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Local integrability of strong and iterated
maximal functions

by

Paul Alton Hagelstein (Princeton, NJ)

Abstract. Let MS denote the strong maximal operator. Let Mx and My denote
the one-dimensional Hardy–Littlewood maximal operators in the horizontal and vertical
directions in R2. A function h supported on the unit square Q = [0, 1]× [0, 1] is exhibited
such that

�
Q
MyMxh < ∞ but

�
Q
MxMyh = ∞. It is shown that if f is a function

supported on Q such that
�
Q
MyMxf <∞ but

�
Q
MxMyf =∞, then there exists a set

A of finite measure in R2 such that
�
A
MSf =∞.

We begin by listing some basic definitions.

Definition 1. Let f be a measurable function defined on Rn. Denote
by B(p, r) the Euclidean ball in Rn centered at p of radius r, and by |B(p, r)|
the Lebesgue measure of B(p, r). The Hardy–Littlewood maximal function
of f is defined on Rn by

(1) MHLf(p) = sup
r>0

1
|B(p, r)|

�

B(p,r)

|f(z)| dz.

Definition 2. Let f be a measurable function defined on R2. The strong
maximal function of f is defined on R2 by

(2) MSf(x, y) = sup
x1<x<x2
y1<y<y2

1
(x2 − x1)(y2 − y1)

x2�

x1

y2�

y1

|f(u, v)| dv du.

Definition 3. Let f be a measurable function defined on R2. The hor-
izontal maximal function of f is defined on R2 by

(3) Mxf(u, v) = sup
u1<u<u2

1
u2 − u1

u2�

u1

|f(w, v)| dw.
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Definition 4. Let f be a measurable function defined on R2. The ver-
tical maximal function of f is defined on R2 by

(4) Myf(u, v) = sup
v1<v<v2

1
v2 − v1

v2�

v1

|f(u,w)| dw.

The following Orlicz spaces will be very useful to us.

Definition 5. Let I(n) denote the unit n-cube [0, 1]× . . .× [0, 1] in Rn.
L(logL)k(I(n)) is the Lebesgue space of functions on I(n) with norm

(5) ‖f‖L(logL)k(I(n)) = inf
{
c > 0 :

�

I(n)

|f |
c

log
(

3 +
|f |
c

)k
≤ 1
}
<∞.

In the following we will denote the unit square I (2) in R2 by Q. Also,
the k-fold iteration MHL ◦ . . . ◦MHL of the maximal operator MHL will be
denoted by Mk

HL.
We now recall the following theorem of E. M. Stein:

Theorem 6 ([11]). Let k be a positive integer. There exist constants
0 < c = c(k, n) < C = C(k, n) <∞ such that if f is supported on I(n), then

(6) c
�

I(n)

Mk
HLf ≤ ‖f‖L(logL)k(I(n)) ≤ C

�

I(n)

Mk
HLf.

Inequalities such as (6) in the case k = 1 will often be denoted by

‖f‖L logL(I(n)) ∼
�

I(n)

MHLf

for the remainder of this paper.
We now show that there exists a function h supported on Q such that�

Q
MyMxh <∞, but

�
Q
MxMyh =∞.

Theorem 7. There exists a function h, supported on Q , such that�
Q
MxMyh =∞, but

�
Q
MyMxh <∞.

Proof. We define the functions h2n as follows:

(7) h2n(x, y) =
2n−1∑

m=0

22n−m−1χ[0,2−2n+m+1](x) · χ[m·2−n,(m+1)·2−n](y).

The functions h2, h4, and h8 are depicted in Figure 1.

Lemma 8.

(8)
�

Q

MxMyh2n ∼ n · 2n.
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Fig. 1. Functions h2, h4, and h8

Proof. Divide Q into 22n regions Ij,k, j = 1, . . . , 2n, k = 1, . . . , 2n, where
Ij,k is defined as follows:

I1,k = [0, 2−2n+1]× [(k − 1) · 2−n, k · 2−n], 1 ≤ k ≤ 2n;

Ij,k = [2−2n+j−1, 2−2n+j ]× [(k−1) ·2−n, k ·2−n], 2 ≤ j ≤ 2n, 1 ≤ k ≤ 2n.

Let Ĩj,k =
�
Ij,k

Myh2n .

