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Spectral synthesis and operator synthesis
by

K. PARTHASARATHY and R. PRAKASH (Chennai)

Abstract. Relations between spectral synthesis in the Fourier algebra A(G) of a
compact group G and the concept of operator synthesis due to Arveson have been studied
in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been
introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To
any such X we associate a V°°(G)-submodule X of B(L?(G)) (where V®°(G) is the
weak-* Haagerup tensor product L% (G) ®,+p, L°°(G) ), define the concept of )A(-operator
synthesis and prove that a closed set F in G is of X-synthesis if and only if E* := {(z,y) €
GxG: xyil € E} is of )?—operator synthesis.

Introduction. Arveson introduced and studied the concept of operator
synthesis in [1]. He found that spectral synthesis on abelian groups is related
to operator synthesis. Froelich [2] continued this study. Recently Spronk
and Turowska [5] have investigated the relation between spectral synthesis
in the Fourier algebra A(G) of a compact group G and operator synthesis.
Specifically, they considered the projective tensor product T(G) = L*(G) ®
L?(G) and the weak-* Haagerup tensor product V®°(G) = L®(GQ) @u-n
L>(G) and proved that a closed subset E of G is of spectral synthesis for
A(G) if and only if E* := {(z,y) € G x G : zy~! € E} is of operator
synthesis.

In another direction, for an A(G)-submodule X of VN(G) = A(G)*,
X-synthesis has recently been studied by Kaniuth and Lau [3] and Parthasa-
rathy and Prakash [4].

In this paper we tie up these two threads. For a V*°(G)-submodule M
of B(L*(G)) = T(G)*, we define and characterise operator synthesis for
M (Section 3). When M = B(L?(@G)), this reduces to operator synthesis
of the earlier authors. With any A(G)-submodule X of VN(G), we asso-
ciate a V*°(G)-submodule X of B(L?(G)) and conversely, to any V>°(G)-
submodule M of B(L2(G)) there corresponds an A(G)-submodule M of
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VN(G). Moreover, X=X (Section 2). The main result (Theorem 4.6) states
that a closed set F in G is of X-synthesis if and only if E* is of X -operator
synthesis. This is preceded, in Section 4, by a sequence of lemmas.

We begin with the required notations, definitions and results in the first
section.

1. Preliminaries. For a compact group G, the Fourier algebra A(G)
is the space of continuous functions of the form u(z) = (A(x)f,g), z € G,
where f,g € L?(G) and X is the left regular representation of G. VN(G) is
the von Neumann algebra in B(L?(G)) generated by (), z € G. A(G) is a
commutative, semisimple, regular Banach algebra with pointwise operations
and with norm defined, for u(-) = (A(*) f, 9) € A(G), by

[ulla = sup{|(T'f,9)| : T € VN(G), ||IT|| < 1}.

VN(G) is the Banach space dual of A(G) with the pairing given by (T, u) =
(T'f,g). Moreover, VN(G) is an A(G)-module where the action is given as
follows: for T € VN(G) and u € A(G), (u.T,v) = (T,uv), v € A(G). The
support of T € VN(G) is the closed set suppT = {z € G : u(z) # 0 =
u.T # 0}.
For a closed set E C G, define

I4(E) :={u € A(G) : u(x) =0 Vx € E},

ja(E) :={u € A(G) : u vanishes in a neighbourhood of E},

Ja(E) :=ja(E).
I4(E) is the largest ideal of A(G) with zero set E and j4(F) is the smallest
such ideal. The set E is called a set of spectral synthesis (or a spectral set)
if there is a unique closed ideal of A(G) with zero set E. Thus E is a set
of synthesis if and only if J4(F) = Ja(E). For an A(G)-submodule X of
VN(G), E is called a set of X-synthesis (or an X-spectral set) if (T, u) =0

for all u € I4(F) and T' € X with suppT C E (see [3]). It is proved in [4]
that F is a set of X-synthesis if and only if I§ (E) = J§ (E) where

IX(E) ={u e A(G) : (T,u) = 0 for every T € X N I4(E)*},
JX(E) ={u € A(G) : (T,u) =0 for every T € X N Js(E)*"}.

Observe that I (E) = I4(E) and J§ (E) = Ja(E) when X = VN(G).

