Spectral synthesis and operator synthesis

by

K. PARTHASARATHY and R. PRAKASH (Chennai)

Abstract. Relations between spectral synthesis in the Fourier algebra A(G) of a compact group G and the concept of operator synthesis due to Arveson have been studied in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such X we associate a $V^{\infty}(G)$ -submodule \hat{X} of $\mathcal{B}(L^2(G))$ (where $V^{\infty}(G)$ is the weak-* Haagerup tensor product $L^{\infty}(G) \otimes_{w^*h} L^{\infty}(G)$), define the concept of \hat{X} -operator synthesis and prove that a closed set E in G is of X-synthesis if and only if $E^* := \{(x, y) \in G \times G : xy^{-1} \in E\}$ is of \hat{X} -operator synthesis.

Introduction. Arveson introduced and studied the concept of operator synthesis in [1]. He found that spectral synthesis on abelian groups is related to operator synthesis. Froelich [2] continued this study. Recently Spronk and Turowska [5] have investigated the relation between spectral synthesis in the Fourier algebra A(G) of a compact group G and operator synthesis. Specifically, they considered the projective tensor product $T(G) = L^2(G) \otimes L^2(G)$ and the weak-* Haagerup tensor product $V^{\infty}(G) = L^{\infty}(G) \otimes_{w^*h} L^{\infty}(G)$ and proved that a closed subset E of G is of spectral synthesis for A(G) if and only if $E^* := \{(x, y) \in G \times G : xy^{-1} \in E\}$ is of operator synthesis.

In another direction, for an A(G)-submodule X of $VN(G) = A(G)^*$, X-synthesis has recently been studied by Kaniuth and Lau [3] and Parthasarathy and Prakash [4].

In this paper we tie up these two threads. For a $V^{\infty}(G)$ -submodule \mathcal{M} of $\mathcal{B}(L^2(G)) = T(G)^*$, we define and characterise operator synthesis for \mathcal{M} (Section 3). When $\mathcal{M} = \mathcal{B}(L^2(G))$, this reduces to operator synthesis of the earlier authors. With any A(G)-submodule X of VN(G), we associate a $V^{\infty}(G)$ -submodule \hat{X} of $\mathcal{B}(L^2(G))$ and conversely, to any $V^{\infty}(G)$ submodule \mathcal{M} of $\mathcal{B}(L^2(G))$ there corresponds an A(G)-submodule $\check{\mathcal{M}}$ of

²⁰⁰⁰ Mathematics Subject Classification: Primary 43A45, 47L25; Secondary 43A77.

Key words and phrases: spectral synthesis, Fourier algebra, Varopoulos algebra, Haagerup tensor product, operator synthesis.

VN(G). Moreover, $\tilde{X} = X$ (Section 2). The main result (Theorem 4.6) states that a closed set E in G is of X-synthesis if and only if E^* is of \hat{X} -operator synthesis. This is preceded, in Section 4, by a sequence of lemmas.

We begin with the required notations, definitions and results in the first section.

1. Preliminaries. For a compact group G, the Fourier algebra A(G) is the space of continuous functions of the form $u(x) = \langle \lambda(x)f, g \rangle, x \in G$, where $f, g \in L^2(G)$ and λ is the left regular representation of G. VN(G) is the von Neumann algebra in $\mathcal{B}(L^2(G))$ generated by $\lambda(x), x \in G$. A(G) is a commutative, semisimple, regular Banach algebra with pointwise operations and with norm defined, for $u(\cdot) = \langle \lambda(\cdot)f, g \rangle \in A(G)$, by

$$||u||_A = \sup\{|\langle Tf, g\rangle| : T \in VN(G), ||T|| \le 1\}.$$

VN(G) is the Banach space dual of A(G) with the pairing given by $\langle T, u \rangle = \langle Tf, g \rangle$. Moreover, VN(G) is an A(G)-module where the action is given as follows: for $T \in VN(G)$ and $u \in A(G)$, $\langle u.T, v \rangle = \langle T, uv \rangle$, $v \in A(G)$. The support of $T \in VN(G)$ is the closed set supp $T = \{x \in G : u(x) \neq 0 \Rightarrow u.T \neq 0\}$.

