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Around the Kato generation theorem for semigroupsbyJa
ek Banasiak (Durban) and Mirosªaw La
howi
z (Warszawa)
Abstra
t. We show that the result of Kato on the existen
e of a semigroup solvingthe Kolmogorov system of equations in l1 
an be generalized to a larger 
lass of the so-
alled Kantorovi
h�Bana
h spa
es. We also present a number of related generation resultsthat 
an be proved using positivity methods, as well as some examples.1. Introdu
tion. In his seminal paper [18℄, Kato pioneered the use ofwhat later be
ame known as positivity te
hniques to prove the existen
e of asemigroup solving the Kolmogorov system of equations in the spa
e l1, andprovided some 
hara
terization of its generator. This result 
an also be foundin several monographs su
h as, e.g., [11, 12, 16℄. It seemed that a parti
ularlatti
e stru
ture of l1 was essential for the proof, and a few generalizationsof Kato's result whi
h appeared later, [26, 27, 4, 5, 7℄, were all 
on�ned tothe so-
alled AL-spa
es whi
h in
lude l1 and L1 spa
es. Pre
isely speak-ing, an AL-spa
e is a Bana
h latti
e whose norm is additive on the positive
one (as are the norms of l1 and L1 spa
es) and, in fa
t, it 
an be provedthat every AL-spa
e is latti
e isometri
 to an L1 spa
e (see e.g. [2, Theorem12.26℄).However, as we will see in this arti
le, what Kato's proof really requiresis not the AL stru
ture of the underlying spa
e but the property that anynon-negative in
reasing and norm bounded sequen
e is norm 
onvergent. Thelatter is the de�ning property of the so-
alled Kantorovi
h�Bana
h spa
es(KB-spa
es) that in
lude, among others, the AL-spa
es and re�exive spa
es.Pre
isely, it 
an be proved that X is a KB-spa
e if and only if the spa
e c0is not latti
e embeddable in X [2, Theorem 14.12℄.2000 Mathemati
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218 J. Banasiak and M. La
howi
zIn this paper we shall view Kato's result as a perturbation theorem pro-viding 
onditions under whi
h a positive perturbation of a generator of apositive semigroup is still a generator of a semigroup and, using the aboveobservation, we extend it to KB-spa
es. Moreover, we provide several othergeneration results whi
h utilize similar te
hniques and, in parti
ular, we gen-eralize a theorem of Des
h [14, 27℄ whi
h allows us to deal with not ne
essarilypositive perturbations.We also relate our results to the existing perturbation theorems andprovide examples of appli
ations to birth-and-death type problems.A
knowledgements. The authors express sin
ere thanks to the anony-mous referee for numerous 
omments and suggestions whi
h substantiallyhelped to improve the paper.2. Mathemati
al preliminaries. In this se
tion we shall introdu
e thenotation used in the paper and 
olle
t most of the de�nitions and results onwhi
h the paper is based for easy referen
e.In many natural s
ien
es' appli
ations the quantities des
ribed by themodel should be real and nonnegative, e.g., probability, parti
le or massdensity, absolute temperature. To 
ater for this, the original setting for ab-stra
t models should be a real Bana
h spa
e with a notion of positivity
ompatible with the original linear stru
ture, that is, a real Bana
h latti
e.However, when we dis
uss spe
tral properties of the model, we shall moveto a 
omplex spa
e through the pro
edure 
alled 
omplexi�
ation whi
h isdes
ribed in detail below.Let X be a real Bana
h latti
e. We denote by X∗ its topologi
al dualwhi
h is also a Bana
h latti
e; the duality pairing is denoted by 〈·, ·〉. Theorder in any Bana
h latti
e will be denoted by ≥. For any subset Z of X or
X∗, we denote by Z+ the nonnegative part of Z, that is, the set of all z ∈ Zsatisfying z ≥ 0.For a given linear operator A on X, ̺(A) and σ(A) denote, respe
tively,the resolvent set and the spe
trum of A. The spe
trum σ(A) is subdividedinto the point spe
trum (eigenvalues) σp(A), the 
ontinuous spe
trum σc(A)and the residual spe
trum σr(A). Let R(λ, A), λ ∈ ̺(A), denote the resolventof A. If A is bounded, then rσ(A) denotes its spe
tral radius.We will be working with positive operators. Let us re
all that a linearoperator A on a Bana
h latti
e X is said to be positive if Ax ≥ 0 for all
x ∈ D(A)+ := D(A)∩X+. A positive operator de�ned on the whole spa
e isbounded. Furthermore, an additive positive operator is fully determined byits restri
tion to the positive 
one, that is, if A is an additive positive operatoron X+, then it extends to a unique positive linear operator on X. Also thenorm of A is determined by the values of ‖Ax‖ on {x ∈ X+; ‖x‖ ≤ 1}. In
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ular, if 0 ≤ A ≤ B, then ‖A‖ ≤ ‖B‖. The above results are well-knownand the proofs 
an be found in, e.g., [8, Se
tion 2.2℄.An operator A is 
alled resolvent positive if there exists ω ∈ R su
h that
R(λ, A) is positive for all λ > ω. A semigroup (G(t))t≥0 is said to be positiveif the operators G(t) are positive for all t ≥ 0. It turns out that (G(t))t≥0 ispositive if and only if its generator is resolvent positive.An important 
lass of Bana
h latti
es, whi
h will play a signi�
ant r�lelater, are AL-spa
es [1, 2℄. We say that a Bana
h latti
e is an AL-spa
e if
‖x + y‖ = ‖x‖ + ‖y‖ for all x, y ∈ X+. A standard (and, up to a latti
eisometry, generi
) example of an AL-spa
e is L1(Ω, dµ), where (Ω, µ) is ameasure spa
e [2, Theorem 12.26℄.Another important 
lass of Bana
h latti
es used in this paper are KB-spa
es. We say that a Bana
h latti
e X is a KB-spa
e (Kantorovi
h�Bana
hspa
e) whenever every in
reasing norm bounded sequen
e of elements of X+is norm 
onvergent. The following statements are equivalent [2, Theorem14.12℄:1. X is a KB-spa
e;2. X is weakly sequentially 
omplete;3. c0 is not (latti
e) embeddable in X.In parti
ular, AL-spa
es and re�exive Bana
h latti
es are KB-spa
es.Even if we are working in a real setting, to apply, for instan
e, spe
traltheory we need to move to a 
omplex setting. Let X be a real spa
e. Its
omplexi�
ation is de�ned as XC = X × X where, following the s
alar
onvention, we shall write (x, y) = x + iy. Ve
tor operations are de�ned asin the s
alar 
ase, and the real ve
tor spa
e X is identi�ed with the realsubspa
e X + i0 ⊂ XC . The norm(1) ‖x + iy‖C := ‖ |x + iy|‖,with modulus de�ned as |x + iy| = supθ∈[0,2π](x cos θ + y sin θ) (see, e.g., [1,p. 104℄), is a latti
e norm on XC whi
h 
oin
ides with the standard one on
lp, Lp(Ω), 1 ≤ p ≤ ∞, and C(Ω). Moreover, ‖ · ‖C is equivalent to any usualprodu
t norm in X × X. Note, however, that standard produ
t norms on
X × X may fail to preserve the homogeneity of the norm (see [8, Example2.88℄).An element x ∈ XC is said to be positive (x ≥ 0) if x = |x| (see e.g. [20,p. 244℄). In parti
ular, only real elements of XC 
an be positive.If A is a linear operator on X with domain D(A), then it 
an be extendedto XC a

