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Domains of Dirihlet forms and e�etiveresistane estimates on p..f. fratalsby
Jiaxin Hu (Beijing) and Xingsheng Wang (Glasgow)

Abstrat. We onsider post-ritially �nite self-similar fratals with regular har-moni strutures. We �rst obtain e�etive resistane estimates in terms of the Eulideanmetri, whih in partiular imply the embedding theorem for the domains of the Dirihletforms assoiated with the harmoni strutures. We then haraterize the domains of theDirihlet forms.1. Introdution. Let (K, {Fi}
M
i=1) be a post-ritially �nite (p..f.) self-similar fratal in R

n (n ≥ 1) with a regular harmoni struture (H, r), andlet (E ,D) be the Dirihlet form assoiated with (H, r). Let R be the e�etiveresistane determined by the form (E ,D). In this paper, we are onernedwith the following problems:(1) What is the relationship between R and the Eulidean metri?(2) How to haraterize the domain D of E?These two problems are important in studying the dynamial aspets offratals, suh as PDE's, Brownian motions, heat kernels, and funtion spaeson fratals.Reall that the answer to the �rst problem above is obvious if K is abounded open interval in R and E is the lassial energy form with respetto the Lebesgue measure,(1.1) E(f, g) =
1

2

\
K

∇f · ∇g dx.As a matter of fat, there exists some c > 0 suh that, for all x, y ∈ K,
c−1|x − y| ≤ R(x, y) ≤ c|x − y|.(1.2)2000 Mathematis Subjet Classi�ation: Primary 28A80; Seondary 46E30.Key words and phrases: p..f. fratal, Dirihlet form, e�etive resistane, partition,domain, Sobolev-type spae.Researh of J. X. Hu supported in part by NSFC (No. 10371062).[153℄



154 J. X. Hu and X. S. WangThe seond inequality in (1.2) follows by using the de�nition of R (see (2.9)below) and the Sobolev embedding theorem:
|f(x) − f(y)| ≤ c1/2|x − y|1/2E(f, f)1/2(1.3)(see for example [1, formula (9), p. 98℄). The �rst inequality in (1.2) alsofollows; this is beause for any x0 < y0 in K, letting

f0(x) =






0 if x ≤ x0,
(x − x0)/(y0 − x0) if x0 ≤ x ≤ y0,
1 if x ≥ y0,we obtain

E(f0, f0) =
1

2

\
K

|f ′
0(x)|2 dx =

1

2
|y0 − x0|

−1,and then use the de�nition (2.8) below (f. [18, Set. 1.6℄). Note that for thehigher-dimensional ase, there does not exist suh an elegant estimate for Ras in (1.2).The seond problem above is also easy for the lassial ase: if K is anopen domain in R
n (n ≥ 1) and E is as in (1.1), then the domain D of E isjust W 1,2(K), the usual Sobolev spae on K.However, for the fratal ase, the above two problems are non-trivial.Reall that for problem (1), if K is a nested fratal, there exists a geodesimetri d on K, and Barlow [2, Lemma 8.17℄ obtained the following relation-ship between R and d:

R(x, y) ∼ d(x, y)θ,where θ = log ̺/log γ, and ̺, γ are the resistane and shortest path salingfators, respetively. If K is a Sierpi«ski gasket in R
2, Strihartz [18, Set. 1.6℄obtained a relationship between R and the Eulidean metri:(1.4) R(x, y) ∼ |x − y|dw−df ,where df = log 3/log 2 and dw = log 5/log 2 are, respetively, the Hausdor�and walk dimensions of the Sierpi«ski gasket. Under ertain mild onditions,we shall obtain in Setion 3 a relationship between R and the Eulideanmetri for p..f. fratals with regular harmoni strutures. (If the harmonistruture is not regular, then R(x, y) may be in�nite for some points x and y,but |x − y| < ∞ for any x, y ∈ K sine K is bounded. So R annot beontrolled from above by the Eulidean metri. Therefore, the estimate (1.4)fails.) In partiular, we show that (1.4) holds with di�erent exponents for aertain lass of nested fratals. (One may use the heat kernel estimates in[12℄ to derive (1.4) for some nested fratals�but this is another story.)As for problem (2), the �rst result was obtained by Jonsson [9℄ for theSierpi«ski gasket K in R

n. It was shown that the domain D of the energy



Dirihlet forms and resistane estimates on fratals 155form E is equivalent to a Sobolev-type spae on K, that is,
D ≃ W β/2,2(µ) := {f ∈ L2(K, µ) : Wβ/2,2(f) < ∞},(1.5)where µ is the α := log(n + 1)/log 2-dimensional Hausdor� measure on K,

β = log(n + 3)/log 2 is the walk dimension, and(1.6) Wβ/2,2(f) = sup
0<r<1

r−(α+β)
\
K

\
B(x,r)

|f(y) − f(x)|2 dµ(y) dµ(x).

Here B(x, r) = {y ∈ K : |y−x| < r} is the ball of radius r and enter x in Kunder the Eulidean metri. (Note that Jonsson used Lip(β/2, 2,∞)(K, µ) todenote the spae W β/2,2(µ).) Pietruska-Paªuba generalized Jonsson's resultto a ertain lass of nested fratals in R
n (see [16℄).On the other hand, one an haraterize the domain D of the energy

E with the help of heat kernel estimates. Assume that the heat kernel (ortransition density) p(t, x, y) exists on K, and satis�es(1.7) t−α/βΦ1(t
−1/β|x − y|) ≤ p(t, x, y) ≤ t−α/βΦ2(t

