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On the local spectral properties of weighted shift operators

by

A. Bourhim (Trieste)

Abstract. We study the local spectral properties of both unilateral and bilateral
weighted shift operators.

1. Introduction. The weighted shift operators have proved to be a very
interesting collection of operators, providing examples and counter-examples
to illustrate many properties of operators. The basic facts concerning their
spectral theory have been fully investigated, and can be found in A. Shields’
excellent survey article [20]. The description of their local spectra, and the
characterization of their local spectral properties is a natural problem, and
there has been some progress in this direction. In K. Laursen and M. Neu-
mann’s remarkable monograph [13], it is shown that each local spectrum of
a unilateral weighted shift operator S contains a closed disc centered at the
origin. Sufficient conditions are given for a unilateral weighted shift oper-
ator S to satisfy Dunford’s condition (C) and for S not to have Bishop’s
property (β). It is also shown that a unilateral weighted shift operator is
decomposable if and only if it is quasi-nilpotent. But it has been unknown
which unilateral or bilateral weighted shift operators satisfy Dunford’s con-
dition (C) or have Bishop’s property (β). It has also been unknown which
bilateral weighted shift operators are decomposable.

The main goal of this paper is to study the local spectral properties of
both unilateral and bilateral weighted shift operators. We aim at determin-
ing the local spectra of a weighted shift S in terms of the weight sequence
defining S. Several necessary and sufficient conditions for S to satisfy Dun-
ford’s condition (C) or Bishop’s property (β) are given.

Throughout this paper, H will denote a complex Hilbert space, and
L(H) the algebra of all bounded linear operators on H. For an opera-
tor T ∈ L(H), let T ∗, σ(T ), σap(T ), σp(T ), W (T ), r(T ), and w(T ) de-
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note the adjoint, spectrum, approximate point spectrum, point spectrum,
numerical range, spectral radius, and numerical radius of T , respectively.
Let m(T ) := inf{‖Tx‖ : ‖x‖ = 1} denote the lower bound of T , and set
r1(T ) := supn≥1m(Tn)1/n. In [14], E. Makai and J. Zemánek showed that
the sequence (m(T n)1/n)n≥1 converges and

r1(T ) = lim
n→∞

m(Tn)1/n = min{|λ| : λ ∈ σap(T )}.

An operator T ∈ L(H) is said to have the single-valued extension property
if for every open set U ⊂ C, the equation (T − λ)f(λ) = 0 admits the zero
function f ≡ 0 as a unique analytic solution on U . The local resolvent set,
%T (x), of T at a point x ∈ H is the union of all open subsets U ⊂ C for which
there exists an analytic function f : U →H such that (T−λ)f(λ) = x on U .
The complement in C of %T (x) is called the local spectrum of T at x and will
be denoted by σT (x). Recall that the local spectral radius of T at x is given by
rT (x) := lim supn→∞ ‖Tnx‖1/n and equals max{|λ| : λ ∈ σT (x)} whenever T
has the single-valued extension property. Moreover, if T enjoys this property
then for every x ∈ H, there exists a unique maximal analytic solution x̃(·) on
%T (x) for which (T−λ)x̃(λ) = x for all λ ∈ %T (x), and which satisfies x̃(λ) =
−∑n≥0 T

nx/λn+1 on {λ ∈ C : |λ| > rT (x)}. If in addition T is invertible,
then x̃(λ) =

∑
n≥1 λ

n−1T−nx on the disc {λ ∈ C : |λ| < 1/rT−1(x)}.
For a closed subset F of C, let

HT (F ) := {x ∈ H : σT (x) ⊂ F}
be the corresponding analytic spectral subspace; it is a T -hyperinvariant
subspace, but is generally not closed in H. The operator T is said to satisfy
Dunford’s condition (C) if for every closed subset F of C, the linear subspace
HT (F ) is closed. Let U be an open subset of C and let O(U,H) be the space
of analytic H-valued functions on U . Equipped with the topology of uniform
convergence on compact subsets of U , the space O(U,H) is a Fréchet space.
Note that every operator T ∈ L(H) induces a continuous mapping TU on
O(U,H) defined by

TUf(λ) = (T − λ)f(λ) for f ∈ O(U,H) and λ ∈ U.
An operator T ∈ L(H) is said to have Bishop’s property (β) provided that,
for every open subset U of C, the mapping TU is injective and has a closed
range; equivalently, for every open subset U in C and every sequence (fn)n
in O(U,H), the convergence of (TUfn)n to 0 in O(U,H) should entail the
convergence of (fn)n to 0 in O(U,H). It is known that hyponormal opera-
tors, M -hyponormal operators and more generally subscalar operators have
Bishop’s property (β). It is also known that Bishop’s property (β) implies
Dunford’s condition (C), and that the single-valued extension property fol-
lows from Dunford’s condition (C).
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An operator T ∈ L(H) is said to be decomposable if, for every open
cover of C by two open subsets U1 and U2, there exist T -invariant closed
linear subspaces H1 and H2 such that H = H1 +H2 and σ(T |Hi) ⊂ Ui for
i = 1, 2. Immediate examples of decomposable operators are provided by
the normal operators and more generally by the spectral operators in the
sense of Dunford. It is known that an operator T ∈ L(H) is decomposable
if and only if both T and T ∗ have Bishop’s property (β). For thorough
presentations of the local spectral theory, we refer to the monographs [12]
and [13].

Throughout this paper, let S be a weighted shift operator on H with a
positive bounded weight sequence (ωn)n, that is,

Sen = ωnen+1 ∀n,
where (en)n is an orthonormal basis of H. If the index n runs over the
non-negative integers (resp. all integers), then S is called a unilateral (resp.
bilateral) weighted shift.

Before proceeding, we would like to recall some simple but useful remarks
which will be repeatedly used in what follows.

(R1) For every α ∈ C, |α| = 1, we have (αS)Uα = UαS, where Uα is the
unitary operator defined on H by Uαen = αnen for all n.

(R2) Let K be a non-empty compact subset of C. If K is connected and
has circular symmetry about the origin, then there are two real num-
bers a and b with 0 ≤ a ≤ b such that K = {λ ∈ C : a ≤ |λ| ≤ b}.

(R3) Let T and R in L(H) be such that R is invertible. Then for every
x ∈ H, we have σT (x) = σRTR−1(Rx).

Finally, we need to define the local functional calculus of operators hav-
ing the single-valued extension property. This calculus was introduced by
C. Apostol in [4] and has been studied by many authors (see [8], [9], [15],
[18], and [23]). Let U be an open subset of C and K be a compact subset
of U . Let (γi)1≤i≤n be a finite family of disjoint closed rectifiable Jordan
curves in U \ K. The formal sum γ := γ1 + . . . + γn is called an oriented
envelope of K in U if its winding number equals 1 on K and 0 on C\U , i.e.,

ηγ(λ) :=
1

2πi

�

γ

1
α− λ dα =

{
1 for every λ ∈ K,

0 for every λ ∈ C \ U.

Let T ∈ L(H), and let v ∈ H. Assume that T has the single-valued extension
property. For an analytic complex-valued function f on a neighborhood U
of σT (v), we define a vector f(T, v) by

f(T, v) :=
−1
2πi

�

γ

f(λ)ṽ(λ) dλ,
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where γ is an oriented envelope of σT (v) in U . Note that f(T, v) is indepen-
dent of the choice of γ. We end this introduction by quoting, without proof,
the following theorem from [23] which will be used in what follows.

Theorem 1.1. Let T ∈ L(H), and let v ∈ H. Assume that T has the
single-valued extension property. If f is an analytic function on a neighbor-
hood O of σT (v) and is not identically zero on each connected component
of O, then:

(a) ZT (f, v) := {λ ∈ σT (v) : f(λ) = 0} is a finite set.
(b) σT (v) = σT (f(T, v)) ∪ ZT (f, v).

Moreover , if σp(T ) = ∅, then σT (v) = σT (f(T, v)).

2. Preliminaries. In this section, we assemble some simple but useful
results which will be needed. These results remain valid in the general setting
of Banach space operators.

Let λ0 ∈ C; recall that an operator T ∈ L(H) is said to have the single-
valued extension property (resp. Bishop’s property (β)) at λ0 if there is an
open neighborhood V of λ0 such that for every open subset U of V , the
mapping TU is injective (resp. is injective and has a closed range). Obviously,
T has the single-valued extension property at λ0 whenever T has Bishop’s
property (β) at λ0. Note that T has Bishop’s property (β) at λ0 if and only
if there is an open neighborhood V of λ0 such that for every open subset U
of V and for every sequence (fn)n in O(U,H), the convergence of (TUfn)n
to 0 in O(U,H) entails the convergence of (fn)n to 0 in O(U,H). Moreover,
if T has Bishop’s property (β) at any point λ ∈ C then T has Bishop’s
classical property (β).

