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Around the Kato generation theorem for semigroups
by

JACEK BANASIAK (Durban) and MIROSEAW LACHOWICZ (Warszawa)

Abstract. We show that the result of Kato on the existence of a semigroup solving
the Kolmogorov system of equations in [; can be generalized to a larger class of the so-
called Kantorovich—-Banach spaces. We also present a number of related generation results
that can be proved using positivity methods, as well as some examples.

1. Introduction. In his seminal paper [18], Kato pioneered the use of
what later became known as positivity techniques to prove the existence of a
semigroup solving the Kolmogorov system of equations in the space [, and
provided some characterization of its generator. This result can also be found
in several monographs such as, e.g., [11, 12, 16]. It seemed that a particular
lattice structure of [; was essential for the proof, and a few generalizations
of Kato’s result which appeared later, [26, 27, 4, 5, 7], were all confined to
the so-called AL-spaces which include [y and L; spaces. Precisely speak-
ing, an AL-space is a Banach lattice whose norm is additive on the positive
cone (as are the norms of /; and L; spaces) and, in fact, it can be proved
that every AL-space is lattice isometric to an Ly space (see e.g. [2, Theorem
12.26]).

However, as we will see in this article, what Kato’s proof really requires
is not the AL structure of the underlying space but the property that any
non-negative increasing and norm bounded sequence is norm convergent. The
latter is the defining property of the so-called Kantorovich-Banach spaces
(K B-spaces) that include, among others, the AL-spaces and reflexive spaces.
Precisely, it can be proved that X is a K B-space if and only if the space ¢y
is not lattice embeddable in X [2, Theorem 14.12].
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In this paper we shall view Kato’s result as a perturbation theorem pro-
viding conditions under which a positive perturbation of a generator of a
positive semigroup is still a generator of a semigroup and, using the above
observation, we extend it to K B-spaces. Moreover, we provide several other
generation results which utilize similar techniques and, in particular, we gen-
eralize a theorem of Desch [14, 27] which allows us to deal with not necessarily
positive perturbations.

We also relate our results to the existing perturbation theorems and
provide examples of applications to birth-and-death type problems.

Acknowledgements. The authors express sincere thanks to the anony-
mous referee for numerous comments and suggestions which substantially
helped to improve the paper.

2. Mathematical preliminaries. In this section we shall introduce the
notation used in the paper and collect most of the definitions and results on
which the paper is based for easy reference.

In many natural sciences’ applications the quantities described by the
model should be real and nonnegative, e.g., probability, particle or mass
density, absolute temperature. To cater for this, the original setting for ab-
stract models should be a real Banach space with a notion of positivity
compatible with the original linear structure, that is, a real Banach lattice.
However, when we discuss spectral properties of the model, we shall move
to a complex space through the procedure called complexification which is
described in detail below.

Let X be a real Banach lattice. We denote by X™* its topological dual
which is also a Banach lattice; the duality pairing is denoted by (-,-). The
order in any Banach lattice will be denoted by >. For any subset Z of X or
X*, we denote by Z the nonnegative part of Z, that is, the set of all z € Z
satisfying z > 0.

For a given linear operator A on X, o(A) and o(A) denote, respectively,
the resolvent set and the spectrum of A. The spectrum o(A) is subdivided
into the point spectrum (eigenvalues) o,(A), the continuous spectrum o(A)
and the residual spectrum o, (A). Let R(\, A), A € p(A), denote the resolvent
of A. If A is bounded, then r,(A) denotes its spectral radius.

We will be working with positive operators. Let us recall that a linear
operator A on a Banach lattice X is said to be positive if Az > 0 for all
x € D(A)4+ := D(A)NX 4. A positive operator defined on the whole space is
bounded. Furthermore, an additive positive operator is fully determined by
its restriction to the positive cone, that is, if A is an additive positive operator
on X, then it extends to a unique positive linear operator on X. Also the
norm of A is determined by the values of ||Az| on {z € X4; ||z| < 1}. In
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particular, if 0 < A < B, then ||A|| < ||B||. The above results are well-known
and the proofs can be found in, e.g., [8, Section 2.2].

An operator A is called resolvent positive if there exists w € R such that
R(\, A) is positive for all A > w. A semigroup (G(t))+>0 is said to be positive
if the operators G(t) are positive for all ¢ > 0. It turns out that (G(t));>0 is
positive if and only if its generator is resolvent positive.

An important class of Banach lattices, which will play a significant role
later, are AL-spaces [1, 2]. We say that a Banach lattice is an AL-space if
|+ y|| = [|z|| + |ly|| for all z,y € X,. A standard (and, up to a lattice
isometry, generic) example of an AL-space is L1 ({2,du), where (£2,p) is a
measure space [2, Theorem 12.26].

Another important class of Banach lattices used in this paper are K B-
spaces. We say that a Banach lattice X is a K B-space (Kantorovich-Banach
space) whenever every increasing norm bounded sequence of elements of X |

is norm convergent. The following statements are equivalent |2, Theorem
14.12]:

1. X is a K B-space;
2. X is weakly sequentially complete;
3. ¢ is not (lattice) embeddable in X.

In particular, AL-spaces and reflexive Banach lattices are K B-spaces.