ording to the formula(2) AC(x + iy) = Ax + iAy, D(AC) = D(A) + iD(A).



220 J. Banasiak and M. La
howi
zIt follows that if A is bounded and positive, then(3) ‖AC‖C = ‖A‖,but, in general, (3) fails for nonpositive operators. However, it is interestingto note that in lp, Lp(Ω) and C(Ω), (3) holds for arbitrary operators [13,pp. 175�176℄.Thus, when dealing with real positive operators, we 
an 
on�ne ourselvesto real Bana
h spa
es. In fa
t, fundamental theorems of semigroup theorysu
h as the Hille�Yosida or Lumer�Phillips theorems, various perturbationtheorems and Trotter�Kato type results are valid in both real and 
omplexsetting. Hen
e, for instan
e, if an operator A generates a positive semigroupof 
ontra
tions in a real Bana
h latti
e X, then the 
omplexi�
ation (2) ofthis semigroup is a semigroup of positive 
ontra
tions on XC . In parti
ular,the 
omplexi�
ation AC of A is also a dissipative operator in XC .The following, frequently used latti
e versions of the dominated andmonotone 
onvergen
e theorems for series are relatively straightforward toprove [8, Theorem 2.91℄.Theorem 2.1. Let (xn(t))n∈N be family of nonnegative sequen
es in aBana
h latti
e X, parameterized by a parameter t ∈ T ⊂ R, and let t0 ∈ T .(i) If for ea
h n ∈ N the fun
tion t 7→ xn(t) is nonde
reasing and
limtրt0 xn(t) = xn in norm, then(4) lim

tրt0

∞∑

n=0

xn(t) =
∞∑

n=0

xn,

irrespe
tive of whether the right-hand side exists in X or ‖∑∞
n=0 xn‖

:= sup{‖
∑N

n=0 xn‖; N ∈ N} = ∞. In the latter 
ase the equalityshould be understood as the norms of both sides being in�nite.(ii) If limt→t0 xn(t) = xn in norm for ea
h n ∈ N and there exists (an)n∈Nwith ∑∞
n=0 ‖an‖ < ∞ su
h that xn(t) ≤ an for any t ∈ T and n ∈ N,then (4) holds as well.Remark 2.2. Note that if X is a KB-spa
e, then limtրt0

∑∞
n=0 xn(t)

∈ X implies the 
onvergen
e of ∑∞
n=0 xn. In fa
t, sin
e xn ≥ 0 (by 
losednessof the positive 
one), N 7→

∑N
n=0 xn is nonde
reasing, and hen
e either∑∞

n=0 xn ∈ X, or ‖
∑∞

n=0 xn‖ = ∞, and in the latter 
ase we would have
‖ limtրt0

∑∞
n=0 xn(t)‖ = ∞.The following formula will be frequently used. If A is the generator of a

C0-semigroup (G(t))t≥0, then for any x ∈ X,(5) G(t)x = lim
n→∞

(
I −

t

n
A

)−n

x = lim
n→∞

(
n

t
R

(
n

t
, A

))n

x,



Kato generation theorem for semigroups 221and the limit is uniform in t on bounded intervals. In parti
ular, (5) showsthat if R(λ, A) ≥ 0 for su�
iently large λ, then (G(t))t≥0 is a positivesemigroup.The notation A ∈ G(M, ω) means that the operator A is the in�nitesimalgenerator of the semigroup (G(t))t≥0 satisfying the estimate ‖G(t)‖ ≤ Meωtfor some 
onstants M ≥ 0 and ω ∈ R.For the reader's 
onvenien
e we also re
all the Trotter�Kato theorem [21,Theorem 3.4.3℄ and some of its 
onsequen
es whi
h play an important r�lein this paper.Theorem 2.3. Assume An ∈ G(M, ω). If there exists λ0 with ℜλ0 > ωsu
h that(a) limn→∞ R(λ0, An)x = R(λ0)x exists for every x ∈ X,(b) the range of R(λ0) is dense in X,then there exists a unique operator A ∈ G(M, ω) su
h that R(λ0) = R(λ0, A).Moreover , if (Gn(t))t≥0 is the semigroup generated by An and (G(t))t≥0 isgenerated by A, then for any x ∈ X,(6) lim
n→∞

Gn(t)x = G(t)xuniformly in t on bounded intervals.Assumption (b) 
an be veri�ed by applying the following result [17, The-orem IX.2.17℄:Corollary 2.4. If the limit(7) lim
λ→∞

λR(λ, An)x = xis uniform in n, then R(λ) is the resolvent of a densely de�ned 
losed operatorin X.3. Generalized Kato perturbation theorem. In this se
tion we shalldis
uss a generalization of Kato's perturbation theorem ([18℄) and of somerelated results to KB-spa
es. A more exhaustive dis
ussion of this topi
 
anbe found in [8℄.Lemma 3.1. Let 0 6= x ∈ X+. Then there is x∗ ∈ X∗
+ satisfying ‖x∗‖ = 1and 〈x∗, x〉 = ‖x‖.Proof. We have ‖x‖ = sup‖y∗‖≤1〈y

∗, x〉 = 〈x∗, x〉 for some x∗ ∈ X∗ with
‖x∗‖ = 1, by the Hahn�Bana
h theorem. If 0 6= x∗ /∈ X∗

+, then
0 < ‖x‖ = 〈x∗, x〉 = 〈x∗

+, x〉 − 〈x∗
−, x〉 ≤ 〈x∗

+, x〉and ‖x∗
+‖ ≤ ‖x∗‖ ≤ 1 as x∗

+ ≤ |x∗|. Thus, 〈x∗
+, x〉 = 〈x∗, x〉 = ‖x‖. If ‖x∗

+‖
< 1, then for x̃∗ = ‖x∗

+‖
−1x∗

+ we would have ‖x̃∗‖ = 1 and 〈x̃∗, x〉 > 〈x∗, x〉,whi
h is impossible. Thus, x∗
+ satis�es the 
onditions of the lemma.