−1/β|x − y|)for all x, y ∈ K and 0 < t < 1, where α, β > 0 and Φi ≥ 0 is ontinuousand dereasing on [0,∞) for i = 1, 2. Under ertain mild assumptions on
Φ1 and Φ2, one an show that the domain D of the Dirihlet form (E ,D)assoiated with the heat kernel p(t, x, y) is equivalent to W β/2,2(µ), where µis the α-measure on K (that is, µ(B(x, r)) ∼ rα); see [17℄ for the Eulideanase and [4℄ for metri spaes. However, it is rather ompliated to obtainheat kernel estimates like (1.7) (see [7, 13℄ for p..f. fratals with regularharmoni strutures).In Setion 4, we haraterize the domain D of the energy E on p..f.fratals with regular harmoni strutures. We avoid using the heat kernelestimates, and present a diret proof. We do follow the tehnique in [9℄,but there are some new twists in our proof. The e�etive metri R and theself-similar measure µ with the standard weights will be used in de�ningthe funtion spaes W β/2,2(µ). We mention in passing that a losely relatedproblem was studied in [11℄, where the domain of the Laplaian on p..f.self-similar sets was haraterized.Notation. The onstants in this paper sometimes hange from line toline while they are all denoted by the same letter c. The integers M, Mi andonstants ci are �xed for i ≥ 0. For two non-negative funtions f, g, by f ∼ gwe mean that there is some c > 0 suh that c−1f ≤ g ≤ c f .2. Preliminaries2.1. p..f. fratals and Dirihlet forms. We �rst reall the onept ofp..f. fratals introdued by Kigami [10℄.



156 J. X. Hu and X. S. WangLet M ≥ 2 be an integer, and set S = {1, . . . , M}. Let W∗ =
⋃

m≥0 Smbe the olletion of all �nite words. Let (X, d) be a omplete metri spae,and let {Fi}
M
i=1 be a family of strit ontrations on (X, d). Then there existsa unique non-empty ompat subset K of X suh that(2.1) K =

M⋃

i=1

Fi(K)

(see [8℄ or [3℄). For any word w = i1 · · · im ∈ Sm, any sequene {pi}
M
i=1 ofpositive numbers and any funtion f : K → R, denote by |w| = m the lengthof w, and set

Fw = Fi1 ◦ · · · ◦ Fim , Kw = Fw(K),

pw = pi1 · · · pim , fw = f ◦ Fw.For the empty word w, set pw = 1 and Fw = id. Write B(x0, r) = {y ∈ K :
|y − x0| < r} for x0 ∈ K and r > 0.De�ne a ontinuous surjetion π : SN → K by

{π(w)} =
⋂

m≥1

Fi1···im(K)

for any in�nite word w = i1i2 · · · ∈ SN. Let
C =

⋃

i6=j

(Ki ∩ Kj), Γ = π−1(C), P =
⋃

n≥1

σn(Γ ),

where σ : SN → SN is the shift map de�ned by
σ(i1i2i3 · · · ) = i2i3 · · · .If P is �nite, the triple (K, S, {Fi}i∈S) is termed a post-ritially �nite self-similar set (see [10, De�nition 1.3.13, p. 23℄). Let

V0 = π(P), Vm =
⋃

w∈Sm

Fw(V0) (m ≥ 1), V∗ =
⋃

m≥0

Vm.(2.2)
If (K, {Fi}

M
i=1) is a p..f. fratal, then Vm ⊂ Vm+1 (m ≥ 0). From now on weassume that (K, {Fi}

M
i=1), or simply K, is a p..f. fratal.We now reall how to onstrut a Dirihlet form on a p..f. fratal K.Let V0 be as in (2.2), and ℓ(V0) = {f : V0 → R} be the olletion of allreal funtions on V0. Let H = (Hpq)p,q∈V0

be a Laplae matrix, or simply aLaplae, on V0, that is, for any f, g ∈ ℓ(V0),
• Hpq = Hqp ≥ 0 for any p 6= q ∈ V0;
• (f, Hg) :=

∑
p∈V0

f(p)(
∑

q∈V0
Hpqg(q)) ≤ 0;

• Hf = 0 if and only if f is onstant.



Dirihlet forms and resistane estimates on fratals 157Given a Laplae H on V0, and a family r = {ri}
M
i=1 of positive numbers,we de�ne an energy form Em on Vm for m ≥ 0 by

(2.3) E0(f, g) = −(f, Hg),

Em(f, g) =
∑

w∈Sm

r−1
w E0(fw, gw) (m ≥ 1),for f, g : Vm → R. In what follows, we write Em(f) := Em(f, f) for simpliity.If there exists a pair (H, r) suh that the variational problem

min{E1(g) : g|V0
= f} = E0(f)(2.4)is solvable for any f ∈ ℓ(V0), then we say that (H, r) is a harmoni struturefor K. If in addition ri < 1 for all 1 ≤ i ≤ M , then the harmoni strutureis said to be regular (see [10, De�nition. 3.1.2, p. 69℄).From now on we assume K has a regular harmoni struture (H, {ri}

M
i=1).Note that (2.4) implies that the sequene {Em(f)}m≥0 is non-dereasingin m for any f : V∗ → R. Let

E(f) := lim
m→∞

Em(f),(2.5)
D = {f ∈ C(K) : E(f) < ∞},(2.6)where C(K) is the spae of all ontinuous funtions on K. It is known that

(E ,D) de�ned as in (2.5) and (2.6) is a loal, regular, irreduible Dirihletform on L2(K, µ) for any Borel measure µ whih harges every set of theform Kw for w ∈ Sm (see [2, Theorem 7.14, p. 99℄ or [10, Theorem 3.4.6,p. 92℄). Clearly E is self-similar : for any f ∈ D, we have f ◦Fi ∈ D for eah i,and(2.7) E(f) =
∑

i∈S

r−1
i E(f ◦ Fi).We all {ri}

M
i=1 the weights of the energy E .In order to haraterize the domain D of the form (E ,D), we need thee�etive resistane R on K. Let R : K×K→ [0,∞] be de�ned by R(x, x)=0for x ∈ K, and