For an arbitrary T ∈ L(H), we set

σβ(T ) :=
{
λ ∈ C : T fails Bishop’s property (β) at λ

}
.

Note that since for every compact subset K of C \σap(T ) there is a positive
constant c = c(K) such that

‖x‖ ≤ c‖(T − λ)x‖
for all x ∈ H and λ ∈ K, we have the following known result.

Proposition 2.1. For any operator T ∈ L(H), the set σβ(T ) is a closed
subset of σap(T ).

An operator T ∈ L(H) is said to be cyclic if there exists a vector x ∈ H,
called a cyclic vector for T , such that

∨
{Tnx : n = 0, 1, 2, . . .} = H,

where
∨

denotes the closed linear span. We also say that T is bi-cyclic with
bi-cyclic vector x ∈ H if there exists a sequence (xn)n≥0 of elements of H



Spectral properties of weighted shift operators 45

such that x0 = x, Txn+1 = xn for all n ≥ 0, and
∨
{xn, T kx : n, k = 0, 1, 2, . . .} = H.

We note that each xk above is a bi-cyclic vector for T , and belongs to the
hyper-range, T∞H :=

⋂
n≥0 T

nH, of T . In particular, the image, ranT , of T
is dense in H; or equivalently, 0 6∈ σp(T ∗). Moreover, if T is invertible, then
it is easily seen that x is a bi-cyclic vector for T if and only if x belongs to
no non-trivial common closed invariant subspace of T and its inverse T−1.
Immediate examples of cyclic and bi-cyclic operators are provided by scalar
unilateral and bilateral weighted shift operators. If S is a unilateral weighted
shift, then S is cyclic but not bi-cyclic and e0 is a cyclic vector for S. If S
is a bilateral weighted shift, then each ek (k ∈ Z) is a bi-cyclic vector for S
but S may or may not have cyclic vectors (see Proposition 42 of [20]).

For every operator T ∈ L(H), we set

<(T ) :=
{
λ ∈ C : T fails the single-valued extension property at λ

}
.

It is an open subset of C contained in σ(T ). The description of <(T ) for
several operators T can be found in [2] and [10]. Note that

σ(T ) \ σap(T ) ⊂ <(T ∗)

for every operator T ∈ L(H). This inclusion fails to be an equality in general:
a counter-example can be found among scalar weighted shift operators. In
[10], it is shown that if T is a cyclic operator with Bishop’s property (β)
then

<(T ∗) = σ(T ) \ σap(T ).

This result also remains valid for every bi-cyclic operator with Bishop’s
property (β). The proof is an adaptation of the one of Theorem 3.1 of [10]
and will be omitted.

Proposition 2.2. Assume that T ∈ L(H) is a bi-cyclic operator. If T
has Bishop’s property (β), then <(T ∗) = σ(T ) \ σap(T ).

The following three lemmas are easy to verify. In fact, the next one is a
particular case of Lemma 2 of [3] and the other two are trivial.

Lemma 2.3. Let H1 and H2 be complex Hilbert spaces, and let

MC =
[
A C
0 B

]

be a 2 × 2 upper triangular operator matrix on H1 ⊕ H2. If both A and B
have Bishop’s property (β) at a point λ0 ∈ C, then so does MC .

Proof. It is clear that, up to unitary equivalence, one has

A 'MC |H1 , B 'MC/H1.

Lemma 2 of [3] yields the desired result.
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Lemma 2.4. Let H1 and H2 be complex Hilbert spaces, and let

MC =
[
A C
0 B

]

be a 2 × 2 upper triangular operator matrix on H1 ⊕ H2. If B has the
single-valued extension property , then σMC

(x) = σA(x) for all x ∈ H1.

Lemma 2.5. If S is a unilateral or bilateral weighted shift on H, then
σβ(S) has circular symmetry about the origin.

Proof. It is easy to see that if two operators T ∈ L(H) and R ∈ L(H)
are similar, then σβ(T ) = σβ(R). In view of (R1), we have

σβ(S) = σβ(αS) = ασβ(S)

for all α ∈ C with |α| = 1, as desired.

3. Local spectral properties of unilateral weighted shift opera-
tors. In dealing with unilateral weighted shift operators, let (βn)n≥0 be the
sequence given by

βn =
{
ω0 . . . ωn−1 if n > 0,

1 if n = 0,
and let us associate to S the following quantities:

r2(S) := lim inf
n→∞

β1/n
n , r3(S) := lim sup

n→∞
β1/n
n .

Note that

r(S) = lim
n→∞

[
sup
k≥0

βn+k

βk

]1/n

, r1(S) = lim
n→∞

[
inf
k≥0

βn+k

βk

]1/n

,

and
m(S) ≤ r1(S) ≤ r2(S) ≤ r3(S) ≤ r(S) ≤ w(S) ≤ ‖S‖.

Before going further, we note that since σp(S) = ∅, the unilateral
weighted shift S always has the single-valued extension property.

3.1. Local spectra of unilateral weighted shift operators. The following
result can be deduced from Proposition 1.6.9 of [13]; here we give a direct
proof.

Proposition 3.1. For every non-zero x ∈ H, we have

{λ ∈ C : |λ| ≤ r2(S)} ⊂ σS(x).

Proof. As
⋂
n≥0 S

nH = {0}, we see that 0 ∈ σS(x) for every x ∈ H\{0}.
Thus, we may assume that r2(S) > 0. Let O := {λ ∈ C : |λ| < r2(S)}, and
consider the following analytic H-valued function on O:

k(λ) :=
∞∑

n=0

λn

βn
en.
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It is easy to see that (S − λ)∗k(λ) = 0 for every λ ∈ O. Now, let x =∑
n≥0 anen ∈ H be such that O ∩ %S(x) 6= ∅. So, for every λ ∈ O ∩ %S(x),

we have

x̂(λ) := 〈x; k(λ)〉 = 〈(S − λ)x̃(λ); k(λ)〉 = 〈x̃(λ); (S − λ)∗k(λ)〉 = 0.

Since x̂(λ) =
∑∞

n=0 (an/βn)λnen for every λ ∈ O, we see that an = 0 for
every n ≥ 0, and therefore, x = 0. Thus, the proof is complete.

Corollary 3.2. For every x ∈ H, σS(x) is a connected set.

Proof. Suppose that there is a non-zero x ∈ H such that σS(x) is dis-
connected. So, there are two non-empty disjoint compact subsets σ1 and σ2
of C such that σS(x) = σ1 ∪ σ2. It follows from Proposition 1.2.16(g) of
[13] that HS

(
σS(x)

)
= HS(σ1)⊕HS(σ2). Therefore, there are two non-zero

elements x1 and x2 of H such that x = x1 + x2 and σS(xi) ⊂ σi, i = 1, 2. In
particular, σS(x1) ∩ σS(x2) = ∅, which contradicts Proposition 3.1.

We now give a simple proof of Theorem 4 of [20] from the point of view
of the local spectral theory.

Corollary 3.3. The spectrum of S is the disc {λ ∈ C : |λ| ≤ r(S)}.
Proof. By Proposition 1.3.2 of [13], we have σ(S) =

⋃
x∈H\{0} σS(x). As

each σS(x) is connected, and {λ ∈ C : |λ| ≤ r2(S)} ⊂ ⋂x∈H\{0} σS(x) 6= ∅
(see Proposition 3.1), we deduce that σ(S) is also a connected set containing
the disc {λ ∈ C : |λ| ≤ r2(S)}. On the other hand, from (R1) we see that
σ(S) has circular symmetry about the origin. So, by (R2), σ(S) must be the
disc {λ ∈ C : |λ| ≤ r(S)}.

Remark 3.4. Let x =
∑

n≥0 anen be a non-zero element of H. It follows
from Proposition 3.1 that r2(S) ≤ rS(x). In fact, more can be shown:

r3(S) ≤ rS(x) ≤ r(S).(3.1)

Indeed, for every integer n ≥ 0, we have

Snx =
∑

k≥0

akS
nek =

∑

k≥0

ak
βn+k

βk
en+k.

Since there is an integer k0 ≥ 0 such that ak0 6= 0, it then follows that

|ak0 |
βn+k0

βk0

≤
[∑

k≥0

|ak|2
∣∣∣∣
βn+k

βk

∣∣∣∣
2]1/2

= ‖Snx‖, ∀n ≥ 0.

