Spectral synthesis and operator synthesis

by
K. Parthasarathy and R. Prakash (Chennai)

Abstract

Relations between spectral synthesis in the Fourier algebra $A(G)$ of a compact group G and the concept of operator synthesis due to Arveson have been studied in the literature. For an $A(G)$-submodule X of $\mathrm{VN}(G), X$-synthesis in $A(G)$ has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such X we associate a $V^{\infty}(G)$-submodule \widehat{X} of $\mathcal{B}\left(L^{2}(G)\right.$) (where $V^{\infty}(G)$ is the weak-* Haagerup tensor product $L^{\infty}(G) \otimes_{w^{*} h} L^{\infty}(G)$), define the concept of \widehat{X}-operator synthesis and prove that a closed set E in G is of X-synthesis if and only if $E^{*}:=\{(x, y) \in$ $\left.G \times G: x y^{-1} \in E\right\}$ is of \widehat{X}-operator synthesis.

Introduction. Arveson introduced and studied the concept of operator synthesis in [1]. He found that spectral synthesis on abelian groups is related to operator synthesis. Froelich [2] continued this study. Recently Spronk and Turowska [5] have investigated the relation between spectral synthesis in the Fourier algebra $A(G)$ of a compact group G and operator synthesis. Specifically, they considered the projective tensor product $T(G)=L^{2}(G) \widehat{\otimes}$ $L^{2}(G)$ and the weak-* Haagerup tensor product $V^{\infty}(G)=L^{\infty}(G) \otimes_{w^{*} h}$ $L^{\infty}(G)$ and proved that a closed subset E of G is of spectral synthesis for $A(G)$ if and only if $E^{*}:=\left\{(x, y) \in G \times G: x y^{-1} \in E\right\}$ is of operator synthesis.

In another direction, for an $A(G)$-submodule X of $\mathrm{VN}(G)=A(G)^{*}$, X-synthesis has recently been studied by Kaniuth and Lau [3] and Parthasarathy and Prakash [4].

In this paper we tie up these two threads. For a $V^{\infty}(G)$-submodule \mathcal{M} of $\mathcal{B}\left(L^{2}(G)\right)=T(G)^{*}$, we define and characterise operator synthesis for \mathcal{M} (Section 3). When $\mathcal{M}=\mathcal{B}\left(L^{2}(G)\right)$, this reduces to operator synthesis of the earlier authors. With any $A(G)$-submodule X of $\operatorname{VN}(G)$, we associate a $V^{\infty}(G)$-submodule \widehat{X} of $\mathcal{B}\left(L^{2}(G)\right)$ and conversely, to any $V^{\infty}(G)$ submodule \mathcal{M} of $\mathcal{B}\left(L^{2}(G)\right)$ there corresponds an $A(G)$-submodule $\overline{\mathcal{M}}$ of

[^0]$\mathrm{VN}(G)$. Moreover, $\widetilde{\widehat{X}}=X$ (Section 2). The main result (Theorem 4.6) states that a closed set E in G is of X-synthesis if and only if E^{*} is of \widehat{X}-operator synthesis. This is preceded, in Section 4 , by a sequence of lemmas.

We begin with the required notations, definitions and results in the first section.

1. Preliminaries. For a compact group G, the Fourier algebra $A(G)$ is the space of continuous functions of the form $u(x)=\langle\lambda(x) f, g\rangle, x \in G$, where $f, g \in L^{2}(G)$ and λ is the left regular representation of $G . \operatorname{VN}(G)$ is the von Neumann algebra in $\mathcal{B}\left(L^{2}(G)\right)$ generated by $\lambda(x), x \in G . A(G)$ is a commutative, semisimple, regular Banach algebra with pointwise operations and with norm defined, for $u(\cdot)=\langle\lambda(\cdot) f, g\rangle \in A(G)$, by

$$
\|u\|_{A}=\sup \{|\langle T f, g\rangle|: T \in \mathrm{VN}(G),\|T\| \leq 1\}
$$

$\mathrm{VN}(G)$ is the Banach space dual of $A(G)$ with the pairing given by $\langle T, u\rangle=$ $\langle T f, g\rangle$. Moreover, $\operatorname{VN}(G)$ is an $A(G)$-module where the action is given as follows: for $T \in \mathrm{VN}(G)$ and $u \in A(G),\langle u \cdot T, v\rangle=\langle T, u v\rangle, v \in A(G)$. The support of $T \in \mathrm{VN}(G)$ is the closed set $\operatorname{supp} T=\{x \in G: u(x) \neq 0 \Rightarrow$ $u . T \neq 0\}$.