Even if we are working in a real setting, to apply, for instance, spectral
theory we need to move to a complex setting. Let X be a real space. Its
complexification is defined as X¢ = X x X where, following the scalar
convention, we shall write (x,y) = x + iy. Vector operations are defined as
in the scalar case, and the real vector space X is identified with the real
subspace X +i0 C X¢. The norm

(1) lz + iyl := [z +ayll],

with modulus defined as [z +iy| = supge(g ox (2 cos 0 + ysinb) (see, e.g., [1,
p. 104]), is a lattice norm on X¢ which coincides with the standard one on
lp, Lp(£2), 1 < p < 00, and C(§2). Moreover, || - ||c is equivalent to any usual
product norm in X x X. Note, however, that standard product norms on
X x X may fail to preserve the homogeneity of the norm (see [8, Example
2.88]).

An element z € X¢ is said to be positive (x > 0) if x = |z| (see e.g. [20,
p. 244]). In particular, only real elements of X can be positive.

If A is a linear operator on X with domain D(A), then it can be extended
to X¢ according to the formula

(2) Ac(xz +1iy) = Az +iAy, D(Ac)= D(A)+iD(A).
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It follows that if A is bounded and positive, then
(3) [Acllc = [IAll,

but, in general, (3) fails for nonpositive operators. However, it is interesting
to note that in I, L,(£2) and C(£2), (3) holds for arbitrary operators [13,
pp. 175-176].

Thus, when dealing with real positive operators, we can confine ourselves
to real Banach spaces. In fact, fundamental theorems of semigroup theory
such as the Hille-Yosida or Lumer—Phillips theorems, various perturbation
theorems and Trotter-Kato type results are valid in both real and complex
setting. Hence, for instance, if an operator A generates a positive semigroup
of contractions in a real Banach lattice X, then the complexification (2) of
this semigroup is a semigroup of positive contractions on X¢. In particular,
the complexification A of A is also a dissipative operator in X¢.

The following, frequently used lattice versions of the dominated and
monotone convergence theorems for series are relatively straightforward to
prove [8, Theorem 2.91].

THEOREM 2.1. Let (n(t))nen be family of nonnegative sequences in a
Banach lattice X, parameterized by a parametert € T C R, and let tg € T.

(i) If for each n € N the function t — x,(t) is nondecreasing and
limg ¢y 2n(t) = T in norm, then

(4) tli/rﬁ) Z zn(t) = nzzoazn,

n=0

irrespective of whether the right-hand side exists in X or || > 07 x|
:= sup{|| Zg:o zn|; N € N} = oo. In the latter case the equality
should be understood as the norms of both sides being infinite.

(ii) Iflimy—y, 2, (t) = zp in norm for eachn € N and there exists (an)nen
with Y7 o ||lan|| < 0o such that x,(t) < ay, for anyt € T andn € N,
then (4) holds as well.

REMARK 2.2. Note that if X is a KB-space, then lim; ~, Y " 2 (t)
€ X implies the convergence of  ° | x,,. In fact, since z,, > 0 (by closedness

of the positive cone), N Z;VZO Ty is nondecreasing, and hence either
Yo oxn € X, or || Y07 xn| = 0o, and in the latter case we would have

[1limy e 32 2 (8)]] = oo
The following formula will be frequently used. If A is the generator of a
Co-semigroup (G(t))s>0, then for any z € X,

(5) G(t)z = lim <1—3A> z = lim <ER<E,A>) z,
n—oo n n—oo \ t t
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and the limit is uniform in ¢ on bounded intervals. In particular, (5) shows
that if R(A, A) > 0 for sufficiently large A, then (G(t))t>0 is a positive
semigroup.

The notation A € G(M,w) means that the operator A is the infinitesimal
generator of the semigroup (G(t))¢>o satisfying the estimate ||G(t)|| < Me**
for some constants M >0 and w € R.

For the reader’s convenience we also recall the Trotter-Kato theorem |21,
Theorem 3.4.3] and some of its consequences which play an important role
in this paper.

THEOREM 2.3. Assume A, € G(M,w). If there exists A\g with R\g > w
such that

(a) limy,— 00 R(A0, Ap)z = R(No)z exists for every x € X,

(b) the range of R(X\g) is dense in X,
then there exists a unique operator A € G(M,w) such that R(A\g) = R(Xo, A).
Moreover, if (Gy(t))t>0 is the semigroup generated by Ay, and (G(t))i>0 is
generated by A, then for any x € X,

(6) lim G,(t)z = G(t)x

n—oo

uniformly in t on bounded intervals.

Assumption (b) can be verified by applying the following result [17, The-
orem IX.2.17]:

COROLLARY 2.4. If the limit
(7) )\lim AR\, Ap)x ==

is uniform inn, then R(\) is the resolvent of a densely defined closed operator
mn X.

3. Generalized Kato perturbation theorem. In this section we shall
discuss a generalization of Kato’s perturbation theorem ([18]) and of some
related results to K B-spaces. A more exhaustive discussion of this topic can
be found in [8].

LEMMA 3.1. Let0# x € X 1. Then there is x* € X satisfying ||z*|| =1
and (%, z) = z].

Proof. We have ||z = supj,« <1 (y*, ¥) = (z*,z) for some z* € X* with
|lz*|| = 1, by the Hahn—Banach theorem. If 0 # z* ¢ X7, then

0< H‘TH = <‘T*7‘T> = <IL’i,.’E> - <IEt,.T> < <l’i,$>

and 2% < "] < 1as o < |a*]. Thus, (2%, ) = (&*,2) = |l2]. Tf o2
< 1, then for 7* = ||2* || ~'2%. we would have ||7*|| = 1 and (Z*, z) > (z*,z),
which is impossible. Thus, x* satisfies the conditions of the lemma. =
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THEOREM 3.2. Let X be a real K B-space. Assume that the operators
(A,D(A)) and (B, D(B)) with D(A) C D(B) satisfy:

1) A generates a positive semigroup of contractions (G A(t))t>0,

2) ro(BR(X, A)) <1 for some A > 0,

3) Bx >0 forx € D(A)4,

4) for any x € D(A)+ there is * > 0 such that (z*,x) = ||z| and
(z*,(A+ B)z) <0.

