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Spectral synthesis and operator synthesis

by

K. Parthasarathy and R. Prakash (Chennai)

Abstract. Relations between spectral synthesis in the Fourier algebra A(G) of a
compact group G and the concept of operator synthesis due to Arveson have been studied
in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been
introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To
any such X we associate a V∞(G)-submodule X̂ of B(L2(G)) (where V∞(G) is the

weak-∗ Haagerup tensor product L∞(G)⊗w∗hL
∞(G) ), define the concept of X̂-operator

synthesis and prove that a closed set E in G is of X-synthesis if and only if E∗ := {(x, y) ∈

G×G : xy−1 ∈ E} is of X̂-operator synthesis.

Introduction. Arveson introduced and studied the concept of operator
synthesis in [1]. He found that spectral synthesis on abelian groups is related
to operator synthesis. Froelich [2] continued this study. Recently Spronk
and Turowska [5] have investigated the relation between spectral synthesis
in the Fourier algebra A(G) of a compact group G and operator synthesis.
Specifically, they considered the projective tensor product T (G) = L2(G) ⊗̂
L2(G) and the weak-∗ Haagerup tensor product V∞(G) = L∞(G) ⊗w∗h
L∞(G) and proved that a closed subset E of G is of spectral synthesis for
A(G) if and only if E∗ := {(x, y) ∈ G × G : xy−1 ∈ E} is of operator
synthesis.
In another direction, for an A(G)-submodule X of VN(G) = A(G)∗,

X-synthesis has recently been studied by Kaniuth and Lau [3] and Parthasa-
rathy and Prakash [4].
In this paper we tie up these two threads. For a V∞(G)-submoduleM

of B(L2(G)) = T (G)∗, we define and characterise operator synthesis for
M (Section 3). When M = B(L2(G)), this reduces to operator synthesis
of the earlier authors. With any A(G)-submodule X of VN(G), we asso-

ciate a V∞(G)-submodule X̂ of B(L2(G)) and conversely, to any V∞(G)-

submodule M of B(L2(G)) there corresponds an A(G)-submodule

̂
M of
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VN(G).Moreover,

̂
X̂ = X (Section 2). The main result (Theorem 4.6) states

that a closed set E in G is of X-synthesis if and only if E∗ is of X̂-operator
synthesis. This is preceded, in Section 4, by a sequence of lemmas.
We begin with the required notations, definitions and results in the first

section.

1. Preliminaries. For a compact group G, the Fourier algebra A(G)
is the space of continuous functions of the form u(x) = 〈λ(x)f, g〉, x ∈ G,
where f, g ∈ L2(G) and λ is the left regular representation of G. VN(G) is
the von Neumann algebra in B(L2(G)) generated by λ(x), x ∈ G. A(G) is a
commutative, semisimple, regular Banach algebra with pointwise operations
and with norm defined, for u(·) = 〈λ(·)f, g〉 ∈ A(G), by

‖u‖A = sup{|〈Tf, g〉| : T ∈ VN(G), ‖T‖ ≤ 1}.

VN(G) is the Banach space dual of A(G) with the pairing given by 〈T, u〉 =
〈Tf, g〉. Moreover, VN(G) is an A(G)-module where the action is given as
follows: for T ∈ VN(G) and u ∈ A(G), 〈u.T, v〉 = 〈T, uv〉, v ∈ A(G). The
support of T ∈ VN(G) is the closed set suppT = {x ∈ G : u(x) 6= 0 ⇒
u.T 6= 0}.
For a closed set E ⊆ G, define

IA(E) := {u ∈ A(G) : u(x) = 0 ∀x ∈ E},

jA(E) := {u ∈ A(G) : u vanishes in a neighbourhood of E},

JA(E) := jA(E).