For a closed set $E \subseteq G$, define

$$I_A(E) := \{ u \in A(G) : u(x) = 0 \ \forall x \in E \},\$$

$$j_A(E) := \{ u \in A(G) : u \text{ vanishes in a neighbourhood of } E \},\$$

$$J_A(E) := \overline{j_A(E)}.$$

 $I_A(E)$ is the largest ideal of A(G) with zero set E and $j_A(E)$ is the smallest such ideal. The set E is called a set of *spectral synthesis* (or a *spectral set*) if there is a unique closed ideal of A(G) with zero set E. Thus E is a set of synthesis if and only if $I_A(E) = J_A(E)$. For an A(G)-submodule X of VN(G), E is called a set of X-synthesis (or an X-spectral set) if $\langle T, u \rangle = 0$ for all $u \in I_A(E)$ and $T \in X$ with $supp T \subseteq E$ (see [3]). It is proved in [4] that E is a set of X-synthesis if and only if $I_A^X(E) = J_A^X(E)$ where

$$I_A^X(E) = \{ u \in A(G) : \langle T, u \rangle = 0 \text{ for every } T \in X \cap I_A(E)^{\perp} \}, J_A^X(E) = \{ u \in A(G) : \langle T, u \rangle = 0 \text{ for every } T \in X \cap J_A(E)^{\perp} \}.$$

Observe that $I_A^X(E) = I_A(E)$ and $J_A^X(E) = J_A(E)$ when X = VN(G).

The concept of operator synthesis was introduced by Arveson [1], who also initiated the study of its relations with spectral synthesis. This study has been continued by Froelich [2] and Spronk and Turowska [5]. To describe the setting, let T(G) be the projective tensor product $L^2(G) \otimes L^2(G)$. The Banach space dual $T(G)^*$ of T(G) is identified with $\mathcal{B}(L^2(G))$ where the pairing satisfies the relation $\langle S, f \otimes g \rangle = \langle Sf, \overline{g} \rangle$ for $S \in \mathcal{B}(L^2(G))$ and $f, g \in$ $L^2(G)$. Arveson [1] has shown that an element $\omega = \sum_{n=1}^{\infty} f_n \otimes g_n \in T(G)$ may be considered as a function $\omega(x, y) = \sum_{n=1}^{\infty} f_n(y)g_n(x)$ for marginally almost all $(x, y) \in G \times G$ (see [1], [5]). For such an ω , supp $\omega = \{(x, y) \in G \times G : \omega(x, y) \neq 0\}$ is defined up to marginally null sets. A marginally null set is a subset of a set of the form $E \times G \cup G \times F$ where E, F have measure zero. For a closed set $F \subseteq G \times G$, define

$$\begin{split} &\Phi(F) = \{\omega \in T(G) : \operatorname{supp} \omega \cap F = \emptyset\}, \\ &\psi(F) = \{\omega \in T(G) : \operatorname{supp} \omega \cap U = \emptyset \text{ for some open } U \supseteq F\}, \\ &\Psi(F) = \overline{\psi(F)}. \end{split}$$

If $\Phi(F) = \Psi(F)$, then F is called a set of *operator synthesis* (or is said to be *synthetic*). (Arveson [1] considered these concepts in a very general set up, but we consider only the case of the product normalised Haar measure $m \times m$ on $G \times G$ as in Spronk and Turowska [5].)

Spronk and Turowska proved that a closed subset E of G is a set of synthesis if and only if $E^* := \{(x, y) \in G \times G : xy^{-1} \in E\}$ is a set of operator synthesis. Note that $E^* = \theta^{-1}(E)$ where $\theta : G \times G \to G$ is the continuous surjection defined by $\theta(x, y) = xy^{-1}$. Crucial to the proof of this result is the embedding \widetilde{N} of A(G) in T(G). This is analogous to the embedding N of A(G) in the Varopoulos algebra V(G) ([6], [5]) and is given by $\widetilde{N}u(x, y) = u(xy^{-1})$ for marginally almost all $(x, y) \in G \times G$. It is proved in [5] that \widetilde{N} is an isometry whose range is the set of functions in T(G) which are G-invariant. More precisely, if for $\omega \in T(G)$ and $t \in G$, $t.\omega(x, y) = \omega(xt, yt)$ for marginally almost all (x, y) in $G \times G$, then

$$N(A(G)) = T_{inv}(G) := \{ \omega \in T(G) : t \cdot \omega = \omega \text{ for all } t \in G \}.$$

 $T_{\text{inv}}(G)$ is complemented in T(G) and a projection \widetilde{P} of T(G) onto $T_{\text{inv}}(G)$ is given by $\widetilde{P}\omega = \int_G t.\omega \, dt$. Further, \widetilde{Q} defined by $\widetilde{Q}\omega(x) = \int_G \omega(xt,t) \, dt$ gives a contraction $T(G) \to A(G)$ such that $\widetilde{Q}(\widetilde{N}u) = u$ for all $u \in A(G)$.