R(x, y)−1 = inf{E(f) : f(x) = 0, f(y) = 1}(2.8)for any x 6= y ∈ K. Note that (2.8) is equivalent to(2.9) R(x, y) = sup{|f(x) − f(y)|2/E(f) : E(f) > 0}for x 6= y ∈ K. It turns out that R is a metri on K, and the topologyindued by R is equal to the original topology on K (see [10, Theorem 3.3.4,p. 85℄ or [2, Proposition 7.18, p. 101℄).2.2. Partition. The idea of partition on p..f. fratals (going bak toHambly [6℄) will be useful in our analysis. Let a = {ai}
M
i=1 be a family of



158 J. X. Hu and X. S. Wangnumbers with 0 < ai < 1 for eah i. For 0 < λ < 1, de�ne
Λa(λ) = {w = i1 · · · im : aw ≤ λ < ai1 · · · aim−1

}(2.10)with the onvention that a∅ = 1. We all Λa(λ) the partition with respet toa and λ. Note that the set Λa(λ) is �nite; this is easily seen sine 0 < λ < 1and 0 < ai < 1 for eah i. For simpliity, for τ, w ∈ Λr(λ) write
τ ∼ w if Kτ ∩ Kw 6= ∅.For x, y ∈ K, we write x ∼ y if x, y ∈ Kw for some w ∈ Λa(λ). Clearly, by(2.1) and (2.7), we see that, for any partition Λa(λ),

K =
⋃

w∈Λa(λ)

Kw, E(f) =
∑

w∈Λa(λ)

r−1
w E(fw) (f ∈ D).(2.11)

For f : V∗ → R and 0 < λ < 1, de�ne(2.12) Eλ(f) :=
∑

w∈Λr(λ)

r−1
w E0(fw).

Proposition 2.1. Let (K, {Fi}
M
i=1) be a p..f. fratal with a regular har-moni struture (H, {ri}

M
i=1). Then {Eλ(f)} is inreasing as λ ց 0 for any f ,and(2.13) lim
λ→0

Eλ(f) = E(f), f ∈ D.Proof. Let 0 < λ1 < λ2 < 1. Then the partition Λr(λ2) is a �father�of Λr(λ1), that is, any word w ∈ Λr(λ1) an be written as w = τw′ with
τ ∈ Λr(λ2) and w′ ∈ W∗, with w′ being possibly an empty word. Indeed, let

w = i1 · · · im ∈ Λr(λ1) \ Λr(λ2) (m ≥ 1).Then λ2 ≥ ri1 · · · rim−1
; otherwise we would have

ri1 · · · rim ≤ λ1 < λ2 < ri1 · · · rim−1
,and so w = i1 · · · im ∈ Λr(λ2) by the de�nition, a ontradition. Let 1 ≤ k ≤

m − 1 be an integer suh that
ri1 · · · rik ≤ λ2 < ri1 · · · rik−1

.This implies τ := i1 · · · ik ∈ Λr(λ2). Setting w′ := ik+1 · · · im, we see that
w = τw′ with τ ∈ Λr(λ2). This shows that Λr(λ2) is a father of Λr(λ1).Therefore, for f ∈ D,

Eλ1
(f) =

∑

w∈Λr(λ1)

r−1
w E0(fw) ≥

∑

τ∈Λr(λ2)

r−1
τ E0(fτ ) = Eλ2

(f),

proving that {Eλ(f)} is dereasing in λ for any f . Here, the inequality followsfrom both the harmoni struture and the post-ritial �niteness of K.



Dirihlet forms and resistane estimates on fratals 159Finally, for 0 < λ < 1, letting
m1 = m1(r, λ) = min{|w| : w ∈ Λr(λ)},

m2 = m2(r, λ) = max {|w| : w ∈ Λr(λ)} ,we see that Sm1 is a father of Λr(λ), and Λr(λ) a father of Sm2 . Hene,
Em1

(f) ≤ Eλ(f) ≤ Em2
(f) (f ∈ D).Thus

E(f) = lim
m1→∞

Em1
(f) ≤ lim

λ→0
Eλ(f) ≤ lim

m2→∞
Em2

(f) = E(f).

3. E�etive resistane estimates. In this setion we give two-sidedestimates of the e�etive resistane R in terms of the Eulidean metri. Thetwo exponents appearing in the two-sided estimates of R are alulated forsome fratals, both nested and non-nested.Theorem 3.1. Let (K, {Fi}
M
i=1) be a p..f. fratal in R

n with a regularharmoni struture (H, {ri}
M
i=1). Assume that si < 1 is the ontration ratioof Fi, that is,

|Fi(x) − Fi(y)| ≤ si|x − y| for x, y ∈ R
n.Then there exists some c > 0 suh that , for all x, y ∈ K,(3.1) c−1|x − y|α1 ≤ R(x, y) where α1 = max

1≤i≤M

log ri

log si
.Proof. Let x0 6= y0 ∈ K. Without loss of generality, assume that

R(x0, y0) < (2c1)
−1where c1 > 0 will be determined below. Set

λ = 2c1R(x0, y0) < 1.Then Λr(λ) is a partition. There exist two words w1, w2 ∈ Λr(λ) suh that
x0 ∈ Kw1

and y0 ∈ Kw2
. We laim that

Kw1
∩ Kw2

6= ∅.Otherwise there would exist a Λr(λ)-harmoni funtion f satisfying(3.2) f |Vw1
= 1 and f |Vλ\Vw1

= 0,where Vw := Fw(V0) for w ∈ W∗, and Vλ =
⋃

w∈Λr(λ) Fw(V0). (We say thata funtion f on K is Λr(λ)-harmoni if E(f, ϕ) = 0 for any ϕ ∈ D with
ϕ|Vλ

= 0.)



160 J. X. Hu and X. S. WangNote that f(x0) = 1 and f(y0) = 0. Sine f is Λr(λ)-harmoni, we have
E(f) = Eλ(f) =

∑

w∈Λr(λ)

r−1
w E0(fw)(3.3)

=
∑

w∈Λr(λ)

r−1
w

(
1

2

∑

p,q∈V0

Hpq(f(Fw(p)) − f(Fw(q)))2
)

.