Note that, in Q, Myh2n(u, v) is nonincreasing in u for any fixed v ∈
[0, 1]. Note also that if (u, v) ∈ I◦j,k and (w, v) ∈ I◦j,k, then Myh2n(u, v) =
Myh2n(w, v).

Now, if (u, v) ∈ I1,k, then MxMyh2n(u, v) = Myh2n(u, v). Hence
�

I1,k

MxMyh2n(u, v) du dv = Ĩ1,k, 1 ≤ k ≤ 2n.
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Suppose 2 ≤ j ≤ 2n. Then

(9)
�

Ij,k

MxMyh2n =
�

Ij,k

1
x

[ x�

0

Myh2n(u, v) du
]
dv dx

=
�

Ij,k

1
x

[
Ĩ1,k + . . .+ Ĩj−1,k

2−n
+

x�

2−2n+j−1

Myh2n(u, v) du
]
dv dx

= (Ĩ1,k + . . .+ Ĩj−1,k) log 2 +
�

Ij,k

1
x

x�

2−2n+j−1

Myh2n(u, v) du dv dx

= (Ĩ1,k + . . .+ Ĩj−1,k) log 2 +
�

Ij,k

1
x

(Myh2n(x, v))(x− 2−2n+j−1) dv dx

= (Ĩ1,k + . . .+ Ĩj−1,k) log 2 +
�

Ij,k

Myh2n(x0, v)
(

1− 2−2n+j−1

x

)
dv dx

(where x0 is an arbitrary element of (2−2n+j−1, 2−2n+j))

= (Ĩ1,k + . . .+ Ĩj−1,k) log 2 + Ĩj,k

− (log 2)(2−2n+j−1)
( k·2−n�

(k−1)·2−n
Myh2n(x0, v) dv

)

= (Ĩ1,k + . . .+ Ĩj−1,k) log 2 + Ĩj,k − Ĩj,k · log 2.

So,

(10)
�

Q

MxMyh2n =
2n∑

j,k=1

�

Ij,k

MxMyh2n

= Ĩ1,1 + . . .+ Ĩ1,2n

+ (Ĩ1,1 + . . .+ Ĩ1,2n) log 2+(Ĩ2,1 + . . .+ Ĩ2,2n)−(Ĩ2,1 + . . .+ Ĩ2,2n) log 2

+ (Ĩ1,1 + . . .+ Ĩ1,2n + Ĩ2,1 + . . .+ Ĩ2,2n) log 2 + (Ĩ3,1 + . . .+ Ĩ3,2n)

− (Ĩ3,1 + . . .+ Ĩ3,2n) log 2 + . . .

+ (Ĩ1,1 + . . .+ Ĩ1,2n + . . .+ Ĩ2n−1,1 + . . .+ Ĩ2n−1,2n) log 2

+ (Ĩ2n,1 + . . .+ Ĩ2n,2n)− (Ĩ2n,1 + . . .+ Ĩ2n,2n) log 2

= (Ĩ1,1 + . . .+ Ĩ1,2n) + (Ĩ2,1 + . . .+ Ĩ2,2n) + . . .+ (Ĩ2n,1 + . . .+ Ĩ2n,2n)

+ (2n − 1)(Ĩ1,1 + . . .+ Ĩ1,2n) log 2
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+ (2n − 3)(Ĩ2,1 + . . .+ Ĩ2,2n) log 2

+ (2n − 4)(Ĩ3,1 + . . .+ Ĩ3,2n) log 2 + . . .

+ 1 · (Ĩ2n−2,1 + . . .+ Ĩ2n−2,2n) log 2

+ 0 · (Ĩ2n−1,1 + . . .+ Ĩ2n−1,2n) log 2

+ (−1)(Ĩ2n,1 + . . .+ Ĩ2n,2n) log 2.

Proposition 9. If 1 ≤ j ≤ 2n, then Ĩj,1 + . . .+ Ĩj,2n ∼ n/2n.

