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A transplantation theorem for
ultraspherical polynomials at critical index

by

[J. J. GuapaLUPE] (Logrofio) and V. I. KOLYADA (Odessa)

Abstract. We investigate the behaviour of Fourier coefficients with respect to the sys-
tem of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz
space L) corresponding to the left endpoint of the mean convergence interval. The ul-

traspherical coefficients {CSLA)( f)} of Ly-functions turn out to behave like the Fourier
coefficients of functions in the real Hardy space Re H ! Namely, we prove that for any

[ € Ly the series > o2, cgf\)(f) cosnf is the Fourier series of some function ¢ € Re H!
with [|@llre g1 < cllfllz, -

1. Introduction. Let I = [-1,1], 0 < A < oo and dmy(x) =
(1 —22)*~1/2 dz. Denote by {909)}3;0 the normalized system of ultraspher-
ical polynomials, that is, the orthonormal system in L2(I,m,) obtained
from {2"}52, by the Gram-Schmidt process. It is well known (see [18],
[19]) that {90%)‘)} is a basis in LP(I,my) if and only if py < p < p!, where
px = A+ 1)/(A+1) (for any p € (1,00), by p’ we denote its conjugate
exponent, p' = p/(p —1)).

Let f € L'(I,m)) and

(1.1) an(f) = | F(@)ol) () dma ().
I
Form a cosine series with these coefficients:

(1.2) Zan(f) cosnb,

and consider the following problem. Suppose that f belongs to some Lorentz
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space LP" (I, my). What conditions imply that the series (1.2) is the Fourier
series of a 2w-periodic integrable function ¢ and what class does ¢ belong
to?

Observe that “transplantation” problems of such type and their applica-
tions have been studied in a lot of works (see [1-3], [8], [17]). Our interest in
these problems was motivated by estimations of Fourier coefficients (1.1). It
can be easily proved that if f € LP"(I,my), px < p < 2, then {a,(f)} € 19
where ¢ = p/[(2—p)A\+1] (See Section 4 below). The related transplantation
theorem follows immediately from the results of Askey and Wainger [2] (see
also Lemma 2).

THEOREM A. Given f € LP"(I,my) (A > 0, px < p < 2, r > 1),
the series (1.2) is the Fourier series of some function ¢ € L%7|0,2n],
q=7p/[(2=p)\+1], such that

lellzar < el fllrrms)-

It is well known that for any function ¢ € L%7[0,27] (1 < ¢ < 2,
r > 0) the sequence of its trigonometric Fourier coefficients belongs to 14
(see [9], [21]).

The situation changes in the critical case p = py. Using the asymptotic
formula for ultraspherical polynomials (see [10, Proposition 2.3]), it is easy
to deduce that for 1 < s < oo,

eIl o > e(lnn)® (e > 0).

The uniform boundedness principle then implies that for any r > 1 there
exists f € LP»"(I, m)) whose sequence of Fourier coefficients with respect

to {4,053‘)} is unbounded (see also [5], [15], [18]). On the other hand, it follows
from the asymptotic formula that for any function f € LP*(I,m)),

lan ()] < cllfllLoxtimy):
which in turn implies that a,(f) — 0. Moreover, we prove that for each

f € LP»Y(I,my),

|an (/)]

(13) n+1

hE

<clfllzeainyy (A >0).

n=0

The known transplantation theorems cannot be applied to the limiting
case p = pyr, r = 1. Formally, in this case Theorem A should give the
corresponding function ¢ belonging to L'[0,27]. But it is well known that
for p € L]0, 27] the series

27

(1.4) S L B = 5 e as
nez 0
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may diverge. At the same time, by Hardy’s theorem, the series (1.4) con-
verges for any ¢ € Re H'.

Recall that Re H! is the real Hardy space of all 2m-periodic functions
¢ € L'0,27] such that the conjugate function @ also belongs to L1[0,27];
the norm in Re H! is defined by

lellre mr = llelly + 12]l1-
The main result of this paper is the following theorem.

