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Multipliative Cauhy funtional equation andthe equation of ratios on the Lorentz onebyJaek Wesoªowski (Warszawa)Abstrat. It is proved that the solution of the multipliative Cauhy funtional equa-tion on the Lorentz one of dimension greater than two is a power funtion of the deter-minant. The equation is solved in full generality, i.e. no smoothness assumptions on theunknown funtion are imposed. Also the funtional equation of ratios, of a similar nature,is solved in full generality.1. Introdution. Consider the following problem, whih looks quitenatural: desribe the family of positive funtions of positive argument withthe property that the ratio of values depends only on the ratio of arguments.Thus one seeks solutions of the following funtional equation:
f(xy)

f(x(1 − y))
= a(y), ∀(x, y) ∈ (0,∞) × (0, 1),(1)where f : (0,∞) → (0,∞) and a : (0, 1) → (0,∞) are unknown funtions.For obvious reasons we all this equation the funtional equation of ratios.Changing the variables s = xy and 1/t = x(1 − y), and introduing thefuntions g, b : (0,∞) → (0,∞) by

g(t) =
1

f(1/t)
, b(t) = a

(

t

1 + t

)

, t ∈ (0,∞),we get the Pexider version of the multipliative Cauhy equation:
f(s)g(t) = b(st), ∀(s, t) ∈ (0,∞)2.(2)Thus (see for instane Azél and Dhombres (1989)), f(x) = H(x) for x ∈

(0,∞) and a(y) = H(y/(1 − y)) for y ∈ (0, 1), where H is a generalizedpower funtion. A slightly di�erent derivation of these solutions of equation(1) has been given reently in Ger (2004).2000 Mathematis Subjet Classi�ation: 39B52, 39B22, 17A15, 62H05.Key words and phrases: Cauhy equation, equation of ratios, Lorentz one, determi-nant, generalized power funtion, Lukas haraterization.[263℄ © Instytut Matematyzny PAN, 2007



264 J. WesoªowskiThe aim of this paper is to study the Lorentz one versions of equations(2) and (1), whih are not so losely related in this ase as they are in theunivariate situation desribed above.The Lorentz one, whih is a basi objet of relativity theory, denotedhere by V , is an example of a symmetri one. Another example, more fa-miliar to a wider mathematial audiene, is the one V+ of positive de�nitesymmetri matries. The mutlipliative Cauhy equation on V+ has beensolved reently under smoothness assumptions in Bobeka and Wesoªowski(2003), referred to as BW2 in the following. Reently, symmetri ones re-eived also onsiderable attention in probability and mathematial statistisdue to generalizations of Wishart distributions and related haraterizations:see for instane Massam (1994), Casalis and Leta (1996), Massam and Ne-her (1997), Bobeka and Wesoªowski (2002) (BW1 in what follows). To alarge extent this development was enhaned by developments in the analy-sis on symmetri ones presented in the monograph by Faraut and Korányi(1994). In partiular, in BW1, a haraterization problem for the Wishartrandom matrix was redued to two funtional equations on V+, one of thembeing the equation of ratios. It should be emphasized that, in ontrast tothe univariate ase desribed above, the version of the equation of ratios in
V+, due to non-ommutativity and non-assoiativity of the symmetri prod-ut x1/2yx1/2, annot be redued in a diret way to the Cauhy equationin V+.In the present paper we are onerned with both these equations: themultipliative Cauhy equation and the equation of ratios on the Lorentzone V . The struture of V seems to be more transparent than that of V+.Some formulas an be written expliitly for V , while their analogues arenot available in analytial forms in V+. As an example one an onsider asquare root of an element in the one (see (5) below). Consequently, thesmoothness assumptions, whih were essential in the solutions of funtionalequations on V+ in BW1 and BW2, are omitted for their analogues on V .However, a Lorentz one version of the seond equation of BW1 still remainsto be solved.The paper is organized as follows. In Setion 2 basi fats on the Lorentzone are presented in an aessible and expliit way. In partiular, for anyelement of V we de�ne its inverse, square root and determinant. Also asymmetri produt of elements from V is de�ned. Setion 3 is devoted to themultipliative Cauhy funtional equation on V and its omplete solution.An interesting feature of this solution is that in the two-dimensional ase itis not a generalized power funtion of the determinant as one may expet.A deeper reason for that is that in two dimensions the one is not irreduible.In any dimension higher than two, the solution is, as expeted, a generalizedpower funtion of the determinant.



