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Local integrability of strong and iterated
maximal functions

by

PAuL ALTON HAGELSTEIN (Princeton, NJ)

Abstract. Let Mg denote the strong maximal operator. Let M, and My denote
the one-dimensional Hardy-Littlewood maximal operators in the horizontal and vertical
directions in R%. A function h supported on the unit square Q = [0,1] x [0, 1] is exhibited
such that SQ MyMzh < oo but SQ Mz Myh = oo. It is shown that if f is a function
supported on @ such that SQ MyM, f < oo but SQ Mz My f = oo, then there exists a set

A of finite measure in R? such that SA Mg f = oo.

We begin by listing some basic definitions.

DEFINITION 1. Let f be a measurable function defined on R™. Denote
by B(p,r) the Euclidean ball in R™ centered at p of radius r, and by |B(p, )]
the Lebesgue measure of B(p,r). The Hardy-Littlewood mazximal function
of f is defined on R™ by

(1) My f(p) = sup !

YT \ 1f(2)]dz.

B(p,r)

DEFINITION 2. Let f be a measurable function defined on R?. The strong
mazimal function of f is defined on R? by

1 2 Y2
2 Msf(x,y) = su u, )| dv du.
( ) Sf( y) 11<IEI2 (1'2_1'1)(:92_:91) S S ’f( )‘
y1<y<y2 T1 Y1

DEFINITION 3. Let f be a measurable function defined on R2. The hor-
izontal mazximal function of f is defined on R? by

(3) M, f(u,v) = sup _ S | f(w,v)| dw.

up<u<us U2 — U1 w
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DEFINITION 4. Let f be a measurable function defined on R?. The ver-
tical maximal function of f is defined on R? by

v2

| 1f(,w)| dw.

V1

1
(4) My f(u,v) = sup
vy <v<vg V2 — U1

The following Orlicz spaces will be very useful to us.

DEFINITION 5. Let (™) denote the unit n-cube [0,1] x ... x [0,1] in R™.
L(log L)#(I™) is the Lebesgue space of functions on I with norm

. f 1"
(5) N fllLaog Lyr(rem) =1nf{c>0: S glog 3—1—% <1;p<oo.

I(n)

In the following we will denote the unit square I in R? by Q. Also,
the k-fold iteration Myy, o ... o My, of the maximal operator Myy, will be
denoted by M} .

We now recall the following theorem of E. M. Stein:

THEOREM 6 ([11]). Let k be a positive integer. There exist constants
0<c=c(k,n) <C=C(k,n) < oo such that if f is supported on I'™), then

(6) c X Mg f < Nl zgog ye(remy < C S Mg f.
I(n) 1(n)
Inequalities such as (6) in the case k = 1 will often be denoted by
112 10g Lremy ~ S Muv f
I(n)

for the remainder of this paper.

We now show that there exists a function h supported on () such that
§o MyMyh < oo, but §, MyMyh = occ.

THEOREM 7. There exists a function h, supported on @, such that
SQ M,Myh = oo, but SQ M, M,h < co.
Proof. We define the functions hon as follows:

2n 1
(7) hon (z,y) = Z 22n_m_1X[0,2—2n+m+1](93) : X[m-Q*",(erl)-Q*”}(y)‘

m=0
The functions hs, hg, and hg are depicted in Figure 1.
LEMMA 8.

(8) \ Mo ayhye ~om2m,
Q
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Fig. 1. Functions ha, hyg, and hg

Proof. Divide Q into 22" regions I; ;, j =1,...,2", k=1,...,2", where
I; i, is defined as follows:

117]@ = [0’2—2"+1] X [(k - 1) ’ 27"71{3 : 27"]7 1<k< 2n;

Ij,k — [2—2n+j—1’2—2n+j] % [(k‘—l)-Q_n,k-Q_n], 9 S] < on

Let Tk =§,  Myhan.

Note that, in @, Myhan(u,v) is nonincreasing in u for any fixed v €
[0,1]. Note also that if (u,v) € I7; and (w,v) € I3, , then Myhon(u,v) =
Myhon (w,v).