Now, by taking the nth root and then lim sup as n → ∞, we get r3(S) ≤
rS(x).

Let x be a non-zero element of H; from Corollary 3.2, we see that every
circle of radius r, 0 ≤ r ≤ rS(x), intersects σS(x). So, in view of Remark 3.4,
σS(x) may contain points which are not in the disc {λ ∈ C : |λ| ≤ r2(S)}.
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The next result gives a complete description of the local spectrum of S at
most of the points inH, and refines the local spectral inclusion of Proposition
3.1. For every non-zero x =

∑
n≥0 anen ∈ H, we set

Rω(x) := lim inf
n→∞

∣∣∣∣
βn
an

∣∣∣∣
1/n

.

Note that r2(S) ≤ Rω(x) ≤ ∞ for every non-zero x ∈ H.

Theorem 3.5. For every non-zero x =
∑

n≥0 anen ∈ H, we have:

(a) If r3(S) < Rω(x), then σS(x) = {λ ∈ C : |λ| ≤ r3(S)}.
(b) If r3(S) ≥ Rω(x), then {λ ∈ C : |λ| ≤ Rω(x)} ⊂ σS(x).

Proof. Let us first show that

σS(e0) = {λ ∈ C : |λ| ≤ r3(S)}.(3.2)

Let α ∈ C, |α| = 1; by (R1), we have αS = UαSU
∗
α, and so σS(e0) =

σαS(Uαe0), by (R3); hence, σS(e0) = ασS(e0). This shows that σS(e0) has
circular symmetry about the origin. As σS(e0) is a connected set containing
the disc {λ ∈ C : |λ| ≤ r2(S)}, it follows from (R2) that σS(e0) must be the
disc {λ ∈ C : |λ| ≤ rS(e0)}. Therefore, (3.2) holds, since rS(e0) = r3(S).

Next, keep in mind that for every λ ∈ %S(e0) = {λ ∈ C : |λ| > r3(S)},
we have

ẽ0(λ) = −
∑

n≥0

Sne0

λn+1 = −
∑

n≥0

βn
λn+1 en.

Now, we are able to prove the first statement.
(a) Suppose that r3(S) < Rω(x). Note that the function f(λ) :=∑
n≥0 (an/βn)λn is analytic on the neighborhood {λ ∈ C : |λ| < Rω(x)}

of σS(e0). Let r be a real number such that r3(S) < r < Rω(x). We have

f(S, e0) =
−1
2πi

�

|λ|=r
f(λ)ẽ0(λ) dλ =

−1
2πi

�

|λ|=r
f(λ)

[
−
∑

n≥0

βn
λn+1 en

]
dλ

=
∑

n≥0

[
1

2πi

�

|λ|=r

f(λ)
λn+1 dλ

]
βnen = x

and so, by Theorem 1.1,

σS(x) = σS(e0) = {λ ∈ C : |λ| ≤ r3(S)}.

(b) Suppose that r3(S) ≥ Rω(x). If r2(S) = Rω(x), then according to
Proposition 3.1 there is nothing to prove; thus we may suppose, in particular,



Spectral properties of weighted shift operators 49

that 0 < Rω(x). For each n ≥ 0, let

An(λ) := − a0

λn+1 βn −
a1

λn
βn
β1
− a2

λn−1

βn
β2
− . . .− an

λ
, λ ∈ C \ {0},

Bn(λ) := a0 +
a1

β1
λ+

a2

β2
λ2 + . . .+

an
βn

λn, λ ∈ C.

We have

An(λ) = − βn
λn+1 Bn(λ), λ ∈ C \ {0}.(3.3)

By writing x̃(λ) :=
∑

n≥0 Ãn(λ)en, λ ∈ %S(x), we deduce from the equation

(S − λ)x̃(λ) = x, λ ∈ %S(x),

that for every λ ∈ %S(x), we have
{
−λÃ0(λ) = a0,

Ãn(λ)ωn − λÃn+1(λ) = an+1 for every n ≥ 0.

Therefore, for every n ≥ 0,

Ãn(λ) = An(λ) = − a0

λn+1 βn −
a1

λn
βn
β1
− a2

λn−1

βn
β2
− . . .− an

λ
, λ ∈ %S(x).

Since ‖x̃(λ)‖2 =
∑

n≥0 |Ãn(λ)|2 =
∑

n≥0 |An(λ)|2 <∞ for every λ ∈ %S(x),
it follows that

lim
n→∞

An(λ) = 0 for every λ ∈ %S(x).(3.4)

We shall show that (3.4) is not satisfied for most of the points in the non-
empty open disc V (x) := {λ ∈ C : |λ| < Rω(x)}. It is clear that the sequence
(Bn)n≥0 converges uniformly on compact subsets of V (x) to the non-zero
power series B(λ) =

∑
n≥0 (an/βn)λn. Now, let λ0 ∈ V (x)\{0} be such that

B(λ0) 6= 0; there is ε > 0 and an integer n0 such that ε < |Bn(λ0)| for every
n ≥ n0. On the other hand, |λ0| < r3(S), so there is a subsequence (nk)k≥0
of integers greater than n0 such that |λ0|nk < βnk . Thus, (3.3) gives

|Ank(λ0)| =
∣∣∣∣−

βnk
λnk+1

0

Bnk(λ0)

∣∣∣∣ ≥
ε

|λ0|
for every k ≥ 0.

Hence, by (3.4), λ0 6∈ %S(x). Since the set of zeros of B is at most countable,
we have {λ ∈ C : |λ| ≤ Rω(x)} ⊂ σS(x).

Remark 3.6. Let H0 denote all the finite linear combinations of the
vectors en (n ≥ 0); it is clearly a dense subspace of H. It follows from
Theorem 3.5(a) that for every non-zero x ∈ H0, we have

σS(x) = {λ ∈ C : |λ| ≤ r3(S)}.
This can also be deduced from Theorem 1.1 and (3.2), since for every non-
zero x ∈ H0, there is a non-zero polynomial p such that x = p(S)e0.
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Corollary 3.7. If T ∈ L(H) is a non-zero operator commuting with
S then

σS(Ten) = {λ ∈ C : |λ| ≤ r3(S)} for all n ≥ 0.

Proof. We shall first show that

σS(Te0) = {λ ∈ C : |λ| ≤ r3(S)}.
By writing Te0 :=

∑
n≥0 anen, we see that for all n, k ≥ 0 we have

an
βn

βn+k = 〈Te0;S∗ken+k〉 = 〈TSke0; en+k〉 = βk〈Tek; en+k〉.

This gives
βn+k

βk
≤ ‖T‖

∣∣∣∣
βn
an

∣∣∣∣ for all n, k ≥ 0.

Thus r(S) ≤ Rω(Te0), and the desired identity follows from Theorem 3.5.
Now, let n be an arbitrary integer. As (1/βn)TSn is a non-zero operator

commuting with S and en = (1/βn)Sne0, it follows from what has been
shown above that

σS(Ten) = σS((1/βn)TSne0) = {λ ∈ C : |λ| ≤ r3(S)}.
This finishes the proof.

Question 1. Does σS(x) equal {λ ∈ C : |λ| ≤ rS(x)} for every non-zero
x ∈ H?

In view of Proposition 3.1 and (3.1), an interesting special case of this
question suggests itself.

Question 2. Is {λ ∈ C : |λ| ≤ r3(S)} contained in σS(x) for every
non-zero x ∈ H?

3.2. Which unilateral weighted shift operators satisfy Dunford’s condi-
tion (C)? The following result gives a necessary condition for a unilateral
weighted shift operator S to enjoy Dunford’s condition (C).

Theorem 3.8. If S satisfies Dunford’s condition (C), then r(S)=r3(S),
so that

σS(Ten) = σ(S) = {λ ∈ C : |λ| ≤ r(S)} (n ≥ 0)

for every non-zero operator T ∈ L(H) that commutes with S.

Proof. Suppose that S satisfies Dunford’s condition (C), and let F :=
{λ ∈ C : |λ| ≤ r3(S)}. It follows from Theorem 3.5(a) that HS(F ) contains a
dense subset of H. As HS(F ) is closed, we get HS(F ) = H; this means that
σS(x) ⊂ F for every x ∈ H. It follows that σ(S) =

⋃
x∈H σS(x) ⊂ F (see

Proposition 1.3.2 of [13]) and hence that r3(S) ≤ r(S) ≤ r3(S) as desired.
The remaining assertion is now an immediate consequence of Corollary 3.7.
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An interesting special case occurs when the sequence (β1/n
n )n≥1 con-

verges. Then by combining Proposition 3.1 and Theorem 3.8, we see that
the following statements are equivalent.