The concept of operator synthesis was introduced by Arveson [1], who
also initiated the study of its relations with spectral synthesis. This study
has been continued by Froelich [2] and Spronk and Turowska [5]. To describe
the setting, let T(G) be the projective tensor product L?(G) ® L?*(G). The
Banach space dual T(G)* of T(G) is identified with B(L?*(G)) where the
pairing satisfies the relation (S, f®@g) = (Sf,g) for S € B(L*(G)) and f,g €
L?*(G). Arveson [1] has shown that an element w = Y > | f,, ® g,, € T(G)
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may be considered as a function w(z,y) = > o~ fu(y)gn(x) for marginally
almost all (z,y) € G x G (see [1], [5]). For such an w, suppw = {(z,y) €
GxG:w(z, y) # 0} is defined up to marginally null sets. A marginally null
set is a subset of a set of the form E' x GUG x F where E, F' have measure
zero. For a closed set F' C G x GG, define

O(F) ={w e T(G) : suppwNF =0},
Y(F) ={w € T(G) : suppwNU = () for some open U D F'},
V(F) = (F).

If §(F) = ¥(F), then F is called a set of operator synthesis (or is said to
be synthetic). (Arveson [1] considered these concepts in a very general set
up, but we consider only the case of the product normalised Haar measure
m x m on G x G as in Spronk and Turowska [5].)

Spronk and Turowska proved that a closed subset E of G is a set of
synthesis if and only if E* := {(z,y) € G x G : zy~! € E} is a set of
operator synthesis. Note that E* = §~(E) where 0 : G x G — G is the
continuous surjection defined by (z,y) = xy~!. Crucial to the proof of
this result is the embedding N of A(G) in T(G). This is analogous to the
embedding N of A(G) in the Varopoulos algebra V(G) ([6], [5]) and is
given by Nu(x,y) = u(xy~!) for marginally almost all (z,y) € G x G. It
is proved in [5] that N is an isometry whose range is the set of functions
in T(G) which are G-invariant. More precisely, if for w € T(G) and ¢ € G,
t.w(x,y) = w(zt, yt) for marginally almost all (z,y) in G x G, then

N(A(G)) = Tine(G) :=={w € T(G) : t.w = w for all t € G}.

Tiny (G) is complemented in T(G) and a projection P of T(G) onto Tiy (G)
is given by Pw = {o t.wdt. Further, Q defined by Qu(z) = Sow(xt,t)dt
gives a contraction T(G) — A(G) such that Q(Nu) = u for all u € A(G).

In this paper, we define an analogue, for operator synthesis, of the con-
cept of X-synthesis and obtain a relation between X-synthesis and this
concept.

2. V°°(G)-submodules of B(L?(G)). We need the Banach algebra
V(@) that is the weak-*x Haagerup tensor product L>®(G) ®y«p L (G).
This is defined as follows. Consider S(L?(G)) ®p, S(L*(G)), the Haagerup
tensor product of trace class operators on L?(G). The dual of this space is,
by definition, the weak-+ Haagerup tensor product B(L?(Q))®.,+1 B(L?(G)).
The weak-* closure of L*>°(G)®L>(G) in this space is defined as L™ (G)®y,+p,
L>(@G). (Note that L>°(G) is here considered as an algebra of operators on
L?(@G).) Another description: L>®(G) ®y+p, L¥(G) = (LY (G) @5, L1(G))*.
But the description of V°°(G) that is useful for our purposes is the fol-
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lowing. Every element of V°°(G) can be considered as a function (up to a
marginally null set) on G x G of the form w = >""7 | ¢, ® 1, where ¢,,, 1,
are in L°>°(G) and the series is weak-* convergent. Moreover,

ol = ime{| S loul? S bel?] 0 = 3 0 0}

with the series Y |¢n|? and > |1,|? converging in the weak-* topology.
Spronk and Turowska [5] have also proved that V°°(G) is the algebra of
multipliers of T'(G). In other words,

V(@) = {w : w is a complex function on G x G and
My : w — w.w is a bounded linear map on T(G)}.

with [|w][ye gy = ||muw|. Two functions w and w’ in V°°(G) are identified if
they differ on a marginally null set. It is shown that the map J which iden-
tifies a function in V°°(G) as an element of T'(G) is a contractive injection.
More precisely, the map J : V°(G) — T(G) is defined by Jw = m,, 1 ® 1.