Cauhy equation and equation of ratios 265Setion 4 is devoted to the funtional equation of ratios. Here again, justas for positive de�nite matries (see BW1), we do not redue the equation tothe Cauhy equation. However, there are some similarities between the meth-ods used in the proofs. To be more preise, the �rst equation of BW1, whihis the logarithmi version of (1) in the one of positive de�nite matries, wassolved under di�erentiability assumptions. Here we give a solution of (1) in
V with no regularity assumptions on the unknown funtions. Again, as forthe Cauhy equation, due to reduibility of the one, the ase of dimensiontwo implies speial solutions, while in higher dimensions the solution is ageneralized power funtion of the determinant.2. Preliminaries on the Lorentz one. Let E be a Eulidean spaewith the norm ‖ · ‖ de�ned by the inner produt 〈·, ·〉. Consider the spae
R×E with elements denoted by x = (x0, x), where x0 ∈ R and x ∈ E. Then
R × E is Eulidean with the inner produt

[x,y] = x0y0 + 〈x, y〉.Also we de�ne a produt (the Jordan produt) of x and y as
xy = ([x,y], x0y + y0x) ∈ R × E.If x and y are interpreted as 2 × 2 matries

x =

(

x0 x
x x0

)

, y =

(

y0 y
y y0

)

,then the produt xy an be viewed as the matrix produt:
xy =

(

[x,y] x0y + y0x
x0y + y0x [x,y]

)

Exploiting further the matrix representation, the determinant of x isde�ned as
det(x) = x2

0 − ‖x‖2.(3)Also if det(x) 6= 0 then the inverse x
−1 exists and equals

x
−1 =

1

det(x)

(

x0 −x
−x x0

)

,(4)i.e. x
−1 is the only element of R × E suh that x

−1
x = xx

−1 = (1, ø) = e,where ø is the zero of E.However, some aution is needed while using the matrix representationsine the produt is ommutative: xy = yx, but not assoiative, i.e. (xy)z 6=
x(yz).Let V = {x ∈ R × E : x0 > ‖x‖} denote the Lorentz one in R × E.Note that if x,y ∈ V then xy may not be an element of V , but for
x ∈ V we have xx ∈ V . Moreover, for any x ∈ V one an de�ne x

1/2 by the



266 J. Wesoªowskiequation x
1/2

x
1/2 = x. It is a matter of elementary alulations to see thatthe only solution of this equation whih is an element of V has the form
x

1/2 =
1

√

2(x0 +
√

det(x))

(

x0 +
√

det(x), x
)

.(5)
Now we de�ne another produt whih is a non-symmetri operation from

V × V onto V . For any x,y ∈ V let
x ◦ y = 2x1/2(x1/2

y) − xy.Note that it an be rewritten as
x ◦ y =

(

[x,y],
√

det(x)y +

(

y0 +
〈x, y〉

x0 +
√

det(x)

)

x

)

.(6)Note also that (6) and det(x2) = (det(x))2 imply
x

2 ◦ y = ([x2,y], det(x)y + 2[x,y]x).(7) A omputation shows that the Cauhy theorem on the determinant ofthe produt holds true for the produt x ◦ y, i.e.
det(x ◦ y) = det(x) det(y).(8)Observe that x ∈ V i� x0 > 0 and det(x) > 0. Now, by (8), to prove that

x◦y ∈ V it su�es to show that [x,y] is positive; but by the Cauhy�Shwarzinequality,
[x,y] ≥ x0y0 − |〈x, y〉| ≥ x0y0 − ‖x‖ ‖y‖ > 0,sine x0 > ‖x‖ and y0 > ‖y‖.Observe also that x ◦ x

