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Semicontinuity and continuous selections for
the multivalued superposition operator

without assuming growth-type conditions

by

Hôǹg Thái Nguyêñ (Szczecin)

Abstract. Let Ω be a measure space, and E, F be separable Banach spaces. Given
a multifunction f : Ω × E → 2F , denote by Nf (x) the set of all measurable selections of
the multifunction f(·, x(·)) : Ω → 2F , s 7→ f(s, x(s)), for a function x : Ω → E. First, we
obtain new theorems on H-upper/H-lower/lower semicontinuity (without assuming any
conditions on the growth of the generating multifunction f(s, u) with respect to u) for the
multivalued (Nemytskĭı) superposition operator Nf mapping some open domain G ⊂ X

into 2Y , where X and Y are Köthe–Bochner spaces (including Orlicz–Bochner spaces)
of functions taking values in Banach spaces E and F respectively. Second, we obtain a
new theorem on the existence of continuous selections for Nf taking nonconvex values in
non-Lp-type spaces. Third, applying this selection theorem, we establish a new existence
result for the Dirichlet elliptic inclusion in Orlicz spaces involving a vector Laplacian and
a lower semicontinuous nonconvex-valued right-hand side, subject to Dirichlet boundary
conditions on a domain Ω ⊂ R2.

1. Introduction. Let Ω be a measure space, and E, F be separable
Banach spaces. Given a multifunction f : Ω × E → 2F , denote by Nf (x)
the set of all measurable selections of the multifunction f(·, x(·)) : Ω → 2F ,
s 7→ f(s, x(s)), for a function x : Ω → E. In the present paper we con-
sider semicontinuity properties and the existence of continuous selections
for the so-called multivalued (Nemytskĭı) superposition operator Nf acting in
Köthe–Bochner spaces (Banach lattices) of measurable functions (concrete
examples: Lebesgue/Bochner spaces, Lebesgue spaces with mixed norm,
Orlicz–Bochner spaces, Lorentz spaces, Marcinkiewicz spaces, etc.).

2000 Mathematics Subject Classification: Primary 54C65, 54C60, 47H04, 35R70; Sec-
ondary 46E30, 47H30, 28B20.

Key words and phrases: multivalued Nemytskĭı superposition operator, multivalued
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The multivalued operator Nf was studied recently by various mathe-
maticians in connection with its natural applications to nonlinear ellip-
tic/parabolic partial differential inclusions, abstract parabolic inclusions,
integral inclusions, and equations with discontinuous right-hand side (see
references since 1970 in [20] and [1, 2, 5, 7–16, 18, 29, 31, 32]). All semi-
continuity results for Nf obtained in the above cited references (excepting
the papers [5, 12, 31]) were established via different methods under certain
conditions on the growth of the generating multifunction f(s, u) with re-
spect to u (e.g. ‖f(s, u)‖F := sup{‖w‖F : w ∈ f(s, u)} ≤ a(s) + b‖u‖E for
Nf mapping the Bochner–Lebesgue space L1(Ω,E) into 2L1(Ω,F )). In the
present paper we succeed in obtaining, via a new method, semicontinuity
results for Nf without assuming any growth-type conditions on f .

First, we obtain a new theorem (Theorem 3.2) onH-upper/H-lower/lower
semicontinuity forNf mapping an open domainG⊂X into 2Y , whereX and
Y are Köthe–Bochner spaces of functions taking values in Banach spaces E
and F respectively. Our proof of Theorem 3.2 relies crucially on the abstract
semicontinuity Theorem 3.1 (whose proof relies on Lemmas 3.1–3.2) for a
multivalued operator N satisfying the so-called local definedness property.

Second, using Lemma 3.2 and Theorem 3.1 (together with the Frysz-
kowski–Bressan–Colombo selection theorem [7, 16], [28, Corollary 2.1]) we
obtain a first theorem (Theorem 3.3) on the existence of continuous selec-
tions for Nf taking nonconvex values in a non-Lp-type space Y .

Third, applying Theorem 3.3, we establish a new existence result (The-
orem 7.1) for the Dirichlet elliptic inclusion in Orlicz spaces involving a
vector Laplacian and a lower semicontinuous nonconvex-valued right-hand
side, subject to Dirichlet boundary conditions on Ω ⊂ R2 (in connection
with Pokhozhaev–Trudinger’s theorem on the exact noncompact embed-
ding of the Sobolev space H1

0 (Ω) into some “exponential” Orlicz space [17,
Theorem 7.15, Section 7.8]).

Let us point out the following comparisons. From Theorem 3.4 of Sec-
tion 3 we can deduce by a different but more simple proof (see Section 5)
the 1991 result of A. Cellina, A. Fryszkowski, and T. Rzeżuchowski [12] for
Nf defined on a non-open set G ⊂ X. By the proofs of the present paper
together with the recent theory of Banach function L∞-modules (see refer-
ences in [25, 27]) we can get analogs of our theorems of Section 3 for the
operator Nf acting in these modules; in this way we refine the 1991 results
of J. Appell, H. T. Nguyen, and P. P. Zabrejko [5, Theorem 4] who assume
additionally that Nf maps an order-bounded set into an order-bounded set.
By analogous arguments we can define the classes of “source spaces X” and
“target spaces Y ” for which our results in Section 3 remain valid; in this way
in particular we can refine the 1994 results of S. Rolewicz and W. Song [31]
for Nf in metric modular spaces.
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In Section 4 we collect all proofs of the results of Section 3. Some standard
facts about so-called Köthe–Bochner spaces (Banach lattices of measurable
functions) are given in Section 2 as well as at the beginning of Section 4.
In Section 5 we deduce (from Theorems 3.2, 3.4) Corollaries 5.1–5.2 on H-
upper/H-lower/lower semicontinuity for Nf mapping a Bochner–Lebesgue
space Lp(Ω,E) into 2Lq(Ω,F ). In Section 6 we deduce (from Theorem 3.2) a
new semicontinuity result (Corollary 6.1) for the multivalued superposition
operator acting in Lebesgue spaces with mixed norm of functions defined on
the product measure space T ×Ω.

2. Some terminology and notation. First, we give some terminology
and notation from set-valued analysis following, e.g., [10, 15]. Let (X, %)
be a metric (vector) space. For x ∈ X, M ⊂ X and ε > 0 we define
dX(x,M) = inf{%(x, y) : y ∈ M} and Uε(M) = {y ∈ X : dX(y,M) < ε}.
For A,B ⊂ X we define h+

X(A,B) := sup{dX(a,B) : a ∈ A}. Denote by
BX(r) the closed ball in X with center 0 and radius r. Given a multifunction
Γ : X → 2Y , define domΓ = {x ∈ X : Γ (x) 6= ∅}.

