STUDIA MATHEMATICA 163 (1) (2004)

The Cauchy kernel for cones
by
SEAWOMIR MICHALIK (Warszawa)
Abstract. A new representation of the Cauchy kernel K for an arbitrary acute

convex cone I" in R™ is found. The domain of holomorphy of K 1 is described. An estimation
of the growth of K near the singularities is given.

Introduction. The n-dimensional Cauchy kernel is a holomorphic func-
tion on (C\ {0})" defined by

(C\{OD™ 2 (2155 20) =

This function can be regarded as the Laplace transform of the characteristic

function of R’} :
1

Z1.++%n

21 ... %n

= (1" | e?dy for —Rez e R} := (Ry)".

R}
Generalizing this formula, S. Bochner defined in [1] the Cauchy kernel Kp
for an arbitrary cone I' C R™ by
(0.1) Kr(z):=(-1)" S e dy  for Rez e —Int(I™),

F*

where I'* is the dual cone to I'. V. Vladimirov found and studied in [4]-[6]
another representation of the Cauchy kernel,

do
S <Z,J>n’

and he proved that K has a holomorphic continuation to the set

Qp = ﬂ {z:(z,0) # 0}.

ocelr*nsn—1

(0.2) Kr(z)=(n—1)!
r=nsn-1
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Bochner’s and Vladimirov’s estimations of the domain of holomorphy
of ICr are not optimal, because for the classical Cauchy kernel the set
(C\ {0})™ is much larger than {Rez € —R”}} and Q_i’ The aim of our
paper is to give a better description of the domain of holomorphy of Kr.
To this end we make the following definitions. A set I' is fat if I' C Int T
A cone I' is acute if Int(I™) # (. Moreover set

A(T) :={a € dI' N S™1 : there exists a tangent space V,(I") to oI at a},

He(I) = | (Va(D)+iVa(D)).
acA(I')

Now, we are ready to formulate the main result of the paper.

THEOREM 1. Let I' be an acute convex closed fat cone in R™. Then:

(i) The Cauchy kernel K has a holomorphic continuation to C*\ Hc(I").

(ii) For any o € N there exists a constant C(n,a) < oo, independent
of I', such that for z € C" \ He(I),

(0.3)  |DKr(2)| < C(n, @) pn—1(I' N S™Y)(dist(z, He(I))) "1,

The proof is divided into three steps. We begin with the Cauchy kernel
for simplicial cones. In this case, an explicit formula for K allows us to get
(i) and (ii) immediately.

Next we prove that the Cauchy kernel for a polyhedral cone I" is the sum
of such kernels for simplicial cones in a simplicial division of I". This implies
(i) for polyhedral cones (see Propositions 2.8 and 2.10). The inequality (0.3)
for such cones is proved in Proposition 2.11.

In the last step, we prove that the Cauchy kernel for any acute convex
closed fat cone is the limit of an almost uniformly convergent sequence of
the Cauchy kernels for appropriate polyhedral cones. As a conclusion we
obtain the assertions of Theorem 1 (see Propositions 3.2 and 3.3).

NOTATION. We use vector notation. In particular, if a,b € R™ thena < b
means a; < b; fori =1,...,n and z* means zflzﬁn for z € C", k € Nj.
If z € C", we write Re z := (Re z1,...,Rez,) and Im z := (Im 21, ..., Im z,).

Let » € R. We denote by r the n-tuple (r,...,r) € R". If « € N, we
write || := |ai| + ... + |an|. The scalar product of z,y € R™ (or C") is
denoted by (x,y) :== z1y1 + ... + TpYn.

We write D* for the differential operator 0%/dz{"...0z%". Let pin—1
denote the Lebesgue measure on S™~ 1.

A cone in R™ is a set I' C R™ with the property that if x € I', then
Az € I for all A > 0. The dual cone to I" is defined by

I :={¢: (& y) >0 for every y € I'}.
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For any cone I' in R", set
He(I):= ] Va(D),
acA(I")

where V,(I") is the tangent space to I" at a and the set A(I") is defined in
the previous section.

1. The Cauchy kernel for simplicial cones

DEFINITION 1.1. A cone A C R” is called simplicial if
(1.1) A:={zeR": Az >0} ={x eR": (Az); >0for j=1...n}
for some non-singular matrix A € GL(n,R).

Observe that the matrix A is unique modulo permutation of rows and
multiplication of rows by positive constants.