(a) σS(x) = σ(S) for every non-zero x ∈ H.
(b) S satisfies Dunford’s condition (C).
(c) r(S) = limn→∞ β

1/n
n .

In the general case, we note that if r(S) = r3(S), then σS(x) = σ(S) for
most of the points x in H. Thus, we conjecture that the following statements
are equivalent.

(a) σS(x) = σ(S) for every non-zero x ∈ H.
(b) S satisfies Dunford’s condition (C).
(c) r(S) = r3(S).

Note that a positive answer to Question 2 will prove this conjecture.

3.3. Which unilateral weighted shift operators have Bishop’s property
(β)? In [16], T. L. Miller and V. G. Miller have shown that if r1(S) < r2(S),
then S fails Bishop’s property (β). In fact, this result could be obtained by
combining Theorem 3.1 of [24] and Theorem 10(ii) of [20]. But the proof
given in [16] is simple and elegant. Here, we refine this result as follows.

Theorem 3.9. If S has Bishop’s property (β), then r1(S) = r(S). Con-
versely , if r1(S) = r(S), then either S has Bishop’s property (β), or σβ(S) =
{λ ∈ C : |λ| = r(S)}.

Proof. Suppose that S has Bishop’s property (β). According to the above
discussion, we have

r1(S) = r2(S).(3.5)

On the other hand, it follows from [5] that S is power-regular , that is, the se-
quence (‖Snx‖1/n)n≥0 converges for all x ∈ H. In particular, (‖Sne0‖1/n)n≥0
converges; so,

r2(S) = r3(S).(3.6)

As S satisfies Dunford’s condition (C), we see from Theorem 3.8 that

r3(S) = r(S).(3.7)

Therefore, the result follows from (3.5)–(3.7).
Conversely, suppose that r1(S) = r(S). Since σap(S) = {λ ∈ C : |λ| =

r(S)} (see Theorem 1 of [19] or Theorem 6 of [20]), the desired result holds
by combining Proposition 2.1 and Lemma 2.5.

In view of Theorem 3.9, the following question suggests itself.

Question 3. Suppose that r1(S) = r(S). Does S have Bishop’s prop-
erty (β)?
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The next two propositions give a condition on the weights (ωn)n≥0 for
which the corresponding weighted shift has Bishop’s property (β).

Proposition 3.10. If m(S) = w(S), then S has Bishop’s property (β).

Proof. It is well known that for every T ∈ L(H), and every λ not in the
closure of W (T ), the norm of the resolvent (T − λ)−1 admits the estimate

‖(T − λ)−1‖ ≤ 1
dist(λ,W (T ))

.(3.8)

If m(S) = w(S) = 0, then S is quasi-nilpotent, and so, by Proposition
1.6.14 of [13], decomposable. Therefore, S has Bishop’s property (β). Now,
without loss of generality suppose that m(S) = w(S) = 1. It follows from
Proposition 16 of [20] that

{λ ∈ C : |λ| < 1} ⊂W (S) ⊂ {λ ∈ C : |λ| ≤ 1}.
By (3.8) we have

‖(S − λ)−1‖ ≤ 1∣∣1− |λ|
∣∣ for every λ ∈ C, |λ| > 1.

This shows that, for every x ∈ H,
∣∣1− |λ|

∣∣‖x‖ ≤ ‖(S − λ)x‖ for all λ ∈ C, |λ| > 1.

On the other hand, for every x ∈ H and λ ∈ C, |λ| < 1, we have

‖(S − λ)x‖ ≥ ‖Sx‖ − |λ| ‖x‖ ≥ m(S)‖x‖ − |λ| ‖x‖ ≥ (1− |λ|)‖x‖.
Therefore, for every λ ∈ C \ {µ ∈ C : |µ| = 1} and every x ∈ H, we have

∣∣1− |λ|
∣∣‖x‖ ≤ ‖(S − λ)x‖.

Now, Theorem 1.7.1 of [13] implies that S has Bishop’s property (β).

The next example gives a collection of unilateral weighted shift operators
with Bishop’s property (β) which shows that the assumption m(S) = w(S)
in Proposition 3.10 is not necessary.

Example 3.11. Let a be a positive real number, and let Sa be the uni-
lateral weighted shift with weights (ωn(a))n≥0 given by

ωn(a) =
{
a if n = 0,

1 if n > 0.
It is clear that m(Sa) = min(1, a), and Sa has Bishop’s property (β) since it
is similar to the unweighted shift operator (see Theorem 2 of [20]). On the
other hand, it was shown in [7] (see also Proposition 2 of [21]) that:

(a) If a < 1, then w(Sa) = 1 > m(Sa) = a.
(b) If 1 ≤ a ≤

√
2, then w(Sa) = m(Sa) = 1.

(c) If
√

2 < a, then w(Sa) = a2/(2
√
a2 − 1) > m(Sa) = 1.
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Proposition 3.12. If (ωn)n≥0 is a periodic sequence, then S has Bi-
shop’s property (β).

Proof. Suppose that (ωn)n≥0 has period k. Then, for every x ∈ H,
we have ‖Skx‖ = ω0 . . . ωk−1‖x‖. Hence, 1

ω0...ωk−1
Sk is an isometry; so, by

Proposition 1.6.7 of [13], Sk has Bishop’s property (β), and Theorem 3.3.9
of [13] implies that so does S.

Recall that the weight (ωn)n≥0 is said to be almost periodic if there is
a periodic positive sequence (pn)n≥0 such that limn→∞(ωn − pn) = 0. Note
that if k is the period of (pn)n≥0, then

r1(S) = r(S) = (p0 . . . pk−1)1/k.

This suggests a weaker version of Question 3.

Question 4. Suppose that the weight (ωn)n≥0 is almost periodic. Does
S have Bishop’s property (β)?

4. Local spectral properties of bilateral weighted shift opera-
tors. In dealing with bilateral weighted shift operators, let (βn)n∈Z be the
sequence given by

βn =





ω0 . . . ωn−1 if n > 0,

1 if n = 0,
1

ωn . . . ω−1
if n < 0,

and set

r−(S) = lim
n→∞

[
sup
k>0

β−k
β−n−k

]1/n

, r+(S) = lim
n→∞

[
sup
k≥0

βn+k

βk

]1/n

,

r−1 (S) = lim
n→∞

[
inf
k>0

β−k
β−n−k

]1/n

, r+
1 (S) = lim

n→∞

[
inf
k≥0

βn+k

βk

]1/n

,

r−2 (S) = lim inf
n→∞

β
−1/n
−n , r+

2 (S) = lim inf
n→∞

β1/n
n ,

r−3 (S) = lim sup
n→∞

β
−1/n
−n , r+

3 (S) = lim sup
n→∞

β1/n
n .

Note that
r1(S) = min(r−1 (S), r+

1 (S)), r(S) = max(r−(S), r+(S)),

r−1 (S) ≤ r−2 (S) ≤ r−3 (S) ≤ r−(S), r+
1 (S) ≤ r+

2 (S) ≤ r+
3 (S) ≤ r+(S).

4.1. Local spectra of bilateral weighted shift operators. We begin by
pointing out that there are bilateral weighted shift operators which do not
have the single-valued extension property. The following result, which can
be easily proved, gives a necessary and sufficient condition for a bilateral
weighted shift operator S to enjoy this property.
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Proposition 4.1. S has the single-valued extension property if and only
if r−2 (S) ≤ r+

3 (S).

Proof. If r−2 (S) ≤ r+
3 (S), then according to Theorem 9 of [20], σp(S) has

empty interior. Hence, S has the single-valued extension property.
Conversely, suppose that r+

3 (S) < r−2 (S). Let

O := {λ ∈ C : r+
3 (S) < |λ| < r−2 (S)}.

It is easy to see that the analytic H-valued function on O defined by

f(λ) :=
∑

n∈Z

βn
λn

en

satisfies the equation

(S − λ)f(λ) = 0, λ ∈ O.
This shows that S does not have the single-valued extension property.

Corollary 4.2. S∗ has the single-valued extension property if and only
if r+

2 (S) ≤ r−3 (S).

Proof. As S∗ is also a bilateral weighted shift operator with r−2 (S∗) =
r+

2 (S), and r+
3 (S∗) = r−3 (S), this is a direct consequence of Proposition 4.1.

An analogue of Proposition 3.1 is

Proposition 4.3. For every non-zero x ∈ H, we have

{λ ∈ C : r−3 (S) < |λ| < r+
2 (S)} ⊂ σS(x).

