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Multipli
ative Cau
hy fun
tional equation andthe equation of ratios on the Lorentz 
onebyJa
ek Wesoªowski (Warszawa)Abstra
t. It is proved that the solution of the multipli
ative Cau
hy fun
tional equa-tion on the Lorentz 
one of dimension greater than two is a power fun
tion of the deter-minant. The equation is solved in full generality, i.e. no smoothness assumptions on theunknown fun
tion are imposed. Also the fun
tional equation of ratios, of a similar nature,is solved in full generality.1. Introdu
tion. Consider the following problem, whi
h looks quitenatural: des
ribe the family of positive fun
tions of positive argument withthe property that the ratio of values depends only on the ratio of arguments.Thus one seeks solutions of the following fun
tional equation:
f(xy)

f(x(1 − y))
= a(y), ∀(x, y) ∈ (0,∞) × (0, 1),(1)where f : (0,∞) → (0,∞) and a : (0, 1) → (0,∞) are unknown fun
tions.For obvious reasons we 
all this equation the fun
tional equation of ratios.Changing the variables s = xy and 1/t = x(1 − y), and introdu
ing thefun
tions g, b : (0,∞) → (0,∞) by

g(t) =
1

f(1/t)
, b(t) = a

(

t

1 + t

)

, t ∈ (0,∞),we get the Pexider version of the multipli
ative Cau
hy equation:
f(s)g(t) = b(st), ∀(s, t) ∈ (0,∞)2.(2)Thus (see for instan
e A
zél and Dhombres (1989)), f(x) = H(x) for x ∈

(0,∞) and a(y) = H(y/(1 − y)) for y ∈ (0, 1), where H is a generalizedpower fun
tion. A slightly di�erent derivation of these solutions of equation(1) has been given re
ently in Ger (2004).2000 Mathemati
s Subje
t Classi�
ation: 39B52, 39B22, 17A15, 62H05.Key words and phrases: Cau
hy equation, equation of ratios, Lorentz 
one, determi-nant, generalized power fun
tion, Luka
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264 J. WesoªowskiThe aim of this paper is to study the Lorentz 
one versions of equations(2) and (1), whi
h are not so 
losely related in this 
ase as they are in theunivariate situation des
ribed above.The Lorentz 
one, whi
h is a basi
 obje
t of relativity theory, denotedhere by V , is an example of a symmetri
 
one. Another example, more fa-miliar to a wider mathemati
al audien
e, is the 
one V+ of positive de�nitesymmetri
 matri
es. The mutlipli
ative Cau
hy equation on V+ has beensolved re
ently under smoothness assumptions in Bobe
ka and Wesoªowski(2003), referred to as BW2 in the following. Re
ently, symmetri
 
ones re-
eived also 
onsiderable attention in probability and mathemati
al statisti
sdue to generalizations of Wishart distributions and related 
hara
terizations:see for instan
e Massam (1994), Casalis and Leta
 (1996), Massam and Ne-her (1997), Bobe
ka and Wesoªowski (2002) (BW1 in what follows). To alarge extent this development was enhan
ed by developments in the analy-sis on symmetri
 
ones presented in the monograph by Faraut and Korányi(1994). In parti
ular, in BW1, a 
hara
terization problem for the Wishartrandom matrix was redu
ed to two fun
tional equations on V+, one of thembeing the equation of ratios. It should be emphasized that, in 
ontrast tothe univariate 
ase des
ribed above, the version of the equation of ratios in
V+, due to non-
ommutativity and non-asso
iativity of the symmetri
 prod-u
t x1/2yx1/2, 
annot be redu
ed in a dire
t way to the Cau
hy equationin V+.In the present paper we are 
on
erned with both these equations: themultipli
ative Cau
hy equation and the equation of ratios on the Lorentz
one V . The stru
ture of V seems to be more transparent than that of V+.Some formulas 
an be written expli
itly for V , while their analogues arenot available in analyti
al forms in V+. As an example one 
an 
onsider asquare root of an element in the 
one (see (5) below). Consequently, thesmoothness assumptions, whi
h were essential in the solutions of fun
tionalequations on V+ in BW1 and BW2, are omitted for their analogues on V .However, a Lorentz 
one version of the se
ond equation of BW1 still remainsto be solved.The paper is organized as follows. In Se
tion 2 basi
 fa
ts on the Lorentz
one are presented in an a