In this paper, we define an analogue, for operator synthesis, of the concept of X-synthesis and obtain a relation between X-synthesis and this concept.

2. $V^{\infty}(G)$ -submodules of $\mathcal{B}(L^2(G))$. We need the Banach algebra $V^{\infty}(G)$ that is the weak-* Haagerup tensor product $L^{\infty}(G) \otimes_{w^*h} L^{\infty}(G)$. This is defined as follows. Consider $\mathfrak{S}(L^2(G)) \otimes_h \mathfrak{S}(L^2(G))$, the Haagerup tensor product of trace class operators on $L^2(G)$. The dual of this space is, by definition, the weak-* Haagerup tensor product $\mathcal{B}(L^2(G)) \otimes_{w^*h} \mathcal{B}(L^2(G))$. The weak-* closure of $L^{\infty}(G) \otimes L^{\infty}(G)$ in this space is defined as $L^{\infty}(G) \otimes_{w^*h} L^{\infty}(G)$. (Note that $L^{\infty}(G)$ is here considered as an algebra of operators on $L^2(G)$.) Another description: $L^{\infty}(G) \otimes_{w^*h} L^{\infty}(G) = (L^1(G) \otimes_h L^1(G))^*$. But the description of $V^{\infty}(G)$ that is useful for our purposes is the following. Every element of $V^{\infty}(G)$ can be considered as a function (up to a marginally null set) on $G \times G$ of the form $w = \sum_{n=1}^{\infty} \varphi_n \otimes \psi_n$ where φ_n, ψ_n are in $L^{\infty}(G)$ and the series is weak-* convergent. Moreover,

$$\|w\|_{V^{\infty}} = \inf\left\{\left\|\sum |\varphi_n|^2\right\|_{\infty}^{1/2} \left\|\sum |\psi_n|^2\right\|_{\infty}^{1/2} : w = \sum \varphi_n \otimes \psi_n\right\}$$

with the series $\sum |\varphi_n|^2$ and $\sum |\psi_n|^2$ converging in the weak-* topology. Spronk and Turowska [5] have also proved that $V^{\infty}(G)$ is the algebra of multipliers of T(G). In other words,

 $V^{\infty}(G) = \{w : w \text{ is a complex function on } G \times G \text{ and } \}$

 $m_w: \omega \mapsto w.\omega$ is a bounded linear map on T(G).

with $||w||_{V^{\infty}(G)} = ||m_w||$. Two functions w and w' in $V^{\infty}(G)$ are identified if they differ on a marginally null set. It is shown that the map J which identifies a function in $V^{\infty}(G)$ as an element of T(G) is a contractive injection. More precisely, the map $J: V^{\infty}(G) \to T(G)$ is defined by $Jw = m_w \ 1 \otimes 1$.

 $V^{\infty}(G)$ acts on $\mathcal{B}(L^2(G)) = T(G)^*$ via the dual action: for $w \in V^{\infty}(G)$ and $S \in \mathcal{B}(L^2(G))$,

$$\langle w.S, \omega \rangle = \langle S, m_w \omega \rangle, \quad \omega \in T(G).$$

Now, given an A(G)-submodule X of VN(G), we define

$$\widehat{X} = \{ S \in \mathcal{B}(L^2(G)) : w.S \circ \widetilde{N} \in X \text{ for all } w \in V^\infty(G) \}.$$

It is clearly a $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$. In the opposite direction, with any $V^{\infty}(G)$ -submodule \mathcal{M} of $\mathcal{B}(L^2(G))$ we associate an A(G)-submodule $\check{\mathcal{M}}$ of $\mathrm{VN}(G)$ by defining

$$\widetilde{\mathcal{M}} = \{ T \in \mathrm{VN}(G) : u.T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in \mathcal{M} \text{ for all } u \in A(G) \}.$$

We have the following nice-looking result on these correspondences.

