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Weak-L? solutions for a model of
self-gravitating particles with an external potential

by

ANDRZEJ RACZYNSKI (Wroctaw)

Abstract. The existence of solutions to a nonlinear parabolic equation describing the
temporal evolution of a cloud of self-gravitating particles with a given external potential
is studied in weak-L? spaces (i.e. Marcinkiewicz spaces). The main goal is to prove the
existence of global solutions and to study their large time behaviour.

1. Introduction. We consider the Cauchy problem for the equation

(1) u =Au+ V- (uVe)+ V- (uVP),

coupled with the Poisson equation A¢ = u written in the form

(2) V¢ =VE, xu,

where E,(z) = —((n — 2)0,)"!2|> ™, n > 3, is the fundamental solution

of the Laplacian in R™ and o, is the area of the unit sphere in R". We
supplement the system (1)—(2) with the initial condition
(3) u(z,0) = uo(x).

The system above describes the temporal evolution of the density w(z,t)
of a cloud of self-gravitating particles and the potential ¢(x,t) generated by
gravitational interaction between them. The function @(x) in the third term
on the right-hand side of (1) represents the given external potential.

The model (1)—(3) can also be considered with electric interactions replac-
ing the gravitational ones. In this case the equation (2) should be rewritten
as

V¢ = -VE, *u.

Usually, the results for this model are “better” than for the gravitational one,
but the methods used here for the construction of solutions do not allow us
to obtain qualitatively different results. Thus, the results we obtain for this
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model are the same (with similar proofs) as for the model considered in this
paper.

Let us review briefly the basic literature and previous results concerning
the model in question.

The physical interpretation of the system has a long history and goes
back to Nernst and Planck (see [7] and references therein). In the original
problem electric interactions were assumed and the problem was considered
in a bounded smooth domain in R”.

A very good introduction to mathematical aspects of the physical prob-
lems which are modelled by our problem and its generalizations can be found
in [18] (also [19] is useful).

A good background and physical motivation for the gravitational inter-
pretation of the system (1)-(3) can be found in [22].

The majority of the relevant papers are devoted to the problem in
bounded domains of R™ with appropriate boundary conditions (usually no-
fluz boundary condition and Dirichlet condition for the potential ¢). For such
a problem the external potential @ is usually M*E,, (interpreted as putting
an additional mass or charge M* at the origin) and the results strongly
depend on the dimension of the space and the type of interactions.

Let us briefly overview the results obtained (they come mainly from the
papers [6], [7], [14], [22]).

For the Coulomb case (with electrical interactions assumed) the main
results have been obtained for radially symmetric solutions with integrated
density u as a main tool. With My = SQu the existence of stationary so-
lutions for n = 2, M* < 47 and any My has been established. In the two-
dimensional case for M* > 47 and any My, and for arbitrary values of My
and M™ in three- or more dimensions, the nonexistence of steady states has
been proved.

Similar results have been obtained for evolution solutions (together with
their convergence to stationary solutions for n = 2, 3).

The same results have been obtained for the problem in the whole space.

For n = 2 also self-similar solutions have been considered (by the defini-
tion, such solutions are defined in the whole space R?). Just as for radially
symmetric solutions, the existence of solutions for M* < 4w and arbitrary
My has been proved.

For more general assumptions on @ and without radial symmetry as-
sumed, the existence of local-in-time weak solutions has also been proved,
but only in bounded domains.

In the gravitational case the existence of solutions depends on the dimen-
sion and the values of M* and My, but in a more sophisticated way than in
the Coulomb case.
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To be more precise, for radially symmetric solutions in two dimensions
the existence of solutions (stationary and global-in-time) depends on the
quantity Mo+ 2M*. If this quantity is less than 87, the existence of solutions
is guaranteed, while My + 2M™* > 87 implies the nonexistence.

In the three-dimensional case the nonexistence of stationary and local-
in-time solutions has been proved for M* > 0.

For the problem in the whole space R", the nonexistence of local-in-time
solutions has been proved for n = 2 and M* > 4x, and for n > 3 and
M* > 0.

For self-similar solutions in R? the condition Mg+ 2M* < 87 guarantees
the existence of such solutions.