Proof. Suppose 2 ≤ j ≤ 2n. Then

Ĩj,1 + . . .+ Ĩj,2n =
2−2n+j�

2−2n+j−1

1�

0

Myh2n(x, z) dz dx(11)

= 2−2n+j−1
1�

0

Myh2n(2−2n+j−1/2, z) dz

∼ 2−2n+j−1 · αj ,
where αj satisfies (by the fact that

� 1
0 Myh2n(u, z) dz ∼ ‖h2n(u, ·)‖L logL)

the equation

(12)
1
2n

[
1
αj

log
(

3 +
1
αj

)
+

2
αj

log
(

3 +
2
αj

)

+ . . .+
22n−j

αj
log
(

3 +
22n−j

αj

)]
= 1.

Now,

(13)
1
αj

log
(

3 +
1
αj

)
+ . . .+

22n−j

αj
log
(

3 +
22n−j

αj

)

≤ 1
αj

log
(

3 +
22n−j

αj

)
+ . . .+

22n−j

αj
log
(

3 +
22n−j

αj

)

≤ 22n−j+1

αj
log
(

3 +
22n−j

αj

)

≤ 2
[

1
αj

log
(

3 +
1
αj

)
+ . . .+

22n−j

αj
log
(

3 +
22n−j

αj

)]
.

So αj ∼ α̃j , where α̃j is defined by

(14)
22n−j+1

α̃j
log
(

3 +
22n−j

α̃j

)
= 2n.
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Then for 2 ≤ j, k ≤ 2n we have

(15) Ĩj,1 + . . .+ Ĩj,2n ∼ Ĩk,1 + . . .+ Ĩk,2n ,

since
Ĩj,1 + . . .+ Ĩj,2n ∼ 2−2n+j−1 · α̃j = 2−2n+j−1 · 2k−j · α̃k

= 2−2n+k−1 · α̃k ∼ Ĩk,1 + . . .+ Ĩk,2n .

Clearly Ĩ1,1 + . . .+ Ĩ1,2n ∼ Ĩ2,1 + . . .+ Ĩ2,2n , so (15) holds for 1 ≤ j, k ≤ 2n.
As

Ĩ2n,1 + . . .+ Ĩ2n,2n =
1
2

(
2−n +

1�

2−n

2−n

x
dx

)
= 2−(n+1)(1 + log 2n) ∼ n/2n,

we get the assertion.

We now finish the proof of Lemma 8. The proposition and (10) imply
�

Q

MxMyh2n ∼
n

2n
· 2n + (2n − 2 + 2n − 3 + . . .+ 1) · n

2n
· log 2

= n+
1
2

(2n − 1)(2n − 2) · n
2n
· log 2

∼ n+
1
2
· log 2 · n · 2n ∼ n · 2n.

Lemma 10. �

Q

MyMxh2n ≤ 10 · 2n.

Proof. Clearly if (u, v) ∈ Q, then

Mxh2n(u, v) ≤
{

22n−1, u ≤ 1/22n−1,
1/u, u > 1/22n−1.

So

MyMxh2n(u, v) ≤
{

22n−1, u ≤ 1/22n−1,
1/u, u > 1/22n−1.

Then

�

Q

MyMxh2n ≤ 22n−1
(

1
22n−1

)
+

1�

21−2n

1
x
dx = 1 + log(22n−1) ≤ 10 · 2n.

We now define the function h by

(16) h =
∞∑

k=1

1
2k+1 ·

1
24k−1 h24k−1 .
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Then
�

Q

MyMxh ≤
∞∑

k=1

1
2k+1 ·

1
24k−1

�

Q

MyMxh24k−1(17)

≤ 10
∞∑

k=1

1
2k+1 ·

1
24k−1 · 24k−1

= 5,

but
�

Q

MxMyh ≥ lim
k→∞

1
2k+1 ·

1
24k−1

�

Q

MxMyh24k−1(18)

∼ lim
k→∞

1
2k+1 ·

1
24k−1 · 24k−1 · 4k−1 = lim

k→∞
2k−3 =∞.

We now show that if f is a function such that
�
Q
MyMxf < ∞ but�

Q
MxMyf = ∞, then there exists a set A of finite measure in R2 such

that
�
A
MSf =∞. This result is particularly interesting in view of the fact

that M. E. Gomez has constructed a function g supported on Q such that�
Q
MxMyg and

�
Q
MyMxg are infinite, but MSg is integrable over every set

of finite measure in R2 (see [5]). Such a construction is also implicit in the
work of Bagby and Jawerth and Morrow ([1], [9]).