Using (3.2), we see that the right-hand side of (3.3) is atually equal to thesum of the terms
r−1
w Hpq(f(Fw(p)) − f(Fw(q)))2 = r−1

w Hpq,with w ( 6= w1) running over all the words in Λr(λ) with w ∼ w1, and pand q running over V0 suh that Fw(p) ∈ Vw1
(so that f(Fw(p)) = 1 and

f(Fw(q)) = 0); all the other terms are equal to zero. Hene, noting that
rw ≥ λrmin, the right-hand side of (3.3) is bounded by

HmaxM0(M0 − 1)r−1
w ≤ Hmax(rmin)

−1M0(M0 − 1)λ−1 =: c1λ
−1,where Hmax = maxp6=q∈V0

Hpq, M0 = ♯V0 and rmin = min ri. Therefore, by(2.8), it follows that
R(x0, y0)

−1 ≤ c1λ
−1,and so

R(x0, y0) ≥ c−1
1 λ = 2R(x0, y0),yielding a ontradition. So the laim holds.Now let z0 ∈ Kw1

∩ Kw2
. Sine x0, z0 ∈ Kw1

, writing x0 = Fw1
(x′

0) and
z0 = Fw1

(z′0) for some x′
0, z

′
0 ∈ K, we see that

|x0 − z0| = |Fw1
(x′

0) − Fw1
(z′0)| ≤ sw1

diam(K)

≤ (rw1
)1/α1diam(K) ≤ λ1/α1diam(K).Similarly, noting that y0, z0 ∈ Kw2

, we �nd that
|y0 − z0| ≤ λ1/α1diam(K).Therefore,

|x0 − y0| ≤ |x0 − z0| + |z0 − y0| ≤ 2λ1/α1diam(K) = cR(x0, y0)
1/α1,giving R(x0, y0) ≥ c−1|x0 − y0|

α1 .To bound R from above, we need the following separation property :
(C1) There exist a family b = {bi}

M
i=1 of numbers with 0 < bi < 1 forevery i, and a onstant c2 > 0 suh that, for any 0 < λ < 1,dist(Kw, Kτ ) ≥ c2λ if Kw ∩ Kτ = ∅for w, τ ∈ Λb(λ).



Dirihlet forms and resistane estimates on fratals 161We remark that c2 is independent of λ, but may depend on {bi}
M
i=1. Condition(C1) says that any two disjoint omponents obtained from any partition

Λb(λ) with 0 < λ < 1 are a distane at least c2λ apart.Theorem 3.2. Let (K, {Fi}
M
i=1) be a p..f. fratal in R

n (n ≥ 1) with aregular harmoni struture (H, {ri}
M
i=1). Assume that ondition (C1) holdsfor some b = {bi}

M
i=1. Then there exists c > 0 suh that , for all x, y ∈ K,

R(x, y) ≤ c|x − y|α2 where α2 = min
1≤i≤M

log ri

log bi
.(3.4)Proof. First note that R(x, y) ≤ c < ∞ for all x, y ∈ K, sine theharmoni struture is regular (see [10, Theorem 3.3.4, p. 85℄). This impliesthat

|f(x) − f(y)|2 ≤ R(x, y)E(f) ≤ cE(f)for any f ∈ D. In partiular, for x, y ∈ Kw (w ∈ W∗), writing x = Fw(x′)and y = Fw(y′) for some x′, y′ ∈ K, we have(3.5) |f(x) − f(y)|2 = |fw(x′) − fw(y′)|2 ≤ cE(fw).Now let x0 6= y0 ∈ K. Without loss of generality, we assume that
|x0 − y0| < c2/2,where c2 is as in ondition (C1). Let

λ =
2

c2
|x0 − y0| < 1.There are two words w1, w2 ∈ Λb(λ) suh that x0 ∈ Kw1

and y0 ∈ Kw2
.Then Kw1

∩ Kw2
6= ∅; otherwise, ondition (C1) would imply

|x0 − y0| ≥ dist(Kw1
, Kw2

) ≥ c2λ = 2|x0 − y0|,a ontradition. Let z0 ∈ Kw1
∩ Kw2

. For f ∈ D, as x0, z0 ∈ Kw1
, we seefrom (3.5) and (2.11) that

|f(x0) − f(z0)|
2 ≤ cE(fw1

) = crw1
(rw1

)−1E(fw1
)(3.6)

≤ crw1
E(f) ≤ c(bw1

)α2E(f) ≤ cλα2E(f).Similarly, sine z0, y0 ∈ Kw2
, we have

|f(z0) − f(y0)|
2 ≤ cλα2E(f).Therefore,

|f(x0) − f(y0)|
2 ≤ 2(|f(x0) − f(z0)|

2 + |f(z0) − f(y0)|
2)

≤ cλα2E(f) = c|x0 − y0|
α2E(f),whih gives

R(x0, y0) ≤ c|x0 − y0|
α2 .Thus (3.4) follows.