V(@G acts on B(L?(G)) = T(G)* via the dual action: for w € V°(G)
and S € B(L*(@G)),

(w.S,w) = (S, myw), weT(Qq).
Now, given an A(G)-submodule X of VN(G), we define
X ={SeB(L*@):w.SoN e X for all w e V®(G)}.

It is clearly a V°°(G)-submodule of B(L?(G)). In the opposite direction, with
any V°(G)-submodule M of B(L?*(G)) we associate an A(G)-submodule M
of VN(G) by defining

M={T e VN(G):uToN"'oP e M foral ue AG)}.
We have the following nice-looking result on these correspondences.

2.1. PROPOSITION. If X is an A(G)-submodule of VN(G), then X = X.

Proof. Let T € X. Suppose u € A(G) and let S = u.T o N-loP. We
claim that S € X. Indeed, for w € V*°(G) and v € A(G),
(w.S o N,v) = (0.5, Nv) = (S, myuyNv) = (u.T o N~' o P,m,Nv)
= (wT o N~', PmyNv) = (u.T o N~', N(upv))
= (uu.T,v), u =N Y(P(Jw)).
Thus w.S o N = uu.T € X. So § = uToNtoPeX forall ue AG).
This means that 7' € X , by definition.

Conversely, suppose T € X. Then u.T o N~ o P € X for all u € A(G)
and so w.(u.ToN~"1oP)oN € X for all w € V*°(G). For u,v € A(G) and
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w € V=°(G), we have
(w.(u.To N~ o P)oN,v) = (w.(uT o N~'oP), Nv)
= (uw.T o N~' o P,myNv) = (uyu.T,v)

as before. Thus uyu.T = w.(u.T o N~ o P)o N € X. Taking u = 1 and
w=1®1wegetuy=1land T € X. m

3. Operator synthesis for V°°(G)-modules. For an operator S €
B(L*(@)), the operator support of S is defined by supp,, S = {(z,y) €
G x G: for neighbourhoods U of x and V of y there are f,g € L*(Q)
with supp f C V, suppg C U and (Sf,g) # 0}. Here supp f = {z € G :
f(z) # 0}. It is known that supp,, S is a closed set in G x G.

3.1. DEFINITION. Let M be a V°°(G)-submodule of B(L?(G)). A closed
set FF C G x G is said to be a set of operator synthesis for M (or an
M-synthetic set for short) if (S,w) = 0 for S € M with supp,, S C F
and w € @(F). Observe that F' is of operator synthesis if and only if it is
B(L?(G))-synthetic.

To get a reformulation of this concept we define the following subsets of
T(G): If M is a V*°(G)-submodule of B(L?(G)), let
PM(F) = {w e T(G) : (S,w) =0 for any S € MNG(F)*},
PM(F) = {w e T(G) : (S,w) =0 for any S € MNW¥(F)t}
Note that these are closed V*°(G)-submodules of T'(G).

3.2. LEMMA. Let M be a V°(G)-submodule of B(L*(Q)). A closed sub-
set Fof G x G is M-synthetic if and only if &M (F) = ¢M(F).

Proof. Suppose F' is M-synthetic. Let S € M NW(F)+. Then Supp,p, S
C F and (S,w') = 0 for o’ € @(F), since F' is M-synthetic. Thus, if w €
dM(F), then (S,w) = 0, so w € PM(F). The inclusion ¥M(F) C &M (F)
being trivial, one part of the lemma is proved.

For the converse, suppose $M(F) = wM(F). If S € M and supp,, S
C F, then S € MN¥(F)*t. Thus (S,w) = 0 for w € YM(F) = #M(F). In
particular, (S,w) = 0 for w € &(F). Hence F is M-synthetic. =

4. Spectral synthesis in A(G) and operator synthesis in 7'(G). Let
X be an A(G)-submodule of VN(G) and let X be the associated V°°(G)-
submodule of B(L?(G)) as in Section 2. In this section we prove the main
result that if E is an X-spectral set, then E* = {(z,y) : zy~! € E} is
X -synthetic.