For a closed set $E \subseteq G$, define

$$
\begin{aligned}
I_{A}(E) & :=\{u \in A(G): u(x)=0 \forall x \in E\} \\
j_{A}(E) & :=\{u \in A(G): u \text { vanishes in a neighbourhood of } E\} \\
J_{A}(E) & :=\overline{j_{A}(E)}
\end{aligned}
$$

$I_{A}(E)$ is the largest ideal of $A(G)$ with zero set E and $j_{A}(E)$ is the smallest such ideal. The set E is called a set of spectral synthesis (or a spectral set) if there is a unique closed ideal of $A(G)$ with zero set E. Thus E is a set of synthesis if and only if $I_{A}(E)=J_{A}(E)$. For an $A(G)$-submodule X of $\mathrm{VN}(G), E$ is called a set of X-synthesis (or an X-spectral set) if $\langle T, u\rangle=0$ for all $u \in I_{A}(E)$ and $T \in X$ with $\operatorname{supp} T \subseteq E$ (see [3]). It is proved in [4] that E is a set of X-synthesis if and only if $I_{A}^{X}(E)=J_{A}^{X}(E)$ where

$$
\begin{aligned}
& I_{A}^{X}(E)=\left\{u \in A(G):\langle T, u\rangle=0 \text { for every } T \in X \cap I_{A}(E)^{\perp}\right\} \\
& J_{A}^{X}(E)=\left\{u \in A(G):\langle T, u\rangle=0 \text { for every } T \in X \cap J_{A}(E)^{\perp}\right\}
\end{aligned}
$$

Observe that $I_{A}^{X}(E)=I_{A}(E)$ and $J_{A}^{X}(E)=J_{A}(E)$ when $X=\operatorname{VN}(G)$.
The concept of operator synthesis was introduced by Arveson [1], who also initiated the study of its relations with spectral synthesis. This study has been continued by Froelich [2] and Spronk and Turowska [5]. To describe the setting, let $T(G)$ be the projective tensor product $L^{2}(G) \widehat{\otimes} L^{2}(G)$. The Banach space dual $T(G)^{*}$ of $T(G)$ is identified with $\mathcal{B}\left(L^{2}(G)\right)$ where the pairing satisfies the relation $\langle S, f \otimes g\rangle=\langle S f, \bar{g}\rangle$ for $S \in \mathcal{B}\left(L^{2}(G)\right)$ and $f, g \in$ $L^{2}(G)$. Arveson [1] has shown that an element $\omega=\sum_{n=1}^{\infty} f_{n} \otimes g_{n} \in T(G)$
may be considered as a function $\omega(x, y)=\sum_{n=1}^{\infty} f_{n}(y) g_{n}(x)$ for marginally almost all $(x, y) \in G \times G$ (see [1], [5]). For such an $\omega, \operatorname{supp} \omega=\{(x, y) \in$ $G \times G: \omega(x, y) \neq 0\}$ is defined up to marginally null sets. A marginally null set is a subset of a set of the form $E \times G \cup G \times F$ where E, F have measure zero. For a closed set $F \subseteq G \times G$, define

$$
\begin{aligned}
& \Phi(F)=\{\omega \in T(G): \operatorname{supp} \omega \cap F=\emptyset\} \\
& \psi(F)=\{\omega \in T(G): \operatorname{supp} \omega \cap U=\emptyset \text { for some open } U \supseteq F\} \\
& \Psi(F)=\overline{\psi(F)}
\end{aligned}
$$

If $\Phi(F)=\Psi(F)$, then F is called a set of operator synthesis (or is said to be synthetic). (Arveson [1] considered these concepts in a very general set up, but we consider only the case of the product normalised Haar measure $m \times m$ on $G \times G$ as in Spronk and Turowska [5].)

Spronk and Turowska proved that a closed subset E of G is a set of synthesis if and only if $E^{*}:=\left\{(x, y) \in G \times G: x y^{-1} \in E\right\}$ is a set of operator synthesis. Note that $E^{*}=\theta^{-1}(E)$ where $\theta: G \times G \rightarrow G$ is the continuous surjection defined by $\theta(x, y)=x y^{-1}$. Crucial to the proof of this result is the embedding \widetilde{N} of $A(G)$ in $T(G)$. This is analogous to the embedding N of $A(G)$ in the Varopoulos algebra $V(G)$ ([6], [5]) and is given by $\widetilde{N} u(x, y)=u\left(x y^{-1}\right)$ for marginally almost all $(x, y) \in G \times G$. It is proved in [5] that \tilde{N} is an isometry whose range is the set of functions in $T(G)$ which are G-invariant. More precisely, if for $\omega \in T(G)$ and $t \in G$, $t . \omega(x, y)=\omega(x t, y t)$ for marginally almost all (x, y) in $G \times G$, then

$$
\tilde{N}(A(G))=T_{\mathrm{inv}}(G):=\{\omega \in T(G): t . \omega=\omega \text { for all } t \in G\}
$$

$T_{\mathrm{inv}}(G)$ is complemented in $T(G)$ and a projection \widetilde{P} of $T(G)$ onto $T_{\mathrm{inv}}(G)$ is given by $\widetilde{P} \omega=\int_{G} t . \omega d t$. Further, \widetilde{Q} defined by $\widetilde{Q} \omega(x)=\int_{G} \omega(x t, t) d t$ gives a contraction $T(G) \rightarrow A(G)$ such that $\widetilde{Q}(\widetilde{N} u)=u$ for all $u \in A(G)$.