THEOREM 1. Let f € LP»Y(I,m)), 0 < A < oo, and let {a,(f)} be the

sequence of Fourier coefficients of f with respect to the system {cp,({\)}. Then
the series (1.2) is the Fourier series of some function ¢ € Re H' such that

[@llre 1 < el flloxt(my)-

To prove this theorem we use Mehler’s integral representation of ultra-
spherical polynomials and Weyl’s fractional integrals.

o~ an(f)

where f € LPA1(I,m,) and {a’(f)} is the non-increasing rearrangement
of {a,(f)}, may diverge (see Section 4). At the same time, applying
L'-estimates of exponential sums [12], [14] and Theorem 1, we immediately
obtain the following analogue of Littlewood’s conjecture.

Notice that the series

COROLLARY. Given A > 0, there exists a constant Ay > 0 such that for
any set of positive integers nq < ... <npy,

N
IS
k=1 "

> Aylog N.

LPx1(my)

2. Auxiliary propositions. First we recall the definition of the Lorentz
space (see [4]). Let (R, 1) be a measure space with a finite measure p. The
non-increasing rearrangement of a p-measurable function f defined on R
will be denoted by f;:. The Lorentz space LP" (R, ) (1 < p,7 < 00) consists
of all f such that

n(R) de\ VT
||f||p,rz< | [tl/pf;(t)]”?> < 0.

0
Let f € LP"(I,my), 0 < A < oco. Consider the measure py in [0, 7] de-
fined by dux(0) = (sin0)?* df. Set h(0) = f(cosf), § € [0, ). It is easy to see
that fr (t) = h}, (t). Thus, [[fllzerz,my) = [IRller(o,x],uy)- Furthermore,
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we have (see (1.1))

us

an(f) = [ (O)p1Y (cos 0) dux(6).
0

It will be more convenient to consider the function h(#) instead of f(z).
Also, we define

22 +1
— [Pl < = .
E)\ ([Oaﬂ-}vﬂ)\) (0—A<OO7 P >\+1)
LEMMA 1. Let 0 < o < (3. Then for any measurable set E C [0, 7],
(2.1) pa(E) < 8[ps(E)] P +D/CHHD,
Proof. Let 7 = pug(E) = |E|. Then
/2 2841
— {(sin )27 in )28 T
pua(E) = g(smm) dx > 2 § (sinx)“” dx > AT )

Thus, |E| < 8[ug(E)]Y/ 35+, Using this estimate, for 0 < a < 3 we have

o/B
o (E) = S(sin:n)%‘ dr < ( S(sinfv)% dx) |E|(B=)/B
E E
< 8[pug(B)] o/ @540,
The lemma is proved.

In what follows we will write f; instead of f} .

LEMMA 2. Let 0 > 0,0 < a < 3 and p = 2(8 — «)/o. Suppose that f
is a measurable function on [0,7] and p(x) = f(z)(sinx)?. Then

s

22 e =4

ctY

1/p
f;(u)pdu> , 0<t<m,

where v = (26+1)/(2a+ 1) and ¢, are some positive constants. Further-
more, if f € Lg and 0 =0 —«, then p € L, and

(2.3) lellca < Cllflles-
Proof. Let 0 <t < 1/4 and let E; C [0, 7] be a measurable set such that
pp(Ey) =17 and
{z c[07]: [f(2)| > f5(t")} € Er C{z € [0,7] : |f(2)] = f5(27)}
Set f4(x) = £()(o.x\5, (). Then (sce [4], p. 49)

us us

S | fe(@) P dps(x) = S f5(w)? du.

0 t
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By (2.1), pa(Er) < 8t. Setting ¢i(z) = fi(x)(sinx)?, we have

ow@Pdua(@) = | lo@)P duale)
0 [0, 7]\ E:

us us

> | enPdu> | ohu) du.

Ho(Er) 8t
Taking into account that
Ve (@) P dpa(a) = § |fo(@)” dus(z),
0 0
we obtain
ton (90 < | @l (w)? du < | f5(w)? du,
8t £

which implies (2.2).

55

Let now 0 = § — a. Using (2.2) and standard estimates (see [4], p. 217),

we get

T

1/2
f;<u>2du) <t | i)

ctv /2

e <3 i

ctY

From this the inequality (2.3) follows immediately.