Let X, Y be metric spaces and let Γ : X → 2Y be a multifunction.
Γ is called lower semicontinuous (or l.s.c.) at x0 ∈ X if for any open set
V ⊂ Y such that Γ (x0) ∩ V 6= ∅, there exists an open neighbourhood
U ⊂ X of x0 such that Γ (x) ∩ V 6= ∅ for all x ∈ U . We say that Γ is
H-upper semicontinuous (or H-u.s.c.) at x0 ∈ X if for any ε > 0 one may
find a δ > 0 such that Γ (B(x0, δ)) ⊂ Uε(Γ (x0)). Γ is said to be H-lower
semicontinuous (or H-l.s.c.) at x0 ∈ X if for any ε > 0 one may find a δ > 0
such that Γ (x0) ⊂ Uε(Γ (x)) for all x ∈ B(x0, δ). A multifunction Γ is called
H-u.s.c. (resp., H-l.s.c., l.s.c.) if it is H-u.s.c. (resp., H-l.s.c., l.s.c.) at every
x ∈ X.

Second, we give some terminology and notation from function space
theory following, e.g., [33] and [6, 23]. From now on, unless stated to the
contrary, E, F , etc. denote separable Banach spaces; (Ω,A, µ) denotes a
fixed measure space with a complete σ-finite σ-additive measure µ on a
σ-algebra A of subsets of Ω; µ∗ denotes any finite measure equivalent to µ
(i.e. µ∗(D) = 0⇔ µ(D) = 0). Further, S(Ω,E) denotes the complete metric
vector space of all (equivalence classes of) measurable functions x : Ω → E,
equipped with the metric topology of convergence in µ∗ measure. Given a
property Ps, we shall write Ps (mod 0) if Ps is valid for almost all (a.a.)
s ∈ Ω.

A Banach space X ⊂ S(Ω,R) with norm ‖ · ‖X is called a Köthe space
(also Banach lattice, Banach ideal space) if x ∈ X and y ∈ S(Ω,R) and
|y(s)| ≤ |x(s)| a.e. imply that y ∈ X and ‖y‖X ≤ ‖x‖X. Concrete examples
of Köthe spaces are the Lebesgue spaces and many non-Lp-type spaces in-
cluding general Orlicz/Lorentz/Marcinkiewicz spaces (see [6, 24, 30]).
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Given a Köthe space X ⊂ S(Ω,R), define the Köthe–Bochner space X =
X[E] ⊂ S(Ω,E) as the Banach space of all measurable functions x : Ω → E
such that ‖x(·)‖E ∈ X, with norm ‖x‖X := ‖‖x(·)‖E‖X.

Given a Köthe–Bochner space Y = Y[F ] ⊂ S(Ω,F ), define its regular
part Y ◦ as the Köthe–Bochner subspace of all measurable functions y ∈ Y
with absolutely continuous norm (or having equi-continuous norm, or equi-
integrable in the case Y = Lp), i.e.

(1) Y ◦ = {y ∈ Y : lim
µ∗(D)→0

‖PDy‖Y = 0},

where PD denotes the multiplication operator by the characteristic function
χD of a measurable set D. If Y = Y ◦, then Y is called a regular space. The
Bochner–Lebesgue spaces Lp[E] (1 ≤ p < ∞) are regular. A set M ⊂ Y is
said to have uniformly absolutely continuous norms of Y , or briefly, u.a.c.
norms of Y (or equicontinuous norms of Y , or to be absolutely bounded , or
equi-integrable in the case Y = Lp) if

(2) lim
µ∗(D)→0

sup
y∈M
‖PDy‖Y = 0.

Third, we give some notation specific for the present paper. Denote by
Sel g the set of all measurable selectors of a multifunction g : Ω → 2F , i.e.

(3) Sel g = {y ∈ S(Ω,F ) : y(s) ∈ g(s) a.e.}.
A multifunction f : Ω × E → 2F is called [5] superpositionally measurable,
or briefly sup-measurable, if for every single-valued measurable function x :
Ω → E the multifunction Γ = f(·, x(·)) : Ω → 2F , s 7→ f(s, x(s)), is
a measurable multifunction with domΓ = Ω (mod 0). The measurability
of Γ means that {s ∈ Ω : Γ (s) ∩ U 6= ∅} is measurable for every open
subset U of F . If Γ : Ω → 2F is measurable such that Γ (s) is nonempty
closed for a.a. s ∈ Ω then SelΓ 6= ∅ and moreover there exists a so-called
Castaing representation {yk : k ∈ N} for Γ (see [10]). Sufficient conditions
for sup-measurability are given e.g. in [1].

We denote [1, 5] by P(F ) (resp., Cl(F ), Bd(F ), Cp(F ), BdCl(F ), etc.)
the family of all nonempty (resp., nonempty closed, nonempty bounded,
nonempty compact, nonempty bounded closed, etc.) subsets of F .

3. Semicontinuity theorems in Köthe–Bochner spaces. A multi-
valued operator N : G→ P(S(Ω,F )) with ∅ 6= G ⊂ S(Ω,E) is called locally
defined (or locally determined) provided the following condition holds:

(LD1) if PDx = PDy with x, y ∈ G, D ∈ A, then PDN(x) = PDN(y);

in the case PDx ∈ G (D ∈ A) this is equivalent to

(LD2) PDN(x) = PDN(PDx) (D ∈ A, x ∈ G).
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It is surprising that being locally defined is sufficient to get general the-
orems for N . Given a Köthe–Bochner space Y = Y[F ], it is easily verified
that the multivalued superposition operator with values in Y

(4) N = NY
f , NY

f (x) := Y ∩ Sel f(·, x(·)),
is locally defined on its domain domNY

f .
In Lemma 3.1 we find a new property of a set N which does not satisfy

(2) (i.e. it is not equi-integrable in the case N ⊂ Y = L1).

Lemma 3.1. Let Y = Y[F ] ⊂ S(Ω,F ) be a regular Köthe–Bochner space
(i.e. Y = Y ◦) and let N ⊂ Y be a set which fails (2). Then there exist
a positive number ε > 0, a sequence yn ⊂ N, and a sequence of mutually
disjoint measurable sets Ωn such that

(5) µ∗(Ωn)→ 0 (n→∞), ‖PΩnyn‖Y > ε > 0 (∀n).

In Lemma 3.2 (whose proof crucially relies on Lemma 3.1) we obtain a
new property for a locally defined multivalued operator N .

Lemma 3.2. Let X = X[E] ⊂ S(Ω,E) be a Köthe–Bochner space, Y =
Y[F ] ⊂ S(Ω,F ) be a regular Köthe–Bochner space, r ∈ (0,∞), and N :
BX(r)→ P(Y ) be a locally defined operator such that each N(x) has u.a.c.
norms of Y . Suppose that {xn : n = 1, 2, . . .} ⊂ BX(r) satisfies

(6)
∞∑

n=1

‖xn‖X ≤ r.