(A
(A
(A
(A

Then there is an extension (K, D(K)) of (A+B, D(A)) generating a strongly
continuous semigroup of positive contractions, denoted by (Gg(t))i>0. The
generator K satisfies, for all X > 0,

n

(8) R(\ K)x = lim R(\A)D> (BR(X A))Fx
k=0
iR )(BR(\, A))Fx
k=0

REMARK 3.3. If —A is a positive operator (which was the case in the
situation dealt with by Kato), then assumption (A2) can be replaced by the
simpler one

(A2) ||Ba| < || Az], € D(A)..
In fact, we then have
0<—-ARMA)=1—-ARMNA)<I

so that [|[AR(A, A)y|| < ||ly|| for all y € X, and by positivity, for any y € X.
Thus, ||Az| < |[(A — A)z|| for all z € D(A). Hence, for any z € D(A)4,

[Bz|| < [[Az|| < [[(AM — A)z],

which, upon substituting x = R(\, A)y, yields ||BR(A, A)y|| < ||y|| for y in
X+. Thus [[BR(\, A)|| <1 and (A2) is satisfied.

REMARK 3.4. If assumption (A2) is satisfied for some Ay > 0, then it is
satisfied for all A > Ag. In fact, writing the resolvent equation

BR(M\, A) — BR(\o, A) = (A — N)BR(Xo, A)R(\, A)

we see from the positivity that BR(\g, A) > BR(\, A), and the norm esti-
mate follows.

Proof of Theorem 3.2. We define operators K,.,, 0 < r < 1, by K, =
A+rB, D(K,) = D(A). By writing

RO\ A+7rB) = (I —rBR(\ A)N — A),
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we see that as r,(rBR(\, A)) < r < 1, the resolvent R(\, A+ rB)~! exists
and is given by

o0
9) RO\, K,) = RO\, A) Y r*(BR(A, A))"

n=0
with the series converging absolutely and each term being positive. Let
x* > 0 be such that (z*,z) = ||z| (see Lemma 3.1). For x € D(A); and
r < 1 we have
(10) (*, (A+rB)z) = (", (A+ B)x) + (r — 1){(z*,Bx) <0
on account of (A4) and Bz,x* > 0. Thus, following the argument of [21,
p. 14], we obtain, by the above,

(M = K )| ||| = (2%, (M = Ky)z) = Ma™, ) — (27, Krz) > Az

for all x € D(A)4. Taking y € X, we have R(\, K, )y = x € D(A); so that
we can rewrite this as

(11) IR, Kyl < X7yl

for all y € Xt and, since R(\, K, ) is positive, this can be extended to the
whole space X. Therefore, by the Hille-Yosida theorem, for each 0 < r < 1
the operator (K, D(A)) generates a contraction semigroup which is positive.
This semigroup will be denoted by (G (t)):>o0.

From (9) we see that the net (R(\, K;)x)o<r<1 is increasing as r " 1 for
each z € Xy and (||R(\, K;)x||)o<r<1 is bounded, by (11). As we assumed
that X is a K B-space, there is an element y, , € X such that

lim RO\ Ky ) = g
in X. This convergence can then be extended onto the whole space by lin-
earity and, by (11), we obtain the existence of a bounded positive operator

on X which we shall denote by R()). To be able to use the Trotter—Kato
theorem, it is now enough to prove that for any x € X the limit

)\li_}n;o AR\, Ky ) =
is uniform in r so that the assumptions of Corollary 2.4 are satisfied. Let
x € D(A). Then, as
K.R(\K,)=1- AR\ K,),

we have, by (11),

INR(, Kp)z — || = || I R(N Ky )zl = RO\ Kp) Kpal| < A7H[(A+ rB)z]|

< A7H(||Az]| + (| Bz]),
and the limit is indeed uniform in r. Since D(A) is dense in X, for y € X
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we take x € D(A) with ||y — z|| < € to obtain, again by (11),
IAR(A, K )y — yll < MR, Ko )(y — o)l + [ly — | + [|ARA, K )z — |
< 2e + A7 (|| Az]| + || Ba),

which gives uniform convergence. The Trotter-Kato theorem shows that
R(\) is defined for all A > 0 and it is the resolvent of a densely defined
closed operator K which generates a semigroup of contractions (Gx (t))t>0;
moreover, for any = € X,

(12) 71}/11} G, (t)x = Gk (t)x,

and the limit is uniform in ¢ on bounded intervals and monotone as r 1
and x > 0 (the monotonicity follows from the monotonicity of resolvents in
r and the representation formula (5) for semigroups).

Furthermore, from Theorem 2.1(i) we have

o0

(13) RO\ K)z=1im Y r*R(\, A)(BR(X, A))Fx
r,/'1 =0

o0
=> R(\A)(BRM Az, zeXy,
k=0
where, in particular, the last series converges by Remark 2.2. Extension to
X is done by linearity and clearly

> R(\ A)(BR(X A))rx = lim R(X, A) > (BR(\ Az, zeX,
k=0 k=0
which completes the proof of (8).