IA(E) is the largest ideal of A(G) with zero set E and jA(E) is the smallest
such ideal. The set E is called a set of spectral synthesis (or a spectral set)
if there is a unique closed ideal of A(G) with zero set E. Thus E is a set
of synthesis if and only if IA(E) = JA(E). For an A(G)-submodule X of
VN(G), E is called a set of X-synthesis (or an X-spectral set) if 〈T, u〉 = 0
for all u ∈ IA(E) and T ∈ X with suppT ⊆ E (see [3]). It is proved in [4]
that E is a set of X-synthesis if and only if IXA (E) = J

X
A (E) where

IXA (E) = {u ∈ A(G) : 〈T, u〉 = 0 for every T ∈ X ∩ IA(E)
⊥},

JXA (E) = {u ∈ A(G) : 〈T, u〉 = 0 for every T ∈ X ∩ JA(E)
⊥}.

Observe that IXA (E) = IA(E) and J
X
A (E) = JA(E) when X = VN(G).

The concept of operator synthesis was introduced by Arveson [1], who
also initiated the study of its relations with spectral synthesis. This study
has been continued by Froelich [2] and Spronk and Turowska [5]. To describe
the setting, let T (G) be the projective tensor product L2(G) ⊗̂ L2(G). The
Banach space dual T (G)∗ of T (G) is identified with B(L2(G)) where the
pairing satisfies the relation 〈S, f⊗g〉 = 〈Sf, g〉 for S ∈ B(L2(G)) and f, g ∈
L2(G). Arveson [1] has shown that an element ω =

∑∞
n=1 fn ⊗ gn ∈ T (G)
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may be considered as a function ω(x, y) =
∑∞
n=1 fn(y)gn(x) for marginally

almost all (x, y) ∈ G × G (see [1], [5]). For such an ω, suppω = {(x, y) ∈
G×G : ω(x, y) 6= 0} is defined up to marginally null sets. A marginally null
set is a subset of a set of the form E×G∪G×F where E,F have measure
zero. For a closed set F ⊆ G×G, define

Φ(F ) = {ω ∈ T (G) : suppω ∩ F = ∅},

ψ(F ) = {ω ∈ T (G) : suppω ∩ U = ∅ for some open U ⊇ F},

Ψ(F ) = ψ(F ).

If Φ(F ) = Ψ(F ), then F is called a set of operator synthesis (or is said to
be synthetic). (Arveson [1] considered these concepts in a very general set
up, but we consider only the case of the product normalised Haar measure
m×m on G×G as in Spronk and Turowska [5].)
Spronk and Turowska proved that a closed subset E of G is a set of

synthesis if and only if E∗ := {(x, y) ∈ G × G : xy−1 ∈ E} is a set of
operator synthesis. Note that E∗ = θ−1(E) where θ : G × G → G is the
continuous surjection defined by θ(x, y) = xy−1. Crucial to the proof of

this result is the embedding Ñ of A(G) in T (G). This is analogous to the
embedding N of A(G) in the Varopoulos algebra V (G) ([6], [5]) and is

given by Ñu(x, y) = u(xy−1) for marginally almost all (x, y) ∈ G × G. It

is proved in [5] that Ñ is an isometry whose range is the set of functions
in T (G) which are G-invariant. More precisely, if for ω ∈ T (G) and t ∈ G,
t.ω(x, y) = ω(xt, yt) for marginally almost all (x, y) in G×G, then

Ñ(A(G)) = Tinv(G) := {ω ∈ T (G) : t.ω = ω for all t ∈ G}.

Tinv(G) is complemented in T (G) and a projection P̃ of T (G) onto Tinv(G)

is given by P̃ω =
T
G
t.ω dt. Further, Q̃ defined by Q̃ω(x) =

T
G
ω(xt, t) dt

gives a contraction T (G)→ A(G) such that Q̃(Ñu) = u for all u ∈ A(G).
In this paper, we define an analogue, for operator synthesis, of the con-

cept of X-synthesis and obtain a relation between X-synthesis and this
concept.