essible and expli
it way. In parti
ular, for anyelement of V we de�ne its inverse, square root and determinant. Also asymmetri
 produ
t of elements from V is de�ned. Se
tion 3 is devoted to themultipli
ative Cau
hy fun
tional equation on V and its 
omplete solution.An interesting feature of this solution is that in the two-dimensional 
ase itis not a generalized power fun
tion of the determinant as one may expe
t.A deeper reason for that is that in two dimensions the 
one is not irredu
ible.In any dimension higher than two, the solution is, as expe
ted, a generalizedpower fun
tion of the determinant.
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tion 4 is devoted to the fun
tional equation of ratios. Here again, justas for positive de�nite matri
es (see BW1), we do not redu
e the equation tothe Cau
hy equation. However, there are some similarities between the meth-ods used in the proofs. To be more pre
ise, the �rst equation of BW1, whi
his the logarithmi
 version of (1) in the 
one of positive de�nite matri
es, wassolved under di�erentiability assumptions. Here we give a solution of (1) in
V with no regularity assumptions on the unknown fun
tions. Again, as forthe Cau
hy equation, due to redu
ibility of the 
one, the 
ase of dimensiontwo implies spe
ial solutions, while in higher dimensions the solution is ageneralized power fun
tion of the determinant.2. Preliminaries on the Lorentz 
one. Let E be a Eu
lidean spa
ewith the norm ‖ · ‖ de�ned by the inner produ
t 〈·, ·〉. Consider the spa
e
R×E with elements denoted by x = (x0, x), where x0 ∈ R and x ∈ E. Then
R × E is Eu
lidean with the inner produ
t

[x,y] = x0y0 + 〈x, y〉.Also we de�ne a produ
t (the Jordan produ
t) of x and y as
xy = ([x,y], x0y + y0x) ∈ R × E.If x and y are interpreted as 2 × 2 matri
es

x =

(

x0 x
x x0

)

, y =

(

y0 y
y y0

)

,then the produ
t xy 
an be viewed as the matrix produ
t:
xy =

(

[x,y] x0y + y0x
x0y + y0x [x,y]

)

Exploiting further the matrix representation, the determinant of x isde�ned as
det(x) = x2

0 − ‖x‖2.(3)Also if det(x) 6= 0 then the inverse x
−1 exists and equals

x
−1 =

1

det(x)

(

x0 −x
−x x0

)

,(4)i.e. x
−1 is the only element of R × E su
h that x

−1
x = xx

−1 = (1, ø) = e,where ø is the zero of E.However, some 
aution is needed while using the matrix representationsin
e the produ
t is 
ommutative: xy = yx, but not asso
iative, i.e. (xy)z 6=
x(yz).Let V = {x ∈ R × E : x0 > ‖x‖} denote the Lorentz 
one in R × E.Note that if x,y ∈ V then xy may not be an element of V , but for
x ∈ V we have xx ∈ V . Moreover, for any x ∈ V one 
an de�ne x

1/2 by the



266 J. Wesoªowskiequation x
1/2

x
1/2 = x. It is a matter of elementary 
al
ulations to see thatthe only solution of this equation whi
h is an element of V has the form
x

1/2 =
1

√

2(x0 +
√

det(x))

(

x0 +
√

det(x), x
)

.(5)
Now we de�ne another produ
t whi
h is a non-symmetri
 operation from

V × V onto V . For any x,y ∈ V let
x ◦ y = 2x1/2(x1/2

y) − xy.Note that it 
an be rewritten as
x ◦ y =

(

[x,y],
√

det(x)y +

(

y0 +
〈x, y〉

x0 +
√

det(x)

)

x

)

.(6)Note also that (6) and det(x2) = (det(x))2 imply
x

2 ◦ y = ([x2,y], det(x)y + 2[x,y]x).(7) A 
omputation shows that the Cau
hy theorem on the determinant ofthe produ
t holds true for the produ
t x ◦ y, i.e.
det(x ◦ y) = det(x) det(y).(8)Observe that x ∈ V i� x0 > 0 and det(x) > 0. Now, by (8), to prove that

x◦y ∈ V it su�
es to show that [x,y] is positive; but by the Cau
hy�S
hwarzinequality,
[x,y] ≥ x0y0 − |〈x, y〉| ≥ x0y0 − ‖x‖ ‖y‖ > 0,sin
e x0 > ‖x‖ and y0 > ‖y‖.Observe also that x ◦ x