Now, if (u,v) € I1 j, then MyMyhon (u,v) = Myhon(u,v). Hence

\ Mo Myho(u,v)dudv =T, 1< k<2,

Iy,
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Suppose 2 < j < 2™, Then
1 xX
©) | MMyhon = | - [g M, (u, v) du} dv dz
T
0

Lk
1
o

Ik

Ij.k

x

Tl,k +...+ Tj—l,k
2—n

9—2M4j—1

T

+ S My hon (u,v) du} dv dz

=(hx+..+Larlog2+ | = | Myhoo(u,v) dudvdz
Lk~ 2-2m4i-1
-~ g 1 n -
=(Lgr+...+1j_1%)log2+ S E(MthH (z,0))(z — 272" Y dvdx
I]vk
~ ~ 9—2"+j-1
= (Il7k + ...+ Ij—l,k) 10g2 + S Myhzn(aj‘o,’l)) <1 — T) dv dx
Ij,k
(where x is an arbitrary element of (272" +7=1 2-2"+7))
- (’]Yl:k + te + E_l7k) 10g2 + j—.;)k

k-27™

S

(k—1)-2-n

~ (log 2)(2—2"+J'—1)( M, han (0, ) dv)

= (Lp+.. .+ 1x)log2+ I — I - log 2.

So,
2’77/
(10)  { MoMyhye = > | MM hon
Q Jk=11;}
—Lii+...+ o
+ (g +...+Don)log2+(Tog + ...+ Ipon)—(Tog + ... + Ipon ) log 2
+ (ha+...+hon+Tog+... 4+ Lon)log2+ (Isg + ...+ I390)
— (Isg + ...+ I39n)log2 + ...
+(ha+.oAhon+.c+Ton_ 11+ ... 4 Ton_y9n)log2
+ (Iorg+ oo+ Tongn) = (Ion 1 + .. + Ipn o) log 2

=+ +ho)+Toqr+. .+ Toon) .4 (Tong + ...+ Iynon)

+ @2 =1D)T1q+ ...+ I19n)log2
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+ (2" - 3)(T2,1 +...+ T2,2ﬂ)10g2
+ (2" =) (Isq + ...+ I300)log2+ ...
+1- (En72,1 +...+ f2"7272n) log 2
+0- (-72"71,1 +...4+ fznfl,zn) log 2
+ (=1)(Ian 1 + ...+ Ipn on) log 2.

ProrosiTION 9. If 1 < j < 2™ then fjJ +... +fj72n ~n/2m.
Proof. Suppose 2 < j < 2". Then

272"+
(11) Lii+.. ..+ = X SMth'n (r,2)dzdz
9-2"4j-1 0
1
_ 272”+j—1SMyh2n(2—2"+j—1/27z) d
0
2T g

where «; satisfies (by the fact that 8(1) Myhon(u, z)dz ~ ||hon(u, )| L10g 1)
the equation

111 1 2 2
(12) — {— log <3+ —> + — log <3+ —>
2" | oy o o Q;

2" —j

2 22" =i
log <3 =+ >] =1
ay a;
Now,

1 1 92" ~j 92"~
(13) —10g<3—|——>+...+ log<3+ )
Q (%] e} (0]

+...+

J J J J
1 22" =i 22" 22"~
§—10g<3~|— >+...—|— 10g<3—|— >
Qj Qj Qj Q@
22”*j+1 22"7]‘
< —log <3 + )
Q@ Q@

1 1 22" 7 22" —J
§2[—10g<3+—>+...+ log<3+ )]
o 7 7 o

So aj ~ a;j, where q; is defined by

22n—j+1 22n—j
aj a;
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Then for 2 < 7,k < 2™ we have
(15) j‘ij71+...+;fj72nka71+..-+fk,2n7

since

~ n . ~ o i L
]j’1+...+lj72n~2_2 +J—1'Oéj:2 2047 1'2k ]'Oék
_on -1 ~ =g =
=2 +h -OékNIk’l—i-...—i-Ik’Qn.

Clearly .71,1 +...+ I~1,2n ~ .72,1 + ...+ .72,2n, so (15) holds for 1 < j, k < 2™,

As

~ -~ 1 ¢oon

I2n71 + ...+ IQn,Qn = 5 <2n + S 7 dx) = 27(714»1)(1 + log 271) ~ ’fl/2n7
2—7L

we get the assertion. m

We now finish the proof of Lemma 8. The proposition and (10) imply

n n

SMzMthnN2—n~2"+(2"—2+2"—3—|—...+1)-2n-log2
Q
1
— (27— 1)(2" —2) - - . log?2
2 on
1
~n+§‘log2'n'2"~n-2”. m
LEMMA 10.