The existence of weak local-in-time solutions has been established (for
bounded domains) also for more general assumptions on .

In [13] the assumption @ = 0 is made but the paper contains a good
introduction to the problem in the whole R™.

Most of the results mentioned above concern the case ® = M*E,,. The
ideas used in those papers have been developed in [5] where the general
form of the flux (in our paper given by V(¢ + @)) has been considered (in a
bounded domain). Under some hypotheses on LP estimates of this flow the
existence and uniqueness of local-in-time as well as stationary solutions have
been proved.

R. F. Streater extended the classical Nernst—Planck—Debye—Hiickel drift-
diffusion system for charged but noninteracting particles (see [20]) by intro-
ducing a new variable (temperature). The augmented model with an addi-
tional equation for the heat flow has been considered in e.g. [4], [8]. Since
Streater’s model in the general setting is difficult, in the present paper the
external potential is assumed to be 0. The first results concerning nonunique-
ness of steady states with & Z 0 can be found in, for example, [15].

As stated in [7], introducing an additional potential (even in the form
¢ = M*E,) implies that the problem is more difficult mainly because of
singular terms containing the derivatives of the potential. This as well as
external potentials of general form raise the question about the functional
setting in which the existence of solutions should be considered.

Results for the problem without external potentials have been given in
[2] and [3].

For the problem with external potential, suitable assumptions on ¢ and
the proof of existence have been given in spaces of pseudomeasures ([17]).

The main aim of this paper is to point out another example of spaces in
which global singular solutions can exist as well as to specify requirements
on external potentials to obtain such solutions.

The importance of such a choice of space will be discussed below.
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Additionally, our knowledge of spaces in which singular solutions for the
problem without external potential can exist is also enriched (recall that for
such problems self-similar solutions can also be considered).

Finally, in the last section a result concerning asymptotic behaviour of
the solutions obtained will be given.

In this paper we look for solutions of the problem (1)-(3) in the Marcin-
kiewicz space LP'*>°(R"™). Let us recall the definition:

DR = {0 € L) ollpoe = sup B4 § o(a)] o < oo,
ECR™ E
where p > 1, and F runs through Borel sets with finite and positive mea-
sure |E|. Sometimes, to show that f € LP°°(R") it is better to use the
quantity

1f 11500 = sup si{w : | f(z)] > s}/?
>0
(which is not a norm), for which the following inequalities hold:
p
110 < M1Fllpc0 < —— 1 Flp.c0-

The reader can find more properties of the spaces LP**°(R") in, e.g., [9,
Sec. 2].

Notations. We denote by || f||, the norm in the usual Lebesgue space
LP(R™). The symbol C' denotes various inessential constants which may vary
from line to line.

Let
Xp = Cu ([0, 00); LP*(R™))

be the space of vector-valued functions u = u(x,t) such that

o (pnu(z, t)o(x)de — (g, u(z,0)¢(x) dr as t \, 0 for each test function
¢ € S(R™), the Schwartz class,

e u(t) is a bounded and continuous function from (0,7 to LP*°(R") in
the norm topology of LP*°(R™).

The necessity of considering C,, instead of the space of strongly continu-
ous functions C(]0, c0); LP>°(R™)) is caused by the fact that the heat semi-
group is not strongly continuous on LP**°(R™) but only weakly continuous.
To see this, it is enough to check that ||e!?|x| /P — |z|~"/P||, ~ = const.

LP>°(R™) is an example of a space which is not separable but is dual to a
separable space. In fact, for the Lorentz space Lpl’l(R”) (p is the conjugate
index to p) we have LP>®°(R") = (LP"1)*(R™) and LP"'(R") is separable
with dense subset S(R™). Examples of applications of such spaces to the
Navier-Stokes or nonlinear heat problems can be found in [10], [11].
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By a mild solution of the problem (1)-(3), we understand a solution
u € Cy([0, 00); LP>°(R™)) of the integral equation
t
(4) u(t) = e“ug + S =AY - (u(s)V(s)) ds
0