The proof that K is an extension of A + B is done exactly as in [18],
by noting that the nth partial sum R ()) of the series in (13) satisfies, for
x € D(A),

RMWA)(M — A)z = 2+ R"Y(\)Buz.
Hence, letting n — oo and rearranging we obtain R(\, K)(Al — (A + B))x
= x, which shows that K D A+ B. =

We explicitly state the version of Theorem 3.2 for complex spaces.

COROLLARY 3.5. Let X¢ be the complezification of X with the norm (1).
If the assumptions of Theorem 3.2 are satisfied, then the complexification K¢
of K defined by (2) is the generator of a positive semigroup of contractions
on Xc, which is the complezification of (Gk(t))i>o0. In particular, this is
true in l,, L,(£2), p € [1,00), and in C(§2) spaces, with the usual norms.

Proof. The fact that the complexification of (Gx ())¢>0 is a positive semi-
group of contractions in X follows from the properties of complexification
discussed in Section 2. Since the norm in X¢ is equivalent to any standard
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product norm in X x X, this semigroup is differentiable at ¢ = 0 only on
elements of the form = + iy where z,y € D(K). The final statement fol-
lows from the fact that the usual norm on these spaces coincides with the
complexification norm (1). m

One should compare this theorem with Theorems 3.3.2, 3.3.4 and Corol-
laries 3.3.3 and 3.3.5 of [21]. Firstly, we observe that Theorem 3.3.2 implies
that Corollary 3.3.3, Theorem 3.3.4 and Corollary 3.3.5 of [21] can be phrased
in the following, more general form (see also [9]).

THEOREM 3.6. Let A and B be linear operators in a Banach space X
with D(A) C D(B) and

(14) |Bz|| < afAz|| + Bjzll, =< D(A),

where 0 < o < 1 and 8 > 0. Assume further that A is the generator of a
semigroup of contractions and A+ tB is dissipative for any t € [0,1]. Then:

(i) if a« < 1, then A+ B is the generator of a contractive semigroup;
(ii) of @« = 1 and additionally B*, the adjoint of B, is densely defined,
then A + B is the generator of a contractive semigroup.

In particular, if X is reflezive and B is closable, then the assumption of (ii)
1s satisfied.

The difference between [21] and this formulation is that in the former the
author assumes that B is dissipative, which is a stronger assumption used
only to prove that A + tB is dissipative for all ¢ € [0,1] (see the comment
[21, p. 83]). Having noted this, the proof of the above theorem follows as
the respective proofs of [21]. In many applications, such as discussed in this
paper, B is not dissipative while the A + tB are.

It is possible to strengthen Theorem 3.6 to bring it closer to Theorem
3.2 (see |9]), as follows:

THEOREM 3.7. Let X be a Banach lattice and let (G(t))i>0 be the semi-
group generated by A+ B or A + B under the conditions of Theorem 3.6. If A
is a resolvent positive operator and B is positive, then (G(t))t>0 is positive.

Thus, if X is reflexive and B is closable, then Theorem 3.6 is evidently
stronger than Theorem 3.2 as it requires positivity of neither (Ga(t))i>0
nor B. Moreover, A-boundedness of B (requirement (14)) is weaker than
assumption (A2) and, finally, in Theorem 3.6 we obtain the full character-
ization of the generator as A + B. However, checking the closability of the
operator B in particular applications may be difficult while positivity is of-
ten obvious. Also, there are a large class of nonclosable operators which can
be nevertheless positive, e.g. finite-rank operators (in particular, functionals)
are closable if and only if they are bounded [17, p. 166]. An example of this
kind is presented below. Moreover, Theorem 3.2 gives a constructive formula
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(8) for the resolvent of the generator and allows other representation results
(see [8]). Finally, what is probably most important, in nonreflexive spaces
Theorem 3.2 covers a substantially different class of phenomena as in many
cases the generator does not coincide with A + B.

EXAMPLE 3.8. We provide an example of the Cauchy problem for which
the results of [21, Section 3.3] are not immediately applicable but which can
be easily solved using Theorem 3.2. Consider the problem

ox :

E@’ s) = —v(s)x(t,s) + p(s) S v(r)z(t,r)dr, 0<s<1,t>0,
0

(15)  x(0,5) = 2o(s)

in X = Ly([0,1]) (over the real numbers). Assume that 0 < v € Li([0,1]) \
Ly([0,1]) satisfies S(l) v(s)ds =1 and that 0 < p < v satisfies S(l) p?(s)ds = 1.
These assumptions are satisfied, e.g., by v(s) = 2s7%/2 and p = v on [e~*, 1]
and p = 0 elsewhere. Defining Az = —vx on D(A) = {z € X; vz € X} we
see that A generates a positive semigroup of contractions. By the Schwarz
inequality we have

hence Bz := “S(l) v(s)x(s)ds is well-defined and positive on D(A). It is a
rank-one operator and thus it is not closable (see [17, p. 166]). Even more,
simple calculation shows that, since v ¢ X, we have D(B*) = {0}. On the
other hand,

1 1 ) 1 )
|Bz|? = SuQ(S)(S v(r)z(r) dr) ds = (SU(T‘)SL‘(T) dr)
0 0 0
1
<\ 2 (r)a?(r) dr = || Az,
0

and so assumption (A2') of Remark 3.3 is satisfied. Furthermore, taking
x > 0 and using u < v, we obtain

1

w(s)x(s) ds) (S v(s)xz(s) ds)

0

(z, Az + Bz) = —\v(s)2?(s) ds + (

v(s)x(s) ds)2

< —{wls)a?(s)ds + (

Ot = O e
Ol = O e =
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< - § v(s)z?(s)ds + (§ v(s) ds) (§ v(s)z?(s) ds)
0 0 0

1

= v(s)2?(s) ds( -1+ § v(s) ds) =0,

0 0

where in the last line we used the remaining assumption on v. Here (-,-)
denotes the standard scalar product in L9([0,1]) and, to simplify nota-
tion, we wrote x instead of z/||x|| which does not affect assumption (A4).
This shows that all assumptions of Theorem 3.2 are satisfied and there is
an extension of A + B which generates a positive semigroup of contrac-
tions.