Now we will consider some results related to fractional integrals.

Iy
B

Let p € L1[0,27] and 0 < a < 1. The Weyl fractional integrals of order

a of the function ¢ are defined by the equality (see [20], §19)

27
« 1 (0%
1 o) = o [ W7 (@ — t)p(t) dt,

0
where
(2.4) W (1) = o (t) +1a(t), —27 <t <2,
with ¢ (t) = 27[t|* T x(0,00)(£) /T () (t € R) and rq(t) € C®(—2m,27];
furthermore,
(2.5) v (1) = o' (<),

LEMMA 3. Let g € L'[0,a] (0 <a<m),0<A<1, a€R,
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G(z) = 0 for a < xz < 27, and G(z + 27) = G(x). Then there exists
¢ € L0, 27 such that
(2.6) el < ellglh
and for almost all x € [0, 27],
G(z) = Ag + IV ().
Proof. 1t is easy to see that

a

(2.7) V 1G(2)[a=* do < cl|g])s-
0
Let
d(z) = 1" VG(2) = % 7§T v (@ — ) Gy) dy
= ﬁ iG(y)(y —x) Ny + % §)T1A(y —z)G(y) dy

=& () + Po(z), x € [—m, 7]

(see (2.4), (2.5)). The function @ is periodic with period 27. The lemma will
be proved if we show that @ is absolutely continuous in [—7, 7] and ¢ = —@’
satisfies (2.6) (see [20], p. 348).

Observe that @, is infinitely differentiable on [—7, 7] and

(2.8) D500 < el Gl < llglla-

Now consider the function ¢;. For z € [—m,0) we have

") = §G<y><y o)y
and, by (2.7),
(2.9 5 @ (a) de < ﬁ& Gla)la dz < cllgl.
Let now = € [0, ). Then
") = T §g<y>s<w,y> ay,

where
1

s(e,y) = (€2 (1 — ) eielrrev=o) g,
0
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We have |s/,(z,y)| < ¢ and therefore
P1(z) <c(lg(@)| + lglh), = €[0,a),

and
a

(2.10) | 12 ()| dz < cllg-
0

Note also that @;(x) = 0 for x € [a, 7] and by (2.10), ¢, is continuous at
a. Thus, &, is absolutely continuous in [—m,7]. Moreover, it follows from
(2.8)—(2.10) that ||2'||1 < ¢|lg|/1- The lemma is proved.

Similarly, we have

LEMMA 4. Let g € L'[0,a] (0 <a<7),0< A <1, a€R,
“””S (y)dy, 0<uz<a,

() =0 for a < x < 277, and H(x + 2m) = H(x). Then there exists
Y € LY0,27] such that
19l < cllglly

and for almost all x € [0, 27],
H(z) = By + IV ().

LEMMA 5. Let A > 1 and ¢ be a measurable function in an interval [0, al,
(0 < a <) such that

(2.11) | lo(z)]a " do < 0.
0
Let

Ga(z) = {o(y)(cosz —cosy)*Tdy, O0<z<a.

Then:

(i) for any 0 < k < [A\] — 1, the derivative Gf\k) is bounded in (0, al;
(ii) if X\ > 2, then for any odd k < [A] — 1,

: (k) _

Proof. First suppose that ¢ is an arbitrary locally integrable function
n (0,a]. We will show that for any integer v > 2 there exists a constant
C, > 0 such that forall A € [r,v+1),1 <k <v—1andz € (0,a),
(2.12) GV (@) < Coa | o)y T+ 2 dy i k is odd,

€T
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(2.13) GV (@) < G o)y *2dy,  if k is even.

xT

We have

G\(z) = (1 - \)sinz S o(y)(cosx — cosy)* " 2dy = (1 — \)Gr_1(z) sinz.

x

Hence
|G\(z)] < (A= l)xs lo(y)](1 — cosy)* 2 dy < (A — xs lo(y) yP "t dy,
and therefore, for any v > 2 and k = 1, the inequality (2.12) holds. If v > 3

and k > 2, then for any A € [v,v + 1),

SR () B G B L

§=0
Applying induction, we easily derive inequalities (2.12) and (2.13).
Now, assume that the condition (2.11) holds. It implies that G is con-

tinuous in [0, a]. Further, the statements (i) and (ii) follow immediately from
(2.12) and (2.13). The proof is complete.

