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The Cauchy kernel for cones

by

Sławomir Michalik (Warszawa)

Abstract. A new representation of the Cauchy kernel KΓ for an arbitrary acute
convex cone Γ in Rn is found. The domain of holomorphy ofKΓ is described. An estimation
of the growth of KΓ near the singularities is given.

Introduction. The n-dimensional Cauchy kernel is a holomorphic func-
tion on (C \ {0})n defined by

(C \ {0})n 3 (z1, . . . , zn) 7→ 1
z1 . . . zn

.

This function can be regarded as the Laplace transform of the characteristic
function of Rn+:

1
z1 . . . zn

= (−1)n
�

Rn+

e〈y,z〉 dy for −Re z ∈ Rn+ := (R+)n.

Generalizing this formula, S. Bochner defined in [1] the Cauchy kernel KΓ
for an arbitrary cone Γ ⊂ Rn by

KΓ (z) := (−1)n
�

Γ ∗
e〈y,z〉 dy for Re z ∈ − Int(Γ ∗),(0.1)

where Γ ∗ is the dual cone to Γ . V. Vladimirov found and studied in [4]–[6]
another representation of the Cauchy kernel,

KΓ (z) = (n− 1)!
�

Γ ∗∩Sn−1

dσ

〈z, σ〉n ,(0.2)

and he proved that KΓ has a holomorphic continuation to the set

ΩΓ :=
⋂

σ∈Γ ∗∩Sn−1

{z : 〈z, σ〉 6= 0}.
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Bochner’s and Vladimirov’s estimations of the domain of holomorphy
of KΓ are not optimal, because for the classical Cauchy kernel the set
(C \ {0})n is much larger than {Re z ∈ −Rn+} and ΩRn+ . The aim of our
paper is to give a better description of the domain of holomorphy of KΓ .
To this end we make the following definitions. A set Γ is fat if Γ ⊂ IntΓ .
A cone Γ is acute if Int(Γ ∗) 6= ∅. Moreover set

A(Γ ) := {a ∈ ∂Γ ∩ Sn−1 : there exists a tangent space Va(Γ ) to ∂Γ at a},
HC(Γ ) :=

⋃

a∈A(Γ )

(Va(Γ ) + iVa(Γ )).

Now, we are ready to formulate the main result of the paper.

Theorem 1. Let Γ be an acute convex closed fat cone in Rn. Then:

(i) The Cauchy kernel KΓ has a holomorphic continuation to Cn\HC(Γ ).
(ii) For any α ∈ Nn0 there exists a constant C(n, α) < ∞, independent

of Γ , such that for z ∈ Cn \HC(Γ ),

|DαKΓ (z)| ≤ C(n, α)µn−1(Γ ∩ Sn−1)(dist(z,HC(Γ )))−n−|α|.(0.3)

The proof is divided into three steps. We begin with the Cauchy kernel
for simplicial cones. In this case, an explicit formula for KΓ allows us to get
(i) and (ii) immediately.

Next we prove that the Cauchy kernel for a polyhedral cone Γ is the sum
of such kernels for simplicial cones in a simplicial division of Γ . This implies
(i) for polyhedral cones (see Propositions 2.8 and 2.10). The inequality (0.3)
for such cones is proved in Proposition 2.11.

In the last step, we prove that the Cauchy kernel for any acute convex
closed fat cone is the limit of an almost uniformly convergent sequence of
the Cauchy kernels for appropriate polyhedral cones. As a conclusion we
obtain the assertions of Theorem 1 (see Propositions 3.2 and 3.3).

Notation. We use vector notation. In particular, if a, b ∈ Rn then a < b
means ai < bi for i = 1, . . . , n and zk means zk1

1 · . . . ·zknn for z ∈ Cn, k ∈ Nn0 .
If z ∈ Cn, we write Re z := (Re z1, . . . ,Re zn) and Im z := (Im z1, . . . , Im zn).

Let r ∈ R. We denote by r the n-tuple (r, . . . , r) ∈ Rn. If α ∈ Nn0 , we
write |α| := |α1| + . . . + |αn|. The scalar product of x, y ∈ Rn (or Cn) is
denoted by 〈x, y〉 := x1y1 + . . .+ xnyn.

We write Dα for the differential operator ∂α/∂xα1
1 . . . ∂xαnn . Let µn−1

denote the Lebesgue measure on Sn−1.
A cone in Rn is a set Γ ⊂ Rn with the property that if x ∈ Γ , then

λx ∈ Γ for all λ > 0. The dual cone to Γ is defined by

Γ ∗ := {ξ : 〈ξ, y〉 ≥ 0 for every y ∈ Γ}.
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For any cone Γ in Rn, set

HR(Γ ) :=
⋃

a∈A(Γ )

Va(Γ ),

where Va(Γ ) is the tangent space to ∂Γ at a and the set A(Γ ) is defined in
the previous section.

1. The Cauchy kernel for simplicial cones

Definition 1.1. A cone ∆ ⊂ Rn is called simplicial if

∆ := {x ∈ Rn : Ax ≥ 0} = {x ∈ Rn : (Ax)j ≥ 0 for j = 1 . . . n}(1.1)

for some non-singular matrix A ∈ GL(n,R).

Observe that the matrix A is unique modulo permutation of rows and
multiplication of rows by positive constants.

It is easily seen that any simplicial cone can be described by

∆(a1, . . . , an) := {x ∈ Rn : x = t1a
1 + . . .+ tna

n, ti ≥ 0, i = 1, . . . , n}
with linearly independent points a1, . . . , an ∈ Sn−1.