REMARK 3.9. Yet another look at the relation between K and A+ B in
L, spaces is offered by the result of [24] that states that if T" is a positive
operator on L, satisfying ||T|| < 1 and p € (1,00), then there exists a
primitive nth root of unity in op,(7) if and only if every nth root of unity is
in o,(T) if and only if the same holds true for 7%. Setting T' = BR(A\, A) and
invoking [15, Theorem 3.2 and the preceding considerations|, we see that as
1 ¢ o,(BR(A, A)), we have 1 ¢ o,(BR(A, A))*, so that 1 ¢ 0, BR(\, A) and
consequently K = A+ B.

A crucial property that allows for the proof of the above result of [24]
for p > 1 but not for p = 1 is that x € X7 and 2z < T"x implies x = T™z.
Clearly, it is satisfied for any p € (1,00) but, in general, fails in X* = L.

An important property of the semigroup constructed in [18] (see also
[16]) is that it is a smallest substochastic semigroup whose generator is an
extension of A 4+ B. In the present setting we can even prove a slightly
stronger result.

PROPOSITION 3.10. Let D be a core of A. If (G(t))¢>0 is another positive
semigroup generated by an extension of (A + B, D), then G(t) > Gk(t).

Proof. Let K’ be the generator of (G(t));>0. First, we show that K’ is an
extension of A+ B. If x € D(A), then there is a sequence (z,,)pen C D such
that lim, oo x, = = and lim,,_, o, Az, = Ax. Assumption (A2) ensures, in
particular, that D(A) C D(B) and B is continuous on D(A) in the graph
norm of A, hence Bz, converges to Bz and therefore (A + B)x, converges
to (A + B)zx. Since K’ is closed (as a generator) and since for z,, € D we
have K'z,, = (A + B)xy, = belongs to D(K') and K'x = (A+ B)zx.

Since K’ generates a positive semigroup, the resolvent R(\, K') exists and
is positive for sufficiently large A\. As D(K’) D D(A) and K'x = (A+ B)x
on D(A), we have
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R\ K')— R\ Ky) = (RN KDY - K,) — IR\ K,)
=R\ K'YM — K, — M+ K')R\\, K,) = RO\, K')(K' — K, )R(\, K,.)
=R\KNYA+B—-A-rB)R\\K,)=(1—-7)R\ K')BR(\ K,).
Since r < 1 and all the operators are positive, we obtain
R\ K') > RO\ K.
Since R(\, K;) /" R(\, K), we have R(\, K') > R(\, K) and by the repre-

sentation formula (5) we conclude that this inequality holds for semigroups. m

Applicability of Theorem 3.2 depends on whether we can prove that the
operator A is the generator of a positive semigroup of contractions. In many
cases of practical importance: birth-and-death problems, pure fragmenta-
tion or spatially homogeneous linear Boltzmann equation [8], this is obvious
as A is a diagonal (multiplication) operator. If, however, we allow spatial
dependence and/or external field, then A is given by

A=Ay — N,

where Ag can be a first order streaming operator, a diffusion operator or
possibly the sum of both, and N is the multiplication by a positive, but
often very singular, function. Then determining whether A is a generator
becomes a nontrivial problem. The following theorem, the proof of which
uses ideas of Theorem 3.2, provides a partial solution to this problem.

THEOREM 3.11. Let (Ao, D(Ap)) be the generator of a positive semigroup
of contractions on a KB-space X and (N,D(N)) be a positive operator.
Assume that there exists an increasing sequence ((Ny, D(Ny,)))nen of positive
operators satisfying:

1. D(Ag) N D(N) is dense in X.

2. D(N,) > D(N).

3. There is a dense set D C D(Ag) N D(N) such that limy,, oo Npy = Ny

fory e D.

4. (Ag— Nyp, D(Ao) N D(N,,)) generates a positive semigroup of contrac-

tions forn =1,2,....

Then there is an extension (A, D(A)) of (Ao — N, D) which generates a
semigroup of contractions.

Proof. Fix n for the time being. Ay — N,, generates a positive semigroup
of contractions denoted by (G, (t))i>0. Denote by x; € D(Ag) N D(N;) the
solution to the equation

Ar; — Agx; + Nyxy =y
where A > 0 and y € X,. The resolvent of Ay — N;, say R;()\), is positive



Kato generation theorem for semigroups 229

for A > 0 and therefore x; > 0. Fix X\ and m > n. Then
Y= Atm — AoTm + N = A\, — Ao + NpZm + (N — Ny

so that
Ty = R (M) (Y — (N — Np)om) < Rp(N)y =

as (Npy, — Nyp)zy, > 0 by monotonicity of (Vy,)nen. Hence, the resolvents
R, (N\)y form a decreasing sequence of nonnegative elements. Since clearly,
for any fixed ng and n > ng, xp, — ¥, is nonnegative and increasing with
|Xn, — zn|| < 2/A and we are in a K B-space, R,(\) strongly converges to
a (positive) operator R(A). To show that this is the resolvent of a densely
defined operator we use Corollary 2.4. This requires showing that the limit

