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Multiplicative Cauchy functional equation and
the equation of ratios on the Lorentz cone

by

JACEK WESOLOWSKI (Warszawa )

Abstract. It is proved that the solution of the multiplicative Cauchy functional equa-
tion on the Lorentz cone of dimension greater than two is a power function of the deter-
minant. The equation is solved in full generality, i.e. no smoothness assumptions on the
unknown function are imposed. Also the functional equation of ratios, of a similar nature,
is solved in full generality.

1. Introduction. Consider the following problem, which looks quite
natural: describe the family of positive functions of positive argument with
the property that the ratio of values depends only on the ratio of arguments.
Thus one seeks solutions of the following functional equation:

(1) s =), V(o) € (0.) x (0.1),

where f : (0,00) — (0,00) and a : (0,1) — (0,00) are unknown functions.

For obvious reasons we call this equation the functional equation of ratios.
Changing the variables s = zy and 1/t = (1 — y), and introducing the

functions ¢,b : (0,00) — (0,00) by

o=z MO =a( ). te )

fasty 1+t
we get the Pexider version of the multiplicative Cauchy equation:
(2) f(s)g(t) =b(st), V(s,t) € (0,00)*.

Thus (see for instance Aczél and Dhombres (1989)), f(z) = H(z) for x €
(0,00) and a(y) = H(y/(1 —y)) for y € (0,1), where H is a generalized
power function. A slightly different derivation of these solutions of equation
(1) has been given recently in Ger (2004).
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The aim of this paper is to study the Lorentz cone versions of equations
(2) and (1), which are not so closely related in this case as they are in the
univariate situation described above.

The Lorentz cone, which is a basic object of relativity theory, denoted
here by V, is an example of a symmetric cone. Another example, more fa-
miliar to a wider mathematical audience, is the cone V, of positive definite
symmetric matrices. The mutliplicative Cauchy equation on V, has been
solved recently under smoothness assumptions in Bobecka and Wesotowski
(2003), referred to as BW2 in the following. Recently, symmetric cones re-
ceived also considerable attention in probability and mathematical statistics
due to generalizations of Wishart distributions and related characterizations:
see for instance Massam (1994), Casalis and Letac (1996), Massam and Ne-
her (1997), Bobecka and Wesotowski (2002) (BW1 in what follows). To a
large extent this development was enhanced by developments in the analy-
sis on symmetric cones presented in the monograph by Faraut and Koranyi
(1994). In particular, in BW1, a characterization problem for the Wishart
random matrix was reduced to two functional equations on V., one of them
being the equation of ratios. It should be emphasized that, in contrast to
the univariate case described above, the version of the equation of ratios in
V., due to non-commutativity and non-associativity of the symmetric prod-
uct x1/2yx1/2, cannot be reduced in a direct way to the Cauchy equation
in V+.

In the present paper we are concerned with both these equations: the
multiplicative Cauchy equation and the equation of ratios on the Lorentz
cone V. The structure of V' seems to be more transparent than that of V;.
Some formulas can be written explicitly for V', while their analogues are
not available in analytical forms in V. As an example one can consider a
square root of an element in the cone (see (5) below). Consequently, the
smoothness assumptions, which were essential in the solutions of functional
equations on V4 in BW1 and BW2, are omitted for their analogues on V.
However, a Lorentz cone version of the second equation of BW1 still remains
to be solved.

The paper is organized as follows. In Section 2 basic facts on the Lorentz
cone are presented in an accessible and explicit way. In particular, for any
element of V' we define its inverse, square root and determinant. Also a
symmetric product of elements from V' is defined. Section 3 is devoted to the
multiplicative Cauchy functional equation on V and its complete solution.
An interesting feature of this solution is that in the two-dimensional case it
is not a generalized power function of the determinant as one may expect.
A deeper reason for that is that in two dimensions the cone is not irreducible.
In any dimension higher than two, the solution is, as expected, a generalized
power function of the determinant.
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Section 4 is devoted to the functional equation of ratios. Here again, just
as for positive definite matrices (see BW1), we do not reduce the equation to
the Cauchy equation. However, there are some similarities between the meth-
ods used in the proofs. To be more precise, the first equation of BW1, which
is the logarithmic version of (1) in the cone of positive definite matrices, was
solved under differentiability assumptions. Here we give a solution of (1) in
V' with no regularity assumptions on the unknown functions. Again, as for
the Cauchy equation, due to reducibility of the cone, the case of dimension
two implies special solutions, while in higher dimensions the solution is a
generalized power function of the determinant.

2. Preliminaries on the Lorentz cone. Let E be a Euclidean space
with the norm || - || defined by the inner product (-,-). Consider the space
R x E with elements denoted by x = (z¢, ), where 9 € R and x € E. Then
R x FE' is Euclidean with the inner product

[X7Y] = ToYo + <CC, y>
Also we define a product (the Jordan product) of x and y as
xy = ([x,¥], zoy + yoz) € R x E.

If x and y are interpreted as 2 X 2 matrices

_ (%o Z _ (Y% ¥
X_<fv xo)’ y_<y yo)’
then the product xy can be viewed as the matrix product:

Xy = < [, Y] $0y+y0$>
oy +yor  [x,y]

Exploiting further the matrix representation, the determinant of x is
defined as
(3) det(x) = o — [|=[|*.

Also if det(x) # 0 then the inverse x ! exists and equals

) x = detl(x) <f2c ;(gj ) ’

i.e. x ! is the only element of R x E such that x 'x = xx~! = (1,9) = e,
where ¢ is the zero of F.