2.1. PROPOSITION. If X is an A(G)-submodule of VN(G), then $\check{X} = X$.

Proof. Let $T \in X$. Suppose $u \in A(G)$ and let $S = u \cdot T \circ \widetilde{N}^{-1} \circ \widetilde{P}$. We claim that $S \in \widehat{X}$. Indeed, for $w \in V^{\infty}(G)$ and $v \in A(G)$,

$$\begin{split} \langle w.S \circ \widetilde{N}, v \rangle &= \langle w.S, \widetilde{N}v \rangle = \langle S, m_w \widetilde{N}v \rangle = \langle u.T \circ \widetilde{N}^{-1} \circ \widetilde{P}, m_w \widetilde{N}v \rangle \\ &= \langle u.T \circ \widetilde{N}^{-1}, \widetilde{P}m_w \widetilde{N}v \rangle = \langle u.T \circ \widetilde{N}^{-1}, \widetilde{N}(u_1v) \rangle \\ &= \langle u_1 u.T, v \rangle, \quad u_1 = \widetilde{N}^{-1}(\widetilde{P}(Jw)). \end{split}$$

Thus $w.S \circ \widetilde{N} = u_1 u.T \in X$. So $S = u.T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in \widehat{X}$ for all $u \in A(G)$. This means that $T \in \widetilde{X}$, by definition.

Conversely, suppose $T \in \widetilde{X}$. Then $u.T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in \widehat{X}$ for all $u \in A(G)$ and so $w.(u.T \circ \widetilde{N}^{-1} \circ \widetilde{P}) \circ \widetilde{N} \in X$ for all $w \in V^{\infty}(G)$. For $u, v \in A(G)$ and $w \in V^{\infty}(G)$, we have

$$\begin{split} \langle w.(u.T \circ \widetilde{N}^{-1} \circ \widetilde{P}) \circ \widetilde{N}, v \rangle &= \langle w.(u.T \circ \widetilde{N}^{-1} \circ \widetilde{P}), \widetilde{N}v \rangle \\ &= \langle u.T \circ \widetilde{N}^{-1} \circ \widetilde{P}, m_w \widetilde{N}v \rangle = \langle u_1 u.T, v \rangle \end{split}$$

as before. Thus $u_1u.T = w.(u.T \circ \widetilde{N}^{-1} \circ \widetilde{P}) \circ \widetilde{N} \in X$. Taking u = 1 and $w = 1 \otimes 1$ we get $u_1 = 1$ and $T \in X$.

3. Operator synthesis for $V^{\infty}(G)$ -modules. For an operator $S \in \mathcal{B}(L^2(G))$, the operator support of S is defined by $\operatorname{supp}_{op} S = \{(x, y) \in G \times G: \text{ for neighbourhoods } U \text{ of } x \text{ and } V \text{ of } y \text{ there are } f, g \in L^2(G) \text{ with supp } f \subset V, \operatorname{supp} g \subset U \text{ and } \langle Sf, g \rangle \neq 0 \}$. Here $\operatorname{supp} f = \{x \in G : f(x) \neq 0\}$. It is known that $\operatorname{supp}_{op} S$ is a closed set in $G \times G$.

3.1. DEFINITION. Let \mathcal{M} be a $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$. A closed set $F \subseteq G \times G$ is said to be a set of operator synthesis for \mathcal{M} (or an \mathcal{M} -synthetic set for short) if $\langle S, \omega \rangle = 0$ for $S \in \mathcal{M}$ with $\operatorname{supp}_{\operatorname{op}} S \subseteq F$ and $\omega \in \Phi(F)$. Observe that F is of operator synthesis if and only if it is $\mathcal{B}(L^2(G))$ -synthetic.

To get a reformulation of this concept we define the following subsets of T(G): If \mathcal{M} is a $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$, let

$$\Phi^{\mathcal{M}}(F) = \{ \omega \in T(G) : \langle S, \omega \rangle = 0 \text{ for any } S \in \mathcal{M} \cap \Phi(F)^{\perp} \}, \\ \Psi^{\mathcal{M}}(F) = \{ \omega \in T(G) : \langle S, \omega \rangle = 0 \text{ for any } S \in \mathcal{M} \cap \Psi(F)^{\perp} \}.$$

Note that these are closed $V^{\infty}(G)$ -submodules of T(G).

3.2. LEMMA. Let \mathcal{M} be a $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$. A closed subset F of $G \times G$ is \mathcal{M} -synthetic if and only if $\Phi^{\mathcal{M}}(F) = \Psi^{\mathcal{M}}(F)$.

Proof. Suppose F is \mathcal{M} -synthetic. Let $S \in \mathcal{M} \cap \Psi(F)^{\perp}$. Then $\operatorname{supp}_{\operatorname{op}} S \subseteq F$ and $\langle S, \omega' \rangle = 0$ for $\omega' \in \Phi(F)$, since F is \mathcal{M} -synthetic. Thus, if $\omega \in \Phi^{\mathcal{M}}(F)$, then $\langle S, \omega \rangle = 0$, so $\omega \in \Psi^{\mathcal{M}}(F)$. The inclusion $\Psi^{\mathcal{M}}(F) \subseteq \Phi^{\mathcal{M}}(F)$ being trivial, one part of the lemma is proved.