2. V∞(G)-submodules of B(L2(G)). We need the Banach algebra
V∞(G) that is the weak-∗ Haagerup tensor product L∞(G) ⊗w∗h L

∞(G).
This is defined as follows. Consider ℑ(L2(G)) ⊗h ℑ(L

2(G)), the Haagerup
tensor product of trace class operators on L2(G). The dual of this space is,
by definition, the weak-∗ Haagerup tensor product B(L2(G))⊗w∗hB(L

2(G)).
The weak-∗ closure of L∞(G)⊗L∞(G) in this space is defined as L∞(G)⊗w∗h
L∞(G). (Note that L∞(G) is here considered as an algebra of operators on
L2(G).) Another description: L∞(G) ⊗w∗h L

∞(G) = (L1(G) ⊗h L
1(G))∗.

But the description of V∞(G) that is useful for our purposes is the fol-
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lowing. Every element of V∞(G) can be considered as a function (up to a
marginally null set) on G×G of the form w =

∑∞
n=1 ϕn ⊗ψn where ϕn, ψn

are in L∞(G) and the series is weak-∗ convergent. Moreover,

‖w‖V∞ = inf
{∥∥∥
∑
|ϕn|

2
∥∥∥
1/2

∞

∥∥∥
∑
|ψn|

2
∥∥∥
1/2

∞
: w =

∑
ϕn ⊗ ψn

}

with the series
∑
|ϕn|

2 and
∑
|ψn|

2 converging in the weak-∗ topology.
Spronk and Turowska [5] have also proved that V∞(G) is the algebra of
multipliers of T (G). In other words,

V∞(G) = {w : w is a complex function on G×G and

mw : ω 7→ w.ω is a bounded linear map on T (G)}.

with ‖w‖V∞(G) = ‖mw‖. Two functions w and w
′ in V∞(G) are identified if

they differ on a marginally null set. It is shown that the map J which iden-
tifies a function in V∞(G) as an element of T (G) is a contractive injection.
More precisely, the map J : V∞(G)→ T (G) is defined by Jw = mw 1⊗ 1.

V∞(G) acts on B(L2(G)) = T (G)∗ via the dual action: for w ∈ V∞(G)
and S ∈ B(L2(G)),

〈w.S, ω〉 = 〈S,mwω〉, ω ∈ T (G).

Now, given an A(G)-submodule X of VN(G), we define

X̂ = {S ∈ B(L2(G)) : w.S ◦ Ñ ∈ X for all w ∈ V∞(G)}.

It is clearly a V∞(G)-submodule of B(L2(G)). In the opposite direction, with
any V∞(G)-submoduleM of B(L2(G)) we associate an A(G)-submodule

̂
M

of VN(G) by defininĝ
M = {T ∈ VN(G) : u.T ◦ Ñ−1 ◦ P̃ ∈M for all u ∈ A(G)}.

We have the following nice-looking result on these correspondences.

2.1. Proposition. If X is an A(G)-submodule of VN(G), then

̂
X̂ = X.

Proof. Let T ∈ X. Suppose u ∈ A(G) and let S = u.T ◦ Ñ−1 ◦ P̃ . We

claim that S ∈ X̂. Indeed, for w ∈ V∞(G) and v ∈ A(G),

〈w.S ◦ Ñ , v〉 = 〈w.S, Ñv〉 = 〈S,mwÑv〉 = 〈u.T ◦ Ñ
−1 ◦ P̃ ,mwÑv〉

= 〈u.T ◦ Ñ−1, P̃mwÑv〉 = 〈u.T ◦ Ñ
−1, Ñ(u1v)〉

= 〈u1u.T, v〉, u1 = Ñ
−1(P̃ (Jw)).

Thus w.S ◦ Ñ = u1u.T ∈ X. So S = u.T ◦ Ñ−1 ◦ P̃ ∈ X̂ for all u ∈ A(G).