+ e 794V - (u(s)Vd(5)) ds,
0
),

where V¢(s) = u(s), and the integral is the Bochner integral. The
first term is Well deﬁned (in the paper [1, Lemmas 2&3] the reader can
find a detailed proof that e'4ug € X, for every ug € LP*°(R") and t > 0)
but such a meaning of a solution is not suitable for our construction of
solutions of the Cauchy problem. The difficulty is caused by the fact that
for p > n/2 the term e(*=9)AV . (u(s)V¢(s)) is not Bochner integrable on
[0,7] with values in LP*°(R™). To see this, it is enough to observe that
for stationary solutions which are homogeneous of degree —2 (see a note
about the Chandrasekhar solution below), the term in question corresponds
to a tempered homogeneous distribution of degree —4. Thus, there exists
a distribution H such that

et=IAY - (u(s)Ve(s)) = (t —s)2H (

Vit — s> '
Since

(5) IF A lpoe = A 21 llp.0,

we have
1A - (u(5) V() lpoo = (£ = 5) 22| H oo

which implies that this term is not Bochner integrable for p > n/2. To
remove this difficulty, the integrals with respect to s in equations (4) should
be defined in the weak sense (as, for example, in [3] and [23, Def. 2]). For more
explanations, we refer the reader to [3] and references therein. Nevertheless,
a distributional solution of (1)—(3) which belongs to &), is a solution of the
integral equation (4) and vice versa. This equivalence can be proved following
the computations for the Navier—Stokes equations in [23, Th. 5.2].

The importance of the space L™/ 2,20(R™) comes from the fact that for
n > 3 there exists a stationary singular solution to the problem with no
external potential. It is called the Chandrasekhar solution and has the form

uc(z) = 2(n — 2)|z| 2.

It is easy to check that uc(x) belongs to L™>*(R™) (as well as to X2, if
uc is interpreted as a constant function of ). Indeed, we have ||uc||, /2,00 =

2
2(n — 2)| ]2 [ln/2,00 < 2007,
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As stated in [3], it is expected that uc is a solution with critical singularity
of the initial data in the sense that for small initial data vy < euc, 0 < e < 1,
the solution exists, and for initial conditions ug such that ug(x) > uc there
is no solution to the problem (1)-(3).

Another advantage of the use of the spaces LP-*°(R"™) is that this nat-
ural extension of the space LP contains homogeneous functions of degree
—n/p (which, of course, do not belong to LP(R™)). For our model this gives
us an opportunity to consider self-similar solutions to the problem (1)-(3)
(with @ = 0), i.e. functions u(t) with the scaling property u(t) = uy(t) =
Nu(Az, A%t) for all X > 0, in the space L™2®(R").

To simplify the notation, we will denote the quadratic term in (4) by
B(u,u), with the bilinear form B defined by

t
B(u,v) = |2V - (u(s)V(s)) ds,
0
where ¢(s) is obtained from v by putting V¢(s) = VE, * v(s).
Analogously, denote the linear term in (4) by Lu with L defined by
t
Lu= Se(t_S)AV (u(s)VP(s)) ds,
0
where @ is a given external potential. In this way our problem can be rewrit-
ten as follows:
u(t) = e"®ug + B(u,u) + Lu.

2. Main tools. A modification of a well-known theorem by Y. Meyer
([12]) is the main tool which will be used in this paper. The theorem below
gives the existence and uniqueness of the solution via a contraction mapping
argument.

THEOREM 2.1. Let X be a Banach space. Assume that B : X x X — X
18 a bilinear form such that
1B(y, 2)llx < Kllyllxllz]x

for some K > 0 and all y,z € X. Let L : X — X be a continuous linear
operator with

ILyllx < yllx
with some ¢ < 1.

(i) For every a € X such that ||a|x < (1 — €)? /4K, there exists a solution
x € X to the equation

(6) x=a+ Lz + B(x,z).
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This solution satisfies the estimate
10—/ -0?—4K]allx _1-¢
2K - 2K

Moreover, for |la|lx < (1 —£)2/4K, this solution is unique in the
open ball in X of radius (1 —¢)/2K.

(ii) The solution obtained depends continuously on a in the following way.
For b € X such that ||bllx < e < (1 —0)%/4K and for v being the
solution of the equation v ="b+ Lv + B(v,v) we have

lu—vllx < ((1-€)* = 4Ke)"|a = b|x.
The choice of the function space X is of crucial importance in the appli-
cation of the above theorem.