Then the set M :=
⋃∞
n=1N(xn) has u.a.c. norms of Y .

We shall use one of the following abstract conditions:

(LS) if ‖xn − x0‖X → 0, ‖xn − x0‖X ≤ R(x0) < ∞, xn → x0 a.e. and
y0 ∈ N(x0), then there exist a subsequence nk and ynk ∈ N(xnk)
such that ynk → y0 in S(Ω,F );

(HL) if ‖xn − x0‖X → 0, ‖xn − x0‖X ≤ R(x0) < ∞, xn → x0 a.e. and
yn ∈ N(x0), then there exist a subsequence nk and znk ∈ N(xnk)
such that ynk − znk → 0 in S(Ω,F );

(HU) if ‖xn − x0‖X → 0, ‖xn − x0‖X ≤ R(x0) < ∞, xn → x0 a.e. and
yn ∈ N(xn), then there exist a subsequence nk and znk ∈ N(x0)
such that ynk − znk → 0 in S(Ω,F ).

Theorem 3.1. Let G be a nonempty open subset of a Köthe–Bochner
space X = X[E] ⊂ S(Ω,E), Y = Y[F ] ⊂ S(Ω,F ) be a regular Köthe–
Bochner space and N : G→ P(Y ) be a locally defined operator such that each
N(x) has u.a.c. norms of Y . Suppose that N satisfies the condition (LS)
(respectively , (HL), (HU)). Then N is l.s.c. (respectively , H-l.s.c, H-u.s.c.).
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The next Theorem 3.2 is a first concrete realization of the abstract The-
orem 3.1 for the multivalued superposition operator N = NY

f . The following
simple Proposition 3.1 and Lemma 3.3 are first steps of this realization.

Proposition 3.1. Let Y = Y[F ] ⊂ S(Ω,F ) be a Köthe–Bochner space,
and H : Ω → Cl (F )∪ {∅} be an arbitrary multifunction. Then Y ∩ SelH is
a closed subset of Y .

Lemma 3.3. Let f : Ω → Cl(E) and g : Ω → Cl(E) be measurable
multifunctions. Then the function h+

E(f(·), g(·)) is measurable, and for every
fixed ε > 0 and fixed selector x ∈ Sel f there exists a selector y ∈ Sel g such
that for all s ∈ Ω,

dE(x(s), y(s)) ≤ (1 + ε)dE(x(s), g(s)) ≤ (1 + ε)h+
E(f(s), g(s)).

Theorem 3.2. Let G be a nonempty open subset of a Köthe–Bochner
space X = X[E] ⊂ S(Ω,E), and Y = Y[F ] ⊂ S(Ω,F ) be a regular Köthe–
Bochner space. Suppose that f : Ω × E → Cl (F ) ∪ {∅} is a sup-measurable
multifunction such that N(x) = Nf (x) := Sel f(·, x(·)) ⊂ Y (∀x ∈ G). If
f(s, ·) : E → Cl (F ) ∪ {∅} is l.s.c. (respectively , H-l.s.c., H-u.s.c.) for a.a.
s ∈ Ω, then the operator N = Nf : G → BdCl(Y ) is l.s.c. (respectively ,
H-l.s.c., H-u.s.c.).

Theorem 3.3. Let µ be a complete σ-finite σ-additive continuous (non-
atomic) measure, G be a nonempty open subset of a Köthe–Bochner space
X = X[E] ⊂ S(Ω,E), and Y = Y[F ] ⊂ S(Ω,F ) be a regular Köthe–Bochner
space. Suppose that N : G → P(Y ) is a locally defined operator such that
each N(x) has u.a.c. norms of Y ,

(7) N(x) = Y ∩ SelH(x), H : G→ ΩCl (F ) (x ∈ G),

and N satisfies the condition (LS) [in particular , suppose that f : Ω ×E →
Cl (F ) ∪ {∅} is a sup-measurable multifunction such that N(x) = Nf (x) :=
Sel f(·, x(·)) ⊂ Y (∀x ∈ G), f(s, ·) : E → Cl (F )∪{∅} is l.s.c. for a.a. s ∈ Ω].
Then for every separable subset K ⊂ G (and every compact subset K ⊂ G)
the restriction N : K → Cl(Y ) has a continuous selection u : K → Y , i.e.
u(x) ∈ N(x) (∀x ∈ K).

If G is assumed to be a nonopen set, then we cannot apply the crucial
Lemma 3.2, but modifying slightly the arguments in the proof of Theo-
rem 3.1, we get the following abstract Theorem 3.4 assuming additionally
some local property on values N(x). Analogs of Theorems 3.2–3.3 for the
case of G nonopen with this additional assumption can be easily formulated
and proved.

Theorem 3.4. Let G be a nonempty subset of a metric space X, Y =
Y[F ] ⊂ S(Ω,F ) be a regular Köthe–Bochner space, and N : G → P(Y ) be
an operator such that each N(x) has u.a.c. norms of Y . Suppose that N
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satisfies the condition (LS) (respectively , (HL), (HU)). Assume additionally
that there exists a subsequence xnk as in (LS) (respectively , (HL), (HU))
such that the set

⋃∞
k=1N(xnk) has u.a.c. norms of Y . Then N is l.s.c.

(respectively , H-l.s.c, H-u.s.c.).

4. Proofs of results of Section 3. We point out that in the following
proofs we shall constantly use the following well-known Propositions 4.A–
4.C (see, e.g., [33, 6, 23]) for Köthe–Bochner spaces X = X[E] ⊂ S(Ω,E)
and Y = Y[F ] ⊂ S(Ω,F ), as well as the Riesz Theorem [i.e. if xn → x0 in
S(Ω,E) (in measure), then there exists a subsequence nk such that xnk → x0

a.e.]. Note that in the simplest case of Lebesgue spaces X = Y = Lp(Ω,R),
1 ≤ p <∞, Proposition 4.A(i), (iii) is easily checked, Proposition 4.A(ii) is a
reformulation of the Lebesgue dominated convergence theorem, Proposition
4.B is the Vitali–Krasnosel’skĭı convergence criterion (see e.g. [24, Lemma
9.2]), and Proposition 4.C is a simple consequence of the Hölder integral
inequality.

A normed space X ⊂ S(Ω,E) is said to have the Riesz–Fischer property
provided the inequality

∞∑

n=1

‖xn‖X <∞

implies that the series x∞ :=
∑∞
n=1 xn converges in S(Ω,E),

(8) ‖x∞‖X ≤
∞∑

n=1

‖xn‖X <∞

and
∑n
j=1 xj → x∞ in the norm of X.