/\lim AR, Ny =y

is uniform in n for any y € X. Let x € D. Then for any § there is ng such
that for any n > ng we have | N,z — Nz|| < J. Taking n > ny we have
(16)  [IARn(Nz =zl = [ Ra(A) (Ao = Nzl < X7 (|| Aoz || + [ Nyz]))

<A (| Aoz || + INzl| + | Nz — Noz||) < A7H([| Aoz || + [Nz +6)
so that the convergence is indeed uniform in n. Let y € X and fix ¢ > 0.
Then, by density of D, there exists x € D satisfying ||y — z|| < € and for

this x we can write the estimate above with ng depending only on x and §.
Hence

AR, (N)y — yl| < [[AR2(N)(y — 2)[| + [[AR.(N)z — 2| + ly — ||
< 2+ )\_1(HAOxH + ||Nz| + 9)
and the last term can be made smaller than € by taking A large enough, inde-
pendently of n. Hence also here the convergence is uniform in n and we can

use the Trotter—Kato theorem, Theorem 2.3, to deduce that R(\) = R(\,.A)

where A is a densely defined operator generating a positive semigroup of
contractions. To show that this is an extension of (A9 — N, D), let y € D.
Then

R(A, A)(AL — (Ao — N))y = lim Rp(A) (M — (Ao — N))y,

n—oo

and, on the other hand,
Rn()‘)()‘j - (AU - N))y = Rn()‘)()‘j - (AO - Nn))y + Rn()‘)(N - Nn)y
=Y+ Rn(A)(N = No)y =y
by uniform boundedness of R, (). Thus, A|p = (4p— N)|p. =

REMARK 3.12. A closer inspection of the proof shows that assumption 3
was used twice: first, to show the convergence of the resolvents to the re-
solvent of a densely defined operator, and then to show that the generator
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is an extension of Ay — N. However, the first part has not utilized the full
assumption and can be proved under either of the following assumptions:

(a) There is a set D C D(Ap) N D(N) such that Dy — Dy is dense in X
and Ny < Ny for all y € D,

(b) There is a dense set D C D(Ap) N D(N) and a number M such that
INny — Ny|| < M for all y € D and n.

The proof for (b) is identical to the above if one realizes that § in (16) can
be any number, not necessarily small. The proof for (a) is as follows. Let
r=x4—2_ € Dy — D4. Then
[ARn(A)z — |

= [[(Ao = No) Ry (N)z[| = | Rn(X) (Ao — No)zl| < A™H([| Aoz ]| + [ Nuz]))

<A Aozl| + [ Nnw || + [Nuz— 1) < X7 ([ Aoz | + [N || + | Na—]]),

with the rest as above. Note that we used D = DN X, C D C D(A4p) N
D(N,,).

In both cases, however, we need the convergence N,y — Ny on some set
to get an extension property. If this set is {0}, then this property becomes
trivial.

Assumptions (A1)-(A4) look considerably more involved than Kato’s ori-
ginal assumptions but they have to cater for a possibly more complicated
structure of the underlying space and of the operators A and B. If X is
an L space (or, in general, an AL-space), then these assumptions can be
significantly simplified, leading to results already obtained in |26, 4, 5, 7].

COROLLARY 3.13. Suppose that the operators (A, D(A)) and (B, D(B))
in X = L1(£2,du) satisfy:

1. (A, D(A)) generates a positive semigroup of contractions (Ga(t))i>0,

2. D(B) D D(A) and Bx > 0 for x € D(A)4,

3. for all z € D(A)4,

(17) {(Az + Bz)du < 0.
2
Then the assumptions of Theorem 3.2 are satisfied.

Proof. First, assumption 3 immediately gives assumption (A4), that is,
dissipativity on the positive cone. Next, take x = R(\, A)y for y € X, so
that x € D(A)4. Since R(A, A) is a surjection from X onto D(A), from

(A+ B)x=(A+ B)R(M\, Ay = —y + BR(A\, A)y + AR(\, A)y
we obtain

(18) ~Vydu+ | BRI, A)ydp+ A | RO\, Ay dp < 0.
(9] 9] 2
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Since in AL-spaces the norm of a nonnegative element is given by the inte-
gral, we obtain

(19) AR, Ayl + [|BRA, Ayl = Iyl <0, ye Xy,

which immediately yields || BR(A, A)|| < 1, hence (A2) is satisfied. m

The following result is similar to Desch’s perturbation theorem [14] but
can be applied to possibly nonpositive perturbations.

COROLLARY 3.14. Assume that A is the generator of a positive Cy-
semigroup of contractions in X = L1(£2,du) and let B = By — B_ be such
that By > 0, D(B1) D D(A) and there exists C > 0 with D(A) C D(C)
such that By + B_ < C on D(A)4+ and, for all x € D(A)4,

(20) S (Az + Cx)dp < 0.