LEMMA 6. Let o € R and

Kao(z,y) = <

Then there exist numbers dy > 1 and co > 0 such that for 0 < x <y < 7/2,

o
CcOS X — COS
_— y>, 0<z<y<m/2
siny

(2.14) Kalz,y) = (y = 2)*[14+ Y Au(m)(y -
n=1
where
(2.15) [An(y)l < coldoy)™, 0 <y<m/2.
Proof. Let
& 1—
,ug(z)zz SRR CBZ cotd (z€C, z#0).
z z
Setting |z| = o, we have (for p < 2)
o 2 o0 2\ 1 2
z —sinz < o Z o 100
2 6 2 \20 3(20 — 02)
. [e'S) 2\ N
1—cosz < 4 Z o 60
z 2 ot 12 12—-0p
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Thus, for 0 < § < /2,

1002 60
< t 0.
|[L9(Z)| = 3(20 — 92) + 12 — 92 CcOo

Setting dy = v/10/m, we can easily see that

(216) sup sup |,u9(z)‘ < 1.
0<0<7/2 |z|=do0

We have
cosz —cosy = zsiny [1 — py(2)], z=y—=x.

Set
by(2) = [1=py ()], [2] < doy, 0 <y <7/2.
This is an analytic function for |z| < dpy (see (2.16)). Thus,

¢y(’z) =1+ Z An(y)z",

where

An(y):% g i’i(j) dz.

1
|z|=doy

From this we immediately obtain the estimate (2.15). The equality (2.14)
also holds, and the proof is complete.

3. Transplantation theorem. By H' we denote the space of all
complex-valued 2m-periodic functions f € L]0, 27] such that
2m

1 ,

=5 S f(z)e ™ dx =0 foralln <O0.
™

0

f(n)
The norm in H' is defined by
2m

| fller = S |f(z)|dx.

0
It is well known that a complex-valued function f € L'[0,2n] with
SEW Im f(z)dx = 0 belongs to H' if and only if Re f = Im f; in this case
both Re f and Im f belong to Re H'.
The proof of Theorem 1 (for non-integer \) is based on the following
main lemma.

LEMMA 7. Let fe Ly (0<A<1),0<a<mand a € R. Set

a

(3.1) F(o)=\(y—2) ' f(y)(siny) dy, 0<z<a,

x
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and
nty —i(nta)
(3.2) Cn = o gF(x)e dx, neN.

Then there exists a function ® € H' such that

(3.3) cn=P(n) forallneN
and
(3-4) 1Pl < cllfllcs-

Proof. Set F(z) =0 for a < x < 27 and extend F' to the whole line with
period 2. Define g(z) = f(z)(sinz)*, x € [0, 7]. By Lemma 2, g € L*[0, 7]
and

(3.5) lglls < cllfllz,-

Let G(z) = e "*F(z). By Lemma 3, there exists ¢ € L'[0,27] such that
(3.6) G(z) = Ay + TN ()

almost everywhere in [0, 27| and (see (3.5))

(3.7) lells < ell flles-

By (3.2), we have ¢, = n*G(n) (n € N). On the other hand, by (3.6) (see
[20], p. 348),

N i
(3.8) G(n) = @(n)|n| > exp (%signn) (ne€Z,n#0).
Therefore,
(3.9) @(n) =e */2¢,  neN.