−1 = x
−1 ◦ x = e.Finally, note that the produt ◦ is neither ommutative, nor assoiative,i.e. in general x ◦ y 6= y ◦ x and (x ◦ y) ◦ z 6= x ◦ (y ◦ z).The above onsiderations are speializations to the Lorentz one of somebasi fats from the theory of Jordan algebras and symmetri ones, whihan be found in Faraut and Korányi (1994). For instane, the produt xy isnothing else than the Jordan produt L(x)y, and the produt x ◦y is the soalled quadrati representation P (x1/2)y.3. The Cauhy equation. In this setion we onsider a Lorentz oneanalogue of the multipliative Cauhy equation whih on (0,∞) (a trivialLorentz one with E = {ø}) has the form

f(xy) = f(x)f(y) for any x, y > 0,(9)where f : (0,∞) → (0,∞). It is well known that the set of solutions of (9) isthe lass of so alled generalized power funtions, i.e. f = H, where H is ageneralized power funtion. In this sense the equation (9) an be treated asthe de�nition of the lass of generalized power funtions. Under very weak



Cauhy equation and equation of ratios 267onditions any generalized power funtion H has the form H(x) = xa forsome real number a.There are numerous extensions of the equation (9) in the literature. Manyof them deal with its versions on abstrat algebrai-topologial strutures.One of the most reent, given in BW2, is onerned with (9) on the one
V+ of positive de�nite real symmetri matries of a �xed dimension. Theequation (9) then reads

f(x1/2yx1/2) = f(x)f(y)(10)for any x, y ∈ V+. It is shown in that paper that if (10) holds then there existsa real number λ suh that f(x) = [det(x)]λ for any x ∈ V+. A drawbakof this result is that it was obtained under an additional assumption ofdi�erentiability of f .Note that the one V+, just as the Lorentz one V , is an example of asymmetri one. The main result of this note is a solution of a version of(10) in the Lorentz one. The solution is given in full generality, i.e. withoutany smoothness assumption on the unknown funtion.Theorem 1. Let V be a Lorentz one in R × E. Let f : V → (0,∞)satisfy the equation
f(x ◦ y) = f(x)f(y)(11)for any x,y ∈ V , where the produt ◦ is de�ned by (6). Then either thedimension of E is greater than 1 and

f(x) = H(det(x)) for any x ∈ V ,where H is a generalized power funtion and the determinant det is de�nedby (3), or E is univariate, i.e. E = {x1e : x1 ∈ R}, and
f(x) = H1(x0 + x1)H2(x0 − x1) for any x = (x0, x1e),where H1 and H2 are generalized power funtions.Proof. Take x = (a, ø) and y = (b, ø) in (11). Then

f(ab, ø) = f(a, ø)f(b, ø)for any a, b ∈ (0,∞). Consequently, the funtion f(·, ø) de�ned on (0,∞)is a power funtion, i.e. f(a, ø) = H(a) for any a > 0, where H is a powerfuntion.De�ne a funtion G on (0,∞) × E by
G(det(x), x) = f(x)(12)for any x = (x0, x) ∈ V . Consider (11) for x

2 = xx instead of x. Note that
det(x2) = [det(x)]2. Consequently, by (8) and (7) the equation (11) withthis hange of variable an be written as



268 J. Wesoªowski
(13) G([det(x)]2 det(y), det(x)y + 2[x,y]x)

= G([det(x)]2, 2x0x)G(det(y), y).Insert into (13) the variables x and y suh that det(x) = det(y) = 1. Thenfor a funtion F on E de�ned by F (x) = G(1, x) for any x ∈ E, we have
(14) F

(

y+2
[
√

(1 + ‖y‖2)(1 + ‖x‖2)+ 〈x, y〉
]

x
)

= F
(

2
√

1 + ‖x‖2 x
)

F (y)for all x, y ∈ E.In the above equation, insert 2x
√

1 + ‖x‖2 = αu and y = βu where αand β are arbitrary real numbers and u ∈ E has length 1. Then, after somestraightforward transformations, we get
F ([α