\ M, Mohon <1027,
Q

Proof. Clearly if (u,v) € @, then

22"—17 u < 1/22”—1’

n < n
Mzhar (u,v) < {l/u, u>1/22"-1,

So
22"—17 u < 1/22"—17

M Ma:h n ) < n
yMahan (u,0) < {1/u, w>1/22"1,

Then

1
. 1 1 .
\ My Myhon < 22 —1<22n_1> + | Sdo=1+1log(2*" ") <10-2". u
Q

91—2m

We now define the function A by

=1 1
(16) h = Z ST 24k—_1h24k71.
k=1
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Then
(17) éMMh<22k+l.24il§2MMh24kl
gm;%.ﬂ%.y“ _s,
=1
but
(18) MM b > lim e W%SMmMthfl
? Q

We now show that if f is a function such that SQ MM, f < oo but
SQ M,M,f = oo, then there exists a set A of finite measure in R? such

that § , Mg f = oo. This result is particularly interesting in view of the fact
that M. E. Gomez has constructed a function ¢ supported on @ such that
SQ M, M,g and SQ M, M,g are infinite, but Mgg is integrable over every set

of finite measure in R? (see [5]). Such a construction is also implicit in the
work of Bagby and Jawerth and Morrow ([1], [9]).

THEOREM 11. Suppose that [ is a measurable function supported on @,
SQ MM, f = oo, and SQ MyM, f < co. Then there exists a set A of finite
measure in R? such that SA Msf = .

Proof. We first recall a theorem due to Fava, Gatto, and Gutiérrez.

THEOREM 12 ([3]). Suppose f is a measurable function supported in Q.
Then MM, f is integrable over every set of finite measure in R? if and only

if ||f||L(10gL)2(Q) < o0.

The maximal operators M, M, defined as follows, will be very useful to
us:

DEFINITION 13. Let f be a measurable function supported on Q). The
associated maximal function M f is defined on @) by

M f(p1,p2) = sup
T1<p1<ws L2 —

xg 1
SS (z,y)|dydz.
10

The associated maximal function M f is defined on @ by

1y2
1

V£ (2, )| dy da.

0y1

Mf(p1,p2) = sup
y1<p2<y2 Y2 — Y1
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Now, we define the auxiliary functions g and h as follows. If p = (p1,p2)
€ R?, let
1

g(@) = 1f 1) dy - xo®),  h(p) ={1f(x,p2)l dz - xq(p)-
0 0

Note that if p € R?, then
(19) Msf(p) > 5[Msg(p) + Msh(p)].
Since g and h are tensors on (), also note that

(20) Msg(p) = My M,g(p) = M, M.g(p),
(21) Msh(p) = My Myh(p) = MyMyh(p).

Now, by Theorem 12, M,M,g is integrable over every set of finite mea-
sure in R? if and only if g € L(log L)?(Q), and similarly for A in place of g.
If lg + hllL(og £)2(@) = 00, equations (19)—(21) imply the existence of a set
of finite measure in R? over which Msf is not integrable. So it suffices to
show [lg + Al Lqog )2(@) = o©-

An application of the Fubini Theorem and Theorem 6 yields that

9l os Ly2@) ~ § MM, 1Bl Lgog 1y2@) ~ | MM .
Q Q
So it is enough to show SQMMf + SQ]\_MWf = oo. As SQMwMyf <
| fIlL(og £)2(@)> We see that the proof reduces to proving the following.

THEOREM 14. Let f be a measurable function supported on Q. Then

£l cqog )2 @) S \ MMf + \ MM, f+ | MMF.
Q Q Q

Proof. It will be technically convenient to work with the dyadic ana-
logues of the maximal operators Myr,, M, M, M,, and M, . Recall that a
dyadic interval in [0, 1] is an interval of the form [k-27, (k+1)-27], where j is
a nonpositive integer and k is a nonnegative integer such that (k+1)-27 < 1.
We denote the set of dyadic subintervals of [0,1] by Z2. A dyadic square
in @Q is a set of the form I x .J, where I and J are dyadic intervals in [0, 1]
of the same length. We denote the set of dyadic squares in Q by S2. We
formally define the dyadic maximal operators My, M4, M4, M2, and
MyA as follows.

DEFINITION 15. Let f be a measurable function supported on Q. The
dyadic Hardy—Littlewood maximal function MﬁL f is defined on Q by

1
Mg f(p)= sup — |If].
peSeSA |S| g
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The maximal function M2 f is defined by

MAf(p1,pa) = sup

1
7 VVIf @)l dyda.