We recall a slight modification of a theorem by E. Terraneo ([21, Prop.
1.5]) which will be used to estimate the bilinear form B(u,v).

THEOREM 2.2. Letn > 1,1 <p <mn,and 1/r =1/p—1/n. Let f €
L>((0,T7); LP*>°(R™)) for any 0 < T < co. Then there exists C' = C(r,p) >0
such that for every a € [0,t) witht < T,

lllx <

t
(7) |§et=92V () ds| < C sup [1£(3)]poc m
a 7,00 a<s<t
Let us also recall two estimates for the norm of the product and convo-
lution of two functions in Marcinkiewicz spaces. The proofs of the following
lemmas (even in a more general setting) can be found, e.g., in [16, Theorems

3.4 and 2.5|).

LEMMA 2.3 (weak Holder inequality). For 1 < p < oo and 1 < q,r < 0o
such that 1/r = 1/p+1/q and for all f € LP*°(R") and g € LY"*°(R"), the
product fg belongs to L™>°(R™) and

1£9llrc0 < Clifllpocllgllg,oo,

with a constant C' = C(p,q). m

LEMMA 2.4 (weak Young inequality). For 1 <p,q < oo and 1 <r < oo
such that 14+ 1/r =1/p+ 1/q and for all f € LP*°(R™) and g € LY*°(R"),
the convolution f x g belongs to L"™>°(R™) and

1S * gllroo < CI ]
with a constant C = C(p,q,n). m

poollgllg.oor

3. Global solutions in the space X),/5, n > 3. In this section we
prove the existence of global solutions in the space X, /5, n > 3. Since the
three-dimensional case needs a restriction to a subspace, a counterpart of
the result below for that case will be proved in the next section.



206 A. Raczynski

First observe that the function |z| =7 for 0 < v < n belongs to L™7>°(R™)
with

_ n
|| |ZE’ 7||n/7,oo < Gg/n’
-7
so that the Chandrasekhar solution uc(x) belongs to L™/ (R"), n > 3.

Next, we consider some properties of the heat semigrup e*“ug in the scale
of Marcinkiewicz spaces.

LEMMA 3.1. For any ug € LP*°(R"), we have e'“uy € X, with the

estimate ‘A
e uollx, < C(n,p)lluollp,co-

Proof. This is obvious due to the following inequality ([1, Lemma 1]) for
1<r <p<oo:

_ncl_ 1
8) 12 fllpoo < C(n, )t 272 Floo
with r=p. =

Combining Theorem 2.2 with the weak Holder and Young inequalities we
obtain the crucial estimate of the bilinear form B.

LEMMA 3.2. Letn > 3. There exists a constant K = K(n) > 0 such that
for any u,v € X, /5 we have

1B, ), ,, < Klullx,, [0, -
Proof. Applying Theorem 2.2 we get
1B (u, v)(1)]

r,00 < C(T‘, 7’L) Sup ||uw”7"n/(r+n),oo
0<s<t

with an arbitrary r > n/(n — 1). Estimating the last norm we use the weak
Holder inequality to obtain

r.oo|w]ln,c0-

”uw||rn/(r+n),oo < C(Ta ’I’L)||U|
Since w = VE, x v, due to the weak Young inequality we have
wlln,co = [[VEn * v||n,00 < C(r, n)||VEH||nr/(nr+r—n),oo||U”1",OO'

The gradient |VE,(z)] = o, z|*™ belongs to L™~ 1):(R"), thus
nr/(nr+r —n) must be equal to n/(n — 1), which implies that » = n/2.
This choice of r also implies that n must be greater than 3. So we have

nllnr/(nr+r—m),00 — on a n/(n—1),00 = o
IVE,| el < no, /"

Summing the inequalities above we arrive at
1B, v)(t)]lr.c0 < C(n)oiugtuu(s)”n/2,<>oHU(S)Hn/2,oo <C)llullx, . lvlx, .-
S

Taking the supremum with respect to ¢t > 0 completes the proof. m

The next step is to prove a similar estimate for || Lu|| x, .



Self-gravitating particles with external potential 207

LEMMA 3.3. For n > 3, any function u € L™°(R™) and any external
potential & such that V& € L™ (R") we have

[ Lullx, < flullx.
with a constant £ = {(n,r,®) independent of u.