This means that T ∈

̂
X̂, by definition.

Conversely, suppose T ∈

̂
X̂. Then u.T ◦ Ñ−1 ◦ P̃ ∈ X̂ for all u ∈ A(G)

and so w.(u.T ◦ Ñ−1 ◦ P̃ ) ◦ Ñ ∈ X for all w ∈ V∞(G). For u, v ∈ A(G) and
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w ∈ V∞(G), we have

〈w.(u.T ◦ Ñ−1 ◦ P̃ ) ◦ Ñ , v〉 = 〈w.(u.T ◦ Ñ−1 ◦ P̃ ), Ñv〉

= 〈u.T ◦ Ñ−1 ◦ P̃ ,mwÑv〉 = 〈u1u.T, v〉

as before. Thus u1u.T = w.(u.T ◦ Ñ−1 ◦ P̃ ) ◦ Ñ ∈ X. Taking u = 1 and
w = 1⊗ 1 we get u1 = 1 and T ∈ X.

3. Operator synthesis for V∞(G)-modules. For an operator S ∈
B(L2(G)), the operator support of S is defined by suppop S = {(x, y) ∈
G × G: for neighbourhoods U of x and V of y there are f, g ∈ L2(G)
with supp f ⊂ V , supp g ⊂ U and 〈Sf, g〉 6= 0}. Here supp f = {x ∈ G :
f(x) 6= 0}. It is known that suppop S is a closed set in G×G.

3.1. Definition. LetM be a V∞(G)-submodule of B(L2(G)). A closed
set F ⊆ G × G is said to be a set of operator synthesis for M (or an
M-synthetic set for short) if 〈S, ω〉 = 0 for S ∈ M with suppop S ⊆ F

and ω ∈ Φ(F ). Observe that F is of operator synthesis if and only if it is
B(L2(G))-synthetic.

To get a reformulation of this concept we define the following subsets of
T (G): IfM is a V∞(G)-submodule of B(L2(G)), let

ΦM(F ) = {ω ∈ T (G) : 〈S, ω〉 = 0 for any S ∈M∩ Φ(F )⊥},

ΨM(F ) = {ω ∈ T (G) : 〈S, ω〉 = 0 for any S ∈M∩ Ψ(F )⊥}.

Note that these are closed V∞(G)-submodules of T (G).

3.2. Lemma. LetM be a V∞(G)-submodule of B(L2(G)). A closed sub-
set Fof G×G isM-synthetic if and only if ΦM(F ) = ΨM(F ).

Proof. Suppose F isM-synthetic. Let S ∈ M∩ Ψ(F )⊥. Then suppop S
⊆ F and 〈S, ω′〉 = 0 for ω′ ∈ Φ(F ), since F is M-synthetic. Thus, if ω ∈
ΦM(F ), then 〈S, ω〉 = 0, so ω ∈ ΨM(F ). The inclusion ΨM(F ) ⊆ ΦM(F )
being trivial, one part of the lemma is proved.
For the converse, suppose ΦM(F ) = ΨM(F ). If S ∈ M and suppop S

⊆ F , then S ∈ M∩ Ψ(F )⊥. Thus 〈S, ω〉 = 0 for ω ∈ ΨM(F ) = ΦM(F ). In
particular, 〈S, ω〉 = 0 for ω ∈ Φ(F ). Hence F isM-synthetic.

4. Spectral synthesis in A(G) and operator synthesis in T (G). Let

X be an A(G)-submodule of VN(G) and let X̂ be the associated V∞(G)-
submodule of B(L2(G)) as in Section 2. In this section we prove the main
result that if E is an X-spectral set, then E∗ = {(x, y) : xy−1 ∈ E} is

X̂-synthetic.
We begin with a couple of lemmas. The first of these identifies the images

of the ideals IA(E) and JA(E) under the map Ñ . The analogous result for
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the isometric imbedding N of A(G) in the Varopoulos algebra V (G) is due
to Spronk and Turowska [5].