MA f is defined by

1
_ 1
M2f(p1,p2) = sup 78 V1£(z,y)] dy da.
szIGIA ’ ‘ 071
MA f is defined by
M2 f(p1,pa) = sup 7 S|f(fU p2)|dz.
pleIeIA‘ ’
Similarly, MyA f is defined by
M2 f(p1,p2) = sup S\f(ph y)| dy.
po€lcIA ’I|

If f is a measurable function supported on [0, 1], then the dyadic Hardy—
Littlewood maximal function M f is defined on [0,1] by

M f(p) = sup — S!f\
peleZA ’ |

We will also need the following results found in [7].

LEMMA 16 ([7]). Let f be a measurable function supported on Q. Then

(22) \ MavLf ~ (M. f + M, f).

Q Q
Moreover,
(23) V Muvf ~ {(Mf+ M, f).

Q Q

LEMMA 17 ([7]). Let f be a measurable function supported on Q. Then
(24) Vaandp S\ + \ MPAvg f.
Q Q Q
Furthermore,
(25) Van,f < S mf + v, .
Q Q Q

LEMMA 18 ([7]). Let f be a nonnegative measurable function supported
on Q. Let f(x,y) be the function supported on Q which is nonincreasing in x
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(i.e. f(x1,y) > f(z2,y) whenever 0 <z <x9 <1 and 0 <y <1) and such
that, for each y € [0,1], f(-,y) and f(-,y) are equidistributed. Then

| My, M, f < \ MuLM, f.
Q Q

LEMMA 19. Suppose f(z,y) is a nonnegative measurable function sup-
ported on Q which is nonincreasing in x. Then

Vo, f S\ Mdaf+ \ My, f
Q Q Q
Proof. As f is nonincreasing in z, SQ MMf = SQ MM, f. So, letting
/! be a function supported on @ such that f’(z,-) and f(x,-) are equidis-

tributed for each x € [0, 1] and also such that f’(z,y) is nonincreasing in v,
we see that

VMM + MM, f) = (M, My f + M, M, f)
Q Q

~ S My, M, f  (by Lemma 16)
Q

2\ MuLM.f' (by Lemma 18)
Q

~ S Ma:Ma:fl + S Mywa/
Q Q

2\ MM, f
Q

= S MM, f" (since f’ is nonincreasing in both variables)
Q

~ S M,M,f  (by Theorem 6 and the Fubini Theorem). =
Q

LEMMA 20. Let B = [0,27"] x [0,1] be a subset of Q. Suppose f is a
measurable function supported in B. Then

S MuLf S S(Mr + M,)f.
B B

Proof. Let g(x,y) = f(z mod 27", y). As

Hp € Q: MuLg(p) > a}| > 2"[{p € B: Murf(p) > a},
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we see that SQ Myrg > |B|™! {p Murf. As

§ Mg ~ J M+ My)g ~ oz (M + ) 1.
Q Q B

we see that §, Murf S §5(My 4+ M,)f. =

COROLLARY 21. Let R be a rectangle supported in Q) of width or height
one. Let f be a measurable function supported on R. Then

1 1

Proof. This follows from Lemma 20 by symmetry arguments. m

LEMMA 22. Suppose f is a nonnegative measurable function supported
on Q which is nonincreasing in x. Then

£l o )2 (@) S \(MMf + MMF + MM, f).
Q
Proof. We assume without loss of generality that f € C°°(Q). Note that
[{p € Q: Mupf(p) > a}| < 1000[{p € Q - Mgy, f(p) > &/1000}]
for all @ > 0. Then
S My, Mur f ~ S Mg Mgy f.
Q Q

Hence
1Nl Log )2(@) ~ \ ML Mgy f

~

MAMgy f + | M2Mg f  (by Lemma 16).

Q= Q=

Q
It is then enough to show
(1) § a2 Mgy f < §(MM [+ MMf + MM, f),
Q Q
(ii) V M2Mg r < V(MM f+ MM+ M,M,f).
Q Q

To prove (i), let £ be a unit horizontal line segment through Q. Let p € £.
Let B be a horizontal dyadic band through @ such that M2Mg; f(p) ~
1B~ SB M f. Let now fing = f-XB, fext = f - XBe. Now by Corollary 21,

1 1
S MI?Lfint S

A A A AVA A
EB ES(MI ‘l‘My )fintSM (Mz +My )f(p)

B
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Also,
\ M foe = \ My foe S VMM, foxe S\ MM, f
’B| HLJext — HLJext ~> yiMz jext 5 yilg ) -
¢ ¢ ¢
(The equality above holds because Mg} fext is constant on vertical slices
of B.)
So
Vhr2ngy f S \MAME + M2+ M, M, f.
¢ ¢ ¢
Hence

