination Theorem we refer to [10, 4].

Problem. Let F be a closed translation invariant subspace of C(G),
let X be a metric space and f : F → X be a translation invariant Lip-
schitz p-summing mapping. Is the Haar measure σG a Pietsch measure
for f?

In the case of absolutely summing arbitrary mappings (Subsection 4.4)
we assumed that the translation invariant mapping f : F ⊆ C(G) → X
is absolutely p-summing at the origin. What about translation invariant
mappings that are absolutely p-summing at some 0 6= T0 ∈ F? We say that
a vector T0 ∈ F is translation invariant if T φ0 = T0 for every φ ∈ G. Let
T0 ∈ F . Define

fT0 : F → X, fT0(T ) = f(T + T0).

It is easy to see that f is absolutely p-summing at T0 if and only if fT0 is
absolutely p-summing at the origin. Moreover, if T0 is translation invariant
then f is translation invariant if and only if fT0 is translation invariant. Thus,
if we assume that f is translation invariant and absolutely p-summing at T0,
then fT0 is translation invariant and absolutely p-summing at the origin.
Therefore the Haar measure is a Pietsch measure for fT0 and hence for f .
However, we need the extra assumption that the vector T0 is translation
invariant. Can this assumption be dropped?

Problem. Let F be a closed translation invariant subspace of C(G)
and let f : F → X be a translation invariant mapping that is absolutely
p-summing at some vector of F . Is the Haar measure σG a Pietsch measure
for f?
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