Proof. Due to Theorem 2.2 we have, for any r > n/(n — 1),
[ Lu(@)llr00 < C(n,r) sup [[uVD|rn)(rin),co-
0<s<t

As in the previous lemma we estimate
”uv¢”rn/(r+n),oo < C(T, n)HuHXTHV@HH,Om
which completes the proof. »

REMARK. In Lemma 3.3 the function u belongs to X,.(R") for any r >
n/(n — 1) but in the following theorem we restrict ourselves to r = n/2 since
the estimate for B(u,v) holds true only for that r.

To apply Theorem 2.1 it remains to prove the weak continuity in ¢ of
the quantities B(u,v)(t) and Lu(t). This can be done by rewriting them in
a similar way to what was done for the estimates above, so we leave this to
the reader.

Applying Theorem 2.1 and Lemmas 3.2 and 3.3 we arrive at the following
theorem:

THEOREM 3.4. Let n > 3 and ug € L™?°(R™). For & such that V® €
L™ (R™) and ||VP|nco is small enough, namely ¢ = {(n,P) defined in
Lemma 3.3 is smaller than 1, for K = K(n) (defined in Lemma 3.2) and ug
such that

tA (1-20)°
le"uoll, , < 7=
there exists a solution u € X,, /5 of the equation
9) u = e"?u(0) + Lu + B(u, u).

. . . C e " 1—¢
The solution is unique among those satisfying the condition |ullx, ,, < 57 -

4. Existence of a solution in a subspace of &5, n > 3. In this
section we prove the existence of solutions in a subspace of &, ; with a
control of the decay of the L™*°(R™) norm (r > n/2) of the solution. Such
a restriction allows us not only to prove the existence of global solutions
in that subspace for n > 3 but also obtain global solutions in the three-
dimensional case.

Define

Yo = {v € Lige((0,00); LY (R")) : [[vlly, = Sugtl_”/mHv(t)Ha,m < oo},
t>

where o > n/2.
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Let us begin with ug.
The regularizing effect of the heat semigroup in the scale of Marcinkie-
wicz spaces is expressed in

LEMMA 4.1. For any ug € L™%(R"™) the solution of the heat equation
etAug belongs to Y, for all a > n/2.

Proof. This is a simple consequence of (8). Indeed,

e uoll, = supt="/2 e 2ug]lo . < C(n1,0) 0o 2.0
>

for o > n/2 and ug € L'/>. u

REMARK. Note that ug € L”/Q"X’(R”) implies et4yg € X2 N Vo for all
a>n/2,n>3.

The following lemma establishes the required estimates for the bilinear
form B in the space V,.

LEMMA 4.2. Let n > 3. For any n/2 < a < n there exists a constant
K = K(n,«a) such that for all u,v € Yy,

1B (w, v)llya < Kllully,l[vlly,-

Proof. Since the semigroup €' acts by convolution with the heat kernel,
we have
t .
1B (1, 0) (1) [layoo < Cln, @) | (¢ = 5) /2712 7’( ﬁ> *(uVe)|  ds,
a,00 (S) P— oo

where P(z) = e 1?2, with |P(-/v/f— $)|lpoo = C(n,a)(t — 8)2||P||p.co
(by (5)). Applying the weak Young and Holder inequalities for 1/p = 1 +
1/n—1/a and 1/qg=2/a — 1/n we get

1B, 0) (1) a0

< C(n, ) { (t = 8)7"2Plpocll(w - V) (s)]
0

g,00 ds

< O(nya)((§ (8= 9)7"2u() a0 | VE(5) lnar/ () dS) IPllp.c0

< O(nya)( § (= )72 u(s) ayo0l0(5) o0 dS) IV Enl[n/(n-1),00 Pllp,co

< O(nya)( §(t —s)7/2es—24n/e dS) IPllpcollullye[0llya IV Enllnn-1),00-

/N Y /N
Ot o+ O e O e o+
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The last integral converges if and only if « € (n/2,n), and is equal to
1
t—1+n/2as (1 _ :C)—n/2ax—2+n/a dr — 75—1+n/2aB _n +1.—-1+ n
0 200 a)’
where B is the Euler Beta function. The condition o € (n/2,n) implies that
the required conditions p,q > 1 are also fulfilled.
Multiplying both sides of the inequality by t!~"/2% and taking supremum
over t > 0 we arrive at the required estimate of the bilinear form B(u,v). =
Now, we prove a similar estimate for the operator L.