162 J. X. Hu and X. S. WangCondition (C1) may be replaed by the following onnetivity property :(C2) There exist b̂ = {b̂i}
M
i=1 with 0 < b̂i < 1 for eah i, a (small)onstant c3 > 0 and an integer M1 suh that, for any 0 < λ < 1and any x0 ∈ K, eah point y ∈ B(x0, c3λ) an be onneted to x0by a sequene {xk}

n0

k=0 of points in K with 1 ≤ n0 ≤ M1, xn0
= yand xk−1 ∼ xk for 1 ≤ k ≤ n0.For a partition Λb̂(λ) with 0 < λ < 1, ondition (C2) means that any point

y in any ball B(x0, c3λ) an be onneted to its enter x0 by at most M1omponents obtained from the partition Λb̂(λ).Theorem 3.3. Let (K, {Fi}
M
i=1) be a p..f. fratal in R

n (n ≥ 1) with aregular harmoni struture (H, {ri}
M
i=1). Assume that ondition (C2) holdsfor some b̂ = {b̂i}

M
i=1. Then there exists c > 0 suh that , for all x, y ∈ K,

R(x, y) ≤ c|x − y|α3 where α3 = min
1≤i≤M

log ri

log b̂i

.(3.7)Proof. Let x0 6= y0 ∈ K. Without loss of generality, we assume that
|x0 − y0| < c3/2 where c3 is as in (C2). Set λ := 2c−1

3 |x0 − y0|. Let Λ
b̂
(λ) bethe partition with respet to b̂ and λ. Note that y0 ∈ B(x0, c3λ). Then, by(C2), there exists a sequene {xk}

n0

k=0 of points with 1 ≤ n0 ≤ M1, xn0
= y,and

xk−1, xk ∈ Kwk
for some wk ∈ Λ

b̂
(λ) (k = 1, . . . , n0).For f ∈ D, as in (3.6), we have

|f(xk) − f(xk−1)|
2≤crwk

E(f)≤c(̂bwk
)α3E(f) ≤ cλα3E(f), k = 1, . . . , n0.Therefore,

|f(x0) − f(y0)|
2 =

( n0∑

k=1

(f(xk) − f(xk−1))
)2

≤ n0

n0∑

k=1

(f(xk) − f(xk−1))
2

≤ cM2
1 λα3E(f) = c|x0 − y0|

α3E(f),whih implies that
R(x0, y0) ≤ c|x0 − y0|

α3 .Thus (3.7) follows.We remark that Theorem 3.2 or 3.3 implies the Morrey�Sobolev embed-ding of the funtion spae D:(3.8) |f(x) − f(y)| ≤ c|x − y|β
√

E(f)for all x, y ∈ K and all f ∈ D, for some c, β > 0.We now give some examples of p..f. fratals where ondition (C1) or(C2) holds so that the onlusion of Theorem 3.2 or 3.3 is true.
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• Nested fratals. The nested fratal (K, {Fi}

M
i=1) was introdued byLindstrøm [14℄. It belongs to the lass of p..f. fratals in R

n with the sameontration ratio 0 < ̺ < 1, that is,
|Fi(x) − Fi(y)| = ̺|x − y| (x, y ∈ R

n).It is known that K has a regular harmoni struture (H, {ri}
M
i=1) with ri :=

r < 1 for 1 ≤ i ≤ M (see for example [15℄). Moreover, ondition (C2) holdsfor b̂i = ̺ for a ertain lass of nested fratals (see [12, Lemma 5.4℄). Thus,by Theorems 3.1 and 3.3, there exists c > 0 suh that, for all x, y ∈ K,
c−1|x − y|log r/log ̺ ≤ R(x, y) ≤ c|x − y|log r/log ̺.As a typial representative of nested fratals, the Sierpi«ski gasket K in R

nadmits an e�etive resistane R satisfying
c−1|x − y|log( n+3

n+1
)/log 2 ≤ R(x, y) ≤ c|x − y|log( n+3

n+1
)/log 2,by taking ri = (n + 1)/(n + 3) when onstruting the Dirihlet form. Notethat the exponent

log
(

n+3
n+1

)

log 2
=

log(n + 3)

log 2
−

log(n + 1)

log 2
=: dw − dfis the di�erene between the walk dimension dw and the Hausdor� dimension

df of the Sierpi«ski gasket (see also [18℄ for n = 2).
• Visek sets. Let
p1 = (0, 0), p2 = (1, 0), p3 = (1, 1), p4 = (0, 1), p5 = (1/2, 1/2)be the four orners and enter of the unit square in the plane. De�ne

Fi(x) = 1
4(x − pi) + pi (1 ≤ i ≤ 4), F5 = 1

2(x − p5) + p5 (x ∈ R
2).The Visek set is K =

⋃5
i=1 Fi(K). It is a p..f. fratal but not a nestedfratal, and the boundary is V0 = {p1, p2, p3, p4}.Let b = {bi}

5
i=1 where bi = 1/4 for eah i. Then the Visek set satis�esondition (C1). Indeed, for 0 < λ < 1, let m ≥ 1 be an integer suh that

4−m ≤ λ < 4−(m−1). Then Λb(λ) = Sm, anddist(Kw, Kτ ) ≥ 1
2 · 4−(m−1) > 1

2λ if Kw ∩ Kτ = ∅for w, τ ∈ Sm. It is not hard to onstrut a regular harmoni struture
(H, {ri}

5
i=1) on the Visek set. In fat, let

H =





−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3




,



164 J. X. Hu and X. S. Wangand r1 = r2 = r3 = r4 = 2−1(1 − r) and r5 = r with 0 < r < 1. Onean verify that (H, {ri}
5
i=1) is a regular harmoni struture on K for any

0 < r < 1. Thus we see from Theorems 3.1 and 3.2 that, for all x, y ∈ K,
c−1|x − y|α1 ≤ R(x, y) ≤ c|x − y|α2 ,(3.9)where

α1 = max

{
−

log(2−1(1 − r))

log 4
,−

log r

log 2

}
,

α2 = min

{
−

log(2−1(1 − r))

log 4
,−

log r

log 4

}
.Note that the e�etive resistane R here annot be ontrolled by anypowered Eulidean metri, that is,(3.10) R(x, y) ∼ |x − y|θ (∀x, y ∈ K)fails for any θ > 0. In fat, let m ≥ 1 be any integer and set w1 = 11 · · · 1 ∈

Sm. Choose a family {(xm, ym)}m≥1 of points in K, where
xm = (0, 0) = Fw1

(p1), ym = (4−m, 0) = Fw1
(p2).Clearly xm, ym ∈ Fw1

(V0) with |xm −ym| = 4−m. Let f be the Sm-harmonifuntion on K satisfying f(xm) = 1 and f |Vm\{xm} = 0. Then we have
E(f) = Em(f) = 3(2−1(1 − r))−m,whih gives