4.1. Lemma. Let E be a closed subset of G.

(i) u ∈ IA(E)⇔ Ñu ∈ Φ(E∗).

(ii) u ∈ JA(E)⇔ Ñu ∈ Ψ(E∗).

Proof. (i) is obvious. The proof that u ∈ JA(E) implies Ñu ∈ Ψ(E
∗) is

essentially contained in the proof of [5, Theorem 4.6]. Conversely, suppose

that u ∈ A(G) and Ñu ∈ Ψ(E∗). Then there is a sequence {ωn} in ψ(E
∗)

such that ωn → Ñu, hence Q̃ωn → Q̃Ñu = u. We complete the proof by
showing that Q̃ωn ∈ jA(E) for all n. Now,

x 6∈ θ(suppωn) ⇒ (xt, t) 6∈ suppωn ∀t ∈ G

⇒ ωn(xt, t) = 0 ∀t ∈ G

⇒ Q̃ωn(x) = 0.

Thus Wn = {x ∈ G : Q̃ωn(x) 6= 0} ⊆ θ(suppωn). But ωn ∈ ψ(E
∗) implies

that there is a neighbourhood Un of E
∗ such that suppωn ⊆ U cn. This

means that Wn ⊆ θ(U cn). So supp Q̃(ωn) = Wn ⊆ θ(U cn) = θ(U cn) and

Q̃ωn ∈ jA(E).

The following result is [5, Theorem 4.6].

4.2. Corollary. A closed subset E of G is of spectral synthesis for
A(G) if and only if E∗ is of operator synthesis.

Proof. This is immediate from Lemma 4.1. The only new feature here
is the different proof of the part that if E∗ is operator synthetic then E is
of synthesis. (This is a consequence of Lemma 4.1(i) and the implication

Ñu ∈ Ψ(E∗)⇒ u ∈ JA(E) in 4.1(ii).) The rest is as in [5].

We use Lemma 4.1 to prove the following more general version, which is
a crucial ingredient in the proof of the main result (Theorem 4.6 below), of
which 4.2 is a special case.

4.3. Lemma. Let E be a closed set in G and let u ∈ A(G). Let X be an

A(G)-submodule of VN(G) and let X̂ be the associated V∞(G)-submodule
of B(L2(G)). Then

(i) u ∈ IXA (E)⇔ Ñu ∈ ΦX̂(E∗).

(ii) u ∈ JXA (E)⇔ Ñu ∈ Ψ X̂(E∗).

Proof. (i) First, let u ∈ IXA (E) and S ∈ X̂ ∩ Φ(E∗)⊥. To show that

Ñu ∈ ΦX̂(E∗), we need to prove that 〈S, Ñu〉 = 0. We first claim that

S◦Ñ ∈ X∩IA(E)
⊥. To see this, observe that if u′ ∈ IA(E) then Ñu

′ ∈ Φ(E∗)
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by Lemma 4.1, and so 〈S ◦ Ñ , u′〉 = 〈S, Ñu′〉 = 0 as S ∈ Φ(E∗)⊥. Thus,

S ◦ Ñ ∈ IA(E)
⊥, and, of course, S ◦ Ñ ∈ X by definition of X̂. This proves

the claim and consequently 0 = 〈S ◦ Ñ , u〉 = 〈S, Ñu〉.

Conversely, let u ∈ A(G), Ñu ∈ ΦX̂(E∗) and T ∈ X ∩ IA(E)
⊥. Then

S := T ◦ Ñ−1 ◦ P̃ ∈ T (G)∗ = B(L2(G)). We prove that S ∈ X̂ ∩ Φ(E∗)⊥.