It is easily seen that any simplicial cone can be described by

Ala,...;a") ={z eR":x=tia' +... +t,a", t; >0,i=1,...,n}
with linearly independent points a',...,a" € S*~ L.

For a simplicial cone A we have (see Exercise 8.7 in [3])

(12)  Ka(z) = %

The right-hand side of (1.2) does not depend on the choice of A in (1.1).
By (1.2), Ka can be holomorphically continued to the set {z € C" :
(Az); #0 for j =1,...,n}. Note that

with (A2)' = (42)1- ...  (A2),.

C"\ [ J{z € C": (42); = 0} =C"\ Hc(A).

j=1
By (1.2) we obtain

PROPOSITION 1.2. Let € € {—1,1}" and A, := {z € R" : g;(Azx); > 0
fori=1,...,n}. Then

(1.3) Ka.(z) =sgne-Ka(z) forzeC"\ Hc(4Q)
with sgne :=sgney - ... sgney,.
ExAMPLE 1.3. If we take A := R’}r, we recover the classical Cauchy
kernel
Kan(2) = ——  for z € (C\ {O})".

Z1...%n
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2. The Cauchy kernel for polyhedral cones

DEFINITION 2.1. A set W C R™ is called a polyhedral cone if there exists

M € N such that
W=A4A,U...UAyy,

where Ay, ..., Ay are simplicial cones in R™ and Int(A; N 4;) = 0 for
i#3j,4,5=1,...,M. The system R := {Ay,..., Ay} is called a simplicial
division of W.

DEFINITION 2.2. Let W be a polyhedral cone in R™. By an (n — 1)-face
of W we mean a set W"~! := 9W N V" ! with non-empty interior in V",
where V"1 is some (n — 1)-dimensional subspace of R™. By a k-face of W
(k=n—2,...,1) we mean a set W¥ := 9W**'NV* with non-empty interior
in V¥, where V* is some k-dimensional subspace of R™. The set of k-faces
of W is denoted by W . A 1-face of W is called an edge of W.

For convenience we identify a point a € S with the edge A(a’) =
{Aa’ : A > 0}. Observe that every polyhedral convex cone W in R™ can be
described by

W=wW(, .. ,a")={zecR":x=tia' +... +tya?
fort; >0,i=1,...,N}

with edges a!,...,a € 8"~ and N > n.

DEFINITION 2.3. Let W be a polyhedral cone in R” with edges a', ..., a
(n < N). For any a* € dDW we set
Nby (a') := {a’ € {a',...,a"} : there exists W? € 9P W such that

Alat,a?) c W2, A(at, /)N {at,...,a"} = {d’,a?}}.

Roughly, Nbyy(a) is the set of edges of W which are neighbours of a’.

LEMMA 2.4. Let I',I% be closed cones in R™ such that It U Iy is a
convex cone. Then I'f U I3 is also a convexr cone.

N

The above lemma is well known, so we omit its proof.

LEMMA 2.5. Let W be a polyhedral cone in R™ with edges a',...,a",

where N > n. Then there exists an edge a' such that
(2.1) Nby (a?) # {a*,...,a"}.

Proof. Suppose that, on the contrary, NbW(ai) ={a',... ,aN} for every
i=1,...,N with N > n. Then A(a",...,a") € QMW for 1 <ip <...<
irx, < N and k < n. In particular, every (n — 1)-face of the simplicial cone
A(al,...,a") is simultaneously an (n — 1)-face of W. Therefore

Wiat,...,a") = Adl,... a")

and N = n. This contradicts our assumption that N > n. =
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In the following the crucial role is played by the simplicial division con-
structed in the next lemma.

LEMMA 2.6. Let W := W(a',...,a") be an acute conver polyhedral
cone in R™. Then there exists a simplicial division R = {Aj}JK:l of W
satisfying:

(A)  If Nby(a') = {a',...,aV} for some i € {1,...,N}, then a’ is the
edge of every simplicial cone Aj (7 =1,...,K).

The simplicial division R satisfying (A) and constructed in the proof of
this lemma will be called a special division of W. Observe that every edge of
any simplicial cone in a special division R is also the edge of W. Conversely,
every edge of W is also the edge of some simplicial cone in R.

Proof. We construct R by induction on N > n.
1) For N = n, every cone W (a',...,a") is a simplicial cone

W(al,...,a”):A(al,...,a”), R ={A(',...,a")}

and obviously (A) holds.