222 J. Banasiak and M. La
howi
zTheorem 3.2. Let X be a real KB-spa
e. Assume that the operators
(A, D(A)) and (B, D(B)) with D(A) ⊂ D(B) satisfy :(A1) A generates a positive semigroup of 
ontra
tions (GA(t))t≥0,(A2) rσ(BR(λ, A)) ≤ 1 for some λ > 0,(A3) Bx ≥ 0 for x ∈ D(A)+,(A4) for any x ∈ D(A)+ there is x∗ ≥ 0 su
h that 〈x∗, x〉 = ‖x‖ and

〈x∗, (A + B)x〉 ≤ 0.Then there is an extension (K, D(K)) of (A+B, D(A)) generating a strongly
ontinuous semigroup of positive 
ontra
tions, denoted by (GK(t))t≥0. Thegenerator K satis�es, for all λ > 0,
R(λ, K)x = lim

n→∞
R(λ, A)

n∑

k=0

(BR(λ, A))kx(8)
=

∞∑

k=0

R(λ, A)(BR(λ, A))kx.

Remark 3.3. If −A is a positive operator (whi
h was the 
ase in thesituation dealt with by Kato), then assumption (A2) 
an be repla
ed by thesimpler one(A2′) ‖Bx‖ ≤ ‖Ax‖, x ∈ D(A)+.In fa
t, we then have
0 ≤ −AR(λ, A) = I − λR(λ, A) ≤ Iso that ‖AR(λ, A)y‖ ≤ ‖y‖ for all y ∈ X+, and by positivity, for any y ∈ X.Thus, ‖Ax‖ ≤ ‖(λI − A)x‖ for all x ∈ D(A). Hen
e, for any x ∈ D(A)+,

‖Bx‖ ≤ ‖Ax‖ ≤ ‖(λI − A)x‖,whi
h, upon substituting x = R(λ, A)y, yields ‖BR(λ, A)y‖ ≤ ‖y‖ for y in
X+. Thus ‖BR(λ, A)‖ ≤ 1 and (A2) is satis�ed.Remark 3.4. If assumption (A2) is satis�ed for some λ0 > 0, then it issatis�ed for all λ > λ0. In fa
t, writing the resolvent equation

BR(λ, A) − BR(λ0, A) = (λ0 − λ)BR(λ0, A)R(λ, A)we see from the positivity that BR(λ0, A) ≥ BR(λ, A), and the norm esti-mate follows.Proof of Theorem 3.2. We de�ne operators Kr, 0 ≤ r < 1, by Kr =
A + rB, D(Kr) = D(A). By writing

R(λ, A + rB) = (I − rBR(λ, A))(λI − A),



Kato generation theorem for semigroups 223we see that as rσ(rBR(λ, A)) ≤ r < 1, the resolvent R(λ, A + rB)−1 existsand is given by(9) R(λ, Kr) = R(λ, A)
∞∑

n=0

rn(BR(λ, A))n

with the series 
onverging absolutely and ea
h term being positive. Let
x∗ ≥ 0 be su
h that 〈x∗, x〉 = ‖x‖ (see Lemma 3.1). For x ∈ D(A)+ and
r < 1 we have(10) 〈x∗, (A + rB)x〉 = 〈x∗, (A + B)x〉 + (r − 1)〈x∗, Bx〉 ≤ 0on a

ount of (A4) and Bx, x∗ ≥ 0. Thus, following the argument of [21,p. 14℄, we obtain, by the above,

‖(λI − Kr)x‖ ‖x‖ ≥ 〈x∗, (λI − Kr)x〉 = λ〈x∗, x〉 − 〈x∗, Krx〉 ≥ λ‖x‖for all x ∈ D(A)+. Taking y ∈ X+, we have R(λ, Kr)y = x ∈ D(A)+ so thatwe 
an rewrite this as(11) ‖R(λ, Kr)y‖ ≤ λ−1‖y‖for all y ∈ X+ and, sin
e R(λ, Kr) is positive, this 
an be extended to thewhole spa
e X. Therefore, by the Hille�Yosida theorem, for ea
h 0 ≤ r < 1the operator (Kr, D(A)) generates a 
ontra
tion semigroup whi
h is positive.This semigroup will be denoted by (Gr(t))t≥0.From (9) we see that the net (R(λ, Kr)x)0≤r<1 is in
reasing as r ր 1 forea
h x ∈ X+ and (‖R(λ, Kr)x‖)0≤r<1 is bounded, by (11). As we assumedthat X is a KB-spa
e, there is an element yλ,x ∈ X+ su
h that
lim
rր1

R(λ, Kr)x = yλ,xin X. This 
onvergen
e 
an then be extended onto the whole spa
e by lin-earity and, by (11), we obtain the existen
e of a bounded positive operatoron X whi
h we shall denote by R(λ). To be able to use the Trotter�Katotheorem, it is now enough to prove that for any x ∈ X the limit
lim

λ→∞
λR(λ, Kr)x = xis uniform in r so that the assumptions of Corollary 2.4 are satis�ed. Let

x ∈ D(A). Then, as
KrR(λ, Kr) = I − λR(λ, Kr),we have, by (11),

‖λR(λ, Kr)x − x‖ = ‖KrR(λ, Kr)x‖ = ‖R(λ, Kr)Krx‖ ≤ λ−1‖(A + rB)x‖

≤ λ−1(‖Ax‖ + ‖Bx‖),and the limit is indeed uniform in r. Sin
e D(A) is dense in X, for y ∈ X
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howi
zwe take x ∈ D(A) with ‖y − x‖ < ε to obtain, again by (11),
‖λR(λ, Kr)y − y‖ ≤ λ‖R(λ, Kr)(y − x)‖ + ‖y − x‖ + ‖λR(λ, Kr)x − x‖

≤ 2ε + λ−1(‖Ax‖ + ‖Bx‖),whi
h gives uniform 
onvergen
e. The Trotter�Kato theorem shows that
R(λ) is de�ned for all λ > 0 and it is the resolvent of a densely de�ned
losed operator K whi
h generates a semigroup of 
ontra
tions (GK(t))t≥0;moreover, for any x ∈ X,(12) lim

rր1
Gr(t)x = GK(t)x,and the limit is uniform in t on bounded intervals and monotone as r ր 1and x ≥ 0 (the monotoni
ity follows from the monotoni
ity of resolvents in

r and the representation formula (5) for semigroups).Furthermore, from Theorem 2.1(i) we have
R(λ, K)x = lim

rր1

∞∑

k=0

rkR(λ, A)(BR(λ, A))kx(13)
=

∞∑

k=0

R(λ, A)(BR(λ, A))kx, x ∈ X+,where, in parti
ular, the last series 
onverges by Remark 2.2. Extension to
X is done by linearity and 
learly