For w ∈ V∞(G) and u ∈ A(G), wS ◦ Ñ = u1T , where u1 = Ñ−1(P̃ (Jw)),

as in the proof of Proposition 2.1, and so S ∈ X̂. Moreover, if ω ∈ Φ(E∗),

then clearly P̃ω ∈ Φ(E∗) and 〈S, ω〉 = 〈T ◦ Ñ−1 ◦ P̃ , ω〉 = 〈T ◦ Ñ−1, P̃ω〉 =

〈T ◦ Ñ−1, Ñu2〉 where Ñu2 = P̃ω ∈ Φ(E
∗), so u2 ∈ IA(E) by Lemma 4.1(i).

Thus 〈S, ω〉 = 〈T, u2〉 = 0. Hence we have shown that S ∈ X̂∩Φ(E
∗)⊥. This

implies that

0 = 〈S, Ñu〉 = 〈T ◦ Ñ−1 ◦ P̃ , Ñu〉 = 〈T ◦ Ñ−1, P̃ (Ñu)〉

= 〈T ◦ Ñ−1, Ñu〉 = 〈T, u〉.

Since T ∈ X ∩ IA(E)
⊥ is arbitrary, this shows that u ∈ IXA (E) and (i) is

proved.

(ii) Suppose u ∈ JXA (E). To show Ñu ∈ Ψ
X̂(E∗), let S ∈ X̂ ∩ Ψ(E∗)⊥.

Then S ◦ Ñ ∈ X. We show S ◦ Ñ ∈ JA(E)
⊥ as well. For, if u′ ∈ JA(E),

then Ñu′ ∈ Ψ(E∗) by Lemma 4.1(ii) and 〈S ◦ Ñ , u′〉 = 〈S, Ñu′〉 = 0 as

S ∈ Ψ(E∗)⊥. Thus S ◦ Ñ ∈ X ∩ JA(E)
⊥ and so 〈S ◦ Ñ , u〉 = 〈S, Ñu〉 = 0.

Hence Ñu ∈ Ψ X̂(E∗).

Conversely, suppose u ∈ A(G) and Ñu ∈ Ψ X̂(E∗). To show u ∈ JXA (E),

let T ∈ X ∩ JA(E)
⊥. Then suppT ⊆ E and S = T ◦ Ñ−1 ◦ P̃ ∈ T (G)∗ =

B(L2(G)). Now, for f, g ∈ L2(G),

〈Sf, g〉 = 〈S, f ⊗ g〉 = 〈TÑ−1P̃ , f ⊗ g〉

= 〈T ◦ Ñ−1, P̃ (f ⊗ g)〉 = 〈T ◦ Ñ−1, Ñu1〉 where u1(x) = 〈λ(x)f, g〉

= 〈T, u1〉 = 〈Tf, g〉.

In other words, S = T as operators on L2(G). Thus suppopS = suppop T .
But by a result of Spronk and Turowska suppop T = (suppVN T )

∗ ⊆ E∗.

This shows that suppop S ⊆ E
∗ and S ∈ Ψ(E∗)⊥. Moreover, for w ∈ V∞(G),

w.S ◦ Ñ = u1T ∈ X as before and so S ∈ X̂. Thus S ∈ X̂ ∩ Ψ(E
∗)⊥ and so

0 = 〈S, Ñu〉 = 〈T ◦ Ñ−1 ◦ P̃ , Ñu〉 = 〈T, u〉. The proof is complete.

Now, it has been observed in [5] that the group G acts on T (G) by
isometries as follows: for t ∈ G and ω ∈ T (G), t.ω(x, y) = ω(xt, yt) for
marginally almost all (x, y) ∈ G × G. This action, in turn, gives rise to an
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action of L1(G) on T (G): for f ∈ L1(G) and ω ∈ T (G),

f.ω =
\
G

f(t)t.ω dt

This way T (G) becomes an essential L1(G)-module. We also have T (G)∗ =
B(L2(G)) as an L1(G)-module with the dual action.