For the converse, suppose $\Phi^{\mathcal{M}}(F) = \Psi^{\mathcal{M}}(F)$. If $S \in \mathcal{M}$ and $\operatorname{supp}_{\operatorname{op}} S \subseteq F$, then $S \in \mathcal{M} \cap \Psi(F)^{\perp}$. Thus $\langle S, \omega \rangle = 0$ for $\omega \in \Psi^{\mathcal{M}}(F) = \Phi^{\mathcal{M}}(F)$. In particular, $\langle S, \omega \rangle = 0$ for $\omega \in \Phi(F)$. Hence F is \mathcal{M} -synthetic.

4. Spectral synthesis in A(G) and operator synthesis in T(G). Let X be an A(G)-submodule of VN(G) and let \hat{X} be the associated $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$ as in Section 2. In this section we prove the main result that if E is an X-spectral set, then $E^* = \{(x, y) : xy^{-1} \in E\}$ is \hat{X} -synthetic.

We begin with a couple of lemmas. The first of these identifies the images of the ideals $I_A(E)$ and $J_A(E)$ under the map \widetilde{N} . The analogous result for the isometric imbedding N of A(G) in the Varopoulos algebra V(G) is due to Spronk and Turowska [5].

4.1. LEMMA. Let
$$E$$
 be a closed subset of G .
(i) $u \in I_A(E) \Leftrightarrow \widetilde{N}u \in \Phi(E^*)$.
(ii) $u \in J_A(E) \Leftrightarrow \widetilde{N}u \in \Psi(E^*)$.

Proof. (i) is obvious. The proof that $u \in J_A(E)$ implies $\widetilde{N}u \in \Psi(E^*)$ is essentially contained in the proof of [5, Theorem 4.6]. Conversely, suppose that $u \in A(G)$ and $\widetilde{N}u \in \Psi(E^*)$. Then there is a sequence $\{\omega_n\}$ in $\psi(E^*)$ such that $\omega_n \to \widetilde{N}u$, hence $\widetilde{Q}\omega_n \to \widetilde{Q}\widetilde{N}u = u$. We complete the proof by showing that $\widetilde{Q}\omega_n \in j_A(E)$ for all n. Now,

$$\begin{aligned} x \notin \theta(\operatorname{supp} \omega_n) &\Rightarrow (xt, t) \notin \operatorname{supp} \omega_n \ \forall t \in G \\ &\Rightarrow \omega_n(xt, t) = 0 \ \forall t \in G \\ &\Rightarrow \widetilde{Q}\omega_n(x) = 0. \end{aligned}$$

Thus $W_n = \{x \in G : \widetilde{Q}\omega_n(x) \neq 0\} \subseteq \theta(\operatorname{supp} \omega_n)$. But $\omega_n \in \psi(E^*)$ implies that there is a neighbourhood U_n of E^* such that $\operatorname{supp} \omega_n \subseteq U_n^c$. This means that $W_n \subseteq \theta(U_n^c)$. So $\operatorname{supp} \widetilde{Q}(\omega_n) = \overline{W}_n \subseteq \overline{\theta(U_n^c)} = \theta(U_n^c)$ and $\widetilde{Q}\omega_n \in j_A(E)$.

The following result is [5, Theorem 4.6].

4.2. COROLLARY. A closed subset E of G is of spectral synthesis for A(G) if and only if E^* is of operator synthesis.

Proof. This is immediate from Lemma 4.1. The only new feature here is the different proof of the part that if E^* is operator synthetic then E is of synthesis. (This is a consequence of Lemma 4.1(i) and the implication $\widetilde{N}u \in \Psi(E^*) \Rightarrow u \in J_A(E)$ in 4.1(ii).) The rest is as in [5].

We use Lemma 4.1 to prove the following more general version, which is a crucial ingredient in the proof of the main result (Theorem 4.6 below), of which 4.2 is a special case.