∞∑

k=0

R(λ, A)(BR(λ, A))kx = lim
n→∞

R(λ, A)
n∑

k=0

(BR(λ, A))kx, x ∈ X,whi
h 
ompletes the proof of (8).The proof that K is an extension of A + B is done exa
tly as in [18℄,by noting that the nth partial sum R(n)(λ) of the series in (13) satis�es, for
x ∈ D(A),

R(n)(λ)(λI − A)x = x + R(n−1)(λ)Bx.Hen
e, letting n → ∞ and rearranging we obtain R(λ, K)(λI − (A + B))x
= x, whi
h shows that K ⊇ A + B.We expli
itly state the version of Theorem 3.2 for 
omplex spa
es.Corollary 3.5. Let XC be the 
omplexi�
ation of X with the norm (1).If the assumptions of Theorem 3.2 are satis�ed , then the 
omplexi�
ation KCof K de�ned by (2) is the generator of a positive semigroup of 
ontra
tionson XC , whi
h is the 
omplexi�
ation of (GK(t))t≥0. In parti
ular , this istrue in lp, Lp(Ω), p ∈ [1,∞), and in C(Ω) spa
es, with the usual norms.Proof. The fa
t that the 
omplexi�
ation of (GK(t))t≥0 is a positive semi-group of 
ontra
tions in XC follows from the properties of 
omplexi�
ationdis
ussed in Se
tion 2. Sin
e the norm in XC is equivalent to any standard
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t norm in X × X, this semigroup is di�erentiable at t = 0 only onelements of the form x + iy where x, y ∈ D(K). The �nal statement fol-lows from the fa
t that the usual norm on these spa
es 
oin
ides with the
omplexi�
ation norm (1).One should 
ompare this theorem with Theorems 3.3.2, 3.3.4 and Corol-laries 3.3.3 and 3.3.5 of [21℄. Firstly, we observe that Theorem 3.3.2 impliesthat Corollary 3.3.3, Theorem 3.3.4 and Corollary 3.3.5 of [21℄ 
an be phrasedin the following, more general form (see also [9℄).Theorem 3.6. Let A and B be linear operators in a Bana
h spa
e Xwith D(A) ⊂ D(B) and(14) ‖Bx‖ ≤ α‖Ax‖ + β‖x‖, x ∈ D(A),where 0 ≤ α ≤ 1 and β ≥ 0. Assume further that A is the generator of asemigroup of 
ontra
tions and A + tB is dissipative for any t ∈ [0, 1]. Then:(i) if α < 1, then A + B is the generator of a 
ontra
tive semigroup;(ii) if α = 1 and additionally B∗, the adjoint of B, is densely de�ned ,then A + B is the generator of a 
ontra
tive semigroup.In parti
ular , if X is re�exive and B is 
losable, then the assumption of (ii)is satis�ed.The di�eren
e between [21℄ and this formulation is that in the former theauthor assumes that B is dissipative, whi
h is a stronger assumption usedonly to prove that A + tB is dissipative for all t ∈ [0, 1] (see the 
omment[21, p. 83℄). Having noted this, the proof of the above theorem follows asthe respe
tive proofs of [21℄. In many appli
ations, su
h as dis
ussed in thispaper, B is not dissipative while the A + tB are.It is possible to strengthen Theorem 3.6 to bring it 
loser to Theorem3.2 (see [9℄), as follows:Theorem 3.7. Let X be a Bana
h latti
e and let (G(t))t≥0 be the semi-group generated by A+B or A + B under the 
onditions of Theorem 3.6. If Ais a resolvent positive operator and B is positive, then (G(t))t≥0 is positive.Thus, if X is re�exive and B is 
losable, then Theorem 3.6 is evidentlystronger than Theorem 3.2 as it requires positivity of neither (GA(t))t≥0nor B. Moreover, A-boundedness of B (requirement (14)) is weaker thanassumption (A2) and, �nally, in Theorem 3.6 we obtain the full 
hara
ter-ization of the generator as A + B. However, 
he
king the 
losability of theoperator B in parti
ular appli
ations may be di�
ult while positivity is of-ten obvious. Also, there are a large 
lass of non
losable operators whi
h 
anbe nevertheless positive, e.g. �nite-rank operators (in parti
ular, fun
tionals)are 
losable if and only if they are bounded [17, p. 166℄. An example of thiskind is presented below. Moreover, Theorem 3.2 gives a 
onstru
tive formula
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howi
z(8) for the resolvent of the generator and allows other representation results(see [8℄). Finally, what is probably most important, in nonre�exive spa
esTheorem 3.2 
overs a substantially di�erent 
lass of phenomena as in many
ases the generator does not 
oin
ide with A + B.Example 3.8. We provide an example of the Cau
hy problem for whi
hthe results of [21, Se
tion 3.3℄ are not immediately appli
able but whi
h 
anbe easily solved using Theorem 3.2. Consider the problem
∂x

∂t
(t, s) = −ν(s)x(t, s) + µ(s)

1\
0

ν(r)x(t, r) dr, 0 ≤ s ≤ 1, t > 0,

x(0, s) = x0(s)(15)in X = L2([0, 1]) (over the real numbers). Assume that 0 ≤ ν ∈ L1([0, 1]) \

L2([0, 1]) satis�es T10 ν(s) ds = 1 and that 0 ≤ µ ≤ ν satis�es T10 µ2(s) ds = 1.These assumptions are satis�ed, e.g., by ν(s) = 2s−1/2 and µ = ν on [e−4, 1]and µ = 0 elsewhere. De�ning Ax = −νx on D(A) = {x ∈ X; νx ∈ X} wesee that A generates a positive semigroup of 
ontra
tions. By the S
hwarzinequality we have
1\
0

ν(s)x(s)ds ≤

√√√√
1\
0

ν2(s)x2(s) ds,

hen
e Bx := µ
T1
0 ν(s)x(s) ds is well-de�ned and positive on D(A). It is arank-one operator and thus it is not 
losable (see [17, p. 166℄). Even more,simple 
al
ulation shows that, sin
e ν /∈ X, we have D(B∗) = {0}. On theother hand,

‖Bx‖2 =

1\
0

µ2(s)
( 1\

0

ν(r)x(r) dr
)2

ds =
( 1\

0

ν(r)x(r) dr
)2

≤

1\
0

ν2(r)x2(r) dr = ‖Ax‖2,

and so assumption (A2′) of Remark 3.3 is satis�ed. Furthermore, taking
x ≥ 0 and using µ ≤ ν, we obtain