We begin with a couple of lemmas. The first of these identifies the images
of the ideals I4(F) and J4(FE) under the map N. The analogous result for
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the isometric imbedding N of A(G) in the Varopoulos algebra V(G) is due
to Spronk and Turowska [5].

4.1. LEMMA. Let E be a closed subset of G.

(i) u € I14(E) & Nu € ®(E*).

(i) u € JA(E) & Nu € ¥(E*).

Proof. (i) is obvious. The proof that u € J4(E) implies Nu € W(E*) is
essentially contained ~in the proof of [5, Theorem 4.6]. Conversely, suppose
that v € A(G) and Nu € ¥(E™). Then there is a sequence {w,} in ¥ (E")
such that w, — Nu, hence Quw, — QNu = u. We complete the proof by
showing that Quw,, € ja(E) for all n. Now,

x & O(suppw,,) = (zt,t) € suppw, Vt € G
= wp(zt,t) =0Vt € G
= Qun(z) = 0.
Thus W,, = {z € G : Qun(z) # 0} C O(suppwy). But w, € ¥(E*) implies
that there is a neighbourhood U, oj E* such that suppw, C US. This
means that W,, C O(US). So supp Q(w,) = W,, C 0(US) = 9(US) and
Qu, € ]A(E) ]
The following result is [5, Theorem 4.6].

4.2. COROLLARY. A closed subset E of G is of spectral synthesis for
A(G) if and only if E* is of operator synthesis.

Proof. This is immediate from Lemma 4.1. The only new feature here
is the different proof of the part that if £* is operator synthetic then E is
of synthesis. (This is a consequence of Lemma 4.1(i) and the implication

Nu € W(E*) = u € Jo(E) in 4.1(ii).) The rest is as in [5).
We use Lemma 4.1 to prove the following more general version, which is
a crucial ingredient in the proof of the main result (Theorem 4.6 below), of
which 4.2 is a special case.
4.3. LEMMA. Let E be a closed set in G and let u € A(G). Let X be an
A(G)-submodule of VN(G) and let X be the associated V°(G)-submodule
of B(L*(GQ)). Then
(i) u € IX(E) & Nu € ¢X(E*).
(ii) u € JX(E) < Nu € WX (E*).

Proof. (i) First, let u € IX(E) and S € X N®(E*)L. To show that
Nu € @X(E*), we need to prove that (S, Nu) = 0. We first claim that
SoN € XNI4(E)*. To see this, observe that if v’ € I4(E) then Nu' € ¢(E*)
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by Lemma 4.1, and so (S o N, u/) = (SNu>—OasS€d5(E*) Thus,
SoN € I (E)*, and, of course, So N € X by definition of X. This proves
the claim and consequently 0 = (S o N, u) = (S, Nu).

Conversely, let u € A(G), Nu € ®X(E*) and T € X N I(E)*. Then
S:=ToNloPeT(Q)F = B(LQ(G)) We prove that § € X N @(E*)
For w € V°(G) and u € A(G), wSo N = u,T, where uy = N~ (P(Jw)),
as in the proof of Proposition 2.1, and so S € X. Moreover, if w € P(E"),
then clearly Puw e P(E") and (S,w) = (T'o N~ l'oP w)=(ToN! Pu)=
(ToN—1, Nuy) where Nuy = Pw € ®(E*), so uy € I4(E) by Lemma 4.1(i).
Thus (S, w) = (T, us) = 0. Hence we have shown that S € X N®(E*)*. This
implies that

= (S,Nu) =(ToN"'oP,Nu)= (T o N~', P(Nu))
= (ToN~', Nu) = (T, u).

Since T' € X N I4(E)* is arbitrary, this shows that u € I (E) and (i) is
proved.

(ii) Suppose u € J§ (E). To show Nu € WX\(E*), let S € XN w(E*)L.
Then So N € X. We show So N € Ja(E)* as well. For, if u' € Ja (E)
then Nu' € W(E”) by Lemma 4.1(ii) and (S o N,u') = (S,Nu') = 0 a
S €W (E*)t. Thus So N € X NJa(E)*t and so (S o N,u) = (S, Nu) = 0.
Hence Nu € UX(E*).