For a simplicial cone ∆ we have (see Exercise 8.7 in [3])

K∆(z) =
|detA|
(Az)1 with (Az)1 := (Az)1 · . . . · (Az)n.(1.2)

The right-hand side of (1.2) does not depend on the choice of A in (1.1).
By (1.2), K∆ can be holomorphically continued to the set {z ∈ Cn :
(Az)j 6= 0 for j = 1, . . . , n}. Note that

Cn \
n⋃

j=1

{z ∈ Cn : (Az)j = 0} = Cn \HC(∆).

By (1.2) we obtain

Proposition 1.2. Let ε ∈ {−1, 1}n and ∆ε := {x ∈ Rn : εi(Ax)i ≥ 0
for i = 1, . . . , n}. Then

K∆ε(z) = sgn ε · K∆(z) for z ∈ Cn \HC(∆)(1.3)

with sgn ε := sgn ε1 · . . . · sgn εn.

Example 1.3. If we take ∆ := Rn+, we recover the classical Cauchy
kernel

KRn+(z) =
1

z1 . . . zn
for z ∈ (C \ {0})n.
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2. The Cauchy kernel for polyhedral cones

Definition 2.1. A set W ⊂ Rn is called a polyhedral cone if there exists
M ∈ N such that

W = ∆1 ∪ . . . ∪∆M ,

where ∆1, . . . ,∆M are simplicial cones in Rn and Int(∆i ∩ ∆j) = ∅ for
i 6= j, i, j = 1, . . . ,M . The system R := {∆1, . . . ,∆M} is called a simplicial
division of W .

Definition 2.2. Let W be a polyhedral cone in Rn. By an (n− 1)-face
of W we mean a set W n−1 := ∂W ∩V n−1 with non-empty interior in V n−1,
where V n−1 is some (n− 1)-dimensional subspace of Rn. By a k-face of W
(k = n−2, . . . , 1) we mean a set W k := ∂W k+1∩V k with non-empty interior
in V k, where V k is some k-dimensional subspace of Rn. The set of k-faces
of W is denoted by ∂(k)W . A 1-face of W is called an edge of W .

For convenience we identify a point ai ∈ Sn−1 with the edge ∆(ai) =
{λai : λ ≥ 0}. Observe that every polyhedral convex cone W in Rn can be
described by

W = W (a1, . . . , aN ) := {x ∈ Rn : x = t1a
1 + . . .+ tNa

N

for ti ≥ 0, i = 1, . . . , N}
with edges a1, . . . , aN ∈ Sn−1 and N ≥ n.

Definition 2.3. LetW be a polyhedral cone in Rn with edges a1, . . . , aN

(n ≤ N). For any ai ∈ ∂(1)W we set

NbW (ai) := {aj ∈ {a1, . . . , aN} : there exists W 2 ∈ ∂(2)W such that

∆(ai, aj) ⊂W 2, ∆(ai, aj) ∩ {a1, . . . , an} = {ai, aj}}.
Roughly, NbW (ai) is the set of edges of W which are neighbours of ai.

Lemma 2.4. Let Γ1, Γ2 be closed cones in Rn such that Γ1 ∪ Γ2 is a
convex cone. Then Γ ∗1 ∪ Γ ∗2 is also a convex cone.

The above lemma is well known, so we omit its proof.

Lemma 2.5. Let W be a polyhedral cone in Rn with edges a1, . . . , aN ,
where N > n. Then there exists an edge ai such that

NbW (ai) 6= {a1, . . . , aN}.(2.1)

Proof. Suppose that, on the contrary, NbW (ai) = {a1, . . . , aN} for every
i = 1, . . . , N with N > n. Then ∆(ai1 , . . . , aik) ∈ ∂(k)W for 1 ≤ i1 < . . . <
ik ≤ N and k < n. In particular, every (n − 1)-face of the simplicial cone
∆(a1, . . . , an) is simultaneously an (n− 1)-face of W . Therefore

W (a1, . . . , aN ) = ∆(a1, . . . , an)

and N = n. This contradicts our assumption that N > n.
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In the following the crucial role is played by the simplicial division con-
structed in the next lemma.

Lemma 2.6. Let W := W (a1, . . . , aN ) be an acute convex polyhedral
cone in Rn. Then there exists a simplicial division R = {∆j}Kj=1 of W
satisfying :

(A) If NbW (ai) = {a1, . . . , aN} for some i ∈ {1, . . . , N}, then ai is the
edge of every simplicial cone ∆j (j = 1, . . . ,K).

The simplicial division R satisfying (A) and constructed in the proof of
this lemma will be called a special division of W . Observe that every edge of
any simplicial cone in a special division R is also the edge of W . Conversely,
every edge of W is also the edge of some simplicial cone in R.

Proof. We construct R by induction on N ≥ n.
1) For N = n, every cone W (a1, . . . , an) is a simplicial cone

W (a1, . . . , an) = ∆(a1, . . . , an), R = {∆(a1, . . . , an)}
and obviously (A) holds.