In this paper, we define an analogue, for operator synthesis, of the concept of X-synthesis and obtain a relation between X-synthesis and this concept.
2. $V^{\infty}(G)$-submodules of $\mathcal{B}\left(L^{2}(G)\right)$. We need the Banach algebra $V^{\infty}(G)$ that is the weak-* Haagerup tensor product $L^{\infty}(G) \otimes_{w^{*} h} L^{\infty}(G)$. This is defined as follows. Consider $\Im\left(L^{2}(G)\right) \otimes_{h} \Im\left(L^{2}(G)\right)$, the Haagerup tensor product of trace class operators on $L^{2}(G)$. The dual of this space is, by definition, the weak-* Haagerup tensor product $\mathcal{B}\left(L^{2}(G)\right) \otimes_{w^{*} h} \mathcal{B}\left(L^{2}(G)\right)$. The weak-* closure of $L^{\infty}(G) \otimes L^{\infty}(G)$ in this space is defined as $L^{\infty}(G) \otimes_{w^{*} h}$ $L^{\infty}(G)$. (Note that $L^{\infty}(G)$ is here considered as an algebra of operators on $L^{2}(G)$.) Another description: $L^{\infty}(G) \otimes_{w^{*} h} L^{\infty}(G)=\left(L^{1}(G) \otimes_{h} L^{1}(G)\right)^{*}$. But the description of $V^{\infty}(G)$ that is useful for our purposes is the fol-
lowing. Every element of $V^{\infty}(G)$ can be considered as a function (up to a marginally null set) on $G \times G$ of the form $w=\sum_{n=1}^{\infty} \varphi_{n} \otimes \psi_{n}$ where φ_{n}, ψ_{n} are in $L^{\infty}(G)$ and the series is weak-* convergent. Moreover,

$$
\|w\|_{V^{\infty}}=\inf \left\{\left\|\sum\left|\varphi_{n}\right|^{2}\right\|_{\infty}^{1 / 2}\left\|\sum\left|\psi_{n}\right|^{2}\right\|_{\infty}^{1 / 2}: w=\sum \varphi_{n} \otimes \psi_{n}\right\}
$$

with the series $\sum\left|\varphi_{n}\right|^{2}$ and $\sum\left|\psi_{n}\right|^{2}$ converging in the weak-* topology. Spronk and Turowska [5] have also proved that $V^{\infty}(G)$ is the algebra of multipliers of $T(G)$. In other words,
$V^{\infty}(G)=\{w: w$ is a complex function on $G \times G$ and

$$
\left.m_{w}: \omega \mapsto w \cdot \omega \text { is a bounded linear map on } T(G)\right\}
$$

with $\|w\|_{V^{\infty}(G)}=\left\|m_{w}\right\|$. Two functions w and w^{\prime} in $V^{\infty}(G)$ are identified if they differ on a marginally null set. It is shown that the map J which identifies a function in $V^{\infty}(G)$ as an element of $T(G)$ is a contractive injection. More precisely, the map $J: V^{\infty}(G) \rightarrow T(G)$ is defined by $J w=m_{w} 1 \otimes 1$.
$V^{\infty}(G)$ acts on $\mathcal{B}\left(L^{2}(G)\right)=T(G)^{*}$ via the dual action: for $w \in V^{\infty}(G)$ and $S \in \mathcal{B}\left(L^{2}(G)\right)$,

$$
\langle w \cdot S, \omega\rangle=\left\langle S, m_{w} \omega\right\rangle, \quad \omega \in T(G)
$$

Now, given an $A(G)$-submodule X of $\operatorname{VN}(G)$, we define

$$
\widehat{X}=\left\{S \in \mathcal{B}\left(L^{2}(G)\right): w \cdot S \circ \widetilde{N} \in X \text { for all } w \in V^{\infty}(G)\right\}
$$

It is clearly a $V^{\infty}(G)$-submodule of $\mathcal{B}\left(L^{2}(G)\right)$. In the opposite direction, with any $V^{\infty}(G)$-submodule \mathcal{M} of $\mathcal{B}\left(L^{2}(G)\right)$ we associate an $A(G)$-submodule $\check{\mathcal{M}}$ of $\operatorname{VN}(G)$ by defining

$$
\widetilde{\mathcal{M}}=\left\{T \in \mathrm{VN}(G): u . T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in \mathcal{M} \text { for all } u \in A(G)\right\}
$$

We have the following nice-looking result on these correspondences.
2.1. Proposition. If X is an $A(G)$-submodule of $\operatorname{VN}(G)$, then $\widetilde{\widehat{X}}=X$.