Proposition 4.A. Let X = X[E] ⊂ S(Ω,E) be a Köthe–Bochner space.
Then

(i) X is continuously embedded in S(Ω,E);
(ii) X has the Riesz–Fischer property ;

(iii) X has PD-monotone norm, i.e.

(9) ‖PDx‖X ≤ ‖x‖X (x ∈ X, D ∈ A),

and the following inequality is true:

(10) ‖PDx‖X ≤
∞∑

n=1

‖PDnx‖X (x ∈ X, D ⊂ ⋃∞n=1Dn; D,Dn ∈ A).

A regular space Y ⊂ S(Ω,F ) is said to have the Vitali property if the
fact that a sequence {yn : n = 1, 2, . . .} ⊂ Y has u.a.c. norms of Y , i.e.

lim
µ∗(D)→0

sup
n∈N
‖PDyn‖Y = 0,
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and that yn converges a.e. to y ∈ S(Ω,F ), implies that yn converges in the
norm of Y to y ∈ Y .

Proposition 4.B. Let Y = Y[F ] ⊂ S(Ω,F ) be a regular Köthe–Bochner
space. Then Y has the Vitali property.

Let η0 ∈ S(Ω,R) be a nonnegative function. We define the Bochner–
Lebesgue space L(η0) = L(η0)[F ] with the weight η0 as follows:

L(η0) = L(η0)[F ](11)

:=
{
y ∈ S(Ω,F ) : ‖y‖L(η0) =

�

Ω

η0(s)‖y(s)‖F dµ(s) <∞
}
.

Proposition 4.C. Let Y = Y[F ] ⊂ S(Ω,F ) be a Köthe–Bochner space.
Then Y is continuously embedded in the Bochner–Lebesgue space L(η0) =
L(η0)[F ] for some weight η0 with supp η0 = suppY .

We now prove the results of Section 3.

Proof of Lemma 3.1. Assume that N ⊂ Y fails (2), where Y = Y[F ] ⊂
S(Ω,F ) is a regular Köthe–Bochner space. Then there exists ε > 0 such
that

(12) lim
µ∗(D)→0

sup
y∈N

‖PDy‖Y > 2ε > 0.

So there exist D1 ∈ A and y1 ∈ N such that ‖PD1y1‖Y > 2ε. Since y1 ∈ Y ◦
has u.a.c. norm of Y , it follows from (12) that there exist D2 ∈ A, y2 ∈ N

such that µ∗(D2) < 2−2µ∗(D1), ‖PD2y2‖Y > 2ε > 0, ‖PD2y1‖Y < 2−2ε.
Continuing by induction, we construct sequences Dk and yk ∈ N such that

µ∗(Dk) < 2−kµ∗(D1), ‖PDkyk‖Y > 2ε> 0, ‖PDkyi‖Y < 2−kε (i<k).

Put Ωn = Dn\
⋃
k>nDk. Then by (10) we have

‖PΩnyn‖Y ≥ ‖PDnyn‖Y −
∑

k>n

‖PDkyn‖Y ≥ 2ε−
∑

k>n

2−kε > ε > 0,

µ∗(Ωn) ≤ µ∗(Dn) < 2−nµ∗(D1)→ 0 (n→∞).

Clearly, Ωn are mutually disjoint, and hence the lemma follows.

Proof of Lemma 3.2. Since X = X[E] ⊂ S(Ω,E) is a Köthe–Bochner
space with PD-monotone norm, PD(BX(r)) ⊂ BX(r) (D ∈ A), and so N
has property (LD2).

Suppose to the contrary that the set M =
⋃∞
n=1N(xn) fails (2), although

the sequence {xn : n = 1, 2, . . .} satisfies (6):
∞∑

n=1

‖xn‖X ≤ r <∞.
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Since each value N(xn) is assumed to have u.a.c. norms of Y , where Y =
Y[F ] ⊂ S(Ω,F ) is a regular Köthe–Bochner space, by applying Lemma 3.1
for the set M we can find ε > 0, subsequences nj , ynj and a sequence of
mutually disjoint sets Dj ∈ A such that

(13) µ∗(Dj)→ 0 (j →∞), ynj ∈ N(xnj ), ‖PDjynj‖Y > ε > 0.

Since X has the Riesz–Fischer property and PD-monotone norm (see Propo-
sition 4.A), there exists x∗ :=

∑∞
j=1 PDjxnj satisfying (cf. (8))

‖x∗‖X ≤
∞∑

j=1

‖PDjxnj‖X ≤
∞∑

j=1

‖xnj‖X ≤ r <∞.

So x∗ ∈ BX(r), and hence by assumption,

(14a) lim
µ∗(D)→0

sup
y∈N(x∗)

‖PDy‖Y = 0.

By (13) together with the property (LD2) of the locally defined operator N ,
we get

PDjynj ∈ PDjN(xnj ) = PDjN(PDjxnj )(14b)

= PDjN(PDjx∗) = PDjN(x∗).

Since µ∗(Dj) → 0 (j → ∞) (see (13)), from (14a)–(14b) we obtain
limj→∞ ‖PDjynj‖Y = 0, which contradicts the last inequality in (13).

Proof of Theorem 3.1. Because H defined by H(x) := N(x − x0) for
a fixed x0 ∈ G is again a locally defined operator on the nonempty open
subset G(x0) = G − x0 containing 0, which satisfies all the assumptions of
the theorem, it suffices to prove the semicontinuity of N at 0 for 0 ∈ G. In
this case, Lemma 3.2 is applicable for N considered on any BX(r) ⊂ G.

First, suppose to the contrary that (LS) holds but N is not l.s.c. at
0 ∈ G. Then there exist an open set O and a sequence xn with ‖xn‖ ≤ 2−nr
such that N(0) ∩O 6= ∅, 0 < r < R(0), BX(r) ⊂ G, and N(xn) ∩O = ∅ for
all n. Since xn → 0 in X and X is continuously embedded in S(Ω,E), by
Riesz’s theorem we can assume without loss of generality that xn → 0 a.e.
By (LS), for a fixed y0 ∈ N(0) ∩ O there exist nk and ynk ∈ N(xnk) such
that ynk → y0 a.e. By Lemma 3.2 for xnk satisfying

∞∑

k=1

‖xnk‖X ≤
∞∑

k=1

2−kr = r <∞,

the sequence {ynk : k = 1, 2, . . .} ⊂ ⋃∞k=1 N(xnk) has u.a.c. norms of Y , so
by the Vitali property of the regular Köthe–Bochner space Y (see Proposi-
tion 4.B), ynk → y0 in the norm of Y . Since O is open and y0 ∈ N(0)∩O, it
follows that ynk ∈ O, ynk ∈ N(xnk) for sufficiently large k, which contradicts
the condition N(xnk) ∩O = ∅ for all nk.