LEMMA 4.3. Letn > 3. For anyn/2 < a < n, u € Y, and any external
potential & such that V& € L™*°(R") we have

[Lully, < Clully,
where £ = {(n, a, D).

Proof. We split the integral into two terms:
t
Lu = Se(t*S)AV (u(s)Vo(s))ds

0
t/2 t

= | AV - (u(s)VO(s)) ds + | eV - (u(s)VD(s)) ds
0 t/2

= Liu + Lou.

For L1 we have

t/2
|L1u()]lace < Clna) § (¢ —s)7/2712 P( : ) * (V)| ds.
0 Vt—s 00
Analogously as in Lemma 4.2 we estimate
| Eat(®) oo
t/2
< C(TL, a) S (t - S)_lnpnn/(n—l),oo”(u ’ V@)(S)Hnoz/(n—f—a),oo ds
0
t/2
< Cln,)( (0= )7 () oo 45 ) [V@lnocl Pl n 1)
0
t/2
< Clny)( § (0= )7 7208 ) [P 1) [0l 9@ e
0

The last integral converges, and equals ¢~ 1+7/2 83/2(1 — &) e Hn/2e ge
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Thus we have
(10) IL1u(t) e < C(n, a, @)t H2uly, .

Here, the singularity of the function (¢t — s)~! causes that the above
estimate cannot be true in the whole interval (0,¢). This is the reason we
split the operator L into L; and Lo. We circumvent this difficulty in the
integral Lo by using Theorem 2.2. Applying the inequality (7) with r =
a,p=na/(n+a), a =t/2, and then using the weak Holder inequality we
have

IL2u(®)llace < || § €2V (- Vo)(s) ds

/2 @,00
< C(”? a) sSup H(u ’ v¢)(S)Hna/(n+a),oo
t/2<s<t
<Cn,@) sup |u(s)]la,00 VOlln,c0
t/2<s<t
¢ —(1-n/2a) . )
< cmo)(3) U2 (5) o | Vo
t/2<s<t

< C(n,a)t” 2 |lu|y, [V | co-
Thus, we arrive at

(11) 1Z2(t) a0 < C(n,c, @)t |y,

Summing up (10) and (11), multiplying the result by t1=7/22 and finally

taking supremum over ¢t > 0, we arrive at the required estimate for the
operator L. m

Until now we used only the space V,, a € (n/2,n), but we may have
difficulty in defining the convergence to initial data ug (the norms |[u(t)|a,00
may tend to oo as t — 0). Therefore we restrict our considerations to a
subspace of X, /5, namely X, /5 N Yy, i.e. we consider two Banach space
norms for the construction of solutions.

The norm in this space is given by

To prove the existence of a global solution for n > 3 we can apply Lemmas
3.2 and 4.2 to get the estimate
1B(u, v)||x, )50ve < Kllullx, snvallvllx, ;v
Then, applying Lemmas 3.3 and 4.3, we get
[ Lullx, sy < Lllull, oy

These inequalities together with the weak continuity allow us to apply
Theorem 2.1 to obtain the existence and uniqueness of global solutions for
n > 3.
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But replacing X, /5 by its subspace gives us also the opportunity to prove
global existence in the three-dimensional case.

To do this we have to replace Lemmas 3.2 and 3.3 by their more sophis-
ticated version.