Now we will show that the function G can also be represented by a frac-
tional integral of a “conjugate” type. We will use the following observation.
Consider a singular integral operator

Tr—¢E

(Sv)(z) = * Tim ( |+ )Lyldy z € (0,a),
0

O J—
T e—+ i Yy

where v € L[0, a]. Further, define the linear operator
(Tu)(z) =272 (Sv)(2),  v(z) =u(@)2® (z€(0,a))

(z) =
for u € LY([0,al,uy) (0 < X < 1). If 1 < p < (2X + 1)/(2)), then
—1 < 2X\(1 — p) and the operator S is bounded in LP([0, a], z**(1~P) dx)
(see [20], p. 200). Thus, for 1 <p < (2A+1)/(2A),
(Tw@P )" < e (§u@P due)

0 0
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By interpolation, T is bounded in LP**([0, a], uy) = Lx,
(3.10) [Tulz, <clulg,-
Now for any h € L'[0,a] and z € [0, a] define

T h(z) = ﬁ | (@ =) "h(y) dy,
0
Phia) = g5 | = hw) dy,

We have F(z) = I'(A\)J*g(z). Note that it is sufficient to prove the lemma
in the case when f is bounded (the general case then follows by standard
arguments). Under this assumption we have the equality (see [20], p. 206)

(3.11) J2g(x) = J}g(x) cos Aw + J}g(x) sin A,

where g(xr) = z72(Sv)(z), v(z) = 2 g(x) (x € [0,a]). Define f(x) =
g(z)(sinz)~*. By (3.10), Hj_"HZA < c||f|lz,- Lemma 2 shows that g € L*[0, d]
and

(3.12) g1l < el flles-

Now, setting h(x) = g(x) cos A7+ g(x) sin A7 and using (3.5) and (3.12), we
find that h € L'[0,a] and

(3.13) [hlly < ¢l fllz,-

Furthermore, in view of (3.11),
xT
F(z)=\(z—y)'hy)dy, 0<z<a
0
Using Lemma 4, we obtain

G(z) = Ay + IJ(:‘)w(:U) a.e. in [0, 27],
where v € L]0, 27] and

(3.14) 19l < cll flles-

Thus,

(3.15) G(n) = p(n)|n|~> exp<—?signn> (n€Z,n#0).
and

(3.16) ¥(n) = e*™?¢,, neN.

Set now

&(x) = i(2sin Am) " Hp(2)e A2 — (x)e .
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Then & € L'[0,27] and, by (3.7) and (3.14),
12l < ellflles-
Furthermore, applying (3.8), (3.9), (3.15) and (3.16), we have
d(n)=c¢, (neN) and &(n)=0 (n<0).

Thus, @ € H' and & satisfies the conditions (3.3) and (3.4). The proof is
complete.

Now we will prove the main theorem. By Mehler’s formula (see [6],
p. 177),

cos(n + A

(3.17) oM (cosh) = )(sin §)1=2A

O e

(cosp — cos @)~
for every 6 € [0, 7] and A > 0, where
922-1/2P(\ +1/2) ((n + A (n+ 2)) > 12
w'(2)) I'in+1)
= + 0.
THEOREM 1. Let A >0, f € L) and

s

an(f) = | f(@)p (cos z) dux(a).

0

(3.18) to(\) =

Then the series
(3.19) Z ay, COSNT
n=1

is the Fourier series of some function ¢ € Re H'such that

(3.20) ellre zr1 < |l fllzy-

Proof. First we suppose that f(z) = 0 for x € (7/2,7]. Set g(z) =
f(z)(sinx)*. By Lemma 2, g € L'[0, 71]. Using (3.17), we get

/2 T
(3.21)  a, =t,(N) S f(z)sinz dx S cos(n 4+ Ay (cosy — cos2) " dy
0 0
/2
=t,(N\) S F(x)cos(n + Nz dz,
0

where

siny

cosx — Ccosy At
F(z)= | g K(z,y)dy, K(z,y) = (7)
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(0 <z <y<m7/2). By Lemma 6,

K(oy) = (y-2 1+ 3 Aum)ly— )],

where, for some dy > 1,
(3.22) [An(y)| < coldoy)™, 0<y<m/2.

Thus,
/2

Fle)= | g@)y—x) " dy+ ) Qu(@)

x

where
/2

Qu() = | 9@ An(y)(y — )" " dy.

xT

Set
/2

W) =9WAn), &G =- | &udy (k=01,...).

y
Applying (n — 1)-fold integration by parts to the integral @, (z), we get
/2
Qu(z)=m+XA-1) .. | (y—2)* "6 1(y) dy.