Proof. Let $T \in X$. Suppose $u \in A(G)$ and let $S=u . T \circ \widetilde{N}^{-1} \circ \widetilde{P}$. We claim that $S \in \widehat{X}$. Indeed, for $w \in V^{\infty}(G)$ and $v \in A(G)$,

$$
\begin{aligned}
\langle w \cdot S \circ \widetilde{N}, v\rangle & =\langle w \cdot S, \widetilde{N} v\rangle=\left\langle S, m_{w} \widetilde{N} v\right\rangle=\left\langle u \cdot T \circ \widetilde{N}^{-1} \circ \widetilde{P}, m_{w} \widetilde{N} v\right\rangle \\
& =\left\langle u \cdot T \circ \widetilde{N}^{-1}, \widetilde{P} m_{w} \widetilde{N} v\right\rangle=\left\langle u \cdot T \circ \widetilde{N}^{-1}, \widetilde{N}\left(u_{1} v\right)\right\rangle \\
& =\left\langle u_{1} u \cdot T, v\right\rangle, \quad u_{1}=\widetilde{N}^{-1}(\widetilde{P}(J w)) .
\end{aligned}
$$

Thus $w . S \circ \tilde{N}=u_{1} u . T \in X$. So $S=u . T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in \widehat{X}$ for all $u \in A(G)$. This means that $T \in \widehat{X}$, by definition.

Conversely, suppose $T \in \widehat{X}$. Then $u . T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in \widehat{X}$ for all $u \in A(G)$ and so $w \cdot\left(u \cdot T \circ \widetilde{N}^{-1} \circ \widetilde{P}\right) \circ \widetilde{N} \in X$ for all $w \in V^{\infty}(G)$. For $u, v \in A(G)$ and
$w \in V^{\infty}(G)$, we have

$$
\begin{aligned}
\left\langle w \cdot\left(u \cdot T \circ \widetilde{N}^{-1} \circ \widetilde{P}\right) \circ \widetilde{N}, v\right\rangle & =\left\langle w \cdot\left(u \cdot T \circ \widetilde{N}^{-1} \circ \widetilde{P}\right), \widetilde{N} v\right\rangle \\
& =\left\langle u \cdot T \circ \widetilde{N}^{-1} \circ \widetilde{P}, m_{w} \widetilde{N} v\right\rangle=\left\langle u_{1} u \cdot T, v\right\rangle
\end{aligned}
$$

as before. Thus $u_{1} u \cdot T=w \cdot\left(u \cdot T \circ \widetilde{N}^{-1} \circ \widetilde{P}\right) \circ \widetilde{N} \in X$. Taking $u=1$ and $w=1 \otimes 1$ we get $u_{1}=1$ and $T \in X$.
3. Operator synthesis for $V^{\infty}(G)$-modules. For an operator $S \in$ $\mathcal{B}\left(L^{2}(G)\right)$, the operator support of S is defined by $\operatorname{supp}_{\text {op }} S=\{(x, y) \in$ $G \times G$: for neighbourhoods U of x and V of y there are $f, g \in L^{2}(G)$ with $\operatorname{supp} f \subset V, \operatorname{supp} g \subset U$ and $\langle S f, g\rangle \neq 0\}$. Here $\operatorname{supp} f=\{x \in G$: $f(x) \neq 0\}$. It is known that $\operatorname{supp}_{\mathrm{op}} S$ is a closed set in $G \times G$.
3.1. Definition. Let \mathcal{M} be a $V^{\infty}(G)$-submodule of $\mathcal{B}\left(L^{2}(G)\right)$. A closed set $F \subseteq G \times G$ is said to be a set of operator synthesis for \mathcal{M} (or an \mathcal{M}-synthetic set for short) if $\langle S, \omega\rangle=0$ for $S \in \mathcal{M}$ with $\operatorname{supp}_{\text {op }} S \subseteq F$ and $\omega \in \Phi(F)$. Observe that F is of operator synthesis if and only if it is $\mathcal{B}\left(L^{2}(G)\right)$-synthetic.

To get a reformulation of this concept we define the following subsets of $T(G)$: If \mathcal{M} is a $V^{\infty}(G)$-submodule of $\mathcal{B}\left(L^{2}(G)\right)$, let

$$
\begin{aligned}
& \Phi^{\mathcal{M}}(F)=\left\{\omega \in T(G):\langle S, \omega\rangle=0 \text { for any } S \in \mathcal{M} \cap \Phi(F)^{\perp}\right\} \\
& \Psi^{\mathcal{M}}(F)=\left\{\omega \in T(G):\langle S, \omega\rangle=0 \text { for any } S \in \mathcal{M} \cap \Psi(F)^{\perp}\right\}
\end{aligned}
$$

Note that these are closed $V^{\infty}(G)$-submodules of $T(G)$.
3.2. Lemma. Let \mathcal{M} be a $V^{\infty}(G)$-submodule of $\mathcal{B}\left(L^{2}(G)\right)$. A closed subset F of $G \times G$ is \mathcal{M}-synthetic if and only if $\Phi^{\mathcal{M}}(F)=\Psi^{\mathcal{M}}(F)$.

Proof. Suppose F is \mathcal{M}-synthetic. Let $S \in \mathcal{M} \cap \Psi(F)^{\perp}$. Then $\operatorname{supp}_{\text {op }} S$ $\subseteq F$ and $\left\langle S, \omega^{\prime}\right\rangle=0$ for $\omega^{\prime} \in \Phi(F)$, since F is \mathcal{M}-synthetic. Thus, if $\omega \in$ $\bar{\Phi}^{\mathcal{M}}(F)$, then $\langle S, \omega\rangle=0$, so $\omega \in \Psi^{\mathcal{M}}(F)$. The inclusion $\Psi^{\mathcal{M}}(F) \subseteq \Phi^{\mathcal{M}}(F)$ being trivial, one part of the lemma is proved.