Proof. If r+
2 (S) ≤ r−3 (S), then there is nothing to prove. Assume that

r−3 (S) < r+
2 (S), and set

O := {λ ∈ C : r−3 (S) < |λ| < r+
2 (S)}.

Now, consider the analytic H-valued function k on O defined by

k(λ) :=
∑

n∈Z

λn

βn
en.

We have (S − λ)∗k(λ) = 0 for every λ ∈ O. The rest of the proof goes as in
the proof of Proposition 3.1.

Corollary 4.4. If r−3 (S) < r+
2 (S), then each σS(x) is connected.

Proof. The proof is similar to the proof of Corollary 3.2.

Remark 4.5. A similar proof to that of (3.1) yields

r+
3 (S) ≤ rS(x) ≤ r(S) for every non-zero x ∈ H.(4.9)

If S is invertible, then S−1 is also a bilateral weighted shift with weights
(1/ω−n−1)n∈Z. So, by applying (4.9) to S−1, we get

1/r−2 (S) ≤ rS−1(x) ≤ r(S−1) for every non-zero x ∈ H.(4.10)
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Let H0 denote all finite linear combinations of the vectors en (n ∈ Z).
The following proposition gives a complete description of the local spectrum
of S at a point x ∈ H0.

Proposition 4.6. For every non-zero x ∈ H0, we have

σS(x) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}.

Proof. First, let us prove that

σS(en) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}, ∀n ∈ Z.(4.11)

We limit ourselves to the case n = 0; the proof for arbitrary n ∈ Z is similar.
Let O1 := {λ ∈ C : |λ| > r+

3 (S)}, and consider the H-valued function on
O1 defined by

f1(λ) :=
∞∑

n=0

βn
λn+1 en.

As (S − λ)f1(λ) = e0 for every λ ∈ O1, we note that

σS(e0) ⊂ {λ ∈ C : |λ| ≤ r+
3 (S)}.(4.12)

We also have
σS(e0) ⊂ {λ ∈ C : |λ| ≥ r−2 (S)}.(4.13)

Indeed, we may assume r−2 (S) > 0. TheH-valued function on O2 := {λ ∈ C :
|λ| < r−2 (S)} defined by

f2(λ) :=
∞∑

n=1

λn−1β−ne−n

satisfies (S − λ)f2(λ) = e0 for every λ ∈ O2. This proves (4.13). It follows
from (4.12) and (4.13) that

σS(e0) ⊂ {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}.(4.14)

If r−2 (S) > r+
3 (S), then

σS(e0) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)} = ∅.

Thus, we may assume that r−2 (S) ≤ r+
3 (S). Recall that the condition r−2 (S)

≤ r+
3 (S) means that S has the single-valued extension property (see Propo-

sition 4.1). As at the beginning of the proof of Theorem 3.5, one can show
that σS(e0) has circular symmetry about the origin. Since rS(e0) = r+

3 (S),
we have

{λ ∈ C : |λ| = r+
3 (S)} ⊂ σS(e0).(4.15)

Now, let us show

{λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)} ⊂ σS(e0).(4.16)
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Indeed, from (4.15) we can assume that r−2 (S) < r+
3 (S). By writing ẽ0(λ) =∑

n∈ZAn(λ)en, λ ∈ %S(e0), we deduce from the equation

(S − λ)ẽ0(λ) = e0, λ ∈ %S(e0),

that for every λ ∈ %S(e0) we have

A−1(λ)ω−1 − λA0(λ) = 1,(4.17)

An(λ)ωn − λAn+1(λ) = 0, n ∈ Z, n 6= −1.(4.18)

From (4.18) we see that for every λ ∈ %S(e0), we have
λn

βn
An(λ) = A0(λ), A−n(λ) = ω−1β−nλn−1A−1(λ), n ≥ 1.(4.19)

Now, suppose that there is λ0 ∈ %S(e0) such that r−2 (S) < |λ0| < r+
3 (S).

Then there are two subsequences (nk)k≥0 and (mk)k≥0 such that for every
k ≥ 0, we have

|λ0|nk ≤ βnk , 1/β−mk ≤ |λ0|mk .
Therefore, it follows from (4.19) that for every k ≥ 0, we have

|A0(λ0)| ≤ |Ank(λ0)|, |A−mk(λ0)| ≥ ω−1|A−1(λ0)|.
Since limn→∞An(λ0) = limn→∞A−n(λ0) = 0, we obtain A0(λ0) = A−1(λ0)
= 0, which contradicts (4.17). Thus, the desired inclusion (4.16) holds.

By combining (4.14) and (4.16) we get

σS(e0) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}.(4.20)

Finally, let x =
∑

n∈Z anen ∈ H0 \{0}, and let n0 be the smallest integer
n for which an 6= 0. Then there is a non-zero polynomial p such that x =
p(S)en0 . If r−2 (S) > r+

3 (S), then the inclusion σS(p(S)en0) ⊂ σS(en0) and
(4.11) imply that

σS(x) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)} = ∅.

So, assume that r−2 (S) ≤ r+
3 (S). By Theorem 1.1, we have

σS(en0) \ ZS(p, en0) ⊂ σS(x) = σS(p(S)en0) ⊂ σS(en0).

Since ZS(p, en0) is finite and σS(en0) has no isolated points, we see that

σS(x) = σS(en0) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}.

For every non-zero x =
∑

n∈Z anen ∈ H, we set

R−ω (x) := lim sup
n→∞

∣∣∣∣
a−n
β−n

∣∣∣∣
1/n

, R+
ω (x) := lim inf

n→∞

∣∣∣∣
βn
an

∣∣∣∣
1/n

.

Note that 0 ≤ R−ω (x) ≤ r−3 (S) and r+
2 (S) ≤ R+

ω (x) ≤ ∞ for every non-zero
x ∈ H.

Theorem 4.7. Assume that r−2 (S) ≤ r+
3 (S). For every non-zero x ∈ H,

the following statements hold.
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(a) If R−ω (x) < r−2 (S) and r+
3 (S) < R+

ω (x), then

σS(x) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}.

(b) Otherwise,

{λ ∈ C : max(R−ω (x), r−2 (S)) < |λ| < min(R+
ω (x), r+

3 (S))} ⊂ σS(x).

Proof. Recall again that the assumption r−2 (S) ≤ r+
3 (S) means that

S has the single-valued extension property (see Proposition 4.1). Let x =∑
n∈Z anen 6= 0.
(a) Assume that R−ω (x) < r−2 (S) and r+

3 (S) < R+
ω (x). Keep in mind that

σS(e0) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)} and

ẽ0(λ) =





−
∞∑

n=0

βn
λn+1 en if |λ| > r+

3 (S),

∞∑

n=1

λn−1β−ne−n if |λ| < r−2 (S).

Now, consider the analytic H-valued function on the open annulus {λ ∈ C :
R−ω (x) < |λ| < R+

ω (x)} defined by

f(λ) :=
∑

n∈Z

an
βn

λn.

Let R+ and R− be two reals such that

r+
3 (S) < R+ < R+

ω (x), R−ω (x) < R− < r−2 (S).

Let Γ+ (resp. Γ−) be the circle centered at the origin and of radius R+

(resp. R−). Suppose that Γ+ (resp. Γ−) is anti-clockwise (resp. clockwise)
oriented. We have

f(S, e0) =
−1
2πi

�

λ∈Γ+∪Γ−
f(λ)ẽ0(λ) dλ =

∞∑

n=0

[
1

2πi

�

λ∈Γ+

f(λ)
λn+1 dλ

]
βnen

+
∞∑

n=1

[−1
2πi

�

λ∈Γ−
f(λ)λn−1 dλ

]
β−ne−n = x.

As in the last part of the proof of Proposition 4.6, we conclude from Theorem
1.1 that

σS(x) = σS(e0) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}.

(b) Suppose that max(R−ω (x), r−2 (S)) < min(R+
ω (x), r+

3 (S)), otherwise
there is nothing to prove. By writing x̃(λ) =

∑
n∈ZAn(λ)en, λ ∈ %S(x), we

deduce from the equation

(S − λ)x̃(λ) = x, λ ∈ %S(x),
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that for every λ ∈ %S(x), we have

An(λ)ωn − λAn+1(λ) = an+1, ∀n ∈ Z.(4.21)

In particular, for every λ ∈ %S(x), we have

A−1(λ)ω−1 − λA0(λ) = a0.(4.22)

By a simple calculation, we infer from (4.21) that, for every λ ∈ %S(x) and
n ≥ 1,

λn

βn
An(λ) = A0(λ)− a1

β1
− a2

β2
λ− . . .− an

βn
λn−1,(4.23)

and

A−n(λ) =
λn−1

ω−2 . . . ω−n
A−1(λ) +

λn−2a−1

ω−2 . . . ω−n
+ . . .+

a−n+1

ω−n
.(4.24)

Note that for every λ ∈ %S(x), λ 6= 0, (4.24) can be reformulated as follows:

(4.25) A−n(λ) = β−nλn−1
[
ω−1A−1(λ)+

a−1

β−1λ
+

a−2

β−2λ2 +. . .+
a−n+1

β−n+1λn−1

]
.