Thus,
(3.23) Fx)= | (y—=2)*""h(y)dy,
where h(y) is defined by

i n+A—1)...2,-1(y).
It remains to observe that :

(n—;l)! V(2= 9)" (=) An(2) dz,

which we again obtain by integration by parts. Thus,

gn—l (y) =

/2
(3.24) Z BT - o Ay

63
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Taking into account (3.22), we obtain
e
(3.25) @) < lg@) +e | X ay, o 0./,
Set fo(x) = h(x)(sinz) ™, x € (0,7/2] (fo(z) =0 for z € (7/2,7]). We will
show that fo € £,. We have

[fo(@)] < [f(@)] + c(a),

where
/2
) =2 | [f)ly* " dy.
For any measurable set £ C [0,7/2] with pux(E) = t we have supFE >
t1/ (A1) Thus,

/2
Yi() <MD f )y dy.
£1/(22+1)
It follows that
/2 /2
[9lley = § /Py dt/t <e § 1f@)ly*dy < ) flles-
0 0
Thus,
(3.26) [follex < cellflics-
We now return to the equality (3.21). Observe that

w/2
F(z) = S f(y)siny (cosz — cosy)* L dy
and the function @(x) = f(x)sinx satisfies the condition (2.11). Let
A = v+, where v > 0 is an integer and 0 < v < 1. Applying v-fold
integration by parts to the integral on the right hand side of (3.21) and
using Lemma 5, we obtain

w/2

On the other hand, from (3.23),

(3.27) an = (~1)

w/2
FO(@) = (1" = 1) (A=) | (g — ) hly) dy.

xT
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Let f(x) = fo(x)(sinz)”. Then, by Lemma 2 and (3.26), f € L., and

(3.28) IFlle, < el flles-
Moreover, h(z) = f(x)(sinz)".
Suppose that 0 < v < 1. Set
/2
(3.29) F(z)= | (y— 27" F(y)(siny)” dy.

x

In view of (3.18), we have

/2
1 _
(3.30) an =mn" (c’,\ + O(ﬁ)) S F(z)cos((n+ Nz —vn/2)dx.
0
By Lemma 7, the sequence
/2
al, =n" S F(z)cos((n + Nz — vr/2) dx
0

is the sequence of Fourier coefficients of some o € Re H' with

lollre < el flls-

Now suppose that a,, = O(1/n) and (,, = a,,a,,. Then

[ee]

1/2
(>3) " <emax|a| < clolh < ¢|flle,.
n=1

Thus, {3,} is the sequence of Fourier coefficients of some function in L?
whose L%-norm does not exceed C||f]|z, - It follows that (3.19) is the Fourier
series of some ¢ € Re H'! satisfying (3.20).

Now suppose that v = 1 and v is an even number. Then (see (3.29) and
(3.30))

/2

1 _
(3.31) an = (—1)"/? <c’,\ + O(ﬁ)) X f(z)sinzsin(n + \)z dx.
0
We will show that the function h(z) = f(|z|)sinx, € [, 7], belongs to
Re H!.
Let 0 < 6 < 7/4, Qs = {

xz:6 < |z| <26} and hs = hxg,. Choose some
1 <r < 3/2. Since p1([6,26]) < (

26)3, we have

1 26 1/r 26 B 1/
(3.32) (E Sé‘hé(x)T dx) < 05173/r( § F(z)|" dﬂl(fU))
2
53
< ead = L dt = 2609).

0
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Set as(x) = hs(z)/£(0). Since the function h(J) is odd, it follows from (3.32)
that as is a (1,7)-atom supported in [—26,26] (see [7], p. 247). Set now
8k =2 %17 (k € N). Then

(3.33) h(z) =) hs(z) =) &6r)as, (x)
k=1 k=1

Furthermore, using (3.28) we have

—3k

e’} o 2
D€)< 2R Fayet /T dt
k=1 k=1

0
S V3T ) dt = | Flle, < 1 fllca
0

Thus, (3.33) is a (1,r)-atomic decomposition of h ([7], p. 257). It follows
that h € Re H! and

(3.34) [Allge < cllfllzs-
Let
9 /2
b, = — X h(z)sin(n + Nz dz.
7r
0

Then >°°7 | b, cos(n + M)z is the Fourier series of some function in Re H'
whose Re H!-norm does not exceed c|| f||z, (see (3.34). It easily follows that
the same is true for Y - b, cosnx, and therefore also for the series (3.19)
(see (3.31)).