10 H. T. Nguyêñ

Second, suppose that (HL) holds but N is not H-l.s.c. at 0 ∈ G. Then
there exist xn with ‖xn‖ ≤ 2−nr such that h+(N(0), N(xn)) > ε > 0
and 0 < r < R(0) and BX(r) ⊂ G. As before, again we can assume that
xn → 0 a.e. Since h+(N(0), N(xn)) = supy∈N(0) dist(y,N(xn)), there exists
a sequence yn ∈ N(0) such that dist(yn, N(xn)) > ε > 0. By (HL) there
exist nk and znk ∈ N(xnk) such that ynk − znk → 0 a.e. Since {ynk : k =
1, 2, . . .} ⊂ N(0) has u.a.c. norms of Y by assumption, and again by Lemma
3.2 the set

⋃∞
k=1 N(xnk) has u.a.c. norms of Y , it follows that the sequence

{ynk − znk : k = 1, 2, . . .} has u.a.c. norms of Y . By the Vitali property,
hence ynk − znk → 0 in the norm of Y , which contradicts the conditions
znk ∈ N(xnk) with dist(ynk , N(xnk)) > ε > 0 for all nk.

Third, suppose that (HU) holds but N is not H-u.s.c. at 0 ∈ G. Then
there exist xn with ‖xn‖ ≤ 2−nr such that h+(N(xn), N(0)) > ε > 0 and
0 < r < R(0) and BX(r) ⊂ G. As before, we can assume that xn → 0 a.e.
Since h+(N(xn), N(0)) = supy∈N(xn) dist(y,N(0)), there exists a sequence
yn ∈ N(xn) such that dist(yn, N(0)) > ε > 0. By (HU) there exist nk and
znk ∈ N(0) such that ynk − znk → 0 a.e. Since {znk : k = 1, 2, . . .} ⊂
N(0) has u.a.c. norms of Y by assumption, and again by Lemma 3.2 the
set

⋃∞
k=1 N(xnk) has u.a.c. norms of Y , it follows that the sequence

{ynk − znk : k = 1, 2, . . .} has u.a.c. norms of Y . By the Vitali property,
hence ynk − znk → 0 in the norm of Y , which contradicts the conditions
znk ∈ N(0) with dist(ynk , N(0)) > ε > 0 for all nk.

Proof of Proposition 3.1. This is standard by the above mentioned Riesz
theorem.

Proof of Lemma 3.3. This is standard via the known selection theorems
[10] and Castaing representations (see the same argument, e.g., in [5]).

Proof of Theorem 3.2. We shall show that Theorem 3.2 is a consequence
of Theorem 3.1 for N(x) = NY

f (x) = Sel f(·, x(·)).
By the assumptions of Theorem 3.2, given a fixed x ∈ G, the multifunc-

tion Γx = f(·, x(·)) : Ω → Bd Cl(F )∪{∅} is measurable with dom f(·, x(·)) =
Ω (mod 0) and SelΓx⊂ Y =Y[F ]. Then by the Kuratowski–Ryll-Nardzewski
measurable selection theorem [10] it is easy to construct a nonnegative func-
tion βx ∈ Y such that ‖y(s)‖F ≤ βx(s) a.e. for every y ∈ SelΓx, and so
‖PDy‖Y ≤ ‖PDβx‖Y for every y ∈ SelΓx, D ∈ A. Since Y is regular, i.e.
Y = Y◦, the function βx ∈ Y satisfies the equality (1) in the norm of Y.
Hence, each Nf (x) = SelΓx has u.a.c. norms of Y .

So, it remains to verify the condition (LS) (respectively, (HL), (HU)) of
Theorem 3.1 under the assumptions of Theorem 3.2.

First, suppose that f(s, ·) : E → Cl (F ) ∪ {∅} is l.s.c. for a.a. s ∈ Ω.
Let xn → x0 in X, xn → x0 a.e., xn ∈ BX(x0, R(x0)) ⊂ G (G is open
and x0 ∈ G, so we can choose such R(x0) < ∞). By our assumptions f is



Multivalued superposition operator 11

sup-measurable, so f(·, xn(·)) : Ω → Cl (F ) ∪ {∅} (n = 0, 1, . . .) are mea-
surable with dom f(·, xn(·)) = Ω (mod 0). Fix y0 ∈ N(x0) := Sel f(·, x0(·)).
Then, d(y0(·), f(s, xn(·))) → 0 a.e., since f(s, ·) is l.s.c. By our assumption
Sel f(·, xn(·)) ⊂ Y (n = 0, 1, . . .), hence by Lemma 3.3 for each y0 ∈ N(x0)
there exists a sequence yn ∈ N(xn) := Sel f(·, xn(·)) ⊂ Y such that

d(y0(s), yn(s)) ≤ 2d(y0(s), f(s, xn(s))) (mod 0).

So, yn → y0 a.e., which proves (LS).
Second, suppose that f(s, ·) : E → Cl (F )∪{∅} is H-l.s.c. for a.a. s ∈ Ω.

Let xn ∈ X be as above. Then h+(f(·, x0(·)), f(s, xn(·))) → 0 a.e. By our
assumption Sel f(·, xn(·)) ⊂ Y (n = 0, 1, . . .), hence by Lemma 3.3 for each
yn ∈ N(x0) there exists zn ∈ N(xn) such that

d(yn(s), zn(s)) ≤ 2h+(f(s, x0(s)), f(s, xn(s))) (mod 0).

So, yn − zn → 0 a.e., which proves (HL).
Third, suppose that f(s, ·) : E → Cl (F )∪ {∅} is H-u.s.c. for a.a. s ∈ Ω.

As before, for each sequence yn ∈ N(xn) we get some sequence zn ∈ N(x0)
such that d(yn(s), zn(s)) ≤ 2h+(f(s, xn(s)), f(s, x0(s))) (mod 0). Again we
get yn − zn → 0 a.e., which proves (HU).

Proof of Theorem 3.3. First, by Proposition 4.C we can choose some
η0 ∈ S(Ω,R) such that Y is continuously embedded in L(η0) = L(η0)[F ].
Then every set with u.a.c. norms of Y has u.a.c. norms of L(η0). So, we can
apply Theorem 3.1 for N : G→ P(L(η0)) to deduce that N : G→ Cl(L(η0))
is lower semicontinuous.