−1 = x
−1 ◦ x = e.Finally, note that the produ
t ◦ is neither 
ommutative, nor asso
iative,i.e. in general x ◦ y 6= y ◦ x and (x ◦ y) ◦ z 6= x ◦ (y ◦ z).The above 
onsiderations are spe
ializations to the Lorentz 
one of somebasi
 fa
ts from the theory of Jordan algebras and symmetri
 
ones, whi
h
an be found in Faraut and Korányi (1994). For instan
e, the produ
t xy isnothing else than the Jordan produ
t L(x)y, and the produ
t x ◦y is the so
alled quadrati
 representation P (x1/2)y.3. The Cau
hy equation. In this se
tion we 
onsider a Lorentz 
oneanalogue of the multipli
ative Cau
hy equation whi
h on (0,∞) (a trivialLorentz 
one with E = {ø}) has the form

f(xy) = f(x)f(y) for any x, y > 0,(9)where f : (0,∞) → (0,∞). It is well known that the set of solutions of (9) isthe 
lass of so 
alled generalized power fun
tions, i.e. f = H, where H is ageneralized power fun
tion. In this sense the equation (9) 
an be treated asthe de�nition of the 
lass of generalized power fun
tions. Under very weak
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onditions any generalized power fun
tion H has the form H(x) = xa forsome real number a.There are numerous extensions of the equation (9) in the literature. Manyof them deal with its versions on abstra
t algebrai
-topologi
al stru
tures.One of the most re
ent, given in BW2, is 
on
erned with (9) on the 
one
V+ of positive de�nite real symmetri
 matri
es of a �xed dimension. Theequation (9) then reads

f(x1/2yx1/2) = f(x)f(y)(10)for any x, y ∈ V+. It is shown in that paper that if (10) holds then there existsa real number λ su
h that f(x) = [det(x)]λ for any x ∈ V+. A drawba
kof this result is that it was obtained under an additional assumption ofdi�erentiability of f .Note that the 
one V+, just as the Lorentz 
one V , is an example of asymmetri
 
one. The main result of this note is a solution of a version of(10) in the Lorentz 
one. The solution is given in full generality, i.e. withoutany smoothness assumption on the unknown fun
tion.Theorem 1. Let V be a Lorentz 
one in R × E. Let f : V → (0,∞)satisfy the equation
f(x ◦ y) = f(x)f(y)(11)for any x,y ∈ V , where the produ
t ◦ is de�ned by (6). Then either thedimension of E is greater than 1 and

f(x) = H(det(x)) for any x ∈ V ,where H is a generalized power fun
tion and the determinant det is de�nedby (3), or E is univariate, i.e. E = {x1e : x1 ∈ R}, and
f(x) = H1(x0 + x1)H2(x0 − x1) for any x = (x0, x1e),where H1 and H2 are generalized power fun
tions.Proof. Take x = (a, ø) and y = (b, ø) in (11). Then

f(ab, ø) = f(a, ø)f(b, ø)for any a, b ∈ (0,∞). Consequently, the fun
tion f(·, ø) de�ned on (0,∞)is a power fun
tion, i.e. f(a, ø) = H(a) for any a > 0, where H is a powerfun
tion.De�ne a fun
tion G on (0,∞) × E by
G(det(x), x) = f(x)(12)for any x = (x0, x) ∈ V . Consider (11) for x

2 = xx instead of x. Note that
det(x2) = [det(x)]2. Consequently, by (8) and (7) the equation (11) withthis 
hange of variable 
an be written as
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(13) G([det(x)]2 det(y), det(x)y + 2[x,y]x)

= G([det(x)]2, 2x0x)G(det(y), y).Insert into (13) the variables x and y su
h that det(x) = det(y) = 1. Thenfor a fun
tion F on E de�ned by F (x) = G(1, x) for any x ∈ E, we have
(14) F