2) Fix k > n and suppose that for every N (n < N < k) and every cone
Wy with N edges a',...,a", there exists a simplicial division R of Wy
satisfying (A). Consider any acute convex polyhedral cone Wy with k edges

a',...,a*. By Lemma 2.5 there exists an edge a’ satisfying (2.1). Put

(2.2) Wiy :=W(d',... ,C/L\i, o adb) =W, .. d T d T L db)

By the inductive assumption, there is a simplicial division {Am}%/:l of Wi_1
satisfying (A). Set

(2.3) W:k = Wk \ Wk—l-

Notice that W, is also a polyhedral cone in R, with edges in Nbyy, (a?)
and, by Lemma 2.5, the number of these edges is less than k. But generally

Wik does not have to be convex. Let 1 < j; < ... < j; < k (I < k) be
indices different from ¢, satisfying

(2.4) Nbyw, (a') = {a’",...,a’,a"},
and let

(2.5) WZ2, = Wi(a,...,a", —a').
Since

Nbw, (a') = Nby+ (a') = {a”,... a" a'},
<

we find that
wagk(—ai) = {a’",...,a", —d'}.
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The cone W_,, has less than k edges. Hence, by the inductive assumption,
we have a simplicial division {A}Y_, 41 of W, satisfying (A), where
(2.6) A, =A™ eI M) gl

with {a'(™) .. ain-10M}  {ar)... @'} (m= M'+1,...,M). Define
2.7)  Ap =A™ a1 68y form = M +1,..., M.

Thus {Ay}2_ 4, is a simplicial division of W2, and R := {A,}_; is
a simplicial division of W.
A trivial verification shows that R satisfies condition (A). m

LEMMA 2.7. Let W, := W(a',...,da*) be an acute convex polyhedral
cone in R™ (k>n). Let Wy_1, W2, W_, be the cones defined by (2.2)—(2.5).
Then

(2.8) W2, NW2 C Wi CW_,.
Proof. Recall that, in the notation of the proof of Lemma 2.6,

Wi =W(a',...,d,....a"), Wi =W\ W,

Nby, (a*) = {a’*,...,a",a'}, W_, = Wi(a,...,at, —a').
Since NbW:k(ai) = {a’,...,a",a'} and every edge of W:k belongs to
NbWIk(a’), we have | o

W:k Cc W(at,...,a% a").
Therefore
W:k NwW_, C W(d,...,d" a" )N W(d,..., d" —a') = W(d,...,a").
Clearly, {a’,...,a/'} C {a!,... ,c;", ...,a*}. Hence
Wi(d,...,a"") C W(al,...,c/z\i,...,ak) = Wg_1q,

and the left-hand inclusion in (2.8) holds.

To prove the right-hand inclusion, it is sufficient to show that a’/ € W_,
for j =1,...0k, j #1i. If @ € {a/*,...,a%}, this is trivial. Suppose that
al ¢ {a’,... ;a"} (i.e. @/ € Nby, (a')). Then there exists ¢ > 0 satisfying

a’ +cat € W(a’t, ..., a"). Therefore o’ € W(a",... a, —a’) = W_, =
PROPOSITION 2.8. Let W :=W(a',...,a") be an acute convex polyhe-

dral cone in R"™ and let R = {A;}E| be a special division of W. Then

K K
(29  Kw(2)=>_Ka/z) forzeQwn()(C"\ He(4)).
i=1 j=1

Furthermore, Ky has a holomorphic continuation to C* \ Hc(W).
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Proof. We show (2.9) by induction on N.

1) For N =n, W = A(a},...,a"), R = {A(a',...,a™)} and obviously
(2.9) holds.

2) Fix k > n. Assuming (2.9) to hold for every N (n < N < k) and
every convex acute polyhedral cone W with N edges, we will prove it for
any polyhedral cone Wy, with k£ edges. Take Wp,_1, Wik, W_, as in the proof
of Lemma 2.6. By Lemma 2.7 |

— + —
W, NWZ2, CWey CW_,.
Hence, by duality,

(2.10) Wi CcWiy c(W_,nWihH)"

From Lemma 2.4 we conclude

(2.11) W, nWh)y=w_ruwl:

Thus

(2.12) Wi c W uwly.

The cone W;kUWIk is not acute, because it includes the line a’R. Therefore
(2.13) t(W=; 0w P2 me(wo, u W) = 0.