LEMMA 4.4. Forn > 3 and a € (n/2,n), there exists a constant K =
K(n,a) such that for all u € X,,/5 and v € Y,

1B(u, )l x,,, < Kllullx, ,l1v]lya-
Proof. Similarly to the proof of Lemma 4.2 we begin with the estimate

t
15,00z < (¢~ P s ) < v

where P(z) is as in the above mentioned proof. Applying once again the weak
Young and Holder inequalities for 1/p =1+1/n—1/aand 1/¢ =1/n+1/a,
we get

ds,
n/2,00

1B, 0)()llnja.00 < Clr, ) § (8= 8) 2P ool (- V) () gioo

ctno(fic-
<§t—
mo(fo-

The last integral converges if and only if « > n/2 and equals

ds

)72 |u(3) 2,06l VO(3) s 1) 85 ) [Pl
S n/2aHu( )Hn/2,oo”v<s)Ha,OOdS>HVETLHn/(n—l),ooH,PHP@O

5) /20 g~ 14n/ 20 ds)HPHp,mHuHx 2 [ IVER |l (n-1),00

1
S (1 — ) M2ap=1Hn/20 g — B L
0 20 a)’
where B is the Euler Beta function. The conditions « € (n/2,n) and n > 3
imply that the required conditions p,q > 1 are also fullfilled. Taking the
supremum over t > (0 we arrive at the required estimate of the bilinear form
B(u,v). =

To prove the estimate for L for n = 3 (the proofs remain valid also for
n > 3) we modify the proof of Lemma 4.3 to get the following

LEMMA 4.5. Let n > 3. For n/2 < a < n, u € Y, and any external
potential ¢ such that V& € L™ (R"™) we have

Ll , < flully,
where £ = {(n, a, D).



212 A. Raczynski

Proof. To prove the lemma we do not need to split the integral into two
terms as in Lemma 4.3.
In fact, for 1/p=1+4+1/n—1/a and any o € (n/2,n) we have

[ Lu(®)]n/2,00
t
< C(n,« ”/2_1/2 77(7) * (uVP ds
§ Vt—s ( ) n/2,00
t
S t_s /2 1/2+n/2pHPHPOOH(u vgp)(s)una/(n-&-a),oo ds
0

< Cln, ) (§(t = )7 u(s) oo 45 ) [Vl el P oo

< C(n, ) (§(t = )27 5 ) [Py ]y, | VB

Ot o+ Ot o+

The last integral is equal to 8[1)(1 — &)~ 2ag—14n/20 ¢ < 50 Thus we have
[Lu()]n/2,00 < Cln, a, @)|[ully,-
Taking the supremum over ¢ > 0 leads to the required estimate for L. m

Thus taking into account Lemmas 4.2-4.5 we get

(12) 1B(u, v)||x, ,0ve < Kllullx, prvallvllx, ooy,
and

These inequalities and the weak continuity property (which can be
proved in a similar way) applied to Theorem 2.1 give the existence of global
solutions in the subspace X, /3 N Y, for n =3 as well as for n > 3.

We have

THEOREM 4.6. Letn > 3 and n/2 < o < n. For ¢ with V$ € L™>°(R")
and ug € L2 gych that
(1-0)?
4K
where the constants K = K(n,a) and ¢ come from (12) and (13), there exists
a solution u € X, /5 N Vo to the problem (9). The solution is unique among
those in the open ball centered at the origin with radius equal to (1 —¢)/2K.

0= t(n,0,[|VOl|neo) <1, [l uo]l, 0y, <

5. Conclusions and remarks. Since for n > 3 we proved the existence
of solutions in both the whole space A, , and its subspace we obtain a simple
consequence of the theorems above:
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PROPOSITION 5.1. Let n > 3 and n/2 < a < n. For ¢ such that Vo €
L™ (R™) with ||[V®||p00 small enough that £ = l(n, o, |VP|n00) < 1, there
is no stationary solution U = U(x) with small norm ||U|,, /2,00

Proof. Assume that such a stationary solution U exists. Since its norm
U]l /2,00 is small enough, we can obtain the unique global solution belonging
to A, /o (due to Theorem 3.4) and to its subspace X, /5 N Vo, n/2 < a <
n (due to Theorem 4.6). From Theorem 3.4 we conclude that U must be
that global solution (but independent of time). Due to the uniqueness and
Theorem 4.6, U must also belong to ),. This implies that 751_’"”/2"‘|]U||n/27C>o
has to be bounded, which is impossible. Thus, a stationary solution with
small /2% norm cannot exist.

The space of pseudomeasures. Another possible functional setting is the
space of pseudomeasures

PM = {v e S'R") : 0 € L .(R"), ||[v]lpase = esssup |€]2[5(€)] < oo}
¢eRn
The existence and uniqueness of the global (&« = n — 2) and local (a €
(n — 1,n — 2]) solutions in these spaces have been considered in [17].