Now, suppose that

O := {λ ∈ C : max(R−ω (x), r−2 (S)) < |λ| < min(R+
ω (x), r+

3 (S))} ∩ %S(x) 6= ∅.
Fix λ ∈ O. There are two subsequences (nk)k≥0 and (mk)k≥0 such that for
every k ≥ 0, we have

|λ|nk ≤ βnk ,
1

β−mk
≤ |λ|mk .

From (4.23) and (4.25), we get, respectively,

|Ank(λ)| ≥
∣∣∣∣A0(λ)− a1

β1
− a2

β2
λ− . . .− ank

βnk
λnk−1

∣∣∣∣,

and

|A−mk(λ)| ≥
∣∣∣∣ω−1A−1(λ) +

a−1

β−1λ
+

a−2

β−2λ2 + . . .+
a−mk+1

β−mk+1λmk−1

∣∣∣∣.

As limn→∞An(λ)=limn→∞A−n(λ)=0, and both series
∑

n≥1 (an/βn)λn−1

and
∑

n≤−1 (an/βn)λn converge, it follows that

A0(λ) =
∞∑

n=1

an
βn

λn−1,(4.26)

ω−1A−1(λ) = −
∑

n≤−1

an
βn
λn.(4.27)

From (4.22), (4.26), and (4.27), we see that
∑

n∈Z (an/βn)λn = 0 for every
λ ∈ O; therefore, an = 0 for every n ∈ Z. This contradicts the fact that
x 6= 0, and completes the proof.
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As a consequence of Theorem 4.7, we deduce the following result. The
arguments of the proof are influenced by ideas from [20].

Corollary 4.8. If T ∈ L(H) is a non-zero operator that commutes
with S then

{λ ∈ C : r−2 (S) < |λ| < r+
3 (S)}⊂σS(Ten)⊂{λ ∈ C : r−2 (S) ≤ |λ| ≤ r+

3 (S)}
for every n ∈ Z.

Proof. By Proposition 4.6, we always have

σS(Ten) ⊂ σS(en) = {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}.

On the other hand, it is easy to verify that σS(Ten) = σS(Te0) for all n ∈ Z.
Therefore, it suffices to show that

{λ ∈ C : r−2 (S) < |λ| < r+
3 (S)} ⊂ σS(Te0).(4.28)

To do this, we shall prove that

R−ω (Te0) ≤ r1(S), r(S) ≤ R+
ω (Te0).(4.29)

This together with Theorem 4.7(b) entails the desired inclusion (4.28). In-
deed, write Te0 :=

∑
n∈Z anen and fix n ∈ Z. Just as in the proof of Corollary

3.7, for every k ≥ 0, we have
an
βn

βn+k

βk
= 〈Tek; en+k〉.

Similarly, for every k < 0, we have

an = 〈Te0; en〉 = βk〈TS−kek; en〉 = βk〈Tek; (S∗)−ken〉

=
βkβn
βn+k

〈Tek; en+k〉.

Therefore, for every n ≥ 0 and k ∈ Z, we have∣∣∣∣
a−n
β−n

∣∣∣∣ ≤ ‖T‖
βk
βk−n

,
βn+k

βk
≤ ‖T‖

∣∣∣∣
βn
an

∣∣∣∣.

From the right inequality we clearly have r(S) ≤ R+
ω (Te0) whether S is

invertible or not. From the left inequality we also clearly have R−ω (Te0) ≤
1/r(S−1) = r1(S) provided that S is invertible. If S is not invertible, then
since in this case infk∈Z(βk/βk−n) = 0 for all n > 0, it follows from the same
inequality that a−n = 0 for all n > 0 and R−ω (Te0) = 0 ≤ r1(S), as required.
Therefore, the inclusion (4.28) is established, and the proof is complete.

Note that Theorem 4.7 is relevant when r−2 (S) > 0. In this case, we
computed the local spectrum of S at most points in H. The next result
deals with the case r−2 (S) = 0. For every k ∈ Z, we write

H+
k =

∨
{en : n ≥ k}, H−k =

∨
{en : n < k}.
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Theorem 4.9. Assume that r−2 (S) = 0. Let k ∈ Z. Then for every
non-zero x ∈ H+

k , the following statements hold.

(a) If r+
3 (S) < R+

ω (x), then σS(x) = {λ ∈ C : |λ| ≤ r+
3 (S)}.

(b) If r+
3 (S) ≥ R+

ω (x), then {λ ∈ C : |λ| ≤ R+
ω (x)} ⊂ σS(x).

Proof. Since H+
k and H−k are invariant subspaces of S and S∗ respec-

tively, we note that S+ := S|H+
k

and S− := S∗|H−k
are unilateral weighted

shift operators with respective weight sequences ω+ := (ωn)n≥k and ω− :=
(ωn)n<k. We have

ri(S±) = r±i (S), r(S±) = r±(S) (i = 1, 2, 3).
Moreover, for every x ∈ H+

k , we have
R+
ω (x) = Rω+(x).

We also note that since r2(S−) = r−2 (S) = 0, S−∗ has the single-valued
extension property. As S has a matrix representation

S =
[
S+ ∗
0 S−∗

]

on H = H+
k ⊕H−k , it follows from Lemma 2.4 that σS(x) = σS+(x) for every

x ∈ H+
k . In view of Theorem 3.5, the proof is complete.

4.2. Which bilateral weighted shift operators satisfy Dunford’s condition
(C)? The following result gives a necessary condition for a bilateral weighted
shift operator S to satisfy Dunford’s condition (C).

Theorem 4.10. Assume that S satisfies Dunford’s condition (C).

(a) If S is not invertible, then
r1(S) = r−2 (S) = 0 ≤ r+

3 (S) = r(S).(4.30)

(b) If S is invertible, then
r1(S) = 1/r(S−1) = r−2 (S) ≤ r+

3 (S) = r(S).(4.31)
Moreover , either the spectrum of S is a circle, or

σS(Ten) = σ(S) (n ∈ Z)
for every non-zero operator T ∈ L(H) that commutes with S.

Proof. Note that since S satisfies Dunford’s condition (C), S has the
single-valued extension property. By Proposition 4.1, we have r−2 (S) ≤
r+

3 (S). Now, let F := {λ ∈ C : r−2 (S) ≤ |λ| ≤ r+
3 (S)}; it follows from Propo-

sition 4.6 thatHS(F ) contains a dense subspace. AsHS(F ) is closed, we have
HS(F ) = H; so, σS(x) ⊂ F for every x ∈ H. Since σ(S) =

⋃
x∈H σS(x) ⊂ F

(see Proposition 1.3.2 of [13]) and F = σS(e0) ⊂ σ(S), we have σ(S) = {λ ∈
C : r−2 (S) ≤ |λ| ≤ r+

3 (S)}, from which assertions (a) and (b) follow.
The remaining assertion is now an immediate consequence of Corol-

lary 4.8.
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For T ∈ L(H), we set

q(T ) := min{|λ| : λ ∈ σ(T )}.
Note that

q(T ) =
{

0 if T is not invertible,

1/r(T−1) if T is invertible.

Remark 4.11. An interesting special case occurs when the sequences
(β1/n
n )n≥1 and (β−1/n

−n )n≥1 converge respectively to a and b. By combining
Proposition 4.3 and Theorem 4.10, we see that either a = b, or the following
statements are equivalent.

(a) S has fat local spectra, that is, σS(x) = σ(S) for all x ∈ H \ {0}.
(b) S satisfies Dunford’s condition (C).
(c) b = q(S) ≤ a = r(S).

As in the unilateral case, we note that in the general setting if S is not
invertible (resp. invertible) and satisfies (4.30) (resp. (4.31)), then σS(x) =
σ(S) for all non-zero x in a dense subset of H (see Proposition 4.6, Theorem
4.7 and Theorem 4.9). Thus, we conjecture that if S satisfies Dunford’s
condition (C) then either S has fat local spectra or its spectrum is a circle.