(x, Ax + Bx) = −

1\
0

ν(s)x2(s) ds +
( 1\

0

µ(s)x(s) ds
)( 1\

0

ν(s)x(s) ds
)

≤ −

1\
0

ν(s)x2(s) ds +
( 1\

0

ν(s)x(s) ds
)2
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≤ −

1\
0

ν(s)x2(s) ds +
( 1\

0

ν(s) ds
)( 1\

0

ν(s)x2(s) ds
)

=

1\
0

ν(s)x2(s) ds
(
− 1 +

1\
0

ν(s) ds
)

= 0,

where in the last line we used the remaining assumption on ν. Here (·, ·)denotes the standard s
alar produ
t in L2([0, 1]) and, to simplify nota-tion, we wrote x instead of x/‖x‖ whi
h does not a�e
t assumption (A4).This shows that all assumptions of Theorem 3.2 are satis�ed and there isan extension of A + B whi
h generates a positive semigroup of 
ontra
-tions.Remark 3.9. Yet another look at the relation between K and A + B in
Lp spa
es is o�ered by the result of [24℄ that states that if T is a positiveoperator on Lp satisfying ‖T‖ ≤ 1 and p ∈ (1,∞), then there exists aprimitive nth root of unity in σp(T ) if and only if every nth root of unity isin σp(T ) if and only if the same holds true for T ∗. Setting T = BR(λ, A) andinvoking [15, Theorem 3.2 and the pre
eding 
onsiderations℄, we see that as
1 /∈ σp(BR(λ, A)), we have 1 /∈ σp(BR(λ, A))∗, so that 1 /∈ σrBR(λ, A) and
onsequently K = A + B.A 
ru
ial property that allows for the proof of the above result of [24℄for p > 1 but not for p = 1 is that x ∈ X∗

+ and x ≤ T ∗x implies x = T ∗x.Clearly, it is satis�ed for any p ∈ (1,∞) but, in general, fails in X∗ = L∞.An important property of the semigroup 
onstru
ted in [18℄ (see also[16℄) is that it is a smallest substo
hasti
 semigroup whose generator is anextension of A + B. In the present setting we 
an even prove a slightlystronger result.Proposition 3.10. Let D be a 
ore of A. If (G(t))t≥0 is another positivesemigroup generated by an extension of (A + B, D), then G(t) ≥ GK(t).Proof. Let K ′ be the generator of (G(t))t≥0. First, we show that K ′ is anextension of A+B. If x ∈ D(A), then there is a sequen
e (xn)n∈N ⊂ D su
hthat limn→∞ xn = x and limn→∞ Axn = Ax. Assumption (A2) ensures, inparti
ular, that D(A) ⊂ D(B) and B is 
ontinuous on D(A) in the graphnorm of A, hen
e Bxn 
onverges to Bx and therefore (A + B)xn 
onvergesto (A + B)x. Sin
e K ′ is 
losed (as a generator) and sin
e for xn ∈ D wehave K ′xn = (A + B)xn, x belongs to D(K ′) and K ′x = (A + B)x.Sin
e K ′ generates a positive semigroup, the resolvent R(λ, K ′) exists andis positive for su�
iently large λ. As D(K ′) ⊃ D(A) and K ′x = (A + B)xon D(A), we have
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R(λ, K ′) − R(λ, Kr) = (R(λ, K ′)(λI − Kr) − I)R(λ, Kr)

= R(λ, K ′)(λI − Kr − λI + K ′)R(λ, Kr) = R(λ, K ′)(K ′ − Kr)R(λ, Kr)

= R(λ, K ′)(A + B − A − rB)R(λ, Kr) = (1 − r)R(λ, K ′)BR(λ, Kr).Sin
e r < 1 and all the operators are positive, we obtain
R(λ, K ′) ≥ R(λ, Kr).Sin
e R(λ, Kr) ր R(λ, K), we have R(λ, K ′) ≥ R(λ, K) and by the repre-sentation formula (5) we 
on
lude that this inequality holds for semigroups.Appli
ability of Theorem 3.2 depends on whether we 
an prove that theoperator A is the generator of a positive semigroup of 
ontra
tions. In many
ases of pra
ti
al importan
e: birth-and-death problems, pure fragmenta-tion or spatially homogeneous linear Boltzmann equation [8℄, this is obviousas A is a diagonal (multipli
ation) operator. If, however, we allow spatialdependen
e and/or external �eld, then A is given by

A = A0 − N,where A0 
an be a �rst order streaming operator, a di�usion operator orpossibly the sum of both, and N is the multipli
ation by a positive, butoften very singular, fun
tion. Then determining whether A is a generatorbe
omes a nontrivial problem. The following theorem, the proof of whi
huses ideas of Theorem 3.2, provides a partial solution to this problem.Theorem 3.11. Let (A0, D(A0)) be the generator of a positive semigroupof 
ontra
tions on a KB-spa
e X and (N, D(N)) be a positive operator.Assume that there exists an in
reasing sequen
e ((Nn, D(Nn)))n∈N of positiveoperators satisfying :1. D(A0) ∩ D(N) is dense in X.2. D(Nn) ⊃ D(N).3. There is a dense set D ⊂ D(A0)∩D(N) su
h that limn→∞ Nny = Nyfor y ∈ D.4. (A0 −Nn, D(A0)∩D(Nn)) generates a positive semigroup of 
ontra
-tions for n = 1, 2, . . . .Then there is an extension (A, D(A)) of (A0 − N, D) whi
h generates asemigroup of 
ontra
tions.Proof. Fix n for the time being. A0 −Nn generates a positive semigroupof 
ontra
tions denoted by (Gn(t))t≥0. Denote by xi ∈ D(A0) ∩ D(Ni) thesolution to the equation
λxi − A0xi + Nixi = ywhere λ > 0 and y ∈ X+. The resolvent of A0 − Ni, say Ri(λ), is positive
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y = λxm − A0xm + Nmxm = λxm − A0xm + Nnxm + (Nm − Nn)xmso that

xm = Rn(λ)(y − (Nm − Nn)xm) ≤ Rn(λ)y = xnas (Nm − Nn)xm ≥ 0 by monotoni
ity of (Nn)n∈N. Hen
e, the resolvents
Rn(λ)y form a de
reasing sequen
e of nonnegative elements. Sin
e 
learly,for any �xed n0 and n ≥ n0, xn0