Theorem 11. Suppose that f is a measurable function supported on Q,�
Q
MxMyf = ∞, and

�
Q
MyMxf < ∞. Then there exists a set A of finite

measure in R2 such that
�
A
MSf =∞.

Proof. We first recall a theorem due to Fava, Gatto, and Gutiérrez.

Theorem 12 ([3]). Suppose f is a measurable function supported in Q.
Then MxMyf is integrable over every set of finite measure in R2 if and only
if ‖f‖L(logL)2(Q) <∞.

The maximal operators M , M , defined as follows, will be very useful to
us:

Definition 13. Let f be a measurable function supported on Q. The
associated maximal function Mf is defined on Q by

Mf(p1, p2) = sup
x1<p1<x2

1
x2 − x1

x2�

x1

1�

0

|f(x, y)| dy dx.

The associated maximal function Mf is defined on Q by

Mf(p1, p2) = sup
y1<p2<y2

1
y2 − y1

1�

0

y2�

y1

|f(x, y)| dy dx.
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Now, we define the auxiliary functions g and h as follows. If p = (p1, p2)
∈ R2, let

g(p) =
1�

0

|f(p1, y)| dy · χQ(p), h(p) =
1�

0

|f(x, p2)| dx · χQ(p).

Note that if p ∈ R2, then

(19) MSf(p) ≥ 1
2 [MSg(p) +MSh(p)].

Since g and h are tensors on Q, also note that

MSg(p) = MxMyg(p) = MyMxg(p),(20)

MSh(p) = MxMyh(p) = MyMxh(p).(21)

Now, by Theorem 12, MxMyg is integrable over every set of finite mea-
sure in R2 if and only if g ∈ L(logL)2(Q), and similarly for h in place of g.
If ‖g + h‖L(logL)2(Q) =∞, equations (19)–(21) imply the existence of a set
of finite measure in R2 over which MSf is not integrable. So it suffices to
show ‖g + h‖L(logL)2(Q) =∞.

An application of the Fubini Theorem and Theorem 6 yields that

‖g‖L(logL)2(Q) ∼
�

Q

MMf, ‖h‖L(logL)2(Q) ∼
�

Q

MMf.

So it is enough to show
�
Q
MMf +

�
Q
MMf = ∞. As

�
Q
MxMyf .

‖f‖L(logL)2(Q), we see that the proof reduces to proving the following.

Theorem 14. Let f be a measurable function supported on Q. Then

‖f‖L(logL)2(Q) .
�

Q

MMf +
�

Q

MyMxf +
�

Q

MMf.

Proof. It will be technically convenient to work with the dyadic ana-
logues of the maximal operators MHL, M , M , Mx, and My. Recall that a
dyadic interval in [0, 1] is an interval of the form [k ·2j , (k+1) ·2j ], where j is
a nonpositive integer and k is a nonnegative integer such that (k+1)·2j ≤ 1.
We denote the set of dyadic subintervals of [0, 1] by I∆. A dyadic square
in Q is a set of the form I × J , where I and J are dyadic intervals in [0, 1]
of the same length. We denote the set of dyadic squares in Q by S∆. We
formally define the dyadic maximal operators M∆

HL, M∆, M∆, M∆
x , and

M∆
y as follows.

Definition 15. Let f be a measurable function supported on Q. The
dyadic Hardy–Littlewood maximal function M∆

HLf is defined on Q by

M∆
HLf(p) = sup

p∈S∈S∆

1
|S|

�

S

|f |.
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The maximal function M∆f is defined by

M∆f(p1, p2) = sup
p1∈I∈I∆

1
|I|

�

I

1�

0

|f(x, y)| dy dx.

M∆f is defined by

M∆f(p1, p2) = sup
p2∈I∈I∆

1
|I|

1�

0

�

I

|f(x, y)| dy dx.

M∆
x f is defined by

M∆
x f(p1, p2) = sup

p1∈I∈I∆

1
|I|

�

I

|f(x, p2)| dx.

Similarly, M∆
y f is defined by

M∆
y f(p1, p2) = sup

p2∈I∈I∆

1
|I|

�

I

|f(p1, y)| dy.

If f is a measurable function supported on [0, 1], then the dyadic Hardy–
Littlewood maximal function M∆

HLf is defined on [0, 1] by

M∆
HLf(p) = sup

p∈I∈I∆

1
|I|

�

I

|f |.