4.3. LEMMA. Let E be a closed set in G and let $u \in A(G)$. Let X be an A(G)-submodule of VN(G) and let \widehat{X} be the associated $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$. Then

(i)
$$u \in I_A^X(E) \Leftrightarrow Nu \in \Phi^X(E^*).$$

(ii) $u \in J_A^X(E) \Leftrightarrow \widetilde{N}u \in \Psi^X(E^*).$

Proof. (i) First, let $u \in I_A^X(E)$ and $S \in \widehat{X} \cap \Phi(E^*)^{\perp}$. To show that $\widetilde{N}u \in \Phi^{\widehat{X}}(E^*)$, we need to prove that $\langle S, \widetilde{N}u \rangle = 0$. We first claim that $S \circ \widetilde{N} \in X \cap I_A(E)^{\perp}$. To see this, observe that if $u' \in I_A(E)$ then $\widetilde{N}u' \in \Phi(E^*)$

by Lemma 4.1, and so $\langle S \circ \widetilde{N}, u' \rangle = \langle S, \widetilde{N}u' \rangle = 0$ as $S \in \Phi(E^*)^{\perp}$. Thus, $S \circ \widetilde{N} \in I_A(E)^{\perp}$, and, of course, $S \circ \widetilde{N} \in X$ by definition of \widehat{X} . This proves the claim and consequently $0 = \langle S \circ \widetilde{N}, u \rangle = \langle S, \widetilde{N}u \rangle$.

Conversely, let $u \in A(G)$, $\tilde{N}u \in \Phi^{\widehat{X}}(E^*)$ and $T \in X \cap I_A(E)^{\perp}$. Then $S := T \circ \tilde{N}^{-1} \circ \tilde{P} \in T(G)^* = \mathcal{B}(L^2(G))$. We prove that $S \in \widehat{X} \cap \Phi(E^*)^{\perp}$. For $w \in V^{\infty}(G)$ and $u \in A(G)$, $wS \circ \tilde{N} = u_1T$, where $u_1 = \tilde{N}^{-1}(\tilde{P}(Jw))$, as in the proof of Proposition 2.1, and so $S \in \widehat{X}$. Moreover, if $\omega \in \Phi(E^*)$, then clearly $\tilde{P}\omega \in \Phi(E^*)$ and $\langle S, \omega \rangle = \langle T \circ \tilde{N}^{-1} \circ \tilde{P}, \omega \rangle = \langle T \circ \tilde{N}^{-1}, \tilde{P}\omega \rangle = \langle T \circ \tilde{N}^{-1}, \tilde{N}u_2 \rangle$ where $\tilde{N}u_2 = \tilde{P}\omega \in \Phi(E^*)$, so $u_2 \in I_A(E)$ by Lemma 4.1(i). Thus $\langle S, \omega \rangle = \langle T, u_2 \rangle = 0$. Hence we have shown that $S \in \widehat{X} \cap \Phi(E^*)^{\perp}$. This implies that

$$\begin{aligned} 0 &= \langle S, \widetilde{N}u \rangle = \langle T \circ \widetilde{N}^{-1} \circ \widetilde{P}, \widetilde{N}u \rangle = \langle T \circ \widetilde{N}^{-1}, \widetilde{P}(\widetilde{N}u) \rangle \\ &= \langle T \circ \widetilde{N}^{-1}, \widetilde{N}u \rangle = \langle T, u \rangle. \end{aligned}$$

Since $T \in X \cap I_A(E)^{\perp}$ is arbitrary, this shows that $u \in I_A^X(E)$ and (i) is proved.

(ii) Suppose $u \in J_A^X(E)$. To show $\widetilde{N}u \in \Psi^{\widehat{X}}(E^*)$, let $S \in \widehat{X} \cap \Psi(E^*)^{\perp}$. Then $S \circ \widetilde{N} \in X$. We show $S \circ \widetilde{N} \in J_A(E)^{\perp}$ as well. For, if $u' \in J_A(E)$, then $\widetilde{N}u' \in \Psi(E^*)$ by Lemma 4.1(ii) and $\langle S \circ \widetilde{N}, u' \rangle = \langle S, \widetilde{N}u' \rangle = 0$ as $S \in \Psi(E^*)^{\perp}$. Thus $S \circ \widetilde{N} \in X \cap J_A(E)^{\perp}$ and so $\langle S \circ \widetilde{N}, u \rangle = \langle S, \widetilde{N}u \rangle = 0$. Hence $\widetilde{N}u \in \Psi^{\widehat{X}}(E^*)$.