(

y+2
[
√

(1 + ‖y‖2)(1 + ‖x‖2)+ 〈x, y〉
]

x
)

= F
(

2
√

1 + ‖x‖2 x
)

F (y)for all x, y ∈ E.In the above equation, insert 2x
√

1 + ‖x‖2 = αu and y = βu where αand β are arbitrary real numbers and u ∈ E has length 1. Then, after somestraightforward transformations, we get
F ([α

√

1 + β2 + β
√

1 + α2]u) = F (αu)F (βu).For any u ∈ E with ‖u‖ = 1 de�ne gu : R → R by gu(α) = F (αu), α ∈ R.Then, for any α, β ∈ R the above equation 
an be written as
gu

(

α
√

1 + β2 + β
√

1 + α2
)

= gu(α)gu(β).(15)Note that for the real fun
tion h de�ned by h(x) = x +
√

1 + x2, x ∈ R, wehave
h
(

α
√

1 + β2 + β
√

1 + α2
)

= h(α)h(β)for any real α and β. The fun
tion h is a bije
tion of R onto (0,∞). Now,we de�ne Tu = gu ◦ h−1. Then (15) 
an be rewritten as
Tu(h(α)h(β)) = Tu(h(α))Tu(h(β)), α, β ∈ R.It follows that Tu is a generalized power fun
tion Hu and gu = Hu ◦ h.Now 
onsider the 
ase of univariate E. Then

F (x) = F (x1 e) = ge(x1) = He

(

x1 +
√

1 + x2
1

)

, x1 ∈ R.(16)If the dimension of E is greater than 1, then we 
an 
hoose orthogonal
x, y in (14). For su
h x and y that equation reads

F
(

y + 2
√

(1 + ‖y‖2)(1 + ‖x‖2)x
)

= F
(

2
√

1 + ‖x‖2 x
)

F (y).Thus for any y, z ∈ E su
h that 〈y, z〉 = 0 we have
F (y + z) = F

(

z/
√

1 + ‖y‖2
)

F (y).This follows from the fa
t that the last equation 
an be redu
ed to theprevious one by de�ning x through z = 2
√

(1 + ‖x‖2)(1 + ‖y‖2)x. It 
an be
he
ked by simple 
omputation, involving solution of a quadrati
 equation,that x is 
orre
tly de�ned.Now, by symmetry, we get
F

(

z/
√

1 + ‖y‖2
)

F (y) = F
(

y/
√

1 + ‖z‖2
)

F (z)(17)if only 〈y, z〉 = 0. Sin
e F is positive we 
an rewrite the above equation as
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F (z/

√

1 + ‖y‖2)

F (z)
=

F (y/
√

1 + ‖z‖2)

F (y)
(18)for 〈y, z〉 = 0. Insert into (18) new variables z = αu and y = βv, where α, βare any real numbers and u, v are orthogonal unit ve
tors. Then, upon usingthe properties of the generalized power fun
tion, we arrive at

Hu

(

α +
√

1 + α2 + β2

√

1 + β2(α +
√

1 + α2)

)

= Hv

(

β +
√

1 + α2 + β2

√
1 + α2(β +

√

1 + β2)

)(19)for any α, β ∈ R. Now for α = β one gets
Hu

(

α +
√

1 + 2α2

√
1 + α2(α +

√
1 + α2)

)

= Hv

(

α +
√

1 + 2α2

√
1 + α2(α +

√
1 + α2)

)

for any real α. Sin
e the argument as a fun
tion of α is a surje
tion from
R onto (0,∞) we 
on
lude that Hu = Hv for any orthogonal unit ve
tors uand v. Consequently, we 
an repla
e Hv on the right hand side of (19) by
Hu. Taking then β = −α we obtain

Hu

(

α +
√

1 + 2α2

α +
√

1 + α2

)

= Hu

(−α +
√

1 + 2α2

−α +
√

1 + α2

)

for any real α. Thus, as Hu is a generalized power fun
tion we have
Hu

(

(
√

1 + 2α2 − α)(
√

1 + α2 + α)

(
√

1 + 2α2 + α)(
√

1 + α2 − α)

)