We define N ′ := T ◦ N with Ty(s) = η0(s)y(s) a.e. So, N ′ := T ◦ N :
G→ Cl(L1[F ]). By our construction, N ′ is clearly locally defined and lower
semicontinuous on G. We easily verify by (7) that N ′(x) is a decomposable
set in L1[F ], i.e. if a, b ∈ N ′(x) and D ∈ A then y = PDa + PΩ\Db ∈
N ′(x). Now we can apply the well-known selection theorem of Bressan–
Colombo [7] or Fryszkowski [16] (see a minor modification for an unbounded
σ-additive measure µ in [28, Corollary 2.1]) for the lower semicontinuous
operator N ′ : K → Cl(L1[F ]) with decomposable values on a separable
metric space K ⊂ G or a compact metric space K ⊂ G, respectively. Hence
we can find a continuous selection u′ : K → Cl(L1[F ]) of N ′. Then u =
T−1u′ : K → L(η0) is a continuous selection of N : K → Cl(L(η0)).

Clearly, u : K → Y , since u(x) ∈ N(x) ⊂ Y . Note that u is generally
not locally defined, but we shall establish that u : K → Y is continuous.

Assume to the contrary that u : K → Y is not continuous at some
x0 ∈ K. Then we can find some sequence xn ∈ K such that xn → x0 in
norm and

(15) ‖u(xn)− u(x0)‖Y does not tend to 0 (n→∞).
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By the same arguments as in the proof of Theorem 3.1, by using Lemma 3.2
we get a subsequence xnk ⊂ K ⊂ G such that the set M =

⋃∞
k=1N(xnk) has

u.a.c. norms of Y . Since u(x) ∈ N(x) ⊂ Y (∀x ∈ K), the sequence {u(xnk) :
k = 1, 2, . . .} has u.a.c. norms of Y . Since u : K → L(η0) is continuous and
L(η0) is continuously embedded in S(Ω,F ), u(xnk) converges to u(x0) in
S(Ω,F ) and so by Riesz’s theorem we can assume that u(xnk) converges
to u(x0) a.e. By the Vitali property of Y (see Proposition 4.B), u(xnk)
converges to u(x0) in the norm of Y , which contradicts (15).

Proof of Theorem 3.4. Since in Theorem 3.4 we assume additionally
that there exists a subsequence xnk as in (LS) (respectively, (HL), (HU))
such that

⋃∞
k=1 N(xnk) has u.a.c. norms of Y , the arguments in the proof of

Theorem 3.1 yield the assertion of Theorem 3.4 without using Lemma 3.2.

5. Semicontinuity results in Bochner–Lebesgue spaces

Corollary 5.1. Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞, f : Ω × E → BdCl (F )
∪ {∅}, and G be a nonempty open subset of Lp[E]. Suppose that Nf (x) :=
Sel f(·, x(·)) ⊂ Lq[F ] (∀x ∈ G). If f is sup-measurable and f(s, ·) : E →
BdCl (F )∪{∅} is l.s.c. (respectively , H-l.s.c., H-u.s.c.) for a.a. s ∈ Ω, then
Nf : G→ BdCl(Lq[F ]) is l.s.c. (respectively , H-l.s.c., H-u.s.c.).

Proof. Since Lq[F ] (1 ≤ q < ∞) is a regular Köthe–Bochner space, the
corollary is a particular case of Theorem 3.2.

In the following Corollary 5.2 we do not assume that G is open but
we must assume some additional local condition on the values of Nf . Note
that the following condition (CFR) is taken from Cellina–Fryszkowski–
Rzeżuchowski [12] whose H-u.s.c. result for Nf acting in Lp-type spaces was
proved by a different, complicated proof under the additional assumption of
the graph measurability of f . In Corollary 5.2 we drop this assumption, and
get also the l.s.c. and H-l.s.c. results under the same condition (CFR).

Corollary 5.2. Let f : Ω×E → BdCl (F )∪{∅} and G be a nonempty
subset of Lp[E]. Suppose that Nf (x) := Sel f(·, x(·)) ⊂ Lq[F ] (∀x ∈ G), and
assume the following local condition:

(CFR) 1 ≤ p, q < ∞, given x0 ∈ G there exist R(x0) > 0, a ∈ L1(Ω,R),
b ≥ 0 such that

‖y0(s)− y(s)‖q ≤ a(s) + b‖x0(s)− x(s)‖p (for a.a. s ∈ Ω)

for every y0 ∈ Nf (x0), y ∈ Nf (x), and x ∈ G with ‖x0 − x‖ ≤
R(x0).

If f is sup-measurable and f(s, ·) : E → BdCl (F )∪{∅} is l.s.c. (respectively ,
H-l.s.c., H-u.s.c.) for a.a. s ∈ Ω, then Nf : G → BdCl(Lq[F ]) is l.s.c.
(respectively , H-l.s.c., H-u.s.c.).
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Proof. We shall show that the corollary is a consequence of Theorem 3.4
together with the verification given in the proof of Theorem 3.2. Without loss
of generality we may consider only the case 0 ∈ G and prove semicontinuity
of Nf at 0, since otherwise we can pass to M(x) := Sel f(·, x(·)−x0(·)). Since
Lq[F ] (1 ≤ q < ∞) is a regular Köthe–Bochner space, it suffices to show
that for any sequence xn ∈ G∩BLp(R(0)) such that xn → 0 in norm, there
exists a subsequence nk such that

⋃∞
k=1 Nf (xnk) has u.a.c. norms. To this

end we take nk such that ‖xnk‖p ≤ 2−k−1R(0). By Lebesgue’s dominated
convergence theorem we get α(·) :=

∑
k ‖xnk(·)‖E ∈ Lp. From (CFR) and

the equi-integrability of Lebesgue integrable functions we obtain

‖PDy‖qLq ≤ 2q−1(‖PDy0‖qLq + ‖PD(y − y0)‖qLq)
≤ 2q−1(‖PDy0‖qLq + ‖PDa‖L1 + b‖PDα‖pLp)→ 0

(µ∗(D)→ 0, uniformly for y ∈ ⋃∞k=1Nf (xnk))

for a fixed y0 ∈ Nf (0). Therefore,
⋃∞
k=1 Nf (xnk) has u.a.c. norms.

6. Semicontinuity results in Lebesgue spaces with mixed norm.
We now collect some known auxiliary information. Let T and Ω be two
measure spaces, and T×Ω be the product measure space. LetE ⊂ S(Ω,Rm),
F ⊂ S(T,R) be two Lebesgue spaces. Define F (E) to be the space of all
z ∈ S(T × Ω,Rm) such that z(t, ·) ∈ E for a.a. t ∈ T and the function hz,
hz(t) := ‖z(t, ·)‖E, belongs to F . The space F (E) with the norm ‖hz(·)‖F ,
where hz(t) = ‖z(t, ·)‖E (z ∈ F (E)), is called a Lebesgue space with mixed
norm on T ×Ω. From e.g. [19, Theorem XI.1.2] one can get the following:

Lemma 6.A. Let E ⊂ S(Ω,Rm) be a Lebesgue space and let z ∈
S(T ×Ω,Rm) be such that z(t, ·) ∈ E for a.a. t ∈ T . Then the function hz,
hz(t) := ‖z(t, ·)‖E, is measurable.