2) Fix k > n and suppose that for every N (n ≤ N < k) and every cone
WN with N edges a1, . . . , aN , there exists a simplicial division R of WN

satisfying (A). Consider any acute convex polyhedral cone Wk with k edges
a1, . . . , ak. By Lemma 2.5 there exists an edge ai satisfying (2.1). Put

Wk−1 := W (a1, . . . , âi, . . . , ak) := W (a1, . . . , ai−1, ai+1, . . . , ak).(2.2)

By the inductive assumption, there is a simplicial division {∆m}M ′m=1 ofWk−1
satisfying (A). Set

W+
<k := Wk \Wk−1.(2.3)

Notice that W+
<k is also a polyhedral cone in Rn, with edges in NbWk

(ai)
and, by Lemma 2.5, the number of these edges is less than k. But generally
W+
<k does not have to be convex. Let 1 ≤ j1 < . . . < jl ≤ k (l < k) be

indices different from i, satisfying

NbWk
(ai) = {aj1 , . . . , ajl , ai},(2.4)

and let

W−<k := W (aj1 , . . . , ajl ,−ai).(2.5)

Since
NbWk

(ai) = NbW+
<k

(ai) = {aj1 , . . . , ajl , ai},

we find that
NbW−<k(−ai) = {aj1 , . . . , ajl ,−ai}.
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The cone W−<k has less than k edges. Hence, by the inductive assumption,
we have a simplicial division {∆−m}Mm=M ′+1 of W−<k satisfying (A), where

∆−m := ∆(aj1(m), . . . , ajn−1(m),−ai),(2.6)

with {aj1(m), . . . , ajn−1(m)} ⊂ {aj1 , . . . , ajl} (m = M ′ + 1, . . . ,M). Define

∆m := ∆(aj1(m), . . . , ajn−1(m), ai) for m = M ′ + 1, . . . ,M.(2.7)

Thus {∆m}Mm=M ′+1 is a simplicial division of W+
<k and R := {∆m}Mm=1 is

a simplicial division of Wk.
A trivial verification shows that R satisfies condition (A).

Lemma 2.7. Let Wk := W (a1, . . . , ak) be an acute convex polyhedral
cone in Rn (k>n). Let Wk−1, W+

<k, W
−
<k be the cones defined by (2.2)–(2.5).

Then

W−<k ∩W+
<k ⊂Wk−1 ⊂W−<k.(2.8)

Proof. Recall that, in the notation of the proof of Lemma 2.6,

Wk−1 = W (a1, . . . , âi, . . . , ak), W+
<k = Wk \Wk−1,

NbWk
(ai) = {aj1 , . . . , ajl , ai}, W−<k = W (aj1 , . . . , ajl ,−ai).

Since NbW+
<k

(ai) = {aj1 , . . . , ajl , ai} and every edge of W+
<k belongs to

NbW+
<k

(ai), we have

W+
<k ⊂W (aj1 , . . . , ajl , ai).

Therefore

W+
<k ∩W−<k ⊂W (aj1 , . . . , ajl , ai) ∩W (aj1 , . . . , ajl ,−ai) = W (aj1 , . . . , ajl).

Clearly, {aj1 , . . . , ajl} ⊂ {a1, . . . , âi, . . . , ak}. Hence

W (aj1 , . . . , ajl) ⊂W (a1, . . . , âi, . . . , ak) = Wk−1,

and the left-hand inclusion in (2.8) holds.
To prove the right-hand inclusion, it is sufficient to show that aj ∈W−<k

for j = 1, . . . , k, j 6= i. If aj ∈ {aj1 , . . . , ajl}, this is trivial. Suppose that
aj 6∈ {aj1 , . . . , ajl} (i.e. aj 6∈ NbWk

(ai)). Then there exists c > 0 satisfying
aj + cai ∈W (aj1 , . . . , ajl). Therefore aj ∈W (ai1 , . . . , ail ,−ai) = W−<k.

Proposition 2.8. Let W := W (a1, . . . , aN ) be an acute convex polyhe-
dral cone in Rn and let R = {∆i}Ki=1 be a special division of W . Then

KW (z) =
K∑

i=1

K∆i(z) for z ∈ ΩW ∩
K⋂

j=1

(Cn \HC(∆j)).(2.9)

Furthermore, KW has a holomorphic continuation to Cn \HC(W ).
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Proof. We show (2.9) by induction on N .
1) For N = n, W = ∆(a1, . . . , an), R = {∆(a1, . . . , an)} and obviously

(2.9) holds.
2) Fix k > n. Assuming (2.9) to hold for every N (n ≤ N < k) and

every convex acute polyhedral cone W with N edges, we will prove it for
any polyhedral cone Wk with k edges. Take Wk−1, W+

<k, W
−
<k as in the proof

of Lemma 2.6. By Lemma 2.7 ,

W−<k ∩W+
<k ⊂Wk−1 ⊂W−<k.

Hence, by duality,

W−∗<k ⊂W ∗k−1 ⊂ (W−<k ∩W+
<k)
∗.(2.10)

From Lemma 2.4 we conclude

(W−<k ∩W+
<k)
∗ = W−∗<k ∪W+∗

<k .(2.11)

Thus
W ∗k−1 ⊂W−∗<k ∪W+∗

<k .(2.12)

The cone W−<k∪W+
<k is not acute, because it includes the line aiR. Therefore

Int(W−∗<k ∩W+∗
<k )

(2.11)
= Int(W−<k ∪W+

<k)
∗ = ∅.(2.13)

Consequently,

W ∗k
(2.3)
= (Wk−1 ∪W+

<k)
∗ = W ∗k−1 ∩W+∗

<k(2.14)

= W ∗k−1 \ (W ∗k−1 ∩W−∗<k ),

where the last equality holds because

W ∗k−1
(2.12)

= (W ∗k−1 ∩W−∗<k ) ∪ (W ∗k−1 ∩W+∗
<k )

and

Int((W ∗k−1 ∩W−∗<k ) ∩ (W ∗k−1 ∩W+∗
<k ))

(2.13)
= ∅.

Therefore

(2.15) KWk
(z)

(0.2)
= (n− 1)!