For the converse, suppose $\Phi^{\mathcal{M}}(F)=\Psi^{\mathcal{M}}(F)$. If $S \in \mathcal{M}$ and $\operatorname{supp}_{\mathrm{op}} S$ $\subseteq F$, then $S \in \mathcal{M} \cap \Psi(F)^{\perp}$. Thus $\langle S, \omega\rangle=0$ for $\omega \in \Psi^{\mathcal{M}}(F)=\Phi^{\mathcal{M}}(F)$. In particular, $\langle S, \omega\rangle=0$ for $\omega \in \Phi(F)$. Hence F is \mathcal{M}-synthetic.
4. Spectral synthesis in $A(G)$ and operator synthesis in $T(G)$. Let X be an $A(G)$-submodule of $\mathrm{VN}(G)$ and let \widehat{X} be the associated $V^{\infty}(G)$ submodule of $\mathcal{B}\left(L^{2}(G)\right)$ as in Section 2. In this section we prove the main result that if E is an X-spectral set, then $E^{*}=\left\{(x, y): x y^{-1} \in E\right\}$ is \widehat{X}-synthetic.

We begin with a couple of lemmas. The first of these identifies the images of the ideals $I_{A}(E)$ and $J_{A}(E)$ under the map \widetilde{N}. The analogous result for
the isometric imbedding N of $A(G)$ in the Varopoulos algebra $V(G)$ is due to Spronk and Turowska [5].
4.1. Lemma. Let E be a closed subset of G.
(i) $u \in I_{A}(E) \Leftrightarrow \widetilde{N} u \in \Phi\left(E^{*}\right)$.
(ii) $u \in J_{A}(E) \Leftrightarrow \widetilde{N} u \in \Psi\left(E^{*}\right)$.

Proof. (i) is obvious. The proof that $u \in J_{A}(E)$ implies $\tilde{N} u \in \Psi\left(E^{*}\right)$ is essentially contained in the proof of [5, Theorem 4.6]. Conversely, suppose that $u \in A(G)$ and $\widetilde{N} u \in \Psi\left(E^{*}\right)$. Then there is a sequence $\left\{\omega_{n}\right\}$ in $\psi\left(E^{*}\right)$ such that $\omega_{n} \rightarrow \widetilde{\sim} u$, hence $\widetilde{Q} \omega_{n} \rightarrow \widetilde{Q} \widetilde{N} u=u$. We complete the proof by showing that $\widetilde{Q} \omega_{n} \in j_{A}(E)$ for all n. Now,

$$
\begin{aligned}
x \notin \theta\left(\operatorname{supp} \omega_{n}\right) & \Rightarrow(x t, t) \notin \operatorname{supp} \omega_{n} \forall t \in G \\
& \Rightarrow \omega_{n}(x t, t)=0 \forall t \in G \\
& \Rightarrow \widetilde{Q} \omega_{n}(x)=0
\end{aligned}
$$

Thus $W_{n}=\left\{x \in G: \widetilde{Q} \omega_{n}(x) \neq 0\right\} \subseteq \theta\left(\operatorname{supp} \omega_{n}\right)$. But $\omega_{n} \in \psi\left(E^{*}\right)$ implies that there is a neighbourhood U_{n} of E^{*} such that $\operatorname{supp} \omega_{n} \subseteq U_{n}^{\mathrm{c}}$. This means that $W_{n} \subseteq \theta\left(U_{n}^{\mathrm{c}}\right)$. So $\operatorname{supp} \widetilde{Q}\left(\omega_{n}\right)=\bar{W}_{n} \subseteq \overline{\theta\left(U_{n}^{\mathrm{c}}\right)}=\theta\left(U_{n}^{\mathrm{c}}\right)$ and $\widetilde{Q} \omega_{n} \in j_{A}(E)$.

The following result is [5, Theorem 4.6].
4.2. Corollary. A closed subset E of G is of spectral synthesis for $A(G)$ if and only if E^{*} is of operator synthesis.

Proof. This is immediate from Lemma 4.1. The only new feature here is the different proof of the part that if E^{*} is operator synthetic then E is of synthesis. (This is a consequence of Lemma 4.1(i) and the implication $\tilde{N} u \in \Psi\left(E^{*}\right) \Rightarrow u \in J_{A}(E)$ in 4.1(ii).) The rest is as in [5].

We use Lemma 4.1 to prove the following more general version, which is a crucial ingredient in the proof of the main result (Theorem 4.6 below), of which 4.2 is a special case.
4.3. Lemma. Let E be a closed set in G and let $u \in A(G)$. Let X be an $A(G)$-submodule of $\mathrm{VN}(G)$ and let \widehat{X} be the associated $V^{\infty}(G)$-submodule of $\mathcal{B}\left(L^{2}(G)\right)$. Then
(i) $u \in I_{A}^{X}(E) \Leftrightarrow \widetilde{N} u \in \Phi^{\widehat{X}}\left(E^{*}\right)$.
(ii) $u \in J_{A}^{X}(E) \Leftrightarrow \widetilde{N} u \in \Psi^{\widehat{X}}\left(E^{*}\right)$.