− xn is nonnegative and in
reasing with
‖xn0

− xn‖ ≤ 2/λ and we are in a KB-spa
e, Rn(λ) strongly 
onverges toa (positive) operator R(λ). To show that this is the resolvent of a denselyde�ned operator we use Corollary 2.4. This requires showing that the limit
lim

λ→∞
λRn(λ)y = yis uniform in n for any y ∈ X. Let x ∈ D. Then for any δ there is n0 su
hthat for any n > n0 we have ‖Nnx − Nx‖ < δ. Taking n > n0 we have

(16) ‖λRn(λ)x − x‖ = ‖Rn(λ)(A0 − Nn)x‖ ≤ λ−1(‖A0x‖ + ‖Nnx‖)

≤ λ−1(‖A0x‖ + ‖Nx‖ + ‖Nx − Nnx‖) ≤ λ−1(‖A0x‖ + ‖Nx‖ + δ)so that the 
onvergen
e is indeed uniform in n. Let y ∈ X and �x ε > 0.Then, by density of D, there exists x ∈ D satisfying ‖y − x‖ < ε and forthis x we 
an write the estimate above with n0 depending only on x and δ.Hen
e
‖λRn(λ)y − y‖ ≤ ‖λRn(λ)(y − x)‖ + ‖λRn(λ)x − x‖ + ‖y − x‖

≤ 2ε + λ−1(‖A0x‖ + ‖Nx‖ + δ)and the last term 
an be made smaller than ε by taking λ large enough, inde-pendently of n. Hen
e also here the 
onvergen
e is uniform in n and we 
anuse the Trotter�Kato theorem, Theorem 2.3, to dedu
e that R(λ) = R(λ,A)where A is a densely de�ned operator generating a positive semigroup of
ontra
tions. To show that this is an extension of (A0 − N, D), let y ∈ D.Then
R(λ,A)(λI − (A0 − N))y = lim

n→∞
Rn(λ)(λI − (A0 − N))y,and, on the other hand,

Rn(λ)(λI − (A0 − N))y = Rn(λ)(λI − (A0 − Nn))y + Rn(λ)(N − Nn)y

= y + Rn(λ)(N − Nn)y → yby uniform boundedness of Rn(λ). Thus, A|D = (A0 − N)|D.Remark 3.12. A 
loser inspe
tion of the proof shows that assumption 3was used twi
e: �rst, to show the 
onvergen
e of the resolvents to the re-solvent of a densely de�ned operator, and then to show that the generator
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an be proved under either of the following assumptions:(a) There is a set D ⊂ D(A0) ∩ D(N) su
h that D+ − D+ is dense in Xand Nny ≤ Ny for all y ∈ D+.(b) There is a dense set D ⊂ D(A0) ∩ D(N) and a number M su
h that
‖Nny − Ny‖ ≤ M for all y ∈ D and n.The proof for (b) is identi
al to the above if one realizes that δ in (16) 
anbe any number, not ne
essarily small. The proof for (a) is as follows. Let

x = x+ − x− ∈ D+ − D+. Then
‖λRn(λ)x − x‖

= ‖(A0 − Nn)Rn(λ)x‖ = ‖Rn(λ)(A0 − Nn)x‖ ≤ λ−1(‖A0x‖ + ‖Nnx‖)

≤ λ−1(‖A0x‖ + ‖Nnx+‖ + ‖Nnx−‖) ≤ λ−1(‖A0x‖ + ‖Nx+‖ + ‖Nx−‖),with the rest as above. Note that we used D+ = D ∩ X+ ⊂ D ⊂ D(A0) ∩
D(Nn).In both 
ases, however, we need the 
onvergen
e Nny → Ny on some setto get an extension property. If this set is {0}, then this property be
omestrivial.Assumptions (A1)�(A4) look 
onsiderably more involved than Kato's ori-ginal assumptions but they have to 
ater for a possibly more 
ompli
atedstru
ture of the underlying spa
e and of the operators A and B. If X isan L1 spa
e (or, in general, an AL-spa
e), then these assumptions 
an besigni�
antly simpli�ed, leading to results already obtained in [26, 4, 5, 7℄.Corollary 3.13. Suppose that the operators (A, D(A)) and (B, D(B))in X = L1(Ω, dµ) satisfy :1. (A, D(A)) generates a positive semigroup of 
ontra
tions (GA(t))t≥0,2. D(B) ⊃ D(A) and Bx ≥ 0 for x ∈ D(A)+,3. for all x ∈ D(A)+,(17) \

Ω

(Ax + Bx) dµ ≤ 0.Then the assumptions of Theorem 3.2 are satis�ed.Proof. First, assumption 3 immediately gives assumption (A4), that is,dissipativity on the positive 
one. Next, take x = R(λ, A)y for y ∈ X+ sothat x ∈ D(A)+. Sin
e R(λ, A) is a surje
tion from X onto D(A), from
(A + B)x = (A + B)R(λ, A)y = −y + BR(λ, A)y + λR(λ, A)ywe obtain(18) −

\
Ω

y dµ +
\
Ω

BR(λ, A)y dµ + λ
\
Ω

R(λ, A)y dµ ≤ 0.
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e in AL-spa
es the norm of a nonnegative element is given by the inte-gral, we obtain(19) λ‖R(λ, A)y‖ + ‖BR(λ, A)y‖ − ‖y‖ ≤ 0, y ∈ X+,whi
h immediately yields ‖BR(λ, A)‖ ≤ 1, hen
e (A2) is satis�ed.The following result is similar to Des
h's perturbation theorem [14℄ but
an be applied to possibly nonpositive perturbations.Corollary 3.14. Assume that A is the generator of a positive C0-semigroup of 
ontra
tions in X = L1(Ω, dµ) and let B = B+ − B− be su
hthat B± ≥ 0, D(B±) ⊃ D(A) and there exists C ≥ 0 with D(A) ⊂ D(C)su
h that B+ + B− ≤ C on D(A)+ and , for all x ∈ D(A)+,(20) \
Ω

(Ax + Cx) dµ ≤ 0.Then there is an extension KB of A + B that generates a semigroup of
ontra
tions.Proof. De�ne |B| = B+ + B−. Clearly, for x ∈ D(A)+,\
Ω