= 1.(20)Note that the argument of Hu in (20) is a 
ontinuous positive fun
-tion on R, say r, evaluated at α ∈ R. Moreover limα→−∞ r(α) = 0 and
limα→∞ r(α) = ∞. Thus r : R → (0,∞) is surje
tive. Consequently, Hu ≡ 1for any u ∈ E su
h that ‖u‖ = 1.Finally, we 
on
lude that gu ≡ 1, whi
h implies that 1 ≡ F (·) = G(1, ·).Insert now into (13) the variables

x = (a1/4, ø) and y = (
√

1 + ‖y‖2/a, y/
√

a)for any a > 0 and y ∈ E. Note that det(y) = 1. Then G is expressed interms of G(·, ø) = f(·, ø) = H and G(1, ·) = F as
G(a, y) = H(a)F (y/

√
a).Finally, if the dimension of E is greater than one, sin
e F ≡ 1, it su�
esto refer to the de�nition of G given in (12). In the 
ase of univariate E onehas to refer to (16). Then (12) implies

f(x0, x1) = H(x2
0 − x2

1)He

(

x1
√

x2
0 − x2

1

+

√

1 +
x2

1

x2
0 − x2

1

)

= H1(x0 + x1)H2(x0 − x1)for some generalized power fun
tions H1 and H2.



270 J. Wesoªowski4. The equation of ratios. In BW1 the authors proved a 
hara
teri-zation of the Wishart distribution on the 
one of positive de�nite symmetri
matri
es, whi
h was a new version of the 
elebrated Luka
s 
hara
terizationof the gamma distribution on (0,∞). The main novelty of that result wasthat no invarian
e of the distribution of the �quotient� (X + Y )−1/2X(X +
Y )−1/2 was imposed. The invarian
e property was rather 
ru
ial in ear-lier results of this kind, like those of Olkin and Rubin (1962), Casalis andLeta
 (1996) and Leta
 and Massam (1998). However, in BW1 te
hni
alsmoothness assumptions were imposed on the densities of the random ma-tri
es 
onsidered. Those assumptions played an important role in solvingtwo fun
tional equations. As mentioned earlier, the �rst of the equations(see Theorem 2 in BW1) is a version of the fun
tional equation of ratios (1)in V+:

a(y) =
f(x1/2yx1/2)

f(x1/2(e − y)x1/2)
(21)for any x ∈ V+ and y ∈ D = {z ∈ V+ : e − z ∈ V+}, where e is the identitymatrix, and a : D → (0,∞), f : V+ → (0,∞). The equation (21) was solvedunder the assumption that f is di�erentiable.The se
ond equation (see Theorem 3 in BW1) was more involved anda more restri
tive smoothness assumption on one of the unknown fun
tionswas imposed.It is worth mentioning that the approa
h to Luka
s-type 
hara
teriza-tion developed in BW1 has been re
ently used to obtain its analogue onhomogeneous 
ones in Boutouria (2005). In that paper again smoothnessassumptions were imposed on fun
tions whi
h appeared in two fun
tionalequations, analogous to the equations from BW1. Thus the version of thefun
tional equation of ratios for homogeneous 
ones was solved there undera di�erentiability 
ondition. Note that any symmetri
 
one, hen
e also theLorentz 
one, is homogeneous. Thus the Luka
s-type 
hara
terization of theWishart distribution on the Lorentz 
one, under smoothness assumptions,follows from the result of Boutouria (2005). Unfortunately, we are unableto solve the Lorentz 
one version of the se
ond equation of BW1 in fullgenerality. Consequently, no improvement of the Wishart 
hara
terization isavailable at present.Our goal in this se
tion is to solve the Lorentz 
one version of the equationof ratios (1) (or (21)) without any smoothness 
onditions. This seems ofinterest not only in its own right, but also as a �rst step towards a possibleimprovement of the Luka
s-type result for the Lorentz 
one.Theorem 2. Let V be a Lorentz 
one in R × E. Set D = {x ∈ V :
e − x ∈ V }. Let a : D → (0,∞) and f : V → (0,∞) satisfy
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a(y) =

f(x ◦ y)

f(x ◦ (e − y))
, ∀y ∈ D, ∀x ∈ V.(22)If the dimension of E is greater than one, then there exists a positive 
onstant