We are mainly interested in the space to which the Chandrasekhar solu-
tion belongs, i.e. PM™ 2, The intersection of L% (R") and PM" 2(R") is
not empty (e.g., the Chandrasekhar and homogeneous functions are there).
However, it is not obvious how to characterize the sets L™2°°\ PM"~2 (or

PMn_2 \ Ln/?,oo)_

6. Asymptotic stability of solutions. In this section we describe the
asymptotics of solutions to the evolution problem. The first observation is
that if we let u(t) be the solution with ug € L™/>>, and v(t) be the solution of
the heat equation with the same initial condition, then, due to the estimates
for || B(u,v)ln/2,00 and [ Ll /2,00,

[u(t) = v(#)lln/2,00

< B (u, w200 + 1tz o0 < Klullk, , + ullx, , < const.

This means that the solutions u(t) stay in a neighbourhood of v(¢), i.e. u is
a perturbation of v.

THEOREM 6.1. Let u(t) and v(t) be the solutions of the problem with
the same external potential ¢ and initial data w(0) and v(0) respectively.
Choose u(0) and v(0) such that ||e’fAu(0)||Xn/2 < e < (1-072%/4K and
et 2v(0)||x, ,, < e < (1—£)2/AK. If, additionally, the solutions of the heat

2 S
equation with the same initial conditions u(0),v(0) approach each other, i.e.
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(14) Jim (/e 4(w(0) ~ 0(0)) /2,00 = 0.
then for € small enough we also have
i [u(t) — v(8) 2.0 = 0.
Proof. Before we prove the main conclusion, let us estimate the norm

| S =AY (fg)(s) ds||,/2,00- Using similar calculations to those in Section 4
we have

| [lt-929 (79)(s) ds
0

n/2,00

+ H § et =AY (fg)(s) dsH

t/p
< || § 929 ()(s) ds
0 t/p

n/2,00 n/2,00

t/p
< CLOPllnyin-1)oollglla, | &= 8) 7 F(8)lny2,00 ds
0

+Co(n)lgllx, sup (£ (s)lln/2,00

t/p<s<t
» 1/p
< Ci(n) P 1Pllnytn-1),00l9ll, § 11LF(E8) /2,00 ds
0

+Co(n)llgllx, sup [1£(5)lln/2,00-

t/p<s<t
Applying the above estimate for quadratic and linear terms we get
() = 0(®)llj200 < €2 @(0) = 0(0)) 2,00 + B = v,10) 2,
+ B0, u = 0)ln/2,00 + [1L(u = v)lln/2,00
< 1€ ((0) = v(0))ln/2,00
+ K max{l|ulx, 5, [vllx, . } +€)

1/p
p
x (01<n> L Pl tyoe § = 0) (0l s
0
1 Cyln) sup |r<u—v><s>||n/2,oo)
t/p<s<t

where K and /¢ are the constants obtained in Section 3 (we also use the
estimate for ||[V@||n o0). Thus we arrive at
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[u(t) = v(#) /2,00 < 1€ (w(0) = v(0))[lny2,00 + (1 — /(£ — 1) — 4Ke)
1/p

J 11(w = 0)(t5)ln 2,00 ds
0

p
< (NP0 52

 Cyln) sup ||<u—v><s>||n/2,oo).
t/p<s<t

Since we want to find lim—co [[u(t) — v(t)|ln/2,00, let us define

A =limsup [[u(t) = v(t)[[n/2,00 = lim sup |lu(t) = v(t)]n/2,00-
t—00 k—ooy>keN

Observe that, due to assumption (14) and the Lebesgue dominated con-
vergence theorem, the inequality above can be rewritten as

A< (CUDIPIo0 7 +Colo) ) (1= VT TP = 4R2) 4

Since the second term of the right-hand side is less than 1, and
Cl(n)HPHn/(n_l)mp%l — 0 as p — oo, the asymptotic stability depends
on the value of Cy(n) only. If Co(n) < 1 then A = 0. Even for Cy(n) > 1 we
can also get A = 0 but only for € small enough. This implies that A =0, so

Jim [[u(t) = v(®)lln/200 = 0
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