It remains to consider the case when A is a positive even number. By
Lemma 5, in this case F(*~1(0) = 0. Thus, by (3.27), (3.23) and (3.18),
1 w/2
(3.35) ap, = <c',\ + O<—>> S h(z) cos(n + \)z dx.
n

0

Recall that the function h is defined by (3.24) for = € [0, 7]. Set h(x) =
h(—z) for x € [-m,0) and extend h by periodicity with period 27. We will
show that h € Re H'.

For any 0 < 0 < /4 set fs = fX[s26], 95(x) = fs(x)(sinz)* and, as
n (3.24),

0o /2
(336) hs() = go(a) + 3 CFEATD A Ty a1 44 (0) dy
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for x € [0, 7] (hs(z) = hs(—2x) for x € [-m,0)). Let
/2
Fs(x) = | gs(y)K(z,y)dy.
By Lemma 5, Fé()‘_l)(()) = 0. On the other hand, similarly to (3.23),
/2
Fs(x)= | (y—2)* "hs(y) dy,

and therefore
w/2

(3.37) | hs(y)dy =o0.
0

As above, the estimate (3.32) holds and, in view of (3.37), the function
as(x) = hs(x)/£(0) is a (1,r)-atom supported in [—26,26]. Furthermore,
setting 0, = 27% 17, we have

f@)=>"fs(z), xel0n]
k=1

This equality, by (3.24) and (3.36), yields (3.33). As above, we have the
estimate (3.34). Finally, by (3.35), we obtain the statement of the theorem.

Thus, the theorem is proved in the case when supp f C [0,7/2]. Now
suppose that supp f C [r/2,7]. This case reduces at once to the preceding
one. Indeed, set fi(x) = f(m — z), € [0, 7]. Taking into account that

P (=2) = (=1)"eM (2)
(see [6], p. 175), we get an,(f) = (—1)"an(f1). As already proved,
oo L an(f1) cosnz is the Fourier series of some ¢; € Re H! such that
(3.38) le1llre mr < cllfilley = el fllea
Now, the series

Z an(f)cosnx = Z(—l)”an(fl) cos nx
n=1 n=1

is the Fourier series of ¢(z) = o1 (m—x). Furthermore, the conjugate function
@P(x) is —@1(m — x). Thus, ¢ € Re H! and (see (3.38))
[ellre ar = llells + 120l = llerllre a2 < €l fll2y-
The general case now follows immediately. The proof is complete.

4. Some remarks on Fourier coefficients. In this section we will
consider some estimates of Fourier coefficients with respect to the system of
ultraspherical polynomials.
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We will use the following estimate ([23], Theorem 7.33.1 and formula
(7.33.6)): for any A > 0,

(4.1) oM (cos B)| < Cy min(n?, (sinf) ™), 6 € [0,7].
PROPOSITION 1. Let f € LP" ([0, 7], ux) (1 <p<2,1<7r<2)and

s

(42) an(F) = § S (cos ) dpa (),
0

Then

(1.3 (bt < il

where a = (1 +2X\)(1/p' — 1/p)).
Proof. We apply some standard arguments (see [9], [16]). Let Ej
(k=0,1,...) be a measurable set with uy(Ey) = 271 such that
Fayl{ 2 HEHEO) foralla e B,
< fR(27FCMY for all x € [0, 7]\ Eg.
Set
fe(@) = fo)xe,(x),  g(x) = f(z) = fulx), w€[0,7].
Then we have (setting §, = 27+ 1))

6k ™

/
§i@dt gkl = ( | fi“(t)cht)1 g
0 Sk
)

We also have (see (4.1) and (4.2))