By Lemma 6.A one can easily check (see, e.g., [19]) that F (E) is a Köthe–
Bochner space in S(T × Ω,Rm), and F (E) is regular if both F and E are
regular.

Hence we may apply all results of Section 3 to the multivalued superposi-
tion operatorNg generated by a multivalued function g : (T×Ω)×Rm → 2R

n

and acting in two Lebesgue spaces with mixed norm, i.e. Ng : F (E) →
2F0(E0). So from Theorem 3.2 we deduce immediately Corollary 6.1 below,
since the Köthe–Bochner space F0(E0) is regular.

Corollary 6.1. Let G be a nonempty open subset of a Lebesgue space
with mixed norm X = F (E) ⊂ S(T × Ω,Rm), and let Y = F0(E0) ⊂
S(T×Ω,Rn) be another Lebesgue space with mixed norm such that both F0 ⊂
S(T,R) and E0 ⊂ S(Ω,Rn) are regular spaces. Suppose that g : (T × Ω) ×
Rm → Cp(Rn) ∪ {∅} is a sup-measurable multifunction such that Ng(x) :=
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Sel g(·, ·, x(·, ·)) ⊂ Y (∀x ∈ G). If g(t, ω, ·) : (T ×Ω)× Rm → Cp(Rn) ∪ {∅}
is l.s.c. (respectively , H-l.s.c., H-u.s.c.) for a.a. (t, ω) ∈ T × Ω, then the
operator Ng : G→ BdCl(Y ) is l.s.c. (respectively , H-l.s.c., H-u.s.c.).

7. The Dirichlet problem for quasilinear elliptic differential
systems with lower semicontinuous nonconvex-valued right-hand
side. Let Ω be a bounded domain in R2, and f : Ω ×Rm → 2R

m

be a mul-
tifunction of two variables (s, u) ∈ Ω × Rm. We shall consider the problem

(16)
{−∆mx(s) ∈ f(s, x(s)) for a.a. s ∈ Ω,
x|∂Ω = 0,

where ∆m = (∆, . . . ,∆) is the m-vector Laplacian. In what follows, we
denote the scalar product and norm in the Euclidean space Rm by (·, ·)
and | · |, respectively, and the scalar product and norm in the Lebesgue
space L2 = L2(Ω,Rm) by 〈·, ·〉 and ‖ · ‖, respectively. As usual, H1 =
H1(Ω,Rm) is the Sobolev space defined by the norm ‖x‖1 = ‖x‖+ ‖∇mx‖,
while H1

0 = H1
0 (Ω,Rm) is the closure of C∞0 (Ω,Rm) with respect to this

norm. Denote by H−1 the dual space to H1
0 with respect to the L2-pairing

〈·, ·〉. Given a Young function M : R → [0,∞), the term Orlicz space (e.g.
[21, 24]) will refer to the space LM = LM (Ω,Rm) (of equivalence classes) of
measurable functions u on Ω taking values in Rm, which is equipped with
the Luxemburg norm ‖x‖M = inf{k > 0 : �

Ω
M(k−1‖x(s)‖Rm) ds ≤ 1}; in

this case the regular part L◦M coincides with the closure EM in LM -norm of
the set of all continuous functions (see e.g. [21, Subsection 1.8], [30]).

Throughout this section, we denote by Z and X the “exponential” Orlicz
spaces:

Z = LΦ, X = LΨ ;(17)

Φ(α) = e|α|
2 − 1, Ψ(α) = e|α|

% − 1, α ∈ R, 1 < % < 2.

By Pokhozhaev–Trudinger’s exact embedding theorem (see e.g. [17, The-
orem 7.15, Section 7.8]), the Sobolev space H1

0 (on Ω ⊂ R2) is always
continuously non-compactly embedded in Z. By e.g. [3, Lemma 1], H1

0 is
compactly embedded in X, since Z ⊂ X and the unit ball of Z has u.a.c.
norms of X (see e.g. [21, Lemma 2.5], [30]).

Note that

(18) H1
0 ⊂ Z ⊂ X ⊂ L2 ⊂ X ′ ⊂ Z ′ ⊂ H−1

continuously. Here, Z ′ denotes the Köthe associate space of all integral linear
functionals on Z: Z ′ := {z′ : z′ : Ω → Rm is measurable, 〈z, z′〉 < ∞
(∀z ∈ Z)} with the norm

‖z′‖Z′ = sup
{
〈z, z′〉 :=

�

Ω

(z(s), z′(s)) ds : ‖z‖Z ≤ 1
}
.
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Later on, we denote by µ∆ the first Dirichlet eigenvalue of the Lapla-
cian −∆.

The main result of this section is

Theorem 7.1. Let Z, X be the Orlicz spaces in (17). Suppose that the
following conditions are satisfied :

(E1) The multivalued superposition operator Nf maps X into 2Z
′
, where

Z ′ = LΦ∗ with Φ∗ the dual to the Young function Φ.
(E2) The multifunction f : Ω × Rm → Cp(Rm) ∪ {∅} is sup-measurable

such that f(s, ·) : Rm → Cp(Rm) ∪ {∅} is lower semicontinuous for
a.a. s ∈ Ω.

(E3) The following one-sided inequality holds:

(19) (u,w) ≤ γ(u, u) + δ(s) (for a.a. s ∈ Ω and all w ∈ F (s, u)),

where 0 ≤ γ < µ∆, δ ∈ L1(Ω,R) is non-negative.

Then the problem (16) has at least one solution x∗ ∈ H1
0 ⊂ Z.