�

Sn−1∩W ∗k

dσ

〈z, σ〉n

(2.14)
= (n− 1)!

�

Sn−1∩W ∗k−1

dσ

〈z, σ〉n − (n− 1)!
�

Sn−1∩W ∗k−1∩W−∗<k

dσ

〈z, σ〉n

(2.10)
= (n− 1)!

�

Sn−1∩W ∗k−1

dσ

〈z, σ〉n − (n− 1)!
�

Sn−1∩W−∗<k

dσ

〈z, σ〉n

(0.2)
= KWk−1(z)−KW−<k(z).
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Let {∆j}M ′j=1 and {∆−j }Mj=M ′+1 be the special divisions of Wk−1 and W−<k,
constructed in the proof of Lemma 2.6. From the inductive assumption

KWk−1(z) =
M ′∑

j=1

K∆j(z)(2.16)

and

KW−<k(z) =
M∑

j=M ′+1

K∆−j (z).(2.17)

By Proposition 1.2 we obtain

K∆−j (z) = −K∆j (z) for j = M ′ + 1, . . . ,M(2.18)

with ∆−j and ∆j defined by (2.6) and (2.7). Finally,

KWk
(z)

(2.15)
= KWk−1(z)−KW−<k(z)

(2.16),(2.17)
=

M ′∑

j=1

K∆j (z)−
M∑

j=M ′+1

K∆−j (z)

(2.18)
=

M ′∑

j=1

K∆j(z) +
M∑

j=M ′+1

K∆j (z) =
M∑

j=1

K∆j (z).

This means that (2.9) holds on ΩW ∩
⋂K
j=1(Cn \HC(∆j)).

Now, we are in a position to prove that KW can be holomorphically
continued to the set Cn \HC(W ). Denote by {V1, . . . , Vm′} a set of (n− 1)-
dimensional subspaces in Rn satisfying IntVl(Vl ∩∂W ) 6= ∅ for l = 1, . . . ,m′.
A trivial verification shows that

m′⋃

l=1

(Vl + iVl) = HC(W ).

Similarly, let {V1, . . . , Vm′ , Vm′+1, . . . , Vm} be a set of (n − 1)-dimensional
subspaces in Rn satisfying

⋃K
j=1 IntVl(Vl ∩ ∂∆j) 6= ∅ for l = 1, . . . ,m. Hence⋃m

l=1(Vl+iVl) =
⋃K
j=1HC(∆j). Clearly,

∑K
j=1K∆j is a holomorphic function

on
K⋂

j=1

(Cn \HC(∆j)) =
{
z ∈ Cn : z 6∈

m⋃

l=1

(Vl + iVl)
}
.

Therefore, using (2.9), we see that KW can be holomorphically continued to
this set. Put

V −l := Vl \
l−1⋃

j=1

Vj for l = m′ + 1, . . . ,m.
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We have
m⋃

l=m′+1

V −l =
( m⋃

l=m′+1

Vl

)
\
m′⋃

j=1

Vj .(2.19)

It is sufficient to show that KW can be holomorphically continued to some
open neighbourhood of V −l + iV −l for l = m′ + 1, . . . ,m. Indeed, then KW
can be holomorphically continued to

Cn \HC(W ) =
{
z ∈ Cn : z 6∈

m⋃

j=1

(Vj + iVj)
}

∪
{
z ∈ Cn : z ∈

m⋃

l=m′+1

(V −l + iV −l )
}

(2.19)
=

{
z ∈ Cn : z 6∈

m′⋃

j=1

(Vj + iVj)
}
.

In the first step we take l := m. Then there exists (b1, . . . , bn) ∈ Rn \ {0}
such that

Vm = {x ∈ Rn : b1x1 + . . .+ bnxn = 0}.
Suppose that bn 6= 0. Applying (1.2) we see that

∑

∆∈R
K∆(z) =

1
b1z1 + . . .+ bnzn

· wm(z)
vm(z)

,(2.20)

where wm, vm are polynomials with real coefficients such that vm(z) 6= 0 for
z ∈ V −m + iV −m . Write Um := (V −m ∩(W ∪−W ))+ i(V −m ∩(W ∪−W )). Clearly

b1z1 + . . .+ bnzn = 0 for z ∈ Um.
Since KW is holomorphic on ΩW , it is also holomorphic on some open neigh-
bourhood of the non-empty set Um. Thus, by (2.20), wm vanishes on Um.
Define a map ϕm : Cn−1 → Vm + iVm by

ϕm(z̃1, . . . , z̃n−1) :=
(
z̃1, . . . , z̃n−1,−

b1
bn
z̃1 − . . .−

bn−1

bn
z̃n−1

)
,

and w̃m : Cn−1 → C by

w̃m(z̃1, . . . , z̃n−1) := wm(ϕm(z̃1, . . . , z̃n−1)).

We see that w̃m is a polynomial which vanishes on an open set in Cn−1.
Thus w̃m(t) ≡ 0 on Cn−1. This means that the polynomial wm vanishes on
Vm + iVm. Therefore the right-hand side of (2.20) is a holomorphic function
on some open neighbourhood of V −m + iV −m .