Proof. (i) First, let $u \in I_{A}^{X}(E)$ and $S \in \widehat{X} \cap \Phi\left(E^{*}\right)^{\perp}$. To show that $\widetilde{N} u \in \Phi^{\widehat{X}}\left(E^{*}\right)$, we need to prove that $\langle S, \tilde{N} u\rangle=0$. We first claim that $S \circ \widetilde{N} \in X \cap I_{A}(E)^{\perp}$. To see this, observe that if $u^{\prime} \in I_{A}(E)$ then $\widetilde{N} u^{\prime} \in \Phi\left(E^{*}\right)$
by Lemma 4.1, and so $\left\langle S \circ \widetilde{N}, u^{\prime}\right\rangle=\left\langle S, \widetilde{N} u^{\prime}\right\rangle=0$ as $S \in \Phi\left(E^{*}\right)^{\perp}$. Thus, $S \circ \widetilde{N} \in I_{A}(E)^{\perp}$, and, of course, $S \circ \widetilde{N} \in X$ by definition of \widehat{X}. This proves the claim and consequently $0=\langle S \circ \widetilde{N}, u\rangle=\langle S, \widetilde{N} u\rangle$.

Conversely, let $u \in A(G), \widetilde{N} u \in \Phi^{\widehat{X}}\left(E^{*}\right)$ and $T \in X \cap I_{A}(E)^{\perp}$. Then $S:=T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in T(G)^{*}=\mathcal{B}\left(L^{2}(G)\right)$. We prove that $S \in \widehat{X} \cap \Phi\left(E^{*}\right)^{\perp}$. For $w \in V^{\infty}(G)$ and $u \in A(G)$, $w S \circ \widetilde{N}=u_{1} T$, where $u_{1}=\widetilde{N}^{-1}(\widetilde{P}(J w))$, as in the proof of Proposition 2.1, and so $S \in \widehat{X}$. Moreover, if $\omega \in \Phi\left(E^{*}\right)$, then clearly $\widetilde{P} \omega \in \Phi\left(E^{*}\right)$ and $\langle S, \omega\rangle=\left\langle T \circ \widetilde{N}^{-1} \circ \widetilde{P}, \omega\right\rangle=\left\langle T \circ \widetilde{N}^{-1}, \widetilde{P} \omega\right\rangle=$ $\left\langle T \circ \widetilde{N}^{-1}, \widetilde{N} u_{2}\right\rangle$ where $\widetilde{N} u_{2}=\widetilde{P} \omega \in \Phi\left(E^{*}\right)$, so $u_{2} \in I_{A}(E)$ by Lemma 4.1(i). Thus $\langle S, \omega\rangle=\left\langle T, u_{2}\right\rangle=0$. Hence we have shown that $S \in \widehat{X} \cap \Phi\left(E^{*}\right)^{\perp}$. This implies that

$$
\begin{aligned}
0 & =\langle S, \widetilde{N} u\rangle=\left\langle T \circ \widetilde{N}^{-1} \circ \widetilde{P}, \widetilde{N} u\right\rangle=\left\langle T \circ \widetilde{N}^{-1}, \widetilde{P}(\widetilde{N} u)\right\rangle \\
& =\left\langle T \circ \widetilde{N}^{-1}, \widetilde{N} u\right\rangle=\langle T, u\rangle .
\end{aligned}
$$

Since $T \in X \cap I_{A}(E)^{\perp}$ is arbitrary, this shows that $u \in I_{A}^{X}(E)$ and (i) is proved.
(ii) Suppose $u \in J_{A}^{X}(E)$. To show $\widetilde{N} u \in \Psi^{\widehat{X}}\left(E^{*}\right)$, let $S \in \widehat{X} \cap \Psi\left(E^{*}\right)^{\perp}$. Then $S \circ \widetilde{N} \in X$. We show $S \circ \widetilde{N} \in J_{A}(E)^{\perp}$ as well. For, if $u^{\prime} \in J_{A}(E)$, then $\widetilde{N} u^{\prime} \in \Psi\left(E^{*}\right)$ by Lemma 4.1(ii) and $\left\langle S \circ \widetilde{N}, u^{\prime}\right\rangle=\left\langle S, \widetilde{N} u^{\prime}\right\rangle=0$ as $S \in \Psi\left(E^{*}\right)^{\perp}$. Thus $S \circ \widetilde{N} \in X \cap J_{A}(E)^{\perp}$ and so $\langle S \circ \widetilde{N}, u\rangle=\langle S, \widetilde{N} u\rangle=0$. Hence $\widetilde{N} u \in \Psi^{\widehat{X}}\left(E^{*}\right)$.