4.4. Lemma. Let E ⊆ G be closed. Then Φ(E∗) is an L1(G)-submodule
of T (G).

Proof. This is clear from the definitions of Φ(E∗) and the L1(G)-action
on T (G).

4.5. Lemma. Let E ⊆ G be a closed set, let X be an A(G)-submodule of

VN(G) and let X̂ be the associated V∞(G)-submodule of B(L2(G)). Then
the following are L1(G)-submodules of B(L2(G)).

(i) Φ(E∗)⊥,

(ii) X̂,

(iii) ΦX̂(E∗).

Proof. (i) is immediate from Lemma 4.4 since the L1(G)-action on
B(L2(G)) is the dual action.

(ii) Let f ∈ L1(G) and S ∈ X̂. We have to show that f.S ∈ X̂, i.e.

w.(f.S)◦Ñ ∈ X for any w ∈ V∞(G). So let w ∈ V∞(G). Then for u ∈ A(G),

〈w.(f.S) ◦ Ñ , u〉 = 〈w.(f.S), Ñu〉 = 〈f.S,mw(Ñu)〉 = 〈S, f.mw(Ñu)〉

= 〈S,mf.wÑu〉 = 〈(f.w).S, Ñu〉 = 〈(f.w).S ◦ Ñ , u〉.

Thus, w.(f.S) ◦ Ñ = (f.w).S ◦ Ñ ∈ X, and (ii) is proved.
(iii) This follows at once from (i) and (ii) because of the definition of

ΦX̂(E∗).

We are now ready for the main theorem.

4.6. Theorem. Let X be an A(G)-submodule of VN(G) and let X̂ be
the corresponding V∞(G)-submodule of B(L2(G)). Then a closed set E ⊆ G

is an X-spectral set for A(G) if and only if E∗ is X̂-synthetic for T (G).

Proof. One part is immediate from Lemma 4.3. If E∗ is X̂-synthetic,

then ΦX̂(E∗) = Ψ X̂(E∗) and so, by Lemma 4.3, IXA (E) = J
X
A (E) whence E

is X-spectral.
For the converse, suppose E is X-spectral. To show that E∗ is X̂-

synthetic, we need only prove that ΦX̂(E∗) ⊆ Ψ X̂(E∗) by Lemma 3.2. In
view of our lemmas, the proof is similar to that of the case X = VN(G)
given in [5]. For the sake of completeness, here is a brief sketch.
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We have to show that ω ∈ ΦX̂(E∗) implies ω ∈ Ψ X̂(E∗). Consider first

the case ω ∈ ΦX̂(E∗) ∩ Tinv(G). In this case ω = Ñu with u ∈ IXA (E) (see
the proof of [5, Theorem 4.6]). Thus, by assumption u ∈ IXA (E) = JXA (E),

so ω = Ñu ∈ Ψ X̂(E∗) by Lemma 4.3 and the result is proved in this case.

Now consider an arbitrary ω ∈ ΦX̂(E∗). For π ∈ Ĝ and the matrix

coefficients uπij corresponding to π, ω
π
ij = uπij .ω ∈ Φ

X̂(E∗) by Lemma 4.5.

If ω̃πij =
∑
kmuπik⊗1ω

π
kj , then ω̃

π
ij ∈ ΦX̂(E∗) ∩ Tinv(G) since Φ

X̂(E∗) is

a V∞(G)-submodule. Thus ω̃πij ∈ Ψ X̂(E∗). But ωπij =
∑
kmǔπik⊗1ω̃

π
kj ∈

Ψ X̂(E∗). L1(G) has an approximate identity {uα} with uα ∈ span{u
π
ij :

i, j = 1, . . . , dπ, π ∈ Ĝ} for all α and uα.ω ∈ span{ω
π
ij : i, j = 1, . . . , dπ, π ∈

Ĝ} ⊆ Ψ X̂(E∗), so ω = lim uα.ω ∈ Ψ
X̂(E∗).
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