√

1 + β2 + β
√

1 + α2]u) = F (αu)F (βu).For any u ∈ E with ‖u‖ = 1 de�ne gu : R → R by gu(α) = F (αu), α ∈ R.Then, for any α, β ∈ R the above equation an be written as
gu

(

α
√

1 + β2 + β
√

1 + α2
)

= gu(α)gu(β).(15)Note that for the real funtion h de�ned by h(x) = x +
√

1 + x2, x ∈ R, wehave
h
(

α
√

1 + β2 + β
√

1 + α2
)

= h(α)h(β)for any real α and β. The funtion h is a bijetion of R onto (0,∞). Now,we de�ne Tu = gu ◦ h−1. Then (15) an be rewritten as
Tu(h(α)h(β)) = Tu(h(α))Tu(h(β)), α, β ∈ R.It follows that Tu is a generalized power funtion Hu and gu = Hu ◦ h.Now onsider the ase of univariate E. Then

F (x) = F (x1 e) = ge(x1) = He

(

x1 +
√

1 + x2
1

)

, x1 ∈ R.(16)If the dimension of E is greater than 1, then we an hoose orthogonal
x, y in (14). For suh x and y that equation reads

F
(

y + 2
√

(1 + ‖y‖2)(1 + ‖x‖2)x
)

= F
(

2
√

1 + ‖x‖2 x
)

F (y).Thus for any y, z ∈ E suh that 〈y, z〉 = 0 we have
F (y + z) = F

(

z/
√

1 + ‖y‖2
)

F (y).This follows from the fat that the last equation an be redued to theprevious one by de�ning x through z = 2
√

(1 + ‖x‖2)(1 + ‖y‖2)x. It an beheked by simple omputation, involving solution of a quadrati equation,that x is orretly de�ned.Now, by symmetry, we get
F

(

z/
√

1 + ‖y‖2
)

F (y) = F
(

y/
√

1 + ‖z‖2
)

F (z)(17)if only 〈y, z〉 = 0. Sine F is positive we an rewrite the above equation as



Cauhy equation and equation of ratios 269
F (z/

√

1 + ‖y‖2)

F (z)
=

F (y/
√

1 + ‖z‖2)

F (y)
(18)for 〈y, z〉 = 0. Insert into (18) new variables z = αu and y = βv, where α, βare any real numbers and u, v are orthogonal unit vetors. Then, upon usingthe properties of the generalized power funtion, we arrive at

Hu

(

α +
√

1 + α2 + β2

√

1 + β2(α +
√

1 + α2)

)

= Hv

(

β +
√

1 + α2 + β2

√
1 + α2(β +

√

1 + β2)

)(19)for any α, β ∈ R. Now for α = β one gets
Hu

(

α +
√

1 + 2α2

√
1 + α2(α +

√
1 + α2)

)

= Hv

(

α +
√

1 + 2α2

√
1 + α2(α +

√
1 + α2)

)

for any real α. Sine the argument as a funtion of α is a surjetion from
R onto (0,∞) we onlude that Hu = Hv for any orthogonal unit vetors uand v. Consequently, we an replae Hv on the right hand side of (19) by
Hu. Taking then β = −α we obtain

Hu

(

α +
√

1 + 2α2

α +
√

1 + α2

)

= Hu

(−α +
√

1 + 2α2

−α +
√

1 + α2

)

for any real α. Thus, as Hu is a generalized power funtion we have
Hu

(

(
√

1 + 2α2 − α)(
√

1 + α2 + α)

(
√

1 + 2α2 + α)(
√

1 + α2 − α)

)

= 1.(20)Note that the argument of Hu in (20) is a ontinuous positive fun-tion on R, say r, evaluated at α ∈ R. Moreover limα→−∞ r(α) = 0 and
limα→∞ r(α) = ∞. Thus r : R → (0,∞) is surjetive. Consequently, Hu ≡ 1for any u ∈ E suh that ‖u‖ = 1.Finally, we onlude that gu ≡ 1, whih implies that 1 ≡ F (·) = G(1, ·).Insert now into (13) the variables

x = (a1/4, ø) and y = (
√

1 + ‖y‖2/a, y/
√

a)for any a > 0 and y ∈ E. Note that det(y) = 1. Then G is expressed interms of G(·, ø) = f(·, ø) = H and G(1, ·) = F as
G(a, y) = H(a)F (y/