Conversely, suppose $u \in A(G)$ and $\widetilde{N} u \in \Psi^{\widehat{X}}\left(E^{*}\right)$. To show $u \in J_{A}^{X}(E)$, let $T \in X \cap J_{A}(E)^{\perp}$. Then $\operatorname{supp} T \subseteq E$ and $S=T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in T(G)^{*}=$ $\mathcal{B}\left(L^{2}(G)\right)$. Now, for $f, g \in L^{2}(G)$,

$$
\begin{aligned}
& \langle S f, g\rangle=\langle S, f \otimes \bar{g}\rangle=\left\langle T \widetilde{N}^{-1} \widetilde{P}, f \otimes \bar{g}\right\rangle \\
& \quad=\left\langle T \circ \widetilde{N}^{-1}, \widetilde{P}(f \otimes \bar{g})\right\rangle=\left\langle T \circ \widetilde{N}^{-1}, \widetilde{N} u_{1}\right\rangle \quad \text { where } u_{1}(x)=\langle\lambda(x) f, g\rangle \\
& \quad=\left\langle T, u_{1}\right\rangle=\langle T f, g\rangle .
\end{aligned}
$$

In other words, $S=T$ as operators on $L^{2}(G)$. Thus $\operatorname{supp}_{\mathrm{op}} S=\operatorname{supp}_{\mathrm{op}} T$. But by a result of Spronk and Turowska $\operatorname{supp}_{\mathrm{op}} T=\left(\operatorname{supp}_{\mathrm{VN}} T\right)^{*} \subseteq E^{*}$. This shows that $\operatorname{supp}_{\mathrm{op}} S \subseteq E^{*}$ and $S \in \Psi\left(E^{*}\right)^{\perp}$. Moreover, for $w \in V^{\infty}(G)$, $w . S \circ \widetilde{N}=u_{1} T \in X$ as before and so $S \in \widehat{X}$. Thus $S \in \widehat{X} \cap \Psi\left(E^{*}\right)^{\perp}$ and so $0=\langle S, \widetilde{N} u\rangle=\left\langle T \circ \widetilde{N}^{-1} \circ \widetilde{P}, \widetilde{N} u\right\rangle=\langle T, u\rangle$. The proof is complete.

Now, it has been observed in [5] that the group G acts on $T(G)$ by isometries as follows: for $t \in G$ and $\omega \in T(G), t . \omega(x, y)=\omega(x t, y t)$ for marginally almost all $(x, y) \in G \times G$. This action, in turn, gives rise to an
action of $L^{1}(G)$ on $T(G)$: for $f \in L^{1}(G)$ and $\omega \in T(G)$,

$$
f \cdot \omega=\int_{G} f(t) t \cdot \omega d t
$$

This way $T(G)$ becomes an essential $L^{1}(G)$-module. We also have $T(G)^{*}=$ $\mathcal{B}\left(L^{2}(G)\right)$ as an $L^{1}(G)$-module with the dual action.
4.4. Lemma. Let $E \subseteq G$ be closed. Then $\Phi\left(E^{*}\right)$ is an $L^{1}(G)$-submodule of $T(G)$.

Proof. This is clear from the definitions of $\Phi\left(E^{*}\right)$ and the $L^{1}(G)$-action on $T(G)$.
4.5. Lemma. Let $E \subseteq G$ be a closed set, let X be an $A(G)$-submodule of $\mathrm{VN}(G)$ and let \widehat{X} be the associated $V^{\infty}(G)$-submodule of $\mathcal{B}\left(L^{2}(G)\right)$. Then the following are $L^{1}(G)$-submodules of $\mathcal{B}\left(L^{2}(G)\right)$.
(i) $\Phi\left(E^{*}\right)^{\perp}$,
(ii) \widehat{X},
(iii) $\Phi^{\widehat{X}}\left(E^{*}\right)$.

Proof. (i) is immediate from Lemma 4.4 since the $L^{1}(G)$-action on $\mathcal{B}\left(L^{2}(G)\right)$ is the dual action.
(ii) Let $f \in L^{1}(G)$ and $S \in \widehat{X}$. We have to show that $f . S \in \widehat{X}$, i.e. $w \cdot(f . S) \circ \widetilde{N} \in X$ for any $w \in V^{\infty}(G)$. So let $w \in V^{\infty}(G)$. Then for $u \in A(G)$,

$$
\begin{aligned}
\langle w \cdot(f \cdot S) \circ \tilde{N}, u\rangle & =\langle w \cdot(f \cdot S), \tilde{N} u\rangle=\left\langle f \cdot S, m_{w}(\tilde{N} u)\right\rangle=\left\langle S, f \cdot m_{w}(\tilde{N} u)\right\rangle \\
& =\left\langle S, m_{f \cdot w} \widetilde{N} u\right\rangle=\langle(f \cdot w) \cdot S, \widetilde{N} u\rangle=\langle(f \cdot w) \cdot S \circ \widetilde{N}, u\rangle .
\end{aligned}
$$

Thus, $w \cdot(f . S) \circ \widetilde{N}=(f . w) . S \circ \widetilde{N} \in X$, and (ii) is proved.
(iii) This follows at once from (i) and (ii) because of the definition of $\Phi^{\widehat{X}}\left(E^{*}\right)$.