λ su
h that
f(x) = λH(det(x)), x ∈ V, a(y) = H(det(y(e − y)−1)), y ∈ D,where H is a generalized power fun
tion.In the 
ase of univariate E = {x1e : x1 ∈ R} there exists a positive
onstant λ su
h that for any x = (x0, x1e) ∈ V and any y = (y0, y1e) ∈ D,

f(x0, x1e) = λH1(x0 − x1)H2(x0 + x1),

a(y0, y1e) =
H1(y0 − y1)H2(y0 + y1)

H1(1 − y0 + y1)H2(1 − y0 − y1)
,where H1 and H2 are generalized power fun
tions.Proof. Take x = e in (22). Then for any x ∈ D,

a(y) =
f(y)

f(e− y)
.(23)Consequently, for any x ∈ V and y ∈ D,

f(y)

f(e − y)
=

f(x ◦ y)

f(x ◦ (e − y))
.Plugging y = x

−1 into the above equation one gets
f(y)

f(e − y)
=

f(e)

f(y−1 − e)
, y ∈ D.De�ne a new fun
tion i on V by i(x) = f(x)/f(e), x ∈ V . Then 
ombiningthe above two equations we have

i(x ◦ y)i(y−1 − e) = i(x ◦ (e − y))(24)for any x ∈ V and y ∈ D. De�ne now G : (0,∞) × E → R by
G(det(x), x) = i(x), x = (x0, x) ∈ V.(25)Note that, by (8), for any y ∈ D,

det(y−1 − e) =
det(e − y)

det(y)
.Then, for x 
hanged to x

2 the equation (24) 
an be written as (see (7))
(26) G([det(x)]2 det(y), det(x)y + 2[x,y]x)G

(

det(e − y)

det(y)
,− y

det(y)

)

= G([det(x)]2 det(e − y),−det(x)y + 2[x, e − y]x)for any x ∈ V and y ∈ D. Now we insert into (26) y = (a, ø) and x su
hthat det(x) = 1/(1 − a) for some a ∈ (0, 1) to get
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G

((

a

1 − a

)2

, 2ax0x

)

G

((

1 − a

a

)2

, ø) = G(1, 2(1 − a)x0x)for any a ∈ (0, 1) and x ∈ E with x2
0 − ‖x‖2 = (1 − a)−1. De�ne z = 2ax0x

∈ E and α =
(

a
1−a

)2
> 0. Then

G(α, z) =
G(1, z/

√
α)

G(1/α, ø)(27)for any α ∈ (0,∞) and z ∈ E.Using the above identity we rewrite (26) as
(28)

G
(

1, det(x)y+2[x,y]x

det(x)
√

det(y)

)

G
(

1
(det(x))2 det(y)

, ø) ·
G

(

1,− y√
det(y) det(e−y)

)

G
( det(y)

det(e−y) , ø)
=

G
(

1, − det(x)y+2[x,e−y]x

det(x)
√

det(e−y)

)

G
(

1
(det(x))2 det(e−y)

, ø)for any x ∈ V and y ∈ D. Inserting y = (a, ø) and x = (b, ø) we get
G

(

1

b4a2
, ø) G

(

a2

(1 − a)2
, ø) = G

(

1

b4(1 − a)2
, ø)for any a ∈ (0, 1) and b ∈ (0,∞). Now taking t = a2/(1 − a)2 and u =

1/(b4a2) we get
G(ut, ø) = G(u, ø)G(t, ø)(29)for any t, u ∈ (0,∞). Thus G(·, ø) = H(·), where H is a generalized powerfun
tion.Using (29) in (28) we 
an 
an
el denominators and arrive at

G

(

1,
det(x)y + 2[x,y]x

det(x)
√

det(y)

)

· G
(

1,− y
√

det(y) det(e − y)

)

= G

(

1,
−det(x)y + 2[x, e− y]x

det(x)
√

det(e − y)

)

for any x ∈ D and y ∈ V .Taking y0 = 0.5 we get det(y) = det(e − y) and the above equation 
anbe written as
(30) F

(

det(x)y + 2[x,y]x

det(x)
√

det(y)

)

· F

(

− y

det(y)

)

= F

(−det(x)y + 2[x, e− y]x

det(x)
√

det(y)