Next we repeat the procedure taking successively l := m− 1,m− 2, . . .
. . . , l+ 1. After m−m′ steps we conclude that KW can be holomorphically
continued to Cn \HC(W ).
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Proposition 2.9. Let W be an acute convex polyhedral cone in Rn and
let

V := {x ∈ Rn : F (x) := b1x1 + . . .+ bnxn = 0}
be an (n− 1)-dimensional subspace in Rn dividing W into

W 1 := W ∩ {x ∈ Rn : F (x) ≥ 0}, W 2 := W ∩ {x ∈ Rn : F (x) ≤ 0}.
Then

KW (z) =KW 1(z)+KW 2(z) for z ∈ (Cn\HC(W 1))∩(Cn\HC(W 2)).(2.21)

Proof. We first construct a special division of W 1. To do this take edges
a1, . . . , aM with W = W (a1, . . . , aN ), W 1 = W (a1, . . . , aL, aN+1, . . . , aM )
and W 2 = W (aK+1, . . . , aM ) for 1 ≤ K ≤ L < N ≤M . In other words,

a1, . . . , aK ∈W 1 \ V, aK+1, . . . , aL, aN+1, . . . , aM ∈W 1 ∩ V.(2.22)

Observe that for K = 1, by (2.22), a1 is a unique edge of W 1 which does
not belong to V . Hence we have

NbW 1(a1) = {a1, . . . , aL, aN+1, . . . , aM}.(2.23)

Fix K > 1 and consider a cone W̃ := W (a1, . . . , aK , ai1 . . . , ain−1) with edges
ai1 , . . . , ain−1 ∈ {aK+1, . . . , aL, aN+1, . . . , aM} such that ∆(ai1, . . . , ain−1) is
a simplicial cone in V . Then {ai1 , . . . , ain−1} ⊂ Nb

W̃
(aij ) for j = 1, . . . , n−1.

Therefore Lemma 2.5 shows that there exists j ∈ {1, . . . ,K} satisfying
Nb

W̃
(aj) 6= {a1, . . . , aK , ai1 , . . . , ain−1}. Consequently,

NbW 1(aj) 6= {a1, . . . , aL, aN+1, . . . , aM}.(2.24)

Without loss of generality we can assume that (2.24) is satisfied for j = 1.
As in Lemma 2.6 we construct the division of W 1 with respect to a1 into
W 1+
<M ′ (M ′ := M + L − N) and W 1

M ′−1 = W (a2, . . . , aL, aN+1, . . . , aM).
In the next step we replace W 1 by W 1

M ′−1 and a1 by a2. After K − 1
such steps we have the division of W 1 into W 1+

<M ′ , . . . ,W
1+
<M ′−K+2 and

W 1
M ′−K+1 = W (aK , . . . , aL, aN+1, . . . , aM ). By Lemma 2.7, as in the proof

of Proposition 2.8, we have

KW 1(z)
(2.15)

= KW 1
M ′−K+1

(z)−KW 1−
<M ′−K+2

(z)− . . .−KW 1−
<M ′

(z).(2.25)

We next construct a division of W similar to the above. Denote by W ′ :=
W (a1, . . . , aM ) the cone W = W 1 ∪W 2 with edges a1, . . . , aN and pseudo-
edges aN+1, . . . , aM . We extend Definition 2.3 by writing NbW ′(ai) for the
set of edges and pseudo-edges of W ′ which are neighbours of the edge ai

(i = 1, . . . , N). By (2.22) we have

NbW 1(ai) = NbW ′(a
i) for i = 1, . . . ,K.(2.26)
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As in Lemma 2.6 we divide W ′ with respect to a1 into W ′+<M
(2.26)

= W 1+
<M ′ and

W ′M−1
(2.26)

= W 1
M ′−1∪W 2 = W (a2, . . . , aM ). Observe that inclusions (2.8) in

Lemma 2.7 are satisfied for W ′M−1, W ′+<M and W ′−<M . Hence, as in the proof
of Proposition 2.8,

KW ′(z)
(2.15)

= KW ′M−1
(z)−KW ′−<M (z).

After K−1 such steps we have the division of W ′ into W 1+
<M ′ , . . . ,W

1+
<M ′−K+2

and W ′M−K+1 = W (aK , . . . , aM ), which satisfies

KW ′(z)
(2.15)

= KW ′M−K+1
(z)−KW 1−

<M ′−K+2
(z)− . . .−KW 1−

<M ′
(z).(2.27)

In the last step, by (2.23) we divide W ′M−K+1 into W ′+<M−K+1 = W 1
M ′−K+1

and W ′M−K = W 2 such that

KW ′M−K+1
(z)

(2.15)
= KW ′M−K (z)−KW ′−<M−K+1

(z).

By convexity of W ′+<M−K+1 we obtain

KW ′M−K+1
(z) = KW ′M−K (z) +KW ′+<M−K+1

(z)(2.28)

= KW 2(z) +KW 1
M ′−K+1

(z).

Finally, by (2.25), (2.27), (2.28) we have

KW (z) = KW ′(z) = KW 1(z) +KW 2(z).

Applying Proposition 2.9, one can improve Proposition 2.8.

Proposition 2.10. Let W be an acute convex polyhedral cone in Rn
and R = {∆j}Kj=1 be any simplicial division of W . Then

KW (z) =
K∑

j=1

K∆j (z) for z ∈ ΩW ∩
K⋂

j=1

(Cn \HC(∆j))

and KW can be holomorphically continued to Cn \HC(W ).

Proof. Fix any simplicial division {∆j}Mj=1 ofW . Observe that, according
to Proposition 2.9, every set {V1, . . . , Vk} of (n − 1)-dimensional subspaces
in Rn meeting IntW divides W into closed and convex polyhedral cones
RW := {W1, . . . ,WL} satisfying W = W1 ∪ . . . ∪WL and Int(Wi ∩Wj) = ∅
for i 6= j. Thus, by Proposition 2.9,

KW (z) =
L∑

j=1

KWj (z).(2.29)
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In particular, we can assume that {Wj}Lj=1 is a subdivision of {∆j}Mj=1. This
means that we can divide RW into R1

W , . . . ,RMW such that

∆j =
⋃

W ′∈RjW

W ′ for j = 1, . . . ,M.