We are now ready for the main theorem.
4.6. Theorem. Let X be an $A(G)$-submodule of $\operatorname{VN}(G)$ and let \widehat{X} be the corresponding $V^{\infty}(G)$-submodule of $\mathcal{B}\left(L^{2}(G)\right)$. Then a closed set $E \subseteq G$ is an X-spectral set for $A(G)$ if and only if E^{*} is \widehat{X}-synthetic for $T(G)$.

Proof. One part is immediate from Lemma 4.3. If E^{*} is \widehat{X}-synthetic, then $\Phi^{\widehat{X}}\left(E^{*}\right)=\Psi^{\widehat{X}}\left(E^{*}\right)$ and so, by Lemma $4.3, I_{A}^{X}(E)=J_{A}^{X}(E)$ whence E is X-spectral.

For the converse, suppose E is X-spectral. To show that E^{*} is \widehat{X} synthetic, we need only prove that $\Phi^{\widehat{X}}\left(E^{*}\right) \subseteq \Psi^{\widehat{X}}\left(E^{*}\right)$ by Lemma 3.2. In view of our lemmas, the proof is similar to that of the case $X=\operatorname{VN}(G)$ given in [5]. For the sake of completeness, here is a brief sketch.

We have to show that $\omega \in \Phi^{\widehat{X}}\left(E^{*}\right)$ implies $\omega \in \Psi^{\widehat{X}}\left(E^{*}\right)$. Consider first the case $\omega \in \Phi^{\widehat{X}}\left(E^{*}\right) \cap T_{\text {inv }}(G)$. In this case $\omega=\widetilde{N} u$ with $u \in I_{A}^{X}(E)$ (see the proof of [5, Theorem 4.6]). Thus, by assumption $u \in I_{A}^{X}(E)=J_{A}^{X}(E)$, so $\omega=\widetilde{N} u \in \Psi^{\widehat{X}}\left(E^{*}\right)$ by Lemma 4.3 and the result is proved in this case.

Now consider an arbitrary $\omega \in \Phi^{\widehat{X}}\left(E^{*}\right)$. For $\pi \in \widehat{G}$ and the matrix coefficients $u_{i j}^{\pi}$ corresponding to $\pi, \omega_{i j}^{\pi}=u_{i j}^{\pi} \cdot \omega \in \Phi^{\widehat{X}}\left(E^{*}\right)$ by Lemma 4.5. If $\widetilde{\omega}_{i j}^{\pi}=\sum_{k} m_{u_{i k}^{\pi} \otimes 1} \omega_{k j}^{\pi}$, then $\widetilde{\omega}_{i j}^{\pi} \in \Phi^{\widehat{X}}\left(E^{*}\right) \cap T_{\mathrm{inv}}(G)$ since $\Phi^{\widehat{X}}\left(E^{*}\right)$ is a $V^{\infty}(G)$-submodule. Thus $\widetilde{\omega}_{i j}^{\pi} \in \Psi^{\widehat{X}}\left(E^{*}\right)$. But $\omega_{i j}^{\pi}=\sum_{k} m_{\tilde{u}_{i k}^{\pi} \otimes 1} \widetilde{\omega}_{k j}^{\pi} \in$ $\Psi^{\widehat{X}}\left(E^{*}\right) . L^{1}(G)$ has an approximate identity $\left\{u_{\alpha}\right\}$ with $u_{\alpha} \in \operatorname{span}\left\{u_{i j}^{\pi}\right.$: $\left.i, j=1, \ldots, d_{\pi}, \pi \in \widehat{G}\right\}$ for all α and $u_{\alpha} \cdot \omega \in \operatorname{span}\left\{\omega_{i j}^{\pi}: i, j=1, \ldots, d_{\pi}, \pi \in\right.$ $\widehat{G}\} \subseteq \Psi^{\widehat{X}}\left(E^{*}\right)$, so $\omega=\lim u_{\alpha} \cdot \omega \in \Psi^{\widehat{X}}\left(E^{*}\right)$.

Acknowledgements. The second author gratefully acknowledges financial support from the National Board for Higher Mathematics in the form of a research fellowship during the period of this work.

References

[1] W. Arveson, Operator algebras and invariant subspaces, Ann. of Math. 100 (1974), 433-532.
[2] J. Froelich, Compact operators, invariant subspaces and spectral synthesis, J. Funct. Anal. 81 (1988), 1-37.
[3] E. Kaniuth and A. T.-M. Lau, Spectral synthesis for $A(G)$ and subspaces of $V N(G)$, Proc. Amer. Math. Soc. 129 (2001), 3253-3263.
[4] K. Parthasarathy and R. Prakash, Spectral synthesis in the Fourier algebra and the Varopoulos algebra, submitted.
[5] N. Spronk and L. Turowska, Spectral synthesis and operator synthesis for compact groups, J. London Math. Soc. 66 (2002), 361-376.
[6] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51-112.

Ramanujan Institute for Advanced Study in Mathematics
University of Madras
Chennai 600 005, India
E-mail: krishnanp.sarathy@gmail.com rprakasham@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification: Primary 43A45, 47L25; Secondary 43A77.
 Key words and phrases: spectral synthesis, Fourier algebra, Varopoulos algebra, Haagerup tensor product, operator synthesis.