1l o) =

Jan(Fl < enM filliunys D an(gn)® < N9klZaquy)-

n=0
Thus
ok+1_q 1/2 Ok ™
) ) B § 1/2
oy = (z_k 3 an(f)2> <2 | fr(t)de +2 ’“/2( | f/\<t)2dt>
n=2%k 0 Ok

Using this estimate and applying Hardy type inequalities (see, for example,
[11], Lemma 2), we easily get

(2%0%)" < [fllLerqun)-

Nk

b
Il

0
This implies (4.3).

Note that for = p the inequality (4.3) follows from the Marcinkiewicz—
Zygmund inequality [13] (see also [11], [22]).
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In the case p = py, r = 1 we have the inequality (see (1.3))

— |an(f)|
(4.4) — < | flles-
7;) n+1 £

Ifpr <p<2,1<r <2 then 0 < ar < 1. In this case the inequal-
ity (4.3) can be strengthened.

For any sequence {a,} with a,, — 0 denote by {a}} its non-increasing
rearrangement. By the Hardy-Littlewood inequality [4, p. 44],

(4.5) S lanfl < 3 ass.
n=1 n=1

PROPOSITION 2. Let f € LP" ([0, 7], ux) (A >0, pr <p<2,7r>1) and
a=(1+2\)(1/p" —1/p)). Then

. * T, raa— 1/T
(46) (@) < el fllnrgu.
n=1
Proof. Let ¢ =p/[(2—p)A+1]. Then 1 < ¢ < p and o = 1/¢’. Observe
that the left hand side of (4.6) is the 19 "-norm of the sequence {a, (f)}.
Set g(x) = f(x)(sinz)*. It follows from (2.2) that

1 g 1/2
s<e(3 | Rwia)
22 +1
Applying this inequality, we easily see that g € L2"[0, 7] and
(4.7) lgllzar < cllfller(uy)-

Let now ugf‘)(H) = gpgf\)(cos 0)(sin#)*, 6 € [0,7]. The system {ugf\)} is or-
thonormal in L?[0,7]. Moreover, by (4.1), it is uniformly bounded. Also
(see (4.2)),

T

an(f) = | g(0)ul} (9) db.
0

Thus, using the generalized Paley inequality (see [9], [21]), we get

(4.8) lan(llarr < cllgllzar
Applying (4.7), we obtain (4.6).

Actually, to prove (4.8) it would be sufficient to apply the same reasoning
as in the proof of Proposition 1.

By (4.5), for r < ¢’ the inequality (4.6) is stronger than (4.3).

Now consider the case p = py, r = 1. In this case we have the inequal-
ity (4.4). It is natural to ask whether it is possible to replace a,(f) by a’ (f)
in (4.4). The answer is negative.
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PROPOSITION 3. For each A > 0 there exists a function f € Ly such
that the series

*

n

n=1

diverges.
Proof. Let v; = 2%, Nj = vji1 —v; (j € N). Set
by) — {(()n+vj — N;)7! if Ny <n <2N;,

if n & [N;,2Nj].
We have
2N;
(4.10) b* <1/n and > b >2071
n=N;
Further, it follows from (3.17) that for 0 < 6 < 7/[4(n + \)],
(4.11) ©M(cos ) > exn?,
where c) is a positive constant.
Let
2N;
9;(0) = D b oM (cos ).
n=N,
Then, by (4.10) and (4.11),
T T

gj(0) > cx27'N) for 6 € [ I;.

Since pux(1;) > C')\N;(QA—H) (cy > 0), we have
(112) 95l e > A2 (Ar > 0,

Now suppose that for any f € L the series (4.9) converges. Define a
sequence of linear functionals on £y by

“w

s

A;(f) = § 1(0)g;(0) dux(9).

0
By (4.10) and (4.5), for each f € £ we have

*

™ >, a3 (f)
AN =] Y an(pp] < 30 2,
n=N; n=1

n
n

By the uniform boundedness principle, {||4,[/} is bounded. At the same time
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(see [4, p. 220] and (4.12)),

>’ (C'>0).

/
LPX ™ (pa) =

1451 = Cllg;ll

This completes the proof.
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