Conversely, suppose u € A(G) and Nu € !I/)?(E*) To show u € JX (E),

let T € X N Ja(E):. Then suppT C Eand S =ToN~1oP e T(G)* =
B(L?(G)). Now, for f,g € L*(G),

(Sf.9)=(5,f @g) =(TN"'P.fog)
=(ToN L P(f®7) =(ToN"1 Nu) whereui(z) = (\z)f,g)

= (T,u1) =(Tf,9)-

In other words, S = T as operators on L?(G). Thus SUPP,pS = SUpP,p, I

But by a result of Spronk and Turowska suppopT = (suppyn1)* C E*.

This shows that supp,, S C E* and S € W(E*) . Moreover, for w € V>°(G),

w. SoN =wuT € X as before and so § € X. Thus § € Xﬂ@(E*) and so
= (S,Nu) = (T o N~* o P, Nu) = (T, u). The proof is complete. m

Now, it has been observed in [5] that the group G acts on T(G) by
isometries as follows: for ¢ € G and w € T(G), tw(z,y) = w(xt,yt) for
marginally almost all (z,y) € G x G. This action, in turn, gives rise to an
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action of L'(G) on T(GQ): for f € LY(G) and w € T(G),
fw=\fH)twat

G

This way T(G) becomes an essential L'(G)-module. We also have T(G)* =
B(L*(@)) as an L'(G)-module with the dual action.

4.4. LEMMA. Let E C G be closed. Then ®(E*) is an L'(G)-submodule
of T(G).

Proof. This is clear from the definitions of #(E*) and the L!(G)-action
on T(G). m

4.5. LEMMA. Let E C G be a closed set, let X be an A(G)-submodule of
VN(G) and let X be the associated V°°(G)-submodule of B(L*(G)). Then
the following are L'(Q)-submodules of B(L*(G)).

(i) o(E*)*,

(if) X,

(iii) @X (E*).

Proof. (i) is immediate from Lemma 4.4 since the L!(G)-action on
B(L*(@)) is the dual action.

(ii) Let f € L'(G) and S € X. We have to show that f.5 € X, ie.
w.(f.S)oN € X for any w € V°°(G). Solet w € V°(G). Then for u € A(G),

(w.(f.8) o N,u) = (w.(f.9), ~NU> = (.S, mw(jvu» = (S, f.mw(Nﬁu»
= (S,msyNu) = ((fw).S,Nu) = ((fw).SoN,u).
Thus, w.(f.8) o N = (f.w).So N € X, and (ii) is proved.

(iii) This follows at once from (i) and (ii) because of the definition of
X (E*). m
We are now ready for the main theorem.

4.6. THEOREM. Let X be an A(G)-submodule of VN(G) and let X be
the corresponding V°°(G)-submodule of B(L*(G)). Then a closed set E C G
is an X -spectral set for A(G) if and only if E* is X -synthetic for T(G).

Proof. One part is immediate from Lemma 4.3. If E* is )?—synthetic,
then @X (E*) = ¢X(E*) and so, by Lemma 4.3, I (E) = J§ (E) whence E
is X -spectral.

For the converse, suppose E is X-spectral. To show that E* is X-
synthetic, we need only prove that X (E*) C 23 (E*) by Lemma 3.2. In
view of our lemmas, the proof is similar to that of the case X = VN(G)
given in [5]. For the sake of completeness, here is a brief sketch.
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We have to show that w € ¢~ (E*) implies w € wX (E*). Consider first

the case w € @X(E*) N T (G). In this case w = Nu with u € I (E) (see
the proof of [5, Theorem 4.6]). Thus, by assumption u € I (E) = JX (E),

s0 w = Nu € UX(E*) by Lemma 4.3 and the result is proved in this case.
Now consider an arbitrary w € X (E*). For 7 € G and the matrix

coefficients uj; corresponding to 7, wj; = uj,.w € @i(E*) by Lemma 4.5.

If W = > mur@1wp;, then &, € gﬁ)?(E*) N Tiny(G) since @)?(E*) is

a V' (G)-submodule. Thus &f; € J/)?(E*) But wfj = > magye1wf; €

J/)?(E*) L'(G) has an approximate identity {un} with u, € span{uf; :
i,j=1,...,ds, T € @} for all @ and uq.w € span{wf; :4,j =1,...,dx, 7 €
G} CUX(E"), sow=lim ug.w € UX(E*). u
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