Note that if the spectrum of a bilateral weighted shift operator S is
a circle, then S may have fat local spectra (see Example 4.20); also, S
may satisfy Dunford’s condition (C) without having fat local spectra. This
is the case for example of any non-quasi-nilpotent decomposable bilateral
weighted shift operator (see Corollary 4.17). But we do not know in general
if a bilateral weighted shift operator S satisfies Dunford’s condition (C)
whenever its spectrum is a circle.

4.3. Which bilateral weighted shift operators have Bishop’s property (β)?
Suppose that S has Bishop’s property (β). Theorem 3.10 of [11] states that:

(a) If S is invertible then S satisfies both (4.32) and (4.33).
(b) If S is not invertible then S satisfies (4.33) and q(S) = r−2 (S) = 0.

On the other hand, it is shown in Theorem 2.7 of [17] that

q(S) = r1(S) = r−2 (S) = r−3 (S),

r+
2 (S) = r+

3 (S) = r+(S) = r(S).

Therefore, the authors deduce (from Proposition 4.3) that either S has fat
local spectra or r1(S) = r(S). Using some ideas from both proofs given in
[11] and [17], we refine these results as follows.

Theorem 4.12. If S has Bishop’s property (β), then

q(S) = r−1 (S) = r−2 (S) = r−3 (S) = r−(S),(4.32)

r+
1 (S) = r+

2 (S) = r+
3 (S) = r+(S) = r(S).(4.33)
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In order to prove this theorem, we shall use the following result from
[17].

Proposition 4.13. Assume that T ∈L(H) is injective. If T has Bishop’s
property (β) then for every x ∈ T∞H, the sequence (‖T−nx‖−1/n)n≥1 is
convergent and

lim
n→∞

‖T−nx‖−1/n = min{|λ| : λ ∈ σT (x)}.

Proof of Theorem 4.12. Let H+
0 :=

∨{ek : k ≥ 0} and S+ := S|H+
0

.
It is clear that S+ is a unilateral weighted shift operator with Bishop’s
property (β). Hence, according to Theorem 3.9, we have r1(S+) = r(S+).
As

ri(S+) = r+
i (S), r(S+) = r+(S) (i = 1, 2, 3),

and
r+

1 (S) ≤ r+
2 (S) ≤ r+

3 (S) ≤ r+(S),

we have

r+
1 (S) = r+

2 (S) = r+
3 (S) = r+(S).(4.34)

Note that since S satisfies Dunford’s condition (C), we have r+
3 (S) = r(S)

(see Theorem 4.10). Therefore, from (4.34), we see that

r+
1 (S) = r+

2 (S) = r+
3 (S) = r+(S) = r(S).

Since r(S) = max(r−(S), r+(S)), we have

r−(S) ≤ r+
1 (S) = r+

2 (S) = r+
3 (S) = r+(S) = r(S).(4.35)

If S is invertible, then S−1 also has Bishop’s property (β) (see Theorem
3.3.9 of [13]). As

r±(S−1) =
1

r∓1 (S)
, r±1 (S−1) =

1
r∓(S)

, r±2,3(S−1) =
1

r∓3,2(S)
,

the desired conclusion follows by applying (4.35) to S−1.
Now, assume that S is not invertible. Since S satisfies Dunford’s condi-

tion (C), it follows from (4.30) that r1(S) = r−2 (S) = 0. Hence,

q(S) = r1(S) = r−1 (S) = r−2 (S) = 0.(4.36)

In view of (4.35) and (4.36), we deduce from Theorem 7 of [20] that

σap(S) = {λ ∈ C : |λ| ≤ r−(S)} ∪ {λ ∈ C : |λ| = r(S)}.
Since S is a bi-cyclic operator, it follows from Proposition 2.2 that

<(S∗) = σ(S) \ σap(S) = {λ ∈ C : r−(S) < |λ| < r(S)}.
On the other hand, we always have

<(S∗) = {λ ∈ C : r−3 (S) < |λ| < r+
2 (S)}.
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Therefore,

r−3 (S) = r−(S).(4.37)

Since the sequence (‖S−ne0‖−1/n)n≥1 is convergent (see Proposition 4.13),
we have

r−2 (S) = r−3 (S).(4.38)

Thus, the desired result follows from (4.36)–(4.38).

Conversely, we have the following result.

Theorem 4.14. Assume that S satisfies (4.32) and (4.33).

(a) If S is not invertible, then either S has Bishop’s property (β) or
σβ(S) = {λ ∈ C : |λ| = r(S)}.

(b) If S is invertible, then either S has Bishop’s property (β), or σβ(S)
equals either one of the circles {λ ∈ C : |λ| = 1/r(S−1)} and {λ ∈ C : |λ| =
r(S)}, or their union.

Proof. (a) Assume that S is not invertible. If we set H+
0 =

∨{ek : k ≥ 0}
and H−0 =

∨{ek : k < 0}, then S has the following matrix representation
on H = H+

0 ⊕H−0 :

S =
[
S+ ∗
0 S−∗

]
,

where S+ = S|H+
0

and S− = S∗|H−0
are unilateral weighted shift operators

with respective weight sequences ω+ := (ωn)n≥0 and ω− := (ωn)n<0. Since
r(S−) = r−(S) = 0 (see (4.32)), S− is quasi-nilpotent. In particular, S−∗

has Bishop’s property (β). As r1(S+) = r+
1 (S), r(S+) = r+(S) and r+

1 (S) =
r+(S) = r(S) (see (4.33)), we have r1(S+) = r(S+) = r(S). By Theorem
3.9, we see that either S+ has Bishop’s property (β) or σβ(S+) = {λ ∈ C :
|λ| = r+(S)}. Now, the desired conclusion follows from Lemma 2.3.

(b) Assume that S is invertible and satisfies (4.32) and (4.33). It follows
from Theorem 7 of [20] that

σap(S) = {λ ∈ C : |λ| = 1/r(S−1)} ∪ {λ ∈ C : |λ| = r(S)}.
By Proposition 2.1 and Lemma 2.5, the result follows.

Remark 4.15. As in the unilateral case, we note that if r1(S) = r(S),
then either S has Bishop’s property (β) or σβ(S) = {λ ∈ C : |λ| = r(S)}.
But if S has Bishop’s property (β), then r1(S) and r(S) need not be equal
as the following example shows. Indeed, let S be the bilateral weighted shift
with weights (ωn)n∈Z given by

ωn =
{

2 if n ≥ 0,

1 if n < 0.
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It is clear that S is a hyponormal operator; in particular, it has Bishop’s
property (β). On the other hand, we have r1(S) = 1 < r(S) = 2.

Remark 4.16. In view of Remark 4.11 and Theorem 4.12, one can con-
struct examples of bilateral weighted shift operators without Bishop’s prop-
erty (β) which satisfy Dunford’s condition (C) (see also Example 4.20).

We now give a simple proof of the following well known result.

Corollary 4.17. If S is decomposable then either S is quasi-nilpotent
or it is invertible and its spectrum is a circle. In particular , r1(S) = r(S).

Proof. If S is decomposable, then both S and S∗ have Bishop’s prop-
erty (β). Since S∗ is also a bilateral weighted shift and

r±i (S∗) = r∓i (S), r±(S∗) = r∓(S) (i = 1, 2, 3),

the desired result follows by applying Theorem 4.12 to S and S∗.
The next two propositions give a sufficient condition on the weight

(ωn)n∈Z so that the corresponding bilateral weighted shift S is decompos-
able.

Proposition 4.18. If m(S) = w(S), then S is decomposable.

Proof. Without loss of generality, assume that m(S) = w(S) = 1. As in
the proof of Proposition 3.10, for every λ 6∈ σ(S) = {µ ∈ C : |µ| = 1} and
for every x ∈ H, we have∣∣1− |λ|

∣∣‖x‖ ≤ ‖(S − λ)x‖,
and Theorem 1.7.2 of [13] shows that S is decomposable.

Proposition 4.19. If (ωn)n∈Z is a periodic sequence, then S is decom-
posable.

Proof. Suppose that (ωn)n∈Z has period k. Then, as in the proof of
Proposition 3.12, 1

ω0...ωk−1
Sk is an isometry which is clearly invertible. By

Proposition 1.6.7 of [13], Sk is decomposable, and Theorem 3.3.9 of [13]
implies that so is S.

Recall that the weight sequence (ωn)n∈Z is said to be almost periodic if
there is a periodic positive sequence (pn)n∈Z such that lim|n|→∞(ωn − pn)
= 0. Note that if k is the period of (pn)n∈Z, then

r1(S) = r(S) = (p0 . . . pk−1)1/k.