Conversely, suppose $u \in A(G)$ and $\widetilde{N}u \in \Psi^{\widehat{X}}(E^*)$. To show $u \in J_A^X(E)$, let $T \in X \cap J_A(E)^{\perp}$. Then supp $T \subseteq E$ and $S = T \circ \widetilde{N}^{-1} \circ \widetilde{P} \in T(G)^* = \mathcal{B}(L^2(G))$. Now, for $f, g \in L^2(G)$,

$$\begin{split} \langle Sf,g\rangle &= \langle S,f\otimes\overline{g}\rangle = \langle T\widetilde{N}^{-1}\widetilde{P},f\otimes\overline{g}\rangle \\ &= \langle T\circ\widetilde{N}^{-1},\widetilde{P}(f\otimes\overline{g})\rangle = \langle T\circ\widetilde{N}^{-1},\widetilde{N}u_1\rangle \quad \text{where } u_1(x) = \langle \lambda(x)f,g\rangle \\ &= \langle T,u_1\rangle = \langle Tf,g\rangle. \end{split}$$

In other words, S = T as operators on $L^2(G)$. Thus $\operatorname{supp}_{\operatorname{op}} S = \operatorname{supp}_{\operatorname{op}} T$. But by a result of Spronk and Turowska $\operatorname{supp}_{\operatorname{op}} T = (\operatorname{supp}_{\operatorname{VN}} T)^* \subseteq E^*$. This shows that $\operatorname{supp}_{\operatorname{op}} S \subseteq E^*$ and $S \in \Psi(E^*)^{\perp}$. Moreover, for $w \in V^{\infty}(G)$, $w.S \circ \widetilde{N} = u_1 T \in X$ as before and so $S \in \widehat{X}$. Thus $S \in \widehat{X} \cap \Psi(E^*)^{\perp}$ and so $0 = \langle S, \widetilde{N}u \rangle = \langle T \circ \widetilde{N}^{-1} \circ \widetilde{P}, \widetilde{N}u \rangle = \langle T, u \rangle$. The proof is complete. \blacksquare

Now, it has been observed in [5] that the group G acts on T(G) by isometries as follows: for $t \in G$ and $\omega \in T(G)$, $t.\omega(x,y) = \omega(xt,yt)$ for marginally almost all $(x, y) \in G \times G$. This action, in turn, gives rise to an

action of $L^1(G)$ on T(G): for $f \in L^1(G)$ and $\omega \in T(G)$,

$$f.\omega = \int_G f(t)t.\omega \, dt$$

This way T(G) becomes an essential $L^1(G)$ -module. We also have $T(G)^* = \mathcal{B}(L^2(G))$ as an $L^1(G)$ -module with the dual action.

4.4. LEMMA. Let $E \subseteq G$ be closed. Then $\Phi(E^*)$ is an $L^1(G)$ -submodule of T(G).

Proof. This is clear from the definitions of $\Phi(E^*)$ and the $L^1(G)$ -action on T(G).

4.5. LEMMA. Let $E \subseteq G$ be a closed set, let X be an A(G)-submodule of VN(G) and let \widehat{X} be the associated $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$. Then the following are $L^1(G)$ -submodules of $\mathcal{B}(L^2(G))$.

- (i) $\Phi(E^*)^{\perp}$,
- (ii) \widehat{X} ,
- (iii) $\Phi^{\widehat{X}}(E^*)$.

Proof. (i) is immediate from Lemma 4.4 since the $L^1(G)$ -action on $\mathcal{B}(L^2(G))$ is the dual action.

(ii) Let $f \in L^1(G)$ and $S \in \widehat{X}$. We have to show that $f \cdot S \in \widehat{X}$, i.e. $w \cdot (f \cdot S) \circ \widetilde{N} \in X$ for any $w \in V^{\infty}(G)$. So let $w \in V^{\infty}(G)$. Then for $u \in A(G)$,

$$\begin{split} \langle w.(f.S) \circ \widetilde{N}, u \rangle &= \langle w.(f.S), \widetilde{N}u \rangle = \langle f.S, m_w(\widetilde{N}u) \rangle = \langle S, f.m_w(\widetilde{N}u) \rangle \\ &= \langle S, m_{f.w}\widetilde{N}u \rangle = \langle (f.w).S, \widetilde{N}u \rangle = \langle (f.w).S \circ \widetilde{N}, u \rangle. \end{split}$$

Thus, $w.(f.S) \circ \widetilde{N} = (f.w).S \circ \widetilde{N} \in X$, and (ii) is proved.

(iii) This follows at once from (i) and (ii) because of the definition of $\varPhi^{\widehat{X}}(E^*).$ \blacksquare

We are now ready for the main theorem.