02
Then there is an exstension Kp of A + B that generates a semigroup of
contractions.

Proof. Define |B| = By + B_. Clearly, for z € D(A),

\(Az + |Blz) dp = \(Az + Cx) dp + | (|Blz — Cx) dp < 0

2 2 2
so that, by Corollary 3.13, | B| satisfies all assumptions of Theorem 3.2, and
we have ||BR(X\, A)|| < |||B|R(A, A)|| < 1. Hence, as in the proof of that
theorem, (A + r|B|, D(A)) generates a positive semigroup of contractions,
and an extension of A + |B|, denoted by K|g|, with resolvent given by (8)
with B replaced by |B|, generates a positive semigroup of contractions. Also,
forye X, r<1,and X > 0,

D IR\, A)r/(BR(X, A)Yy| <> RN, A)(IBIR(A, A))y.
j=0 Jj=0

Using additivity of the norm on the positive cone, we obtain

(21) >R, A)YBRO, )Yyl < RO K pyll,
=0
so the series R, (\)y := 372, " R(\, A)(BR(\, A))’y is absolutely conver-

gent for any y € X and 0 < r < 1. For 0 < r < 1, R,(\)y is dominated
by a geometric series and, by standard calculations, equals the resolvent
R(\, A+ rB) of the operator A+ rB.
From (21),
IR\, A+ rB)|| < X!

as K|p, is dissipative. Hence (A + 7B, D(A)) generates a semigroup of con-
tractions for each » < 1. From the dominated convergence theorem, Theorem
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2.1(ii), we infer that for each y € X,
lini RANA+7rB)y=TRi(N)y.

We now use the Trotter—Kato theorem exactly as in the proof of Theorem
3.2. Thus, we have to prove that for any f € X the limit

/\lim AR, A+7rB)y =1y

is uniform in r. Let y € D(A). Then as
(A+rB)R(\,A+rB)=1—- AR\ A+rB)
we have, by dissipativity,
INR(A, A+ By —yll < A7H(| Ayl + 1 By]))

so that the limit is uniform in r. Since D(A) is dense in X, for z € X we
take x € D(A) with ||z — z|| < e to obtain, again by dissipativity,

IAR(A\, A+ 1B)z — z|| <2+ >\_1(||A:13|| + || Bz|)),

which gives uniform convergence. The Trotter-Kato theorem shows that
R1(A) is the resolvent of a densely defined closed operator Kp which gener-
ates a semigroup of contractions (Gx,(t))i>0. To show that Kp is an exten-
sion of A + B, we simply repeat the argument from the proof of Theorem
3.2. m

4. Applications to birth-and-death problems. We shall consider a
particular case of the Kolmogorov system, called the birth-and-death system:

/
Ty = —apxo + di171,

(22) ;o
T, = —AnpTy + dn+1xn+1 +bn—1Tn—1,

The classical applications of this system are in population theory. In this case
Ty, is the probability that the population considered consists of n individuals
and its state can change by either death or birth of an individual, moving the
population to state n — 1 or n+ 1, respectively, hence the name of birth-and-
death system. The classical birth-and-death system is formally conservative,
which requires a,, = d,, + b,,. However, recently a number of other important
applications emerged. For example (|19, 25]), we can consider an ensemble of
cancer cells structured by the number of copies of a drug-resistant gene they
contain. Here, the number of cells with n copies of the gene can change due to
mutations but the cells also undergo division without changing the number
of genes in their offspring, which is modelled by a nonzero sequence (¢, )nen,
defined by ¢, = by, +d,, — a,,. Furthermore, system (22) can be thought of as
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a simplified kinetic system consisting of particles labelled by their internal
energy n and interacting inelastically with the surrounding matter where, in
each interaction, they can either gain or lose a unit of energy. Some particles
can decay without a trace or be removed from the system leading again to
a nonzero (¢p)nen-

The solvability of (22) has been studied by various methods for several
decades, with first definitive results obtained in [18, 23, 22|; see also a modern
account in [3]. However, motivated by the probabilistic interpretation, these
works were confined to the conservative case ¢, = 0 and to the spaces [y
and cg. The methods employed to prove the existence of solutions utilized
this probabilistic structure quite extensively and did not seem to admit an
easy extension to other spaces and nonconservative systems.

Let boldface letters denote sequences, e.g. x = (g, Z1,...,ZTn,...). We
also assume that the sequences d, b and a are nonnegative with b_; = dj
=0.

We denote by K the matrix of coefficients of the right-hand side of (22)
and at the same time, without causing any misunderstanding, the formal
operator in the space [ of all sequences, acting as (Kx), = bp_12,-1 —
anTpn + dpt1Tp+1. In the same way, we define A and B as (Ax), = —apz,
and (Bx)p, = bp—1Zn—1+dn+12n+1, respectively. Let K, denote the maximal
realization of K in [, p € [1, 00), that is,

Kpx = Kx
on
(23) D(K,) ={x€ely; Kx e l,}.
LEMMA 4.1. The mazimal operator IC), is closed for any p € [1,00).

Proof. Let x(™ — x and ICpx(”) — y in [, as n — oo. From this it

follows that for any k, xl(gn) — w3, and, from the definition of ), v =

bp_1Tip_1 + apxy + dgr12K41, that is, ]CpX =y. =u

Next, define the operator A, by restricting A to

D(Ay) ={xel,; Apxel,} = {x € ly; Zaﬁ|xn|p < oo}.

n=0
LEMMA 4.2. (Ap, D(Ap)) is the generator of a semigroup of contractions
in lp.

Proof. A, is clearly densely defined with resolvent R(A, A4,) for A > 0
given by

Yn
R()\ A n =
(RO AY)a = T2
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(recall a,, > 0). Thus,

> 1 1
RN A P _ —  |yulP <= P
RN, Ap)y 1D g(AJran)p [yn|? < 7 Iyll?

so the lemma follows by the Hille-Yosida theorem. =

THEOREM 4.3. Assume that sequences b and d are nondecreasing and
there is o € [0, 1] such that for all n,

(24) 0<b, <aa,, 0<dy1<(1—a)ay.