So, one may ask if S is decomposable when the weight (ωn)n∈Z is almost
periodic. It turns out that this is not true as the following example shows.

Example 4.20. Consider the following real-valued continuous function
on R:

ϕ(x) := exp
( |x| sin[log log log(|x|+ e3)]

log(|x|+ e)

)
,
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and set
ωn = exp(ϕ(n+ 1)− ϕ(n)), n ∈ Z.

Since lim|x|→∞ ϕ′(x) = 0, we have

lim
|n|→∞

ωn = 1.

Hence, (ωn)n∈Z is in particular almost periodic and

r1(S) = r(S) = 1.

On the other hand, it is shown in [6] that (ωn)n∈Z satisfies all the hypotheses
of Theorem 2 of [6]. It follows from the proof of that theorem that

σS(x) = σS∗(x) = σ(S) = {λ ∈ C : |λ| = 1} for every non-zero x ∈ H.
This shows that both S and S∗ have fat local spectra, and so satisfy Dun-
ford’s condition (C), but neither S nor S∗ has Bishop’s property (β).

5. Examples and comments. The quasi-nilpotent part of an operator
T ∈ L(H) is the set

H0(T ) = {x ∈ H : lim
n→∞

‖Tnx‖1/n = 0}.
It is a linear subspace of H, generally not closed. The operator T is said
to have property (Q) if H0(T − λ) is closed for every λ ∈ C. Note that
Dunford’s condition (C) implies property (Q) and in its turn property (Q)
implies the single-valued extension property. In [1], the authors have shown,
by examples of a convolution operator on group algebras and a direct sum
of unilateral weighted shits, that the above implications cannot be reversed
in general. The purpose of this section is to provide elementary results in
order to produce simpler counter-examples showing that property (Q) is
strictly intermediate between Dunford’s condition (C) and the single-valued
extension property.

Throughout the remainder of this paper, we suppose that S is a unilateral
weighted shift operator on H and the weights ωn (n ≥ 0) are non-negative.
Note that S is injective if and only if none of the weights is zero.

It is shown in Proposition 17 of [2] that if S is an injective unilateral
weighted shift operator, then H0(S) + ran(S) is dense in H if and only if
r3(S) = 0. However, in view of (3.1) and the fact that rS(en) = r3(S) for all
n ≥ 0, one can see that either H0(S) = {0} or H0(S) is dense in H. More
precisely, we have

Proposition 5.1. If S is an injective unilateral weighted shift operator ,
then H0(S) is dense in H if and only if r3(S) = 0.

The following two propositions enable us to produce examples of opera-
tors which have the single-valued extension property without having prop-
erty (Q).
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Proposition 5.2. The following assertions are equivalent.

(a) S∗ is quasi-nilpotent.
(b) S∗ is decomposable.
(c) S∗ has Bishop’s property (β).
(d) S∗ satisfies Dunford’s condition (C).
(e) S∗ has property (Q).
(f) H0(S∗) is closed.

Proof. It suffices to prove the implication (f)⇒(a). For every n ≥ 0, we
have S∗n+1en = 0. This shows that en ∈ H0(S∗) for every n ≥ 0. Since
H0(S∗) is closed, we have H0(S∗) = H, and it follows from Theorem 1.5 of
[22] that S∗ is quasi-nilpotent.

A similar proof yields the following result.

Proposition 5.3. If infinitely many weights ωn are zero, then the fol-
lowing statements are equivalent.

(a) S is quasi-nilpotent.
(b) S is decomposable.
(c) S has Bishop’s property (β).
(d) S satisfies Dunford’s condition (C).
(e) S has property (Q).
(f) H0(S) is closed.

Example 5.4. Note that if S is injective, then S∗ has the single-valued
extension property if and only if r2(S) = 0. Thus, in view of Proposition
5.2, we see that if 0 = r2(S) < r(S), then S∗ has the single-valued extension
property but not property (Q).

It remains to produce a positive bounded weight sequence (ωn)n≥0 such
that the corresponding weighted shift operator S satisfies 0 = r2(S) < r(S).
Let (ki)i≥1 be the sequence given by

k1 = 1, ki+1 = (i+ 1)ki + 1, i ≥ 1.

Let (ωn)n≥0 be the weight sequence given by

ωn =
{

1/2iki if n = ki − 1 for some i ≥ 1,

2 otherwise.
It is easy to check that βn ≤ 1 for every n ≥ 0, and that

βki−1 = 1, βki =
1

2iki
, i ≥ 1.

This shows that 0 = r2(S) < 1 = r3(S) ≤ r(S). Therefore, S∗ has the
single-valued extension property but fails property (Q).
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Example 5.5. Let (ωn)n≥0 be the weight sequence given by

ωn =
{

0 if n is the square of an integer,

1 otherwise.
It is easy to see that ‖Sn‖ = 1 for every n ≥ 1. This shows that S is
not quasi-nilpotent, and so does not have property (Q) (see Proposition
5.3). On the other hand, S has the single-valued extension property since
σp(S) = {0}.

If infinitely many weights ωn are zero, then by Proposition 5.3, S enjoys
property (Q) if and only if it is quasi-nilpotent. If only finitely many weights
ωn are zero, then S is the direct sum of a finite-dimensional nilpotent op-
erator S1 and an injective unilateral weighted shift S2. Therefore, S has
property (Q) if and only if S2 does. Thus when studying which unilateral
weighted shift operator enjoy property (Q) we may assume that none of the
weights ωn is zero.

Proposition 5.6. If S is injective, then the following statements are
equivalent.

(a) S has property (Q).
(b) Either S is quasi-nilpotent or r3(S) > 0.

Proof. Since S has the single-valued extension property, it follows that
H0(S − λ) = HS({λ}) for every λ ∈ C.

Assume that r3(S) > 0. For every non-zero x ∈ H, σS(x) is a connected
set containing 0 (see Corollary 3.2) and r3(S) ≤ rS(x) ≤ r(S) (see (3.1)).
This implies that H0(S − λ) = HS({λ}) = {0} for every λ ∈ C. Therefore,
S has property (Q) and the implication (b)⇒(a) holds.

Now, suppose that S has property (Q) and r3(S) = 0. From Proposition
5.1 we see that H0(S) is a dense subspace of H. As H0(S) is closed, we have
H0(S) = H. By Theorem 1.5 of [22], S is quasi-nilpotent. This finishes the
proof.

To separate Dunford’s condition (C) and property (Q) we need to pro-
duce a positive bounded weight sequence (ωn)n≥0 such that the correspond-
ing weighted shift operator S satisfies 0 < r3(S) < r(S) (see Theorem 3.8
and Proposition 5.6).

Example 5.7. Let (Ck)k≥0 be a sequence of successive disjoint segments
covering the set N of non-negative integers such that each Ck contains k2

elements. Let k ∈ N and for n ∈ Ck set

ωn =
{

2 if n is one of the first k terms of Ck,

1 otherwise.
It is easy to see that r1(S) = r3(S) = 1 < r(S) = 2. Therefore, S has
property (Q) but does not satisfy Dunford’s condition (C).
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The idea of this construction is due to W. C. Ridge [19].

Finally, we would like to point out that:

(a) Proposition 5.1 remains valid for an injective bilateral weighted shift
operator S upon replacing r3(S) with r+

3 (S).
(b) If S is a non-injective bilateral weighted shift operator then S is a

direct sum of a unilateral weighted shift operator and a backward weighted
shift operator. Therefore, the local spectral properties of S can be deduced
from the preceding results.

(c) All the results of the present paper remain valid for the weighted
shift operators on lp-Banach spaces.

Added in proof. After the first version of this paper, [11], had been
submitted for publication, the author learned from Professor M. M. Neu-
mann that some results of [11] had also appeared in [17]. In [17], the authors
also established some results absent in the present paper about inner and
outer radii of arbitrary Banach space operators and gave a growth condi-
tion for a Banach space operator to have Bishop’s property (β). The author
expresses his gratitude to Professor M. M. Neumann.

He also thanks Professor P. Aiena and the referee for useful comments.
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[22] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak

Math. J. 23 (1973), 483–492.
[23] L. R. Williams, A local functional calculus and related results on the single-valued

extension property, Integral Equations Operator Theory 45 (2003), 485–502.
[24] L. Yang, Hyponormal and subdecomposable operators, J. Funct. Anal. 112 (1993),

204–217.

Abdus Salam ICTP
Mathematics Section
11 Miramare
34100 Trieste, Italy
E-mail: bourhim@ictp.trieste.it

Current address:
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