Consequently,

(2.14) wi & W oW =W W

= Wi, \ (lefl N W<_I:)’
where the last equality holds because

* (2-12) * —% * *
Wk—l — (Wk‘—l ﬂ W<k‘) U (Wk‘—l ﬂ Wi_k)

and
* —x * s\y (2.13)
Int(Wi_, nW_) N (Wi nW2)) "="0.
Therefore
(0.2) do
(215)  Kw(2) = (n—1)! | o)
Sn=Inwy
(2.14) do do
= — 1! —— —(n—1)!
U W e L S R =
Sr=1nWr_ SnlnWE_ NW 2y
(2.10) do do
= — 1! —— —(n—-1)!
LS W e Ll B e
Sn=InWwyr Sn=lnw
(0.2)

2 K, ()~ Ky (2).

<k
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Let {Aj}jj‘/i/l and {A} }j]\iM/-i-]. be the special divisions of Wy, and W_,,
constructed in the proof of Lemma 2.6. From the inductive assumption

(2.16) Kw,_,( ZICA
and
M
(2.17) Ky~ (2) = > K- (2)
J=M'+1

By Proposition 1.2 we obtain

(2.18) Ki-(2) = =Ka,(z) forj=M+1,....M
J
with A and A; defined by (2.6) and (2.7). Finally,
(2.15) M
ICWk( ) ICWk 1( ) - ngk é Z’CA Z K:Aj* (Z)

j=M'+1

M/
(2;8) ZICA]. Z /CA ZICA
j=1 J=M'+1
This means that (2.9) holds on 2y N ﬂjzl((C” \ Hc(45)).

Now, we are in a position to prove that Ky can be holomorphically
continued to the set C™\ H¢(W). Denote by {Vi,...,V,/} aset of (n—1)-
dimensional subspaces in R" satisfying Inty,(V;NOW) # (@ for i =1,...,m .
A trivial verification shows that

m/

Ui +iv) = He(w).

=1
Similarly, let {V1,..., Vi, Viws1,..., Vin} be a set of (n — 1)-dimensional
subspaces in R™ satisfying Uszl Inty;(V;N0A;) # 0 for I =1,...,m. Hence
UL, (Vi+iV;) = U]K:1 Hc(4;). Clearly, Zjil K 4, is a holomorphic function
on

3

K
ﬂ (C™\ He(4,)) = {zecn;z¢U(w+m)}.

=1

Therefore, using (2.9), we see that Ky can be holomorphically continued to
this set. Put

V- :V}\UV} forl=m'+1,...,m.
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We have
m m m’
(2.19) U vi=(Uw\Uv
l=m/+1 I=m’/+1 7j=1
It is sufficient to show that Ky can be holomorphically continued to some

open neighbourhood of V;~ +iV,” for | = m’ 4+ 1,...,m. Indeed, then Ky
can be holomorphically continued to

C s

Cn\HC(W):{zG(C”:Z¢ (V]+1VJ)}

j=1

U{zEC”:zG U (Vl_—i-ﬂ/}_)}
l=m/+1
(2.19) {zecmizg i+ ivj)}.
j=1
In the first step we take [ := m. Then there exists (b1,...,b,) € R™\ {0}
such that
Vin={z € R" : byz1 + ... + bpz,, = 0}.

Suppose that b, # 0. Applying (1.2) we see that
1 W (2
(2.20) S Kals) = m2)

Ak bz A bz vm(2)

where wy,, vy, are polynomials with real coefficients such that v, (z) # 0 for
2 € Voo iV, Write Uy, :== (V,; N(WU-W))+4(V,;; N(WU-W)). Clearly

bizi1+...+bpz, =0 for z € Uy,

Since Ky is holomorphic on {2y, it is also holomorphic on some open neigh-
bourhood of the non-empty set Up,. Thus, by (2.20), w,, vanishes on U,,.
Define a map ¢, : C*~t — V,,, +iV,, by

~ - (=~ - b1 - bn—1 ~
om(21,. .y Zn-1) = 21,--~7Zn—1,—b—2‘1—--~— Zn—1 |

and W, : C"~! — C by

{Em(gl? ey 5n—1) = wm(gom(gl, c. ,En_l)).
We see that w,, is a polynomial which vanishes on an open set in C" 1.
Thus Wy, (t) = 0 on C*~!. This means that the polynomial w,, vanishes on
Vi + iVi. Therefore the right-hand side of (2.20) is a holomorphic function
on some open neighbourhood of V,; + 1V, .
Next we repeat the procedure taking successively [ ;== m —1,m — 2, ...