(Ax + |B|x) dµ =
\
Ω

(Ax + Cx) dµ +
\
Ω

(|B|x − Cx) dµ ≤ 0so that, by Corollary 3.13, |B| satis�es all assumptions of Theorem 3.2, andwe have ‖BR(λ, A)‖ ≤ ‖ |B|R(λ, A)‖ ≤ 1. Hen
e, as in the proof of thattheorem, (A + r|B|, D(A)) generates a positive semigroup of 
ontra
tions,and an extension of A + |B|, denoted by K|B|, with resolvent given by (8)with B repla
ed by |B|, generates a positive semigroup of 
ontra
tions. Also,for y ∈ X+, r ≤ 1, and λ > 0,
n∑

j=0

|R(λ, A)rj(BR(λ, A))jy| ≤
∞∑

j=0

R(λ, A)(|B|R(λ, A))jy.Using additivity of the norm on the positive 
one, we obtain(21) n∑

j=0

rj‖R(λ, A)(BR(λ, A))jy‖ ≤ ‖R(λ, K|B|)y‖,so the series Rr(λ)y :=
∑∞

j=0 rjR(λ, A)(BR(λ, A))jy is absolutely 
onver-gent for any y ∈ X and 0 ≤ r ≤ 1. For 0 ≤ r < 1, Rr(λ)y is dominatedby a geometri
 series and, by standard 
al
ulations, equals the resolvent
R(λ, A + rB) of the operator A + rB.From (21),

‖R(λ, A + rB)‖ ≤ λ−1as K|B| is dissipative. Hen
e (A + rB, D(A)) generates a semigroup of 
on-tra
tions for ea
h r < 1. From the dominated 
onvergen
e theorem, Theorem
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h y ∈ X,
lim
r→1

R(λ, A + rB)y = R1(λ)y.We now use the Trotter�Kato theorem exa
tly as in the proof of Theorem3.2. Thus, we have to prove that for any f ∈ X the limit
lim

λ→∞
λR(λ, A + rB)y = yis uniform in r. Let y ∈ D(A). Then as

(A + rB)R(λ, A + rB) = I − λR(λ, A + rB)we have, by dissipativity,
‖λR(λ, A + rB)y − y‖ ≤ λ−1(‖Ay‖ + ‖By‖)so that the limit is uniform in r. Sin
e D(A) is dense in X, for z ∈ X wetake x ∈ D(A) with ‖z − x‖ < ε to obtain, again by dissipativity,

‖λR(λ, A + rB)z − z‖ ≤ 2ε + λ−1(‖Ax‖ + ‖Bx‖),whi
h gives uniform 
onvergen
e. The Trotter�Kato theorem shows that
R1(λ) is the resolvent of a densely de�ned 
losed operator KB whi
h gener-ates a semigroup of 
ontra
tions (GKB

(t))t≥0. To show that KB is an exten-sion of A + B, we simply repeat the argument from the proof of Theorem3.2.4. Appli
ations to birth-and-death problems. We shall 
onsider aparti
ular 
ase of the Kolmogorov system, 
alled the birth-and-death system:
(22)

x′
0 = −a0x0 + d1x1,...

x′
n = −anxn + dn+1xn+1 + bn−1xn−1,...The 
lassi
al appli
ations of this system are in population theory. In this 
ase

xn is the probability that the population 
onsidered 
onsists of n individualsand its state 
an 
hange by either death or birth of an individual, moving thepopulation to state n−1 or n+1, respe
tively, hen
e the name of birth-and-death system. The 
lassi
al birth-and-death system is formally 
onservative,whi
h requires an = dn + bn. However, re
ently a number of other importantappli
ations emerged. For example ([19, 25℄), we 
an 
onsider an ensemble of
an
er 
ells stru
tured by the number of 
opies of a drug-resistant gene they
ontain. Here, the number of 
ells with n 
opies of the gene 
an 
hange due tomutations but the 
ells also undergo division without 
hanging the numberof genes in their o�spring, whi
h is modelled by a nonzero sequen
e (cn)n∈N,de�ned by cn = bn +dn −an. Furthermore, system (22) 
an be thought of as
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 system 
onsisting of parti
les labelled by their internalenergy n and intera
ting inelasti
ally with the surrounding matter where, inea
h intera
tion, they 
an either gain or lose a unit of energy. Some parti
les
an de
ay without a tra
e or be removed from the system leading again toa nonzero (cn)n∈N.The solvability of (22) has been studied by various methods for severalde
ades, with �rst de�nitive results obtained in [18, 23, 22℄; see also a moderna

ount in [3℄. However, motivated by the probabilisti
 interpretation, theseworks were 
on�ned to the 
onservative 
ase cn = 0 and to the spa
es l1and c0. The methods employed to prove the existen
e of solutions utilizedthis probabilisti
 stru
ture quite extensively and did not seem to admit aneasy extension to other spa
es and non
onservative systems.Let boldfa
e letters denote sequen
es, e.g. x = (x0, x1, . . . , xn, . . .). Wealso assume that the sequen
es d, b and a are nonnegative with b−1 = d0

= 0.We denote by K the matrix of 
oe�
ients of the right-hand side of (22)and at the same time, without 
ausing any misunderstanding, the formaloperator in the spa
e l of all sequen
es, a
ting as (Kx)n = bn−1xn−1 −
anxn + dn+1xn+1. In the same way, we de�ne A and B as (Ax)n = −anxnand (Bx)n = bn−1xn−1 +dn+1xn+1, respe
tively. Let Kp denote the maximalrealization of K in lp, p ∈ [1,∞), that is,

Kpx = Kxon(23) D(Kp) = {x ∈ lp; Kx ∈ lp}.Lemma 4.1. The maximal operator Kp is 
losed for any p ∈ [1,∞).Proof. Let x(n) → x and Kpx
(n) → y in lp as n → ∞. From this itfollows that for any k, x

(n)
k → xk and, from the de�nition of Kp, yk =

bk−1xk−1 + akxk + dk+1xk+1, that is, Kpx = y.Next, de�ne the operator Ap by restri
ting A to
D(Ap) = {x ∈ lp; Apx ∈ lp} =

{
x ∈ lp;

∞∑

n=0

ap
n|xn|

p < ∞
}
.