We will also need the following results found in [7].

Lemma 16 ([7]). Let f be a measurable function supported on Q. Then

(22)
�

Q

MHLf ∼
�

Q

(Mxf +Myf).

Moreover ,

(23)
�

Q

MHLf ∼
�

Q

(Mf +Myf).

Lemma 17 ([7]). Let f be a measurable function supported on Q. Then

(24)
�

Q

M∆M∆
x f .

�

Q

M∆M∆f +
�

Q

M∆
y M

∆
x f.

Furthermore,

(25)
�

Q

MxMxf .
�

Q

MMf +
�

Q

MyMxf.

Lemma 18 ([7]). Let f be a nonnegative measurable function supported
on Q. Let f̃(x, y) be the function supported on Q which is nonincreasing in x
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(i.e. f̃(x1, y) ≥ f̃(x2, y) whenever 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y ≤ 1) and such
that , for each y ∈ [0, 1], f̃(·, y) and f(·, y) are equidistributed. Then

�

Q

MHLMy f̃ .
�

Q

MHLMyf.

Lemma 19. Suppose f(x, y) is a nonnegative measurable function sup-
ported on Q which is nonincreasing in x. Then

�

Q

MxMyf .
�

Q

MMf +
�

Q

MyMxf.

Proof. As f is nonincreasing in x,
�
Q
MMf =

�
Q
MxMxf . So, letting

f ′ be a function supported on Q such that f ′(x, ·) and f(x, ·) are equidis-
tributed for each x ∈ [0, 1] and also such that f ′(x, y) is nonincreasing in y,
we see that

�

Q

(MMf +MyMxf) =
�

Q

(MxMxf +MyMxf)

∼
�

Q

MHLMxf (by Lemma 16)

&
�

Q

MHLMxf
′ (by Lemma 18)

∼
�

Q

MxMxf
′ +

�

Q

MyMxf
′

&
�

Q

MyMxf
′

=
�

Q

MxMyf
′ (since f ′ is nonincreasing in both variables)

∼
�

Q

MxMyf (by Theorem 6 and the Fubini Theorem).

Lemma 20. Let B = [0, 2−n] × [0, 1] be a subset of Q. Suppose f is a
measurable function supported in B. Then

�

B

MHLf .
�

B

(Mx +My)f.

Proof. Let g(x, y) = f(x mod 2−n, y). As

|{p ∈ Q : MHLg(p) > α}| ≥ 2n|{p ∈ B : MHLf(p) > α}|,
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we see that
�
Q
MHLg ≥ |B|−1

�
B
MHLf . As

�

Q

MHLg ∼
�

Q

(Mx +My)g ∼ 1
|B|

�

B

(Mx +My)f,

we see that
�
B
MHLf .

�
B

(Mx +My)f .

Corollary 21. Let R be a rectangle supported in Q of width or height
one. Let f be a measurable function supported on R. Then

1
|R|

�

R

MHLf .
1
|R|

�

R

(Mx +My)f.

Proof. This follows from Lemma 20 by symmetry arguments.

Lemma 22. Suppose f is a nonnegative measurable function supported
on Q which is nonincreasing in x. Then

‖f‖L(logL)2(Q) .
�

Q

(MMf +MMf +MyMxf).

Proof. We assume without loss of generality that f ∈ C∞(Q). Note that

|{p ∈ Q : MHLf(p) > α}| ≤ 1000|{p ∈ Q : M∆
HLf(p) > α/1000}|

for all α > 0. Then
�

Q

MHLMHLf ∼
�

Q

M∆
HLM

∆
HLf.

Hence

‖f‖L(logL)2(Q) ∼
�

Q

M∆
HLM

∆
HLf

∼
�

Q

M∆M∆
HLf +

�

Q

M∆
x M

∆
HLf (by Lemma 16).

It is then enough to show
�

Q

M∆M∆
HLf .

�

Q

(MMf +MMf +MyMxf),(i)

�

Q

M∆
x M

∆
HLf .

�

Q

(MMf +MMf +MyMxf).(ii)

To prove (i), let ` be a unit horizontal line segment through Q. Let p ∈ `.
Let B be a horizontal dyadic band through Q such that M∆M∆

HLf(p) ∼
|B|−1

�
B
M∆

HLf . Let now fint = f · χB, fext = f · χBc . Now by Corollary 21,

1
|B|

�

B

M∆
HLfint .