√
a).Finally, if the dimension of E is greater than one, sine F ≡ 1, it su�esto refer to the de�nition of G given in (12). In the ase of univariate E onehas to refer to (16). Then (12) implies

f(x0, x1) = H(x2
0 − x2

1)He

(

x1
√

x2
0 − x2

1

+

√

1 +
x2

1

x2
0 − x2

1

)

= H1(x0 + x1)H2(x0 − x1)for some generalized power funtions H1 and H2.



270 J. Wesoªowski4. The equation of ratios. In BW1 the authors proved a harateri-zation of the Wishart distribution on the one of positive de�nite symmetrimatries, whih was a new version of the elebrated Lukas haraterizationof the gamma distribution on (0,∞). The main novelty of that result wasthat no invariane of the distribution of the �quotient� (X + Y )−1/2X(X +
Y )−1/2 was imposed. The invariane property was rather ruial in ear-lier results of this kind, like those of Olkin and Rubin (1962), Casalis andLeta (1996) and Leta and Massam (1998). However, in BW1 tehnialsmoothness assumptions were imposed on the densities of the random ma-tries onsidered. Those assumptions played an important role in solvingtwo funtional equations. As mentioned earlier, the �rst of the equations(see Theorem 2 in BW1) is a version of the funtional equation of ratios (1)in V+:

a(y) =
f(x1/2yx1/2)

f(x1/2(e − y)x1/2)
(21)for any x ∈ V+ and y ∈ D = {z ∈ V+ : e − z ∈ V+}, where e is the identitymatrix, and a : D → (0,∞), f : V+ → (0,∞). The equation (21) was solvedunder the assumption that f is di�erentiable.The seond equation (see Theorem 3 in BW1) was more involved anda more restritive smoothness assumption on one of the unknown funtionswas imposed.It is worth mentioning that the approah to Lukas-type harateriza-tion developed in BW1 has been reently used to obtain its analogue onhomogeneous ones in Boutouria (2005). In that paper again smoothnessassumptions were imposed on funtions whih appeared in two funtionalequations, analogous to the equations from BW1. Thus the version of thefuntional equation of ratios for homogeneous ones was solved there undera di�erentiability ondition. Note that any symmetri one, hene also theLorentz one, is homogeneous. Thus the Lukas-type haraterization of theWishart distribution on the Lorentz one, under smoothness assumptions,follows from the result of Boutouria (2005). Unfortunately, we are unableto solve the Lorentz one version of the seond equation of BW1 in fullgenerality. Consequently, no improvement of the Wishart haraterization isavailable at present.Our goal in this setion is to solve the Lorentz one version of the equationof ratios (1) (or (21)) without any smoothness onditions. This seems ofinterest not only in its own right, but also as a �rst step towards a possibleimprovement of the Lukas-type result for the Lorentz one.Theorem 2. Let V be a Lorentz one in R × E. Set D = {x ∈ V :
e − x ∈ V }. Let a : D → (0,∞) and f : V → (0,∞) satisfy
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a(y) =

f(x ◦ y)

f(x ◦ (e − y))
, ∀y ∈ D, ∀x ∈ V.(22)If the dimension of E is greater than one, then there exists a positive onstant

λ suh that
f(x) = λH(det(x)), x ∈ V, a(y) = H(det(y(e − y)−1)), y ∈ D,where H is a generalized power funtion.In the ase of univariate E = {x1e : x1 ∈ R} there exists a positiveonstant λ suh that for any x = (x0, x1e) ∈ V and any y = (y0, y1e) ∈ D,

f(x0, x1e) = λH1(x0 − x1)H2(x0 + x1),

a(y0, y1e) =
H1(y0 − y1)H2(y0 + y1)