4.6. THEOREM. Let X be an A(G)-submodule of VN(G) and let \widehat{X} be the corresponding $V^{\infty}(G)$ -submodule of $\mathcal{B}(L^2(G))$. Then a closed set $E \subseteq G$ is an X-spectral set for A(G) if and only if E^* is \widehat{X} -synthetic for T(G).

Proof. One part is immediate from Lemma 4.3. If E^* is \widehat{X} -synthetic, then $\Phi^{\widehat{X}}(E^*) = \Psi^{\widehat{X}}(E^*)$ and so, by Lemma 4.3, $I_A^X(E) = J_A^X(E)$ whence E is X-spectral.

For the converse, suppose E is X-spectral. To show that E^* is \widehat{X} synthetic, we need only prove that $\Phi^{\widehat{X}}(E^*) \subseteq \Psi^{\widehat{X}}(E^*)$ by Lemma 3.2. In
view of our lemmas, the proof is similar to that of the case X = VN(G)given in [5]. For the sake of completeness, here is a brief sketch.

We have to show that $\omega \in \Phi^{\widehat{X}}(E^*)$ implies $\omega \in \Psi^{\widehat{X}}(E^*)$. Consider first the case $\omega \in \Phi^{\widehat{X}}(E^*) \cap T_{inv}(G)$. In this case $\omega = \widetilde{N}u$ with $u \in I_A^X(E)$ (see the proof of [5, Theorem 4.6]). Thus, by assumption $u \in I_A^X(E) = J_A^X(E)$, so $\omega = \widetilde{N}u \in \Psi^{\widehat{X}}(E^*)$ by Lemma 4.3 and the result is proved in this case.

Now consider an arbitrary $\omega \in \Phi^{\widehat{X}}(E^*)$. For $\pi \in \widehat{G}$ and the matrix coefficients u_{ij}^{π} corresponding to π , $\omega_{ij}^{\pi} = u_{ij}^{\pi}.\omega \in \Phi^{\widehat{X}}(E^*)$ by Lemma 4.5. If $\widetilde{\omega}_{ij}^{\pi} = \sum_k m_{u_{ik}^{\pi}\otimes 1}\omega_{kj}^{\pi}$, then $\widetilde{\omega}_{ij}^{\pi} \in \Phi^{\widehat{X}}(E^*) \cap T_{\text{inv}}(G)$ since $\Phi^{\widehat{X}}(E^*)$ is a $V^{\infty}(G)$ -submodule. Thus $\widetilde{\omega}_{ij}^{\pi} \in \Psi^{\widehat{X}}(E^*)$. But $\omega_{ij}^{\pi} = \sum_k m_{\widetilde{u}_{ik}^{\pi}\otimes 1}\widetilde{\omega}_{kj}^{\pi} \in \Psi^{\widehat{X}}(E^*)$. L¹(G) has an approximate identity $\{u_{\alpha}\}$ with $u_{\alpha} \in \text{span}\{u_{ij}^{\pi}: i, j = 1, \ldots, d_{\pi}, \pi \in \widehat{G}\}$ for all α and $u_{\alpha}.\omega \in \text{span}\{\omega_{ij}^{\pi}: i, j = 1, \ldots, d_{\pi}, \pi \in \widehat{G}\}$ for all $\alpha.\omega \in \Psi^{\widehat{X}}(E^*)$.

Acknowledgements. The second author gratefully acknowledges financial support from the National Board for Higher Mathematics in the form of a research fellowship during the period of this work.

References

- W. Arveson, Operator algebras and invariant subspaces, Ann. of Math. 100 (1974), 433–532.
- [2] J. Froelich, Compact operators, invariant subspaces and spectral synthesis, J. Funct. Anal. 81 (1988), 1–37.
- [3] E. Kaniuth and A. T.-M. Lau, Spectral synthesis for A(G) and subspaces of VN(G), Proc. Amer. Math. Soc. 129 (2001), 3253–3263.
- [4] K. Parthasarathy and R. Prakash, Spectral synthesis in the Fourier algebra and the Varopoulos algebra, submitted.
- N. Spronk and L. Turowska, Spectral synthesis and operator synthesis for compact groups, J. London Math. Soc. 66 (2002), 361–376.
- [6] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51–112.

Ramanujan Institute for Advanced Study in Mathematics University of Madras Chennai 600 005, India E-mail: krishnanp.sarathy@gmail.com rprakasham@yahoo.co.in

> Received November 28, 2005 Revised version September 20, 2006 (5816)