R(xm, ym)−1 = inf{E(u) : u ∈ D and u(xm) = 1, u(ym) = 0}

≤ E(f) = 3(2−1(1 − r))−m = 3 · 4mθ1 = 3|xm − ym|−θ1 ,where θ1 = −log(2−1(1 − r))/log 4. Therefore, R(xm, ym) ≥ 3−1|xm − ym|θ1 .On the other hand, for any u ∈ D, we see that
E(u) ≥ Em(u) ≥ r−1

w1
(u(xm) − u(ym))2 = (2−1(1 − r))−m(u(xm) − u(ym))2

= |xm − ym|−θ1(u(xm) − u(ym))2,whih implies that R(xm, ym) ≤ |xm − ym|θ1 by using (2.9). Therefore,(3.11) 3−1|xm − ym|θ1 ≤ R(xm, ym) ≤ |xm − ym|θ1 .Similarly, let w2 = 55 · · · 5 ∈ Sm, and take x′
m = Fw2

(p1) and y′m = Fw2
(p2).Clearly |x′

m − y′m| = 2−m. By the same alulation as above, we an obtain(3.12) 1 − r

3(1 + r)
· |x′

m − y′m|θ2 ≤ R(x′
m, y′m) ≤ |x′

m − y′m|θ2 ,where θ2 = −log r/log 2. If r 6= 1/2, we see that θ1 6= θ2. It follows from (3.11)and (3.12) that (3.10) annot hold for any θ > 0, provided that r 6= 1/2.



Dirihlet forms and resistane estimates on fratals 1654. Domains of Dirihlet forms. Let (K, {Fi}
M
i=1) be a p..f. fratalwith a regular harmoni struture (H, {ri}

M
i=1), and let (E ,D) be the asso-iated Dirihlet form de�ned as in (2.5) and (2.6). In this setion, we give aharaterization of the domain D.To this end, we need to introdue a measure µ. We hoose µ to be thenormalized self-similar measure with the standard weights {pi}

M
i=1, that is,

µ =

M∑

i=1

pi · µ ◦ F−1
i(4.1)where pi = rα

i , with α given by
M∑

i=1

rα
i = 1.(4.2)For any w 6= τ ∈ W∗, we have(4.3) µ(Kw) = (rw)α and µ(Kw ∩ Kτ ) = 0.Observe that there exist onstants 0 < c4 ≤ c5 independent of x and λ suhthat for any x ∈ K and 0 < λ < 1,

BR(x, c4λ) ⊂ Nλ(x) ⊂ BR(x, c5λ),(4.4)where BR(x, λ) = {y ∈ K : R(y, x) < λ} is a ball in the metri R, and
Nλ(x) =

⋃
{Kw : x ∈ Kw and w ∈ Λr(λ)}is the union of all omponents Kw (w ∈ Λr(λ)) to whih x belongs. Indeed,the �rst inlusion in (4.4) follows sine, for x ∈ K and y /∈ Nλ(x), one an�nd a funtion f suh that f(x) = 1 and f(y) = 0, and E(f) ≤ (c4λ)−1for some c4 > 0 (see the proof of Theorem 3.1). So R(x, y) ≥ c4λ by using(2.8), and therefore BR(x, c4λ) ⊂ Nλ(x). The seond inlusion follows from[2, Prop. 8.9, p. 110℄.Theorem 4.1. Let (K, {Fi}

M
i=1) be a p..f. fratal with a regular har-moni struture (H, {ri}

M
i=1), and let (E ,D) be the assoiated Dirihlet formde�ned as in (2.5) and (2.6). Let µ be a self-similar measure with standardweights. Then there exists some c > 0 suh that
c−1Wα(f) ≤ E(f) ≤ cWα(f)(4.5)for all f ∈ C(K), where(4.6) Wα(f) := sup

0<λ<1
λ−(2α+1)

\
K

\
BR(x,c4λ)

|f(x) − f(y)|2 dµ(y) dµ(x),

and the onstants α and c4 are as in (4.2) and (4.4), respetively. In parti-ular , D = {f ∈ C(K) : Wα(f) < ∞}.



166 J. X. Hu and X. S. WangNote that (4.5) implies that Wα(f) < ∞ if and only if E(f) < ∞. Wedeompose Theorem 4.1 into Lemmas 4.3 and 4.4 below. In order to proveLemma 4.3, we need the following proposition.Proposition 4.2. Let (K, {Fi}
M
i=1), (E ,D) and µ be as in Theorem 4.1.Then, for 0 < λ < 1 and f ∈ C(K),

∑

w∈Λr(λ)

\
Kw

|f(x) − fw(x0)|
2 dµ(x) ≤ cλα+1E(f)(4.7)

for any x0 in V0, with c independent of λ, f and x0.Proof. The proof is motivated by [5℄. Without loss of generality, assumethat f ∈ D and x0 ∈ V0. Sine Λr(λ) is a partition, so is
{wτ : w ∈ Λr(λ) and τ ∈ Sk}for any k ≥ 1. Therefore, for µ-almost all x ∈ K, there is exatly one τ ∈ Sksuh that x ∈ Kwτ . We de�ne fk(x) := fwτ (x0) if x ∈ Kwτ . Obviouslythe funtion fk is de�ned µ-almost everywhere on K, and is onstant oneah omponent of the form Kwτ where w ∈ Λr(λ) and τ ∈ Sk. Sine f isontinuous, we see that fk(x) → f(x) for µ-almost all x ∈ K as k → ∞. Inorder to derive (4.7), it is enough to show that

∑

w∈Λr(λ)

\
Kw

|fk(x) − fw(x0)|
2 dµ(x) ≤ cλα+1E(f).(4.8)