Then there is an extension K, of the operator (Ap+ By, D(A,)), where B, =
B\D(Ap), that generates a positive semigroup of contractions in l,, p € (1,00).

Proof. The operator B, is clearly positive; we must show that it maps
D(A,) into [,. For x € D(A,) we have, with b_; = dy =0,

= 1/p
1Bpxllp = (D 1o 1201 + dus1znia )
n=0
> 1/p > 1/p
< (sz—l\xn—l\p) + (Zdﬁ+1’xn+1’p>
n=0 n=0

> 1/p > 1/p
< (D thlenl) "+ (Yo dnlanl)
n=0 n=0
By monotonicity of d we have d,, < d,,11 so that by (24) we obtain

> 1/p
1Byxllp < (Y ablaal?) ™ = 14x]p.
n=0

Thus, B,D(A,) C l,. Moreover, since —A,, is a positive operator, we see, by
Remark 3.3, that the assumptions (A2)-(A3) of Theorem 3.2 are satisfied.
To prove (A4) we take x € D(A,)+ and the corresponding element x =

(ﬁn)nGNa

- 0 if 2, =0,

€T =

" 27 ifa, #0.

Hence x € [;, where 1/p+1/q = 1. Note that since, clearly, assumption (A4)
is not affected by multiplying z* by a positive factor, in the definition of x
we dropped the factor Hx||11)_p to simplify notation. For simplicity we assume
xn # 0 for any n € N. From (24) we have a,, > b, + dp,4+1, so that

o0

(Kpx, x) = Z(pr)m’cﬁ_l

n=0

00 0o 00
-1 —1
= - E an$£'+ E bn—lmn—lxﬁ + E dn+1xn+1$£
n=0 n=0 n=0
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oo o) 0o
-1
- g bnl‘% - E dnJrlfL'g + g bnflxnfll‘%
n=0 n=0 n=0

0

—1
+§ dnJrlanrlxI;l s
n=0

where the calculations above are justified by the convergence of all series
(see e.g. [9]). Thus, by the Holder inequality, we obtain

o < (Let) " (Loti) =t
n=0
1/p 1/q
+(nzzodnxz) (n;dnﬂxz) —;dnﬂxz,

and, using b, < by41 and d,, < dy41, we obtain (K,x,x) <0. m
COROLLARY 4.4. Let p € (1,00). Then K, = A, + B,.

Proof. As in Lemma 4.1, we can prove that B is closed and thus B, is
closable. Hence the statement follows from Theorem 3.6. Alternatively, the
statement follows directly from Remark 3.9. =

COROLLARY 4.5. Let p = 1. Assume that sequences b and d are non-
negative and
(25) an > by, +d,.
Then there is an extension K of the operator (A1 + B, D(A1)), where By =

B|D(A1), that generates a positive semigroup of contractions on ly.

Proof. We have

D(Ay) = {X € ly; ian\mnl < oo}

and, from (25), 0 < b, < a, and 0 < d,, < a,, for n € N. Hence, By is
well-defined and condition (17) takes the form

o0

Z((Al + Bl Z aAnTy + Z bn-12n—1+ Z dn+1$n+1
n=0
= —Zanxn+ an:z:n+ Zdnl‘n <0,
n=0 n=0 n=0

where we used the convention b_1 = dy = 0. The statement now follows by
Corollary 3.13. =

REMARK 4.6. The above theorem was also proved in [9] but using The-
orem 3.7.
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COROLLARY 4.7. Let p =1. Assume that sequences b and d satisfy
(26) an > |bp| + [dn].

Then there is an extension K of the operator (A1 + B, D(A1)), where By =
B|D(A1), that generates a semigroup of contractions on l.

Proof. This follows immediately from Corollaries 3.14 and 4.5. =

REMARK 4.8. In contradistinction to the case p > 1, for p = 1 in general
K 7& A1 + By, see [6]

REMARK 4.9. There is a difference in conditions ensuring dissipativity
in [, for p > 1 and in /. In the first case we require a,, > b, + dp41, and
in the second a, > b, + d,. Since (d,)nen is assumed to be increasing,
the condition for p > 1 is stronger. However, if for p > 1 the coeflicient
a, satisfies the condition for Iy, we can redefine a,, = a, + d,, — dp41 so
that a,, satisfies the proper [,-condition. Now, if d,,+1 — d,, is bounded (e.g.
for affine coefficients), then the existence of the semigroup with the original
coefficients can be established by the bounded perturbation theorem. The
resulting semigroup, however, may not be contractive.

THEOREM 4.10. For any p € [1,00) we have K, C K,.

Proof. First we note that if x” — x as r — 1 in [, then for any n,
(27)

}}E{((I — Kp)x')n = }}iq Ty + an@y — bn12y, 1 — dp1 Ty, 44
=Tp+ anTy — bn—lxn—l - dn—l—lxn—i—l
= (I = Kp)x)n-
Set x" = R(1, A+rB)y for y € l,. We know that x” — R(1, K,)y asr — 1.
Since R(1, A+ rB) is the resolvent of (A + rB, D(A)) which is a restriction
of the maximal realization of —A 4+ rB, we have
((I = Kp)x")p = @), + anx;, — rby_12, 1 — 7dn12,,
= (L =r)(bn12y_1 + dn12741)
=yn — (1 =7)(bp—12;,_1 + dn+1$2+1)-
Since n is fixed, we see that the last term tends to zero and by (27) we obtain
((I = Kp)x)n, = yn, that is,
(I = Kp)R(1,Kp)y=y. =
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