Lemma 4.2. (Ap, D(Ap)) is the generator of a semigroup of 
ontra
tionsin lp.Proof. Ap is 
learly densely de�ned with resolvent R(λ, Ap) for λ > 0given by
(R(λ, Ap)y)n =

yn

λ + an



234 J. Banasiak and M. La
howi
z(re
all an ≥ 0). Thus,
‖R(λ, Ap)y‖

p
p =

∞∑

n=0

1

(λ + an)p
|yn|

p ≤
1

λp
‖y‖p

p,so the lemma follows by the Hille�Yosida theorem.Theorem 4.3. Assume that sequen
es b and d are nonde
reasing andthere is α ∈ [0, 1] su
h that for all n,(24) 0 ≤ bn ≤ αan, 0 ≤ dn+1 ≤ (1 − α)an.Then there is an extension Kp of the operator (Ap +Bp, D(Ap)), where Bp =
B|D(Ap), that generates a positive semigroup of 
ontra
tions in lp, p ∈ (1,∞).Proof. The operator Bp is 
learly positive; we must show that it maps
D(Ap) into lp. For x ∈ D(Ap) we have, with b−1 = d0 = 0,

‖Bpx‖p =
( ∞∑

n=0

|bn−1xn−1 + dn+1xn+1|
p
)1/p

≤
( ∞∑

n=0

bp
n−1|xn−1|

p
)1/p

+
( ∞∑

n=0

dp
n+1|xn+1|

p
)1/p

≤
( ∞∑

n=0

bp
n|xn|

p
)1/p

+
( ∞∑

n=0

dp
n|xn|

p
)1/p

.By monotoni
ity of d we have dn ≤ dn+1 so that by (24) we obtain
‖Bpx‖p ≤

( ∞∑

n=0

ap
n|xn|

p
)1/p

= ‖Apx‖p.Thus, BpD(Ap) ⊂ lp. Moreover, sin
e −Ap is a positive operator, we see, byRemark 3.3, that the assumptions (A2)�(A3) of Theorem 3.2 are satis�ed.To prove (A4) we take x ∈ D(Ap)+ and the 
orresponding element x̃ =
(x̃n)n∈N,

x̃n =

{
0 if xn = 0,

xp−1
n if xn 6= 0.Hen
e x̃ ∈ lq, where 1/p+1/q = 1. Note that sin
e, 
learly, assumption (A4)is not a�e
ted by multiplying x∗ by a positive fa
tor, in the de�nition of x̃we dropped the fa
tor ‖x‖1−p

p to simplify notation. For simpli
ity we assume
xn 6= 0 for any n ∈ N. From (24) we have an ≥ bn + dn+1, so that

〈Kpx, x̃〉 =
∞∑

n=0

(Kpx)nxp−1
n

= −
∞∑

n=0

anxp
n +

∞∑

n=0

bn−1xn−1x
p−1
n +

∞∑

n=0

dn+1xn+1x
p−1
n
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≤ −

∞∑

n=0

bnxp
n −

∞∑

n=0

dn+1x
p
n +

∞∑

n=0

bn−1xn−1x
p−1
n

+

∞∑

n=0

dn+1xn+1x
p−1
n ,where the 
al
ulations above are justi�ed by the 
onvergen
e of all series(see e.g. [9℄). Thus, by the Hölder inequality, we obtain

〈Kpx, x̃〉 ≤
( ∞∑

n=0

bnxp
n

)1/p( ∞∑

n=0

bnxp
n+1

)1/q
−

∞∑

n=0

bnxp
n

+
( ∞∑

n=0

dnxp
n

)1/p( ∞∑

n=0

dn+1x
p
n

)1/q
−

∞∑

n=0

dn+1x
p
n,and, using bn ≤ bn+1 and dn ≤ dn+1, we obtain 〈Kpx, x̃〉 ≤ 0.Corollary 4.4. Let p ∈ (1,∞). Then Kp = Ap + Bp.Proof. As in Lemma 4.1, we 
an prove that B is 
losed and thus Bp is
losable. Hen
e the statement follows from Theorem 3.6. Alternatively, thestatement follows dire
tly from Remark 3.9.Corollary 4.5. Let p = 1. Assume that sequen
es b and d are non-negative and(25) an ≥ bn + dn.Then there is an extension K1 of the operator (A1 +B1, D(A1)), where B1 =

B|D(A1), that generates a positive semigroup of 
ontra
tions on l1.Proof. We have
D(A1) =

{
x ∈ l1;

∞∑

n=0

an|xn| < ∞
}

and, from (25), 0 ≤ bn ≤ an and 0 ≤ dn ≤ an for n ∈ N. Hen
e, B1 iswell-de�ned and 
ondition (17) takes the form
∞∑

n=0

((A1 + B1)x)n = −

∞∑

n=0

anxn +

∞∑

n=0

bn−1xn−1 +

∞∑

n=0

dn+1xn+1

= −

∞∑

n=0

anxn +

∞∑

n=0

bnxn +

∞∑

n=0

dnxn ≤ 0,where we used the 
onvention b−1 = d0 = 0. The statement now follows byCorollary 3.13.Remark 4.6. The above theorem was also proved in [9℄ but using The-orem 3.7.
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howi
zCorollary 4.7. Let p = 1. Assume that sequen
es b and d satisfy(26) an ≥ |bn| + |dn|.Then there is an extension K1 of the operator (A1 +B1, D(A1)), where B1 =
B|D(A1), that generates a semigroup of 
ontra
tions on l1.Proof. This follows immediately from Corollaries 3.14 and 4.5.Remark 4.8. In 
ontradistin
tion to the 
ase p > 1, for p = 1 in general
K1 6= A1 + B1, see [6℄.Remark 4.9. There is a di�eren
e in 
onditions ensuring dissipativityin lp for p > 1 and in l1. In the �rst 
ase we require an ≥ bn + dn+1, andin the se
ond an ≥ bn + dn. Sin
e (dn)n∈N is assumed to be in
reasing,the 
ondition for p > 1 is stronger. However, if for p > 1 the 
oe�
ient
an satis�es the 
ondition for l1, we 
an rede�ne ãn = an + dn − dn+1 sothat ãn satis�es the proper lp-
ondition. Now, if dn+1 − dn is bounded (e.g.for a�ne 
oe�
ients), then the existen
e of the semigroup with the original
oe�
ients 
an be established by the bounded perturbation theorem. Theresulting semigroup, however, may not be 
ontra
tive.Theorem 4.10. For any p ∈ [1,∞) we have Kp ⊂ Kp.Proof. First we note that if xr → x as r → 1 in lp, then for any n,

lim
r→1

((I −Kp)x
r)n = lim

r→1
xr

n + anxr
n − bn−1x

r
n−1 − dn+1x

r
n+1(27)

= xn + anxn − bn−1xn−1 − dn+1xn+1

= ((I −Kp)x)n.Set xr = R(1, A+ rB)y for y ∈ lp. We know that xr → R(1, Kp)y as r → 1.Sin
e R(1, A + rB) is the resolvent of (A + rB, D(A)) whi
h is a restri
tionof the maximal realization of −A + rB, we have
((I −Kp)x

r)n = xr
n + anxr

n − rbn−1x
r
n−1 − rdn+1x

r
n+1

− (1 − r)(bn−1x
r
n−1 + dn+1x

r
n+1)

= yn − (1 − r)(bn−1x
r
n−1 + dn+1x

r
n+1).Sin
e n is �xed, we see that the last term tends to zero and by (27) we obtain

((I −Kp)x)n = yn, that is,
(I −Kp)R(1, Kp)y = y.
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