In fat, if (4.8) holds, then letting k → ∞ in (4.8) and using the dominatedonvergene theorem, we obtain (4.7).Fix w ∈ Λr(λ) and τ := i1 · · · ik for k ≥ 1 temporarily. Let
xl = Fwi1···il(x0), 1 ≤ l ≤ k.Note that

(f(xk) − f(x0))
2 =

(k−1∑

l=0

a
−1/2
l · a

1/2
l (f(xl+1) − f(xl))

)2(4.9)
≤

(k−1∑

l=0

a−1
l

)(k−1∑

l=0

al(f(xl+1) − f(xl))
2
)

≤ c

k−1∑

l=0

al(f(xl+1) − f(xl))
2,where {al}

∞
l=0 is a sequene of positive numbers satisfying ∑∞

l=0 a−1
l < ∞,whih will be spei�ed later on. Observing that

(f(xl+1) − f(xl))
2 = (fwi1···il(Fil+1

(x0)) − fwi1···il(x0))
2

≤ cE1(fwi1···il) ≤ cE(fwi1···il),
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(f(xk) − f(x0))

2 ≤ c
k−1∑

l=0

alE(fwi1···il).Therefore, using the fat that µ(Kwτ ) = (rw)αµ(Kτ ) ≤ λαµ(Kτ ), we obtain\
Kwτ

(fk(x) − fw(x0))
2 dµ(x) = µ(Kwτ )(f(xk) − f(x0))

2

≤ cλαµ(Ki1···ik)
k−1∑

l=0

alE(fwi1···il)for any w ∈ Λr(λ) and any τ := i1 · · · ik ∈ Sk (k ≥ 1). Hene,\
Kw

(fk(x) − fw(x0))
2 dµ(x) =

∑

τ∈Sk

\
Kwτ

(fk(x) − fw(x0))
2 dµ(x)(4.10)

≤ cλα
∑

i1,...,ik

µ(Ki1···ik)
k−1∑

l=0

alE(fwi1···il)

≤ cλα
k−1∑

l=0

al

∑

i1,...,il

E(fwi1···il).In the last inequality above, we have exhanged the order of the summations,and then used the fat that ∑
il+1,...,ik∈S µ(Kil+1···ik) = 1 and µ(Ki1···il) ≤ 1

(l ≥ 1). On the other hand, for any l ≥ 0,
∑

w∈Λr(λ)

∑

i1,...,il

E(fwi1···il) =
∑

w∈Λr(λ)

∑

i1,...,il

(rwi1···il)(rwi1···il)
−1E(fwi1···il)(4.11)

≤ λ(rmax)
l

∑

w∈Λr(λ)

∑

i1,...,il

(rwi1···il)
−1E(fwi1···il)

= λ(rmax)
lE(f),sine rwi1···il = rwri1···il ≤ λ(rmax)

l, where rmax := maxi ri < 1. Therefore,from (4.10) and (4.11) we obtain
∑

w∈Λr(λ)

\
Kw

(fk(x) − fw(x0))
2 dµ(x) ≤ cλα

k−1∑

l=0

al

( ∑

w∈Λr(λ)

∑

i1,...,il

E(fwi1···il)
)

≤ cλα+1E(f)
∞∑

l=0

al(rmax)
l ≤ cλα+1E(f),

where we have hosen al := (rmax)
−l/2 that satis�es ∑∞

l=0 a−1
l < ∞. Thus(4.8) follows. This �nishes the proof.



168 J. X. Hu and X. S. WangLemma 4.3. Let (K, {Fi}
M
i=1), (E ,D) and µ be as in Theorem 4.1. Thenthere exists some c > 0 suh that , for all f ∈ C(K),
Wα(f) ≤ cE(f),(4.12)where Wα(f) is de�ned as in (4.6).Proof. Assume that f ∈ D; otherwise (4.12) holds automatially. Let

0 < λ < 1. Note that µ(Kw ∩ Kτ ) = 0 for any distint w, τ ∈ Λr(λ). Set
Iλ(f) :=

\
K

\
BR(x,c4λ)

|f(x) − f(y)|2 dµ(y) dµ(x).Then, by (4.4),
Iλ(f) =

∑

w∈Λr(λ)

\
Kw

\
BR(x,c4λ)

|f(x) − f(y)|2 dµ(y) dµ(x)

≤
∑

w∈Λr(λ)

∑

τ∼w

\
Kw

\
Kτ

|f(x) − f(y)|2 dµ(y) dµ(x).

For x ∈ Kw, y ∈ Kτ , let z0 ∈ Kw ∩ Kτ = Fw(V0) ∩ Fτ (V0) (if w = τ , wesimply take any point z0 ∈ Fw(V0) and run the same proof as below; so weonly onsider the ase w 6= τ). Using the elementary inequality
|f(x) − f(y)|2 ≤ 2(|f(x) − f(z0)|

2 + |f(z0) − f(y)|2),and the fat that ♯{τ : τ ∼ w} ≤ M2 for an integer M2 independent of wand λ (f. [10, Lemma 4.2.3, p. 139℄), we obtain
Iλ(f) ≤ cλα

∑

w∈Λr(λ)
z0∈Fw(V0)

\
Kw

|f(x) − f(z0)|
2 dµ(x).