Again applying Proposition 2.9, we have

K∆j (z) =
∑

W ′∈RjW

KW ′(z) for j = 1, . . . ,M.(2.30)

We conclude that

KW (z)
(2.29)

=
∑

W ′∈RW
KW ′(z) =

M∑

j=1

∑

W ′∈RjW

KW ′(z)
(2.30)

=
M∑

j=1

K∆j(z).

The next proposition describes the behaviour of KW near the set of
singularities.

Proposition 2.11. Let W be an acute convex polyhedral cone in Rn.
Then for every α ∈ Nn0 there exists C(n, α) <∞ such that

|DαKW (z)| ≤ C(n, α)µn−1(W ∩ Sn−1)(dist(z,HC(W )))−n−|α|.(2.31)

for z ∈ Cn \HC(W ).

Proof. We have (see [6, p. 159])

dist(z,HC(W )) = inf
σ∈W ∗∩Sn−1

〈z, σ〉 for z ∈W + iW.(2.32)

Fix α ∈ Nn0 . Then for z ∈ Int(W + iW ) we obtain

(2.33) |DαKW (z)| (0.2)
= (n+ |α| − 1)!

∣∣∣∣
�

W ∗∩Sn−1

σαdσ

〈z, σ〉n+|α|

∣∣∣∣

≤ (n+ |α| − 1)!µn−1(W ∗ ∩ Sn−1) sup
σ∈W ∗∩Sn−1

〈z, σ〉−n−|α|

(2.32)
= (n+ |α| − 1)!µn−1(W ∗ ∩ Sn−1)(dist(z,HC(W )))−n−|α|.

Consider a simplicial cone ∆ and a matrix A corresponding to ∆. Fix z ∈
Cn \HC(∆). Then there exists z̃ ∈ Int(∆+ i∆) such that

A(Re z̃ )j = |A(Re z)j|, A(Im z̃ )j = |A(Im z)j|(2.34)

for j = 1, . . . , n. So

dist(z,HC(∆)) = dist(z̃, HC(∆)).(2.35)
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Estimating the Cauchy kernel we obtain

(2.36) |DαK∆(z)| (1.2)
=

∣∣∣∣Dα |detA|
(Az)1

∣∣∣∣
(2.34)

=

∣∣∣∣Dα |detA|
(Az̃ )1

∣∣∣∣
(1.2)
= |DαK∆(z̃ )|

(2.33)
≤ (n+ |α| − 1)!µn−1(∆∗ ∩ Sn−1)(dist(z̃, HC(∆)))−n−|α|

(2.35)
= (n+ |α| − 1)!µn−1(∆∗ ∩ Sn−1)(dist(z,HC(∆)))−n−|α|.

Therefore

(2.37) |DαK∆(z)| (1.3)
= min

ε∈{−1,1}n
|DαK∆ε(z)|

(2.36)
≤ min

ε∈{−1,1}n
µn−1(∆∗ε ∩ Sn−1)(n+ |α| − 1)!(dist(z,HC(∆)))−n−|α|.

Observe that every edge of the simplicial cone ∆ is perpendicular to some
(n−1)-dimensional subspace of Rn containing an (n−1)-face of ∆∗. On the
other hand, every (n−1)-dimensional subspace containing an (n−1)-face of
∆ is perpendicular to some edge of ∆∗. This means that all angles between
appropriate subspaces from HR(∆) and HR(∆∗) are preserved. Hence

min
ε∈{−1,1}n

µn−1(∆∗ε ∩ Sn−1) = min
ε∈{−1,1}n

µn−1(∆ε ∩ Sn−1).(2.38)

Finally, we have

(2.39) |DαK∆(z)|
(2.37)
≤ (n+ |α| − 1)! min

ε∈{−1,1}n
µn−1(∆∗ε ∩ Sn−1)(dist(z,H(∆)))−n−|α|

(2.38)
= (n+ |α| − 1)! min

ε∈{−1,1}n
µn−1(∆ε ∩ Sn−1)(dist(z,H(∆)))−n−|α|

≤ (n+ |α| − 1)!µn−1(∆ ∩ Sn−1)(dist(z,H(∆)))−n−|α|.

So, we see that (2.31) holds for simplicial cones.
Consider an acute convex polyhedral coneW and fix z ∈ Cn\HC(W ). Sup-

pose that {∆i}mi=1 is a simplicial division of W such that z 6∈ ⋃m
j=1HC(∆j).

By Proposition 2.10,

(2.40) |DαKW (z)| ≤
m∑

j=1

|DαK∆j (z)|

(2.39)
≤

m∑

j=1

(n+ |α| − 1)!µn−1(∆j ∩ Sn−1)(dist(z,HC(∆j)))−n−|α|

≤ (n+ |α| − 1)!µn−1(W ∩ Sn−1)
(

dist
(
z,

m⋃

j=1

HC(∆i)
))−n−|α|

.
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The proof will be completed by showing that there exists C <∞ (indepen-
dent of W and z) such that for every z ∈ Cn\HC(∆) we can find a simplicial
division {∆j}mj=1 of W satisfying

dist(z,HC(W )) ≤ C dist
(
z,

m⋃

j=1

HC(∆j)
)
.(2.41)

Fix z ∈ Cn\HC(W ). Let Vz ⊂ HR(W ) be an (n−1)-dimensional subspace
in Rn with the property that

dist(z,HC(W )) = dist(z, Vz + iVz).(2.42)

Without loss of generality we can assume, that

dist(Im z, Vz) ≤ dist(Re z, Vz).(2.43)

If Re z 6∈ Int(W ∪ −W ) then we can find a simplicial division {∆j}mj=1
of W (depending on Re z) satisfying

dist(Re z, Vz) = dist
(

Re z,
m⋃

j=1

HR(∆j)
)
.