..., 1+ 1. After m — m/ steps we conclude that Ky can be holomorphically
continued to C" \ H¢(W). =
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PROPOSITION 2.9. Let W be an acute convex polyhedral cone in R™ and
let
Vi={zeR": F(z):=bx1+ ...+ byx, =0}

be an (n — 1)-dimensional subspace in R™ dividing W into
Wh=Wn{zeR": F(z) >0}, W*:=Wn{zecR": F(z) <0}

Then

(2.21)  Kw(2) =K1 (2)+Ky2(2) for z € (C"\He(WhH)N(C™\ He(W?)).

Proof. We first construct a special division of W. To do this take edges
a,...,a with W = W(a',...,a"), W! = W(a',...,a" oVt ... a™)
and W2 = W(a®f*+1 ... aM) for 1 < K <L < N < M. In other words,
(2.22) at,.. . afewr\V, ot et N dMewiny

Observe that for K = 1, by (2.22), a' is a unique edge of W' which does
not belong to V. Hence we have

(2.23) wal(al):{al,...,aL,aNH,...,aM}.

Fix K > 1 and consider a cone W := Wi(al,...,a®, a" ... a"-1) with edges
a, ... atnr € {af o al, oV L aMY such that A(a’, ..., aP1) s
asimplicial cone in V. Then {a",...,a"~1} C Nbg:(a') forj =1,...,n—1.

Therefore Lemma 2.5 shows that there exists j € {1,..., K} satisfying
Nby:(a?) # {a', ... ,a’,a" ... a—1}. Consequently,

(2.24) Nbyi(a?) # {at, ..., a® ™, . ™).

Without loss of generality we can assume that (2.24) is satisfied for j = 1.
As in Lemma 2.6 we construct the division of W' with respect to a' into
WEM, (M':== M +L—N)and Wi, , = W(a?,...,a" a1 ... aM).
In the next step we replace W' by W]b,_l and a' by a?. After K — 1

such steps we have the division of W' into WiJ]{/[,,...,WiL,_ Ko and

W]%/I,_KH =W(aX,...,a* aN*1, ..., a™). By Lemma 2.7, as in the proof

of Proposition 2.8, we have

2.25) Kyi(2) 2 Kpn () =Ko (2) = = Ky (2),
M!'—K+1 <M'-K+2 <M’

We next construct a division of W similar to the above. Denote by W' :=
W(al,...,a™) the cone W = W' U W?2 with edges a',...,a" and pseudo-
edges aV*1, ... aM. We extend Definition 2.3 by writing Nby(a?) for the
set of edges and pseudo-edges of W’ which are neighbours of the edge a’
(t=1,...,N). By (2.22) we have

(2.26) Nby1(a') = Nby(a')  fori=1,..., K.
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.. . . 2.26
As in Lemma 2.6 we divide W’ with respect to a! into W’<J§V[ (2.26) Wi&' and

Wi (2:26) Wi, UW?2=W(d?...,aM). Observe that inclusions (2.8) in
Lemma 2.7 are satisfied for W}, ,, wh v and w < Hence, as in the proof
of Proposition 2.8,

(2.15)
K (2) 2 Ky, (2) = Ko ()
After K —1 such steps we have the division of W’ into Wz\%, ey WEML K42
and Wy, e = W(aX, ..., a™), which satisfies
227)  Kwi(2) = Ky, (2 - K (2) = = Ky= (2)
’ Wiz Wi k1 \? Wi?w K+2 : Wi?vﬂ o

In the last step, by (2.23) we divide W}, _ into W<M Kl = =Wi,_ Kl
and WM_K = W2 such that

(2.15)
Kwi, ein(2) Rty (2) =Ky (2):
By convexity of W/<J§\4— K41 We obtain
(2.28) Ky (2 = Ky (2 4Ky (2)
= Kwz(2) + Ky (2).

M/ —K+1

Finally, by (2.25), (2.27), (2.28) we have
Kw(z) = Kwi(z) = Kyi(z) + Ky2(2). »
Applying Proposition 2.9, one can improve Proposition 2.8.
PROPOSITION 2.10. Let W be an acute convex polyhedral cone in R™
and R = {Aj}]Kzl be any simplicial division of W. Then
K K
z) = ZICA].(Z) for z € Qw N ﬂ((C” \ Hc(45))
=1 j=1
and Ky can be holomorphically continued to C™\ Hc(W).