H1(1 − y0 + y1)H2(1 − y0 − y1)
,where H1 and H2 are generalized power funtions.Proof. Take x = e in (22). Then for any x ∈ D,

a(y) =
f(y)

f(e− y)
.(23)Consequently, for any x ∈ V and y ∈ D,

f(y)

f(e − y)
=

f(x ◦ y)

f(x ◦ (e − y))
.Plugging y = x

−1 into the above equation one gets
f(y)

f(e − y)
=

f(e)

f(y−1 − e)
, y ∈ D.De�ne a new funtion i on V by i(x) = f(x)/f(e), x ∈ V . Then ombiningthe above two equations we have

i(x ◦ y)i(y−1 − e) = i(x ◦ (e − y))(24)for any x ∈ V and y ∈ D. De�ne now G : (0,∞) × E → R by
G(det(x), x) = i(x), x = (x0, x) ∈ V.(25)Note that, by (8), for any y ∈ D,

det(y−1 − e) =
det(e − y)

det(y)
.Then, for x hanged to x

2 the equation (24) an be written as (see (7))
(26) G([det(x)]2 det(y), det(x)y + 2[x,y]x)G

(

det(e − y)

det(y)
,− y

det(y)

)

= G([det(x)]2 det(e − y),−det(x)y + 2[x, e − y]x)for any x ∈ V and y ∈ D. Now we insert into (26) y = (a, ø) and x suhthat det(x) = 1/(1 − a) for some a ∈ (0, 1) to get
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G

((

a

1 − a

)2

, 2ax0x

)

G

((

1 − a

a

)2

, ø) = G(1, 2(1 − a)x0x)for any a ∈ (0, 1) and x ∈ E with x2
0 − ‖x‖2 = (1 − a)−1. De�ne z = 2ax0x

∈ E and α =
(

a
1−a

)2
> 0. Then

G(α, z) =
G(1, z/

√
α)

G(1/α, ø)(27)for any α ∈ (0,∞) and z ∈ E.Using the above identity we rewrite (26) as
(28)

G
(

1, det(x)y+2[x,y]x

det(x)
√

det(y)

)

G
(

1
(det(x))2 det(y)

, ø) ·
G

(

1,− y√
det(y) det(e−y)

)

G
( det(y)

det(e−y) , ø)
=

G
(

1, − det(x)y+2[x,e−y]x

det(x)
√

det(e−y)

)

G
(

1
(det(x))2 det(e−y)

, ø)for any x ∈ V and y ∈ D. Inserting y = (a, ø) and x = (b, ø) we get
G

(

1

b4a2
, ø) G

(

a2

(1 − a)2
, ø) = G

(

1

b4(1 − a)2
, ø)for any a ∈ (0, 1) and b ∈ (0,∞). Now taking t = a2/(1 − a)2 and u =

1/(b4a2) we get
G(ut, ø) = G(u, ø)G(t, ø)(29)for any t, u ∈ (0,∞). Thus G(·, ø) = H(·), where H is a generalized powerfuntion.Using (29) in (28) we an anel denominators and arrive at

G

(

1,
det(x)y + 2[x,y]x

det(x)
√

det(y)

)

· G
(

1,− y
√

det(y) det(e − y)

)

= G

(

1,
−det(x)y + 2[x, e− y]x

det(x)
√

det(e − y)

)

for any x ∈ D and y ∈ V .Taking y0 = 0.5 we get det(y) = det(e − y) and the above equation anbe written as
(30) F

(

det(x)y + 2[x,y]x

det(x)
√

det(y)

)

· F

(

− y

det(y)

)

= F

(−det(x)y + 2[x, e− y]x

det(x)
√

det(y)

)

for F (·) = G(1, ·).