Let z0 = Fw(x0) for some x0 ∈ V0. By (4.7) and the fat that ♯V0 < ∞, itfollows immediately that
Iλ(f) ≤ cλ2α+1E(f),proving (4.12).Lemma 4.4. Let (K, {Fi}

M
i=1), (E ,D) and µ be as in Theorem 4.1. Then
E(f) ≤ cWα(f)(4.13)for all f ∈ C(K), where c > 0.Proof. Let 0 < λ < c4/c5 ≤ 1. Let f ∈ C(K). Without loss of generality,we assume that Wα(f) < ∞. We have

Eλ(f) =
∑

w∈Λr(λ)

r−1
w E0(fw) ≤ c

∑

w∈Λr(λ)

r−1
w

( ∑

p,q∈Fw(V0)

(f(p) − f(q))2
)
.(4.14)Noting that, for any x0 ∈ Kw,

|f(p) − f(q)|2 ≤ 2((f(p) − f(x0))
2 + (f(x0) − f(q))2),
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|f(p) − f(q)|2

≤
2

µ(Kw)

( \
Kw

(f(p) − f(x0))
2 dµ(x0) +

\
Kw

(f(x0) − f(q))2 dµ(x0)
)
.Hene,

(4.15)
∑

p,q∈Fw(V0)

(f(p) − f(q))2

≤ M3

∑

p∈Fw(V0)

1

µ(Kw)

\
Kw

(f(p) − f(x0))
2 dµ(x0),where M3 = 4♯(Fw(V0)) = 4♯V0. Let w ∈ Λr(λ) and p ∈ Fw(V0) be �xed.We now estimate the last integral. Let 0 < a < 1 be any �xed number(for example, a = 1/2). For eah integer l ≥ 0, let Λ(λal) := Λr(λal) be apartition. We hoose a sequene of subsets of Kw:

Kw, Kwτ1
, Kwτ2

, . . . ,suh that wτl ∈ Λ(λal) and p ∈ Kwτl
for eah l ≥ 0. Note that Kwτl

⊂ Kwτifor any l > i ≥ 0, beause λal < λai, and so the partition Λ(λai) is a fatherof Λ(λal). For simpliity, we write
K ′

0 = Kw, K ′
l = Kwτl

(l ≥ 1).Note that, for any xl ∈ K ′
l (l ≥ 0),

(f(p) − f(x0))
2 =

(
(f(p) − f(xk)) +

k−1∑

l=0

a
−1/2
l · a

1/2
l (f(xl+1) − f(xl))

)2

≤ 2(f(p)−f(xk))
2+2

( ∞∑

l=0

a−1
l

)(k−1∑

l=0

al(f(xl+1) − f(xl))
2
)
,where {al}

∞
l=0 is a sequene of positive numbers satisfying ∑∞

l=0 a−1
l < ∞,whih will be determined below. Integrating the above inequality with re-spet to eah xl ∈ K ′

l for 0 ≤ l ≤ k, and then dividing by µ(K ′
0) · · ·µ(K ′

k),we obtain
(4.16)

1

µ(Kw)

\
Kw

(f(p) − f(x0))
2 dµ(x0)

≤
2

µ(K ′
k)

\
K′

k

(f(p) − f(xk))
2 dµ(xk)

+ c
k−1∑

l=0

al

µ(K ′
l+1)µ(K ′

l)

\
K′

l

\
K′

l+1

(f(xl+1) − f(xl))
2 dµ(xl+1) dµ(xl).



170 J. X. Hu and X. S. WangNote that the �rst term on the right-hand side of (4.16) tends to zero as
k → ∞, sine {K ′

k} shrinks to p as k → ∞ and f is ontinuous. In order toestimate the seond term, we set
Aw,k(f) :=

k−1∑

l=0

al

µ(K ′
l+1)µ(K ′

l)
(4.17)

×
\

K′

l

\
K′

l+1

(f(xl+1) − f(xl))
2 dµ(xl+1) dµ(xl).

By (4.4), we have
K ′

l ⊂ Nλal(xl) ⊂ BR(xl, c5λal)for any xl ∈ K ′
l and l ≥ 0. Using the fat that

K ′
l+1 ⊂ K ′

l ⊂ Kw,we obtain\
K′

l

\
K′

l+1

(f(xl+1) − f(xl))
2 dµ(xl+1) dµ(xl)

≤
\

Kw

\
BR(xl,c5λal)

(f(xl+1) − f(xl))
2 dµ(xl+1) dµ(xl).

Note that, using (4.3) and the fat that wτl ∈ Λr(λal), we get
µ(K ′

l) = (rwτl
)α ∼ (λal)α for any l ≥ 0.Therefore, it follows from (4.17) that

Aw,k(f) ≤ c
k−1∑

l=0

al(λal)−2α(4.18)
×
\

Kw

\
BR(x,c5λal)

(f(y) − f(x))2 dµ(y) dµ(x).

Hene, ombining (4.14)�(4.16) shows that, for any k ≥ 0,
Eλ(f) ≤ c

∑

w∈Λr(λ)

r−1
w Aw,k(f)(4.19)

+
∑

w∈Λr(λ)
p∈Fw(V0)

r−1
w

c

µ(K ′
k)

\
K′

k

(f(p) − f(z))2 dµ(z).

On the other hand, noting that rw ∼ λ for w ∈ Λr(λ), it follows from (4.18)
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(4.20)

∑

w∈Λr(λ)

r−1
w Aw,k(f) ≤ cλ−1

∑

w∈Λr(λ)

Aw,k(f)

≤ cλ−1
k−1∑

l=0

al(λal)−2α
\
K

\
BR(x,c5λal)

(f(y) − f(x))2 dµ(y) dµ(x)

= c

k−1∑

l=0

al a
l
{
(c5λal)−(2α+1)

\
K

\
BR(x,c5λal)

(f(y) − f(x))2 dµ(y) dµ(x)
}

≤ cWα(f)
k−1∑

l=0

ala
l ≤ cWα(f).

Here we have hosen al := a−l/2 that satis�es ∑
l≥0 a−1

l < ∞. Therefore, by(4.19) and (4.20),
Eλ(f) ≤ cWα(f) +

∑

w∈Λr(λ)
p∈Fw(V0)

r−1
w

c

µ(K ′
k)

\
K′

k

(f(p) − f(z))2dµ(z) (k ≥ 0),

where c is independent of k and λ. Letting k → ∞, we see that
Eλ(f) ≤ cWα(f).This gives (4.13) by letting λ → 0 and using (2.13).Finally, we remark that Theorem 4.1 follows diretly from Lemmas 4.3and 4.4.Aknowledgements. The authors thank the referee for the helpfulomments.
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