Then

dist(z,HC(W ))
(2.42)

= dist (z, Vz + iVz)
(2.43)
≤ 2 dist(Re z, Vz)

≤ 2 dist
(

Re z,
m⋃

j=1

HR(∆j)
)
≤ 2 dist

(
z,

m⋃

j=1

HC(∆j)
)

and (2.41) holds.
Assume now that Re z ∈ IntW (for Re z ∈ Int(−W ) the proof is similar).

Let
r := dist(Re z, Vz) = dist(Re z, ∂W )

and let

Γ (r) := {x ∈ Rn : x = λσ for λ ≥ 0, σ ∈ Sn−1, dist(σ,Re z) ≤ r}
be a light cone, which is contained in W . Denote by ∆̃1 ⊂ Γ (r) a simplicial
cone such that the distance r̃ := dist(Re z, ∂∆̃1) is maximal and Re z ∈ ∆̃1.
The fraction r/r̃ is finite and only depends on the dimension of the space
(is independent of W and z). Furthermore, let {∆̃i}ki=2 be a simplicial divi-
sion of W \ Int ∆̃1 such that

dist(Re z,HR(∆̃1)) ≤ dist(Re z,HR(∆̃j)) for j = 2, . . . ,m.

Hence {∆̃j}mj=1 is a simplicial division of W satisfying

dist(Re z, Vz) ≤ D(n) dist
(

Re z,
m⋃

j=1

HR(∆̃j)
)
.(2.44)
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Therefore

dist(z,HC(W ))
(2.42)

= dist(z, Vz + iVz)
(2.43)
≤ 2 dist(Re z, Vz)

(2.44)
≤ 2D(n) dist

(
Re z,

m⋃

j=1

HR(∆̃j)
)
≤ 2D(n) dist

(
z,

m⋃

j=1

HC(∆̃j)
)

and (2.41) also holds.

3. The Cauchy kernel for acute convex cones. In this section we
will consider acute closed convex fat cones in Rn. Recall

Rademacher’s Theorem (see Theorem 3.2 in [2]). Every Lipschitz
function f : U → R, with U ⊂ Rn open, is differentiable almost everywhere
(in the sense of Lebesgue measure).

After an appropriate rotation, the boundary of every convex closed fat
cone in Rn is locally the graph of a Lipschitz function f : Rn−1 → R.
Therefore, by the above theorem we have

Corollary 3.1. Let Γ be an acute convex closed fat cone in Rn. Then
for almost all a ∈ ∂Γ there exists a tangent space to ∂Γ at a, denoted
by Va(Γ ).

Proposition 3.2. Let Γ be an acute convex closed fat cone in Rn. Then:

(i) There exists a sequence {Wk}∞k=1 of acute convex polyhedral cones
such that for k →∞, KWk

converges almost uniformly in ΩΓ to KΓ .
(ii) KΓ can be holomorphically continued to Cn \HC(Γ ).

Proof. If Γ is a polyhedral cone, then we can take Wk := Γ for k =
1, 2, . . .

Assume that Γ is not a polyhedral cone. We will construct a sequence
{Wk}∞k=1 of polyhedral cones in the following way:

1. Let W1 be a simplicial cone containing Γ with the following property:
every (n − 1)-face of W1 is contained in some tangent space Va(Γ ). Since
n distinct (n − 1)-dimensional subspaces in Rn define a simplicial cone,
W1 exists. Set A1

Γ := AΓ ∩ ∂W1.
2. Assume that we have defined W1, . . . ,Wk−1 and A1

Γ , . . . , A
k−1
Γ . Set

Ak−1
Γ := AΓ ∩ ∂Wk−1 and F := ∂Γ ∩ Sn−1. Because F is compact and Γ is

not a polyhedral cone, there exists xk ∈ F such that

dist(xk, A
k−1
Γ ) = sup

x∈F
dist(x,Ak−1

Γ ) > 0.

By Corollary 3.1, AΓ is dense in F . Hence, we can choose a point ak ∈ AΓ
such that

dist(ak, A
k−1
Γ ) >

9
10

dist(xk, A
k−1
Γ ).(3.1)
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The tangent space Vak(Γ ) divides the cone Wk−1, as in Proposition 2.9, into
cones: W 1

k−1 and W 2
k−1. We can assume that Γ ⊂W 1

k−1. We obtain a poly-
hedral cone Wk := W 1

k−1. Define AkΓ := AΓ ∩Wk. From the construction of
Wk, we have

Ak−1
Γ ⊂ AkΓ , HC(Wk) = HC(Wk−1) ∪ (Vak(Γ ) + iVak(Γ ))

and KWk
is a holomorphic function on Cn \HC(Wk).

Observe that the sequence {Wk}∞k=1 of acute convex polyhedral cones
constructed above satisfies

(3.2) W1 ⊃W2 ⊃ . . . ⊃ Γ, A1
Γ ⊂ A2

Γ ⊂ . . . ⊂ AΓ ,
(3.3) Cn \HC(W1) ⊃ Cn \HC(W2) ⊃ . . . ⊃ Cn \HC(Γ ).