)

for F (·) = G(1, ·).
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hy equation and equation of ratios 273Taking in the above equation x0 su
h that det(x) = (det(y))−1/2, i.e.
x0 =

√

1
√

1/4 − ‖y‖2
+ ‖x‖2,we get

(31) F

(

x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2 +

y
√

1/4 − ‖y‖2
+ 2〈x, y〉x

)

× F

(

− y

1/4 − ‖y‖2

)

= F

(

x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2 − y

√

1/4 − ‖y‖2
− 2〈x, y〉x

)

.We plug into this equation y = αu, |α| < 1/2, and x = βu, β ∈ R, where
u ∈ E is su
h that ‖u‖ = 1. Thus, for the fun
tion gu de�ned on R by
gu(α) = F (αu), we get the equation

gu

(

β

√

1
√

1/4 − α2
+ β2 +

α
√

1/4 − α2
+ 2α2β

)

gu

(

− α

1/4 − α2

)

= gu

(

β

√

1
√

1/4 − α2
+ β2 − α

√

1/4 − α2
− 2α2β

)

.Changing the variable
γ = β

√

1
√

1/4 − α2
+ β2 − α

√

1/4 − α2
− 2α2β,after some tedious 
omputation we get

gu

(

γ/4 + α2γ + α
√

1 + γ2

1/4 − α2

)

gu

(

− α

1/4 − α2

)

= gu(γ)(32)for any γ ∈ R and α ∈ R su
h that |α| < 1/2. Setting γ = α = 0 we get
gu(0) = 1, sin
e gu(0) = 0 is forbidden by the assumption. Now we set γ = 0in (32) and de�ne v(α) = α/(1/4 − α2). Note that v : (−1/2, 1/2) → R issurje
tive. Hen
e gu(v)gu(−v) = 1 for any real v. Introdu
ing now

δ =
α

1/4 − α2
,after some easy transformations we get

gu(γ
√

1 + δ2 + δ
√

1 + γ2) = gu(γ)gu(δ)for any real γ and δ, i.e. the same equation as in the earlier proof (see (15)).



274 J. WesoªowskiThus, repeating the reasoning used in the proof of Theorem 1, we obtain
gu(α) = Hu(α +

√

1 + α2), α ∈ R.(33)Consequently, for univariate E = {x1e : x1 ∈ R} we have
F (x) = F (x1 e) = ge(x1) = He(x1 +

√

1 + x2
1), x1 ∈ R.(34)If the dimension of E is greater than one, we take x, y ∈ E orthogonalin (31). Sin
e F (x)F (−x) = 1, we then have

F

(

y
√

1/4 − ‖y‖2
+ x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2

)

× F

(

y
√

1/4 − ‖y‖2
− x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2

)

= F

(

y

1/4 − ‖y‖2

)

.Changing variables into
αu =

y
√

1/4 − ‖y‖2
, βv = x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2,where α, β are real numbers and u, v are orthogonal unit ve
tors, we obtain

F (αu + βv)F (αu − βv) = F (αu)for any α, β ∈ R and any pair of orthogonal unit ve
tors u and v. The righthand side 
an be expressed in terms of gu and 
onsequently in terms of ageneralized power fun
tion Hu fun
tion evaluated at α+
√

1 + α2. But the lefthand side is a produ
t of two generalized power fun
tions: H
(αu+βv)/

√
α2+β2and H

(αu−βv)/
√

α2+β2
evaluated at the same point √

α2 + β2. This produ
tis again a generalized power fun
tion, denoted H(α,β). Consequently,
H(α,β)(

√

α2 + β2) = Hu(α +
√

1 + α2)for any real α and β. If α, β ∈ R, are su
h that α2 + β2 = 1, then the lefthand side of the above equation is 1, and thus for α su
h that |α| < 1 we get
Hu(α +

√

1 + α2) = 1.Rising the argument to a suitable power one 
an get any positive number.Consequently, Hu ≡ 1.Finally, if the dimension of E is greater than one we use (33), the de�-nition of G in terms of gu and the representation (27) to re
over i through(25). Then the f of (22) in Theorem 2 is obtained by its de�nition in termsof i. If E is univariate the result follows by (34), (27) and (25).A
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