Remarks 7.1. (i) In [1–2] the problem (16) was treated only in the case
of f(s, ·) upper semicontinuous. In [9, 18] (and references cited therein) the
problem (16) for f(s, ·) lower semicontinuous was treated only if Nf maps
Lq into 2Lp (2 ≤ q <∞, 1 < p ≤ 2) (via the Fryszkowski–Bressan–Colombo
selection theorem [7, 16]). Since X is contained properly in

⋃
2≤q<∞ Lq, and⋃

1<p≤2 Lp is contained properly in Z ′ by our choice (17), no existence results
from [1–2, 9, 18] can be applied in the situation of Theorem 7.1 when Nf

satisfies the conditions (E1)–(E2).
(ii) One cannot immediately apply the known scheme e.g. of [1–3, 9,

18] to prove Theorem 7.1, since the Orlicz space X is nonseparable [21,
Subsections 1.8, 1.4], [24, Theorem 8.14] by our choice of X in (17) and so
it is impossible to establish the existence of a “global” continuous selection
u : X → Z ′ of Nf : X → 2Z

′
(cf. Theorem 3.3). Later on, we shall modify

this scheme to prove Theorem 7.1.
(iii) A sufficient condition guaranteeing that the multivalued superposi-

tion (Nemytskĭı) operator Nf acts as desired in the condition (E1) is the
following inequality:

sup
w∈f(s,u)

|w|(ln(e+ sup
w∈f(s,u)

|w|))1/2 ≤ a(s) + bec|u|
%−ε

(for a.a. s ∈ Ω and all u ∈ Rm)

with some a ∈ L1(Ω,R), b ∈ [0,∞), c ∈ (0,∞), and ε ∈ (0, %− 1).
(iv) The analogous existence results are valid for more complicated non-

linear inclusions in Orlicz spaces such as multivalued versions of nonlinear
elliptic boundary value problems, which were studied e.g. in [3, 27] and
references cited therein.
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Proof of Theorem 7.1. We divide the proof of Theorem 7.1 into six steps.

Step 1. As is well known (see e.g. [17, Section 8.2, Theorem 5.8]), the
operator L generated by the Laplacian −∆m is continuous and invertible
from H1

0 into H−1, and

(20) 〈Lx, x〉 ≥ α‖x‖21 (x ∈ H1
0 )

for some α > 0. Recall that the solvability of (16) in H1
0 means the existence

of x ∈ H1
0 and y ∈ Nf (x) such that y ∈ H−1 and Lx = y. Via (18) together

with the condition (E1), we see that x is a solution of the problem (16) if
and only if x is a solution of the inclusion x ∈ L−1Nf (x) in X. Since H1

0
is compactly embedded in X, the linear inverse operator L−1 : Z ′ → X is
compact.

Step 2. Suppose that there exist x ∈ X, z ∈ Z ′, 0 ≤ λ ≤ 1, and
Q(x) ∈ Z ′ such that x = L−1(z), z = λQ(x) and

(21) 〈Q(x), x〉 ≤ γ〈x, x〉+ d,

where d := ‖δ(·)‖L1 . We claim that

(22) ‖x‖1 ≤ d1/2c−1/2, ‖x‖X ≤ r = r(c, d, h) <∞,
where c := α(µ∆ − γ)µ−1

∆ ∈ (0,∞), and r depends on c, d and on the norm
h of the continuous embedding H1

0 ⊂ X.
To see this, by [3, Lemma 4, (16)] together with 0 ≤ γ < µ∆ in the

condition (E3) we see that c ∈ (0,∞) and

(23) γ〈x, x〉 ≤ 〈Lx, x〉 − c‖x‖21.
By (21) and (23) we get

〈Q(x), x〉+ c‖x‖21 ≤ 〈Lx, x〉+ d.

Then by the same proof of [3, Lemma 3] we obtain (22).

Step 3. Since X = LΨ is a split space (see e.g. [6, Lemmas 2.5 and 4.2])
and Z ′ = LΦ∗ is perfect, i.e. Z ′ = (Z ′)′′ (see e.g. [24, Theorem 13.18]) by
(17), applying [4, Theorem 5] for Nf satisfying (E1)–(E2), we find that Nf
is bounded in Z ′ on bounded subsets of X. Hence,

(24) r∗ := sup{‖y‖Z′ : y ∈ Nf (x), ‖x‖X ≤ r} <∞.
Step 4. Since L−1 : Z ′ → X is a compact linear operator, the set

(25) C := clco{L−1y : ‖y‖Y ≤ r∗ + 1}
is, by the well-known Mazur theorem [19], a compact metric subspace of X,
where clco(D) is the convex closure of D. Since the Orlicz space Z ′ is regular
(see e.g. [21, Subsections 1.4, 1.6, 1.8, 1.9], [24, Theorem 8.14]), we can
apply Theorem 3.3 to find a continuous single-valued selection Q1 : C → Z ′
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for Nf |C : C → BdCl(Z ′). Hence, by (19), we conclude that Q1(x)(s) ∈
f(s, x(s)) a.e. (x ∈ C) and

(26) 〈Q1(x), x〉 ≤ γ〈x, x〉+ d (∀x ∈ C),

where d = ‖δ(·)‖L1 .
By the Dugundji–Tietze–Urysohn theorem [22, Theorem 18.1], we can

find a continuous nonlinear projection R from X onto the closed convex set
C such that R(x) = x (x ∈ C). Then the continuous single-valued map
Q̃1 := Q1R : X → Z ′ is a continuous extension of Q1 : C → Z ′.

Step 5. We claim that

(27) y 6= λQ̃1L
−1(y) (0 ≤ λ ≤ 1, ‖y‖Z′ = r∗ + 1).

To see this, suppose that on the contrary there exist z ∈ Z ′ and λ such
that z = λQ̃1L

−1(z), ‖z‖Y = r∗+1, and 0 ≤ λ ≤ 1. Then, x := L−1(z) ∈ C,
and so Q̃1(x) = Q1(x). Therefore, by (26), Q(x) := Q̃1(x) = Q1(x) satisfies
(21) and z = λQ(x). Applying the result of Step 2, we get ‖x‖X ≤ r (see
(22)). From (24) together with Q1(x) ∈ Nf (x) we obtain

‖z‖Z′ = ‖λQ1(x)‖Z′ ≤ ‖Q1(x)‖Z′ ≤ r∗ <∞,
which contradicts the equality ‖z‖Z′ = r∗ + 1.

Step 6. Since the linear inverse operator L−1 : Z ′ → X is compact,
the single-valued operator A := Q̃1L

−1 : Z ′ → Z ′ is clearly completely
continuous. By (27) together with the classical Leray–Schauder principle
(see e.g. [22, Theorem 42.1]) it follows that A has a fixed point z∗ with
‖z∗‖Z′ < r∗ + 1, i.e. z∗ = A(z∗) = Q̃1L

−1(z∗).
Using arguments analogous to those from Step 5, we get

‖z∗‖Z′ < r∗ + 1, x∗ := L−1(z∗) ∈ C, z∗ = Q̃1(x∗) = Q1(x∗),

and therefore since Q1(x∗) ∈ Nf (x∗) we get x∗ ∈ L−1Nf (x∗). Via Step 1
we deduce that x∗ is a solution of the system (16).

Acknowledgements. This research was supported by KBN grant 0705/
P3/94/06. The present paper is the exposition with complete proofs of some
results announced in [26].
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[20] M. A. Krasnosel’skĭı and A. V. Pokrovskĭı, Systems with Hysteresis, Nauka, Moscow,

1983 (in Russian) English transl.: Springer, Berlin, 1988.
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