We show that A∞Γ :=
⋃∞
k=1A

k
Γ is dense in AΓ . Assume that, on the

contrary, there exist ε > 0 and x ∈ AΓ satisfying dist(x,A∞Γ ) > 10ε/9. By
the choice of {ak}∞k=2 we get

dist(am, al) ≥ dist(am, Am−1
Γ )

(3.1)
≥ ε for l = 2, 3, . . . and m > l.

This leads to a contradiction, because all points {ak}∞k=1 are contained in a
compact sphere Sn−1.

Thus A∞Γ is dense in AΓ and by Corollary 3.1, A∞Γ is also dense in
∂Γ ∩ Sn−1. This means that the cones {Wk}∞k=1 satisfy

⋂∞
k=1Wk = Γ and

µn−1((Wk \ Γ ) ∩ Sn−1)→ 0 as k →∞,(3.4)

where µn−1 is the Lebesgue measure on Sn−1. We also have

Cn \HC(Γ ) = Int
( ∞⋂

k=1

(Cn \HC(Wk))
)
.

Hence, passing to the dual cones, we have

W ∗1 ⊂W ∗2 ⊂ . . . ⊂ Γ ∗, Γ ∗ =
∞⋃

k=1

W ∗k .

Thus

µn−1((Γ ∗ \W ∗k ) ∩ Sn−1)→ 0 as k →∞.(3.5)

Now we show that the sequence of holomorphic functions KWk
is almost

uniformly convergent in Cn \HC(Γ ). Fix ε > 0 and K b Cn \HC(Γ ). It is
sufficient to show that there exists m ∈ N such that for every k > l > m,

sup
z∈K
|KWl

(z)−KWk
(z)| ≤ ε.(3.6)

By (3.3) the functions KWl
and KWk

are holomorphic on K. Take any z ∈ K.
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Combining Proposition 2.9 with the construction of the cones {Wk}k∈N we
have

KWl
(z)−KWk

(z) =
k−1∑

j=l

KW 2
j
(z).(3.7)

By Proposition 2.11 for fixed j ∈ {1, . . . , k − 1} we obtain

|KW 2
j
(z)| ≤ C(n)µn−1(W 2

j ∩ Sn−1)(dist(z,HC(W 2
j )))−n.(3.8)

Since HC(W 2
j ) ⊂ HC(Γ ), we deduce that

(dist(z,HC(W 2
j )))−n ≤ (dist(z,HC(Γ )))−n.(3.9)

As K is compact in Cn \HC(Γ ), there exists M <∞ such that

sup
z∈K

(dist(z,HC(Γ )))−n ≤M.(3.10)

Furthermore, we have

k−1∑

j=l

µn−1(W 2
j ∩ Sn−1) = µn−1(Wl ∩ Sn−1)− µn−1(Wk ∩ Sn−1).(3.11)

Combining (3.4) and (3.2) we find m such that for every k > l > m,

µn−1(Wl ∩ Sn−1)− µn−1(Wk ∩ Sn−1) ≤ ε

C(n)M
.(3.12)

Finally,

sup
z∈K
|KWl

(z)−KWk
(z)| (3.7)

= sup
z∈K

∣∣∣
k−1∑

j=l

KW 2
j
(z)
∣∣∣ ≤ sup

z∈K

k−1∑

j=l

|KW 2
j
(z)|

(3.8)
≤ sup

z∈K

k−1∑

j=l

C(n)µn−1(W 2
j ∩ Sn−1) · (dist(z,HC(W 2

j )))−n

(3.9)
≤ C(n) sup

z∈K

( k−1∑

j=l

µn−1(W 2
j ∩ Sn−1)

)
· (dist(z,HC(Γ )))−n

(3.10),(3.11)
≤ C(n)(µn−1(Wl ∩ Sn−1)− µn−1(Wk ∩ Sn−1)) ·M

(3.12)
< C(n)

ε

C(n)M
·M = ε,

that is, (3.6) holds.
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So, we can define

F (z) := lim
k→∞

KWk
(z) for z ∈ Cn \HC(Γ ).(3.13)

By almost uniform convergence, F is holomorphic on Cn \ HC(Γ ). On the
other hand,

F (z)
(3.13)

= (n− 1)! lim
k→∞

�

W ∗k∩Sn−1

dσ

〈z, σ〉n

(3.5)
= (n− 1)!

�

Γ ∗∩Sn−1

dσ

〈z, σ〉n = KΓ (z)

on ΩΓ . Thus the Cauchy kernel KΓ has a holomorphic continuation to
Cn \HC(Γ ).

Proposition 3.3. Let Γ be an acute convex closed fat cone in Rn. Then
for any α ∈ Nn0 there exists C(n, α) <∞ such that for z ∈ Cn \HC(Γ ),

|DαKΓ (z)| ≤ C(n, α)µn−1(Γ ∩ Sn−1)(dist(z,HC(Γ )))−n−|α|.(3.14)

Proof. By Proposition 3.2 for any acute convex closed fat cone Γ there
exists a sequence of acute convex polyhedral cones such that

(3.15) |DαKΓ (z)|
(3.13)

= lim
k→∞

|DαKWk
(z)|

(2.31)
≤ lim

k→∞
C(n, α)µn−1(Wk ∩ Sn−1)(dist(z,HC(Wk)))−n−|α|

(3.4),(3.3)
≤ C(n, α)µn−1(Γ ∩ Sn−1)(dist(z,HC(Γ )))−n−|α|.
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Dewajtis 5
01-815 Warszawa, Poland
E-mail: slawek@impan.gov.pl

Received March 28, 2002
Revised version October 14, 2002 (4919)