Vhr2mgy f < VA2 + MM f+ | MM, f.
Q Q Q
Now §, MAMZE+MMf S So MAMAf+SQ MAMG f. 1t is clear that
SQ MAMAf < SQ M, M, f. We also have

Var2npp < \Mbaf+ \ MMy f (by Lemma 17)
Q Q Q
S\ Mg+ {(MMf+ MM, f) (by Lemma 19).
Q Q
Hence
{ara v + MM S N (MMF+ MM+ M,M, f),
Q Q
and thus

{ar2nagy < (MM f + MM f + MM, f).
Q Q
So (i) is proved.
We now prove (ii). Since f is nonincreasing in z, we have § oM, AMAf ~
SQ MAM}?Lf. Let £ now denote a vertical unit segment in ), and B the part
of @ to the left of £. We want to show

§MAMEf ~
J4

Let fine = f - XB» fext = [~ XBC Now

és M f S |B| SMHLfmt + 5 |B| SMHLfext

\ Mg f SN(MMf+ MMf + M,M.f).

|B\ )

By Corollary 21 we have

1 1
E S MI?Lfint S E S(Mz + My)fint S M(MI + My)f(p)
B B
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for any p € £. So

1

|B| S MHLfmt ~ SM(MZ +My)f

¢

Now if p € B, then M#} fext(p) < M, f(p) since f(x,y) is nonincreasing in
x and fext is supported to the right of B. Hence

1
E iMI?Lfext s E ]XBMyf < M(Myf)(q)

for any point ¢ € £. So

1

‘B’ SMHLfext NSMM f

Hence §, MAME, f < §, M(M, + M,)f. This implies

VMg f <\ MM, + M) f.
Q Q

As SQ MM, f ~ SQ MM f, since f is nonincreasing in z, and

§ MM, f < § Mo M, f < §(MMF + M, M, f)
Q Q Q

by Lemma 19, we get the desired result. m

We now complete the proof of Theorem 14, and hence of Theorem 11.
[ is a measurable function supported on Q. Without loss of generality we
assume f is a nonnegative function as well. Let f(z,y) be a function sup-

ported on ) which is nonincreasing in x and such that f(-,y) and f(-,y) are
equidistributed for each y € [0,1]. Now

HfHL(logL)z(Q) = ||f||L(logL)2(Q)
< S(MMJ?—F Mmef—i— ]W]Wf) (Lemma 22)

(MM, f+ MM, f)+ \ MMf
Q

MM/f (Lemma 16)

~

MHLMIf

~

Qe L D O

Q
My M, f + S MM (as | Maf| Lrog (@) ~ HMIﬂ|LlogL(Q))
Q
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2

MM f + \ MyM,f+ \ MMf (Lemma 16)
Q Q

MMf+ MM, f+MMf  (Lemma 17)
Q Q

AN

Qe O

as desired. m

[10]

[11]
[12]

[13]

References

R. J. Bagby, A note on the strong maximal function, Proc. Amer. Math. Soc. 88
(1983), 648-650.

A. Cérdoba and R. Fefferman, A geometric proof of the strong maximal theorem,
Ann. of Math. 102 (1975), 95-100.

N. A. Fava, E. A. Gatto, and C. Gutiérrez, On the strong mazimal function and
Zygmund’s class L(log, L)", Studia Math. 69 (1980), 155-158.

R. Fefferman, Multiparameter Fourier analysis, in: Beijing Lectures in Harmonic
Analysis, Princeton Univ. Press, 1986, 47-130.

M. E. Gomez, A counterexample for the strong mazximal operator, Studia Math. 78
(1984), 199-212.

P. A. Hagelstein, Cdrdoba—Fefferman collections in harmonic analysis, submitted
for publication.

—, Rearrangements and the local integrability of maximal functions, submitted for
publication.

G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic ap-
plications, Acta Math. 44 (1930), 81-116.

B. Jawerth and G. Morrow, A note on the strong and iterated maximal operators,
unpublished.

B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of mul-
tiple integrals, Fund. Math. 25 (1935), 217-234.

E. M. Stein, Note on the class Llog L, Studia Math. 132 (1969), 305-310.

—, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.
Press, 1970.

A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1959.

Department of Mathematics
Princeton University

Princeton, NJ 08544, U.S.A.

E-mail: phagelst@math.princeton.edu

Received May 24, 2000
Revised version February 2, 2001 (4537)