Proof. Fix any simplicial division {A; }]]Vil of . Observe that, according
to Proposition 2.9, every set {Vi,...,Vi} of (n — 1)-dimensional subspaces
in R™ meeting Int W divides W into closed and convex polyhedral cones
Rw :={Wi,..., W} satisfying W =W U...UWg and Int(W; N W;) =0
for ¢ # j. Thus, by Proposition 2.9,

(2.29) Kw(z) = Z Kw, ()
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In particular, we can assume that { W) }]Lzl is a subdivision of {A; }]]Vil This
means that we can divide Ry into RII/V, e ,R{){[/ such that

A= | W forj=1,..., M.
W/ER],
Again applying Proposition 2.9, we have
(2.30) Ka(z)= > Kwi(z) forj=1,...,M.
W/ERY,

We conclude that

M M
2.29 2.30
kw2 2 3 k()= 2 Kw(x) VS K4, 2).
W'eRw J=1 W/ER{/V j=1

The next proposition describes the behaviour of Ky near the set of
singularities.

PROPOSITION 2.11. Let W be an acute convex polyhedral cone in R"™.
Then for every o € Nij there exists C(n,a) < oo such that

(2.31)  |DKw (2)| < C(n, ) -1 (W N S 1) (dist(z, He(W))) " lel,
for z € C™\ Hc(W).
Proof. We have (see [6, p. 159])

(2.32) dist(z, Hc(W)) = inf  (z,0) forzeW +iW.
ceW*nsn—1

Fix a € Njj. Then for z € Int(W + ¢{WW) we obtain

0.2 o%do
233)  D°Kw ()] C m+lal -1 | T2
_, (z,o)ntlel
W*nsn 1
< (n+lof = Dy a (W NS sup  (z,0) "1
oceW*nsgn—1

G2t a] = D)l (W 0 87 (dist (2, He(W))) 1o,

Consider a simplicial cone A and a matrix A corresponding to A. Fix z €
C™\ Hc(A). Then there exists z € Int(A +iA) such that

(2.34) A(ReZ); = |A(Rez);|, A(ImZz); =|A(Imz),]|
for j=1,...,n. So
(2.35) dist(z, Hc(A)) = dist(z, He(4)).
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Estimating the Cauchy kernel we obtain

o (12) o |det Al (2:34) o ldet Al ( o
(2.33) I o
< (n+Jal = Dl (AN S (dist(Z, He(A)))
B3 (0 1 o] = 1)1 (A N SV (dist(z, He(A))) e,
Therefore
237 [D°Kaz)] "2 min [D°Ka(2)]
ee{-1,1}"
(2.36) ) . . ) o
< min g1 (A2 NS (n+ |af — 1)!(dist(z, He(A))) 1ol

ee{-1,1}"
Observe that every edge of the simplicial cone A is perpendicular to some
(n —1)-dimensional subspace of R" containing an (n — 1)-face of A*. On the
other hand, every (n—1)-dimensional subspace containing an (n —1)-face of
A is perpendicular to some edge of A*. This means that all angles between
appropriate subspaces from Hr(A) and Hg(A*) are preserved. Hence
2.38 i 1(AfNS" ) = mi —1(A.ns™h.
(2.38) L fmin 1(A7 ) L mim 1(Ae )
Finally, we have

(2.39)  |D*Ka(2)]
(2.37)

< (’I’L + |Oé| — 1)! {rnllnl} /Lnfl(A; N Sn_l)(dist(z,H(A)))_n_m‘
ec{—-1,1}»
2 i n—1y(qi —n—lal
= (ol = D! _min -1 (A 08" (dist(z, H(A))
ec{—-1,1}n

< (n+ |a] = D1 (AN SN (dist(z, H(A))) "o,

So, we see that (2.31) holds for simplicial cones.

Consider an acute convex polyhedral cone W and fix z € C™\ He(W). Sup-
pose that {A;}]"; is a simplicial division of W such that z ¢ JL; He(4;).
By Proposition 2.10,

(2.40)  |D*Ky(2)] < i DK A, (2)

(2<39)Z n+lal = 1) pa_1(A; NS Y (dist(z, He(4;))) "l

<(n+]al = Dy (WnS™ (dlst( CJ )) o |a‘.
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The proof will be completed by showing that there exists C' < co (indepen-
dent of W and z) such that for every z € C"\ Hc(A) we can find a simplicial
division {A;}7; of W satisfying

(2.41) dist(z, He(W)) < Cdlst( U He(A )

Fix z € C"\Hc(W). Let V, C Hr(W) be an (n—1)-dimensional subspace
in R™ with the property that

(2.42) dist(z, Hc(W)) = dist(z, V, + V).
Without loss of generality we can assume, that
(2.43) dist(Im z, V,) < dist(Re z, V).