1
|B|

�

B

(M∆
x +M∆

y )fint .M∆(M∆
x +M∆

y )f(p).
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Also,
1
|B|

�

B

M∆
HLfext =

�

`

M∆
HLfext .

�

`

MyMxfext .
�

`

MyMxf.

(The equality above holds because M∆
HLfext is constant on vertical slices

of B.)
So �

`

M∆M∆
HLf .

�

`

M∆(M∆
x +M∆

y )f +
�

`

MyMxf.

Hence �

Q

M∆M∆
HLf .

�

Q

M∆(M∆
x +M∆

y )f +
�

Q

MyMxf.

Now
�
Q
M∆(M∆

x +M∆
y )f .

�
Q
M∆M∆

x f +
�
Q
M∆M∆

y f . It is clear that�
Q
M∆M∆

x f ≤
�
Q
MyMxf . We also have

�

Q

M∆M∆
y f .

�

Q

MMf +
�

Q

MxMyf (by Lemma 17)

.
�

Q

MMf +
�

Q

(MMf +MyMxf) (by Lemma 19).

Hence �

Q

M∆(M∆
x +M∆

y )f .
�

Q

(MMf +MMf +MyMxf),

and thus �

Q

M∆M∆
HLf .

�

Q

(MMf +MMf +MyMxf).

So (i) is proved.
We now prove (ii). Since f is nonincreasing in x, we have

�
Q
M∆
x M

∆
HLf ∼�

Q
M∆M∆

HLf . Let ` now denote a vertical unit segment in Q, and B the part
of Q to the left of `. We want to show

�

`

M∆M∆
HLf ∼

1
|B|

�

B

M∆
HLf .

�

`

(MMf +MMf +MyMxf).

Let fint = f · χB, fext = f · χBc . Now

1
|B|

�

B

M∆
HLf .

1
|B|

�

B

M∆
HLfint +

1
|B|

�

B

M∆
HLfext.

By Corollary 21 we have

1
|B|

�

B

M∆
HLfint .

1
|B|

�

B

(Mx +My)fint .M(Mx +My)f(p)
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for any p ∈ `. So

1
|B|

�

B

M∆
HLfint .

�

`

M(Mx +My)f.

Now if p ∈ B, then M∆
HLfext(p) ≤ Myf(p) since f(x, y) is nonincreasing in

x and fext is supported to the right of B. Hence

1
|B|

�

B

M∆
HLfext .

1
|B|

�

B

Myf .M(Myf)(q)

for any point q ∈ `. So

1
|B|

�

B

M∆
HLfext .

�

`

MMyf.

Hence
�
`
M∆M∆

HLf .
�
`
M(Mx +My)f . This implies

�

Q

MM∆
HLf .

�

Q

M(Mx +My)f.

As
�
Q
MMxf ∼

�
Q
MMf , since f is nonincreasing in x, and

�

Q

MMyf ≤
�

Q

MxMyf .
�

Q

(MMf +MyMxf)

by Lemma 19, we get the desired result.

We now complete the proof of Theorem 14, and hence of Theorem 11.
f is a measurable function supported on Q. Without loss of generality we
assume f is a nonnegative function as well. Let f̃(x, y) be a function sup-
ported on Q which is nonincreasing in x and such that f̃(·, y) and f(·, y) are
equidistributed for each y ∈ [0, 1]. Now

‖f‖L(logL)2(Q) = ‖f̃‖L(logL)2(Q)

.
�

Q

(MMf̃ +MyMxf̃ +MMf̃ ) (Lemma 22)

∼
�

Q

(MxMxf̃ +MyMxf̃ ) +
�

Q

MMf̃

∼
�

Q

MHLMxf̃ +
�

Q

MMf̃ (Lemma 16)

∼
�

Q

MHLMxf +
�

Q

MMf (as ‖Mxf‖L logL(Q) ∼ ‖Mxf̃‖L logL(Q))
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∼
�

Q

MxMxf +
�

Q

MyMxf +
�

Q

MMf (Lemma 16)

.
�

Q

MMf +
�

Q

MyMxf +
�

Q

MMf (Lemma 17)

as desired.
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