However, some caution is needed while using the matrix representation
since the product is commutative: xy = yx, but not associative, i.e. (xy)z #
x(yz).

Let V={x€R x E : x> ||z||} denote the Lorentz cone in R x E.

Note that if x,y € V then xy may not be an element of V, but for
x € V we have xx € V. Moreover, for any x € V one can define x*/2 by the
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equation x/2x!/2 = x. It is a matter of elementary calculations to see that

the only solution of this equation which is an element of V has the form

1
(5) x!/? = (w0 + v/det(x), z).
V/2(o + /det ()
Now we define another product which is a non-symmetric operation from
V x V onto V. For any x,y € V let

Xoy = 2X1/2(X1/2y) — xy.

Note that it can be rewritten as

(6) xoy=<xy \/Wy+<yo+x0+<\/d>et—> >

Note also that (6) and det(x?) = (det(x))? imply
(7) x? oy = ([x*,y], det(x)y + 2[x, y]).

A computation shows that the Cauchy theorem on the determinant of
the product holds true for the product x oy, i.e.

(8) det(x oy) = det(x) det(y).

Observe that x € V iff zp > 0 and det(x) > 0. Now, by (8), to prove that
xoy € V it suffices to show that [x, y] is positive; but by the Cauchy-Schwarz
inequality,

(%, ¥] = zoyo — [{z,y)| = zoyo — [l [ly] > 0,
since xo > ||z| and yo > ||y]|.

Observe also that xox ' =x"lox =e.

Finally, note that the product o is neither commutative, nor associative,
i.e. in general x oy #yox and (xoy)oz # xo (yoz).

The above considerations are specializations to the Lorentz cone of some
basic facts from the theory of Jordan algebras and symmetric cones, which
can be found in Faraut and Koranyi (1994). For instance, the product xy is
nothing else than the Jordan product L(x)y, and the product x oy is the so
called quadratic representation P(x!/?)y.

3. The Cauchy equation. In this section we consider a Lorentz cone
analogue of the multiplicative Cauchy equation which on (0,00) (a trivial
Lorentz cone with E = {¢}) has the form

(9) flzy) = f(x)f(y) for any z,y >0,

where f: (0,00) — (0,00). It is well known that the set of solutions of (9) is
the class of so called generalized power functions, i.e. f = H, where H is a
generalized power function. In this sense the equation (9) can be treated as
the definition of the class of generalized power functions. Under very weak
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conditions any generalized power function H has the form H(z) = x* for
some real number a.

There are numerous extensions of the equation (9) in the literature. Many
of them deal with its versions on abstract algebraic-topological structures.
One of the most recent, given in BW2, is concerned with (9) on the cone
V. of positive definite real symmetric matrices of a fixed dimension. The
equation (9) then reads

(10) F@ Pyat?) = f(2) f(y)

for any x,y € V.. It is shown in that paper that if (10) holds then there exists
a real number A such that f(z) = [det(z)]* for any 2 € V,. A drawback
of this result is that it was obtained under an additional assumption of
differentiability of f.

Note that the cone V., just as the Lorentz cone V', is an example of a
symmetric cone. The main result of this note is a solution of a version of
(10) in the Lorentz cone. The solution is given in full generality, i.e. without
any smoothness assumption on the unknown function.

THEOREM 1. Let V be a Lorentz cone in R x E. Let f : V — (0,00)
satisfy the equation

(11) f(xoy)=f(x)f(y)

for any x,y € V', where the product o is defined by (6). Then either the
dimension of E is greater than 1 and

f(x) = H(det(x)) foranyx eV,
where H is a generalized power function and the determinant det is defined
by (3), or E is univariate, i.e. E = {x1e: x1 € R}, and
f(x) = Hi(xo + z1)Ha(xg — 1)  for any x = (9, x1€),
where Hy and Ho are generalized power functions.

Proof. Take x = (a,0) and y = (b,¢) in (11). Then

f(ab7 ¢) - f(a7 Qj)f(ba ¢)

for any a,b € (0,00). Consequently, the function f(-,8) defined on (0, 00)
is a power function, i.e. f(a,9) = H(a) for any a > 0, where H is a power
function.

Define a function G on (0,00) x E by

(12) G(det(x),x) = f(x)

for any x = (zo,7) € V. Consider (11) for x> = xx instead of x. Note that
det(x?) = [det(x)]?. Consequently, by (8) and (7) the equation (11) with
this change of variable can be written as
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(13)  G([det(x)]* det(y), det(x)y + 2[x, y]x)

= G([det(x)]?, 2z02) G (det(y), y).
Insert into (13) the variables x and y such that det(x) = det(y) = 1. Then
for a function F' on E defined by F(x) = G(1,z) for any = € E, we have
(14)  Fy+2[vVA+lyl?) @+ 2?) + (z,9)]z) = F (21 + [lz]>2) F(y)

for all x,y € E.

In the above equation, insert 2x+/1 + ||z||? = au and y = Su where «
and [ are arbitrary real numbers and 4 € F has length 1. Then, after some
straightforward transformations, we get

F(lay/1+ 8% + BV1 + a2lu) = F(au)F(Bu).
For any u € E with ||u|| = 1 define g, : R — R by g,() = F(au), a € R.
Then, for any «, 3 € R the above equation can be written as

(15) gu(a\/ 1+52+5V 1+042) :gu(a)gu(ﬁ)'

Note that for the real function h defined by h(z) =z + V1 + 22, z € R, we

have
h(av/1+ B2+ BV1+ a2) = h(a)h(B)

for any real o and (3. The function h is a bijection of R onto (0, 00). Now,
we define T,, = g, o h~!. Then (15) can be rewritten as

Tu