If Rez ¢ Int(W U —W) then we can find a simplicial division {A;}7,
of W (depending on Re z) satisfying

=

dist(Re z, V,) = dist (Re 2, HR(A]-)).

1

J
Then

. (2.42) .. G
dist(z, Hc(W)) "= "dist (2, V, +iV,) < 2dist(Rez, V)

m
< 2dist<Rez, | He(A ) < 2d1st( U He(A )

j=1

and (2.41) holds.
Assume now that Re z € Int W (for Re z € Int(—W) the proof is similar).
Let
r:=dist(Re z, V;) = dist(Re z, 0W)
and let
Iry:=={z€R":2=Xofor A\>0,0 € S"! dist(o,Rez) <r}

be a light cone, which is contained in W. Denote by A; € I'(r) a simplicial
cone such that the distance 7 := dist(Re z, 8A1) is maximal and Rez € A;.
The fraction r/7 is finite and only depends on the dimension of the space

(is independent of W and z). Furthermore, let {ANZ}fZQ be a simplicial divi-
sion of W \ Int A; such that

dist(Re 2z, Hg(A1)) < dist(Re z, HR(ﬁj)) forj=2,...,m
Hence {A~] }7L, is a simplicial division of W satisfying

(2.44) dist(Re z,V;) < D(n) dist (Re z, 6 HR(ﬁj)>.
j=1
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Therefore

2.42)

(2.43)
dist(z, Hc(W)) ( dist(z, V. +iV,) < 2dist(Rez, V)

(le) 2D(n) dist <Re 2, G Hzg(ﬁﬂ) < 2D(n) dist (27 G HC(Aj))
=1 i=1

and (2.41) also holds. =

3. The Cauchy kernel for acute convex cones. In this section we
will consider acute closed convex fat cones in R™. Recall

RADEMACHER’S THEOREM (see Theorem 3.2 in [2]). Every Lipschitz
function f: U — R, with U C R"™ open, is differentiable almost everywhere
(in the sense of Lebesgue measure).

After an appropriate rotation, the boundary of every convex closed fat
cone in R" is locally the graph of a Lipschitz function f : R*™! — R.
Therefore, by the above theorem we have

COROLLARY 3.1. Let I' be an acute convez closed fat cone in R™. Then
for almost all a € OI' there exists a tangent space to 01" at a, denoted
by Va(I).

PROPOSITION 3.2. Let I' be an acute convex closed fat cone in R™. Then:

(i) There exists a sequence {Wi}32, of acute convex polyhedral cones
such that for k — oo, Kw, converges almost uniformly in £2r to Kr.
(ii) Kr can be holomorphically continued to C™ \ Hc(I').

Proof. 1f I' is a polyhedral cone, then we can take Wy := I for k =
1,2,...

Assume that I" is not a polyhedral cone. We will construct a sequence
{Wi}22 | of polyhedral cones in the following way:

1. Let W1 be a simplicial cone containing I" with the following property:
every (n — 1)-face of Wj is contained in some tangent space V,(I"). Since
n distinct (n — 1)-dimensional subspaces in R™ define a simplicial cone,
W, exists. Set AL := Ap N oW;.

2. Assume that we have defined Wy,..., Wi_1 and A},...,AI}_I. Set
Al}_l = ArNOW,_; and F := 0I' N S" L. Because F is compact and I is
not a polyhedral cone, there exists x; € F' such that

dist(xk,A’}_l) = sug dist(z, AI}_l) > 0.
S

By Corollary 3.1, Ap is dense in F. Hence, we can choose a point ax € Ap
such that

(3.1) dist(ay, ALY > 19—0 dist(zg, AE).
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The tangent space V;, (I") divides the cone Wj_1, as in Proposition 2.9, into
cones: W,Ll and Wkal' We can assume that I" C Wklfl. We obtain a poly-
hedral cone Wy, := ngl. Define A’} := Apr N Wy. From the construction of
Wy, we have

AN C AL, He(Wi) = He(Wio1) U (Vi (1) + iVa, ()

and Ky, is a holomorphic function on C" \ Hc(Wy).
Observe that the sequence {W;}3°, of acute convex polyhedral cones
constructed above satisfies

(3.2) Wid>We>...0T, AhcAic...cAr,
(33) (Cn\H@(Wl) DC”\H@(WQ) DR DC"\H@(F).
We show that AY® = (Jo, A’} is dense in Ap. Assume that, on the

contrary, there exist € > 0 and x € Ar satisfying dist(z, A¥) > 10¢/9. By
the choice of {a;}72 ., we get

dist(am, a;) > dist(am, A~ > ¢ forl=2,3,... and m > .

This leads to a contradiction, because all points {aj}3>, are contained in a
compact sphere S™ 1.

Thus A% is dense in Ar and by Corollary 3.1, A% is also dense in
OI' N S™ 1. This means that the cones {W}?2, satisfy (pey Wi = I" and

(3.4) (Wi \ )N S 1) =0 as k — oo,
where ji,,_1 is the Lebesgue measure on S™~!. We also have

"\ He(I) = Tno(()(C"\ He(Wa)) ).

k=1

Hence, passing to the dual cones, we have
o0
Wi cwsc...cr+, I=|Jw.
k=1
Thus

(3.5) 1 (C\WF) NS ) -0 ask— oo.

Now we show that the sequence of holomorphic functions Kyy, is almost
uniformly convergent in C" \ H¢(I'). Fix e > 0 and K € C" \ Hc(I'). It is
sufficient to show that there exists m € N such that for every k > [ > m,

(3.6) sup |[Kw, (2) — Kw, (2)| <e.
zeK

By (3.3) the functions Ky, and Ky, are holomorphic on K. Take any z € K.
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Combining Proposition 2.9 with the construction of the cones {Wy}ren we
have

(3.7) Kw,(2) — Kw, (2 Z Kz (=

By Proposition 2.11 for fixed j € {1,...,k — 1} we obtain

(38)  [Kw2(2)] < C(n)pn—r (W7 N S"~1)(dist(z, He(W}))) ™"
Since HC(W]-Q) C Hc(I'), we deduce that

(3.9) (dist(z, HC(WJZ)))_” < (dist(z, He(I))) ™™

As K is compact in C™ \ H¢(I"), there exists M < oo such that
(3.10) sglg(dist(z, He(D)))™ ™™ < M.

Furthermore, we have

k—1
(311) > g a (WA S™ ) =y 1 (W N S™ 1) = piry 1 (Wi N S™1).
j=l

Combining (3.4) and (3.2) we find m such that for every k > [ > m,

n—1\ n—1 < €
Finally,
37) k—1 k—1
sup [Kw; (2) — Kw, (2)] = SUP’ZKW.?(Z) <sup Y [Kyz(2)
zEK zeK1 T J 2€K T ’
(38) 2 1 : 2\\)—"n
< supZC’ n)pn—1 (W7 N S"1) - (dist(z, Ho(W})))
ZGK
< C(n)sup (Z,u,n 1 W2 SnT 1)> - (dist(z, He(I)))™

zeEK —

(3.10),(3.11) . .
< O(n)(/ﬁnfl(Wl ns" ) - ,Unfl(Wk ns" )) - M

(3.12) €

< (n)W-Mze,

that is, (3.6) holds.
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So, we can define
(3.13) F(z) := kh_}n(r)lo Kw,(z) for ze C"\ Hc(I).

By almost uniform convergence, F' is holomorphic on C" \ H¢(I'). On the
other hand,

(3.13) . do
F = - 1)!
(2) =" (n—1)! lim | o
Winsn—1
(3.5) do
(=1} =Kr(e)
r*ngn—1

on {2r. Thus the Cauchy kernel Kr has a holomorphic continuation to
C"\Hc(I'). m

PROPOSITION 3.3. Let I' be an acute convex closed fat cone in R™. Then
for any a € Njj there exists C(n,a) < oo such that for z € C* \ He(I),

(3.14)  [D*Kr(2)| < C(n,a)pp—1(I' N S" 1) (dist(z, He(I))) 1o

Proof. By Proposition 3.2 for any acute convex closed fat cone I" there
exists a sequence of acute convex polyhedral cones such that

(3.15)  [D*Kr(z)]

(3.13) lim | DK, (2)

(2.31)
< lim C(n, a)pn—1(Wi, 0 S™ 1) (dist(z, Ho(Wy,))) ™

k—oo

(3-4)7(3'3) —1 : - 7| ‘
< Cn,a)pp—1(I'NS" ) (dist(z, He(I7))) "' =
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