Cauhy equation and equation of ratios 273Taking in the above equation x0 suh that det(x) = (det(y))−1/2, i.e.
x0 =

√

1
√

1/4 − ‖y‖2
+ ‖x‖2,we get

(31) F

(

x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2 +

y
√

1/4 − ‖y‖2
+ 2〈x, y〉x

)

× F

(

− y

1/4 − ‖y‖2

)

= F

(

x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2 − y

√

1/4 − ‖y‖2
− 2〈x, y〉x

)

.We plug into this equation y = αu, |α| < 1/2, and x = βu, β ∈ R, where
u ∈ E is suh that ‖u‖ = 1. Thus, for the funtion gu de�ned on R by
gu(α) = F (αu), we get the equation

gu

(

β

√

1
√

1/4 − α2
+ β2 +

α
√

1/4 − α2
+ 2α2β

)

gu

(

− α

1/4 − α2

)

= gu

(

β

√

1
√

1/4 − α2
+ β2 − α

√

1/4 − α2
− 2α2β

)

.Changing the variable
γ = β

√

1
√

1/4 − α2
+ β2 − α

√

1/4 − α2
− 2α2β,after some tedious omputation we get

gu

(

γ/4 + α2γ + α
√

1 + γ2

1/4 − α2

)

gu

(

− α

1/4 − α2

)

= gu(γ)(32)for any γ ∈ R and α ∈ R suh that |α| < 1/2. Setting γ = α = 0 we get
gu(0) = 1, sine gu(0) = 0 is forbidden by the assumption. Now we set γ = 0in (32) and de�ne v(α) = α/(1/4 − α2). Note that v : (−1/2, 1/2) → R issurjetive. Hene gu(v)gu(−v) = 1 for any real v. Introduing now

δ =
α

1/4 − α2
,after some easy transformations we get

gu(γ
√

1 + δ2 + δ
√

1 + γ2) = gu(γ)gu(δ)for any real γ and δ, i.e. the same equation as in the earlier proof (see (15)).



274 J. WesoªowskiThus, repeating the reasoning used in the proof of Theorem 1, we obtain
gu(α) = Hu(α +

√

1 + α2), α ∈ R.(33)Consequently, for univariate E = {x1e : x1 ∈ R} we have
F (x) = F (x1 e) = ge(x1) = He(x1 +

√

1 + x2
1), x1 ∈ R.(34)If the dimension of E is greater than one, we take x, y ∈ E orthogonalin (31). Sine F (x)F (−x) = 1, we then have

F

(

y
√

1/4 − ‖y‖2
+ x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2

)

× F

(

y
√

1/4 − ‖y‖2
− x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2

)

= F

(

y

1/4 − ‖y‖2

)

.Changing variables into
αu =

y
√

1/4 − ‖y‖2
, βv = x

√

1
√

1/4 − ‖y‖2
+ ‖x‖2,where α, β are real numbers and u, v are orthogonal unit vetors, we obtain

F (αu + βv)F (αu − βv) = F (αu)for any α, β ∈ R and any pair of orthogonal unit vetors u and v. The righthand side an be expressed in terms of gu and onsequently in terms of ageneralized power funtion Hu funtion evaluated at α+
√

1 + α2. But the lefthand side is a produt of two generalized power funtions: H
(αu+βv)/

√
α2+β2and H

(αu−βv)/
√

α2+β2
evaluated at the same point √

α2 + β2. This produtis again a generalized power funtion, denoted H(α,β). Consequently,
H(α,β)(

√

α2 + β2) = Hu(α +
√

1 + α2)for any real α and β. If α, β ∈ R, are suh that α2 + β2 = 1, then the lefthand side of the above equation is 1, and thus for α suh that |α| < 1 we get
Hu(α +

√

1 + α2) = 1.Rising the argument to a suitable power one an get any positive number.Consequently, Hu ≡ 1.Finally, if the dimension of E is greater than one we use (33), the de�-nition of G in terms of gu and the representation (27) to reover i through(25). Then the f of (22) in Theorem 2 is obtained by its de�nition in termsof i. If E is univariate the result follows by (34), (27) and (25).Aknowledgements. I am grateful to Roman Ger for sharing with mehis solution of the univariate equation of ratios. Thanks are also due to MarekBo»ejko, Wªodzimierz Bry and Gérard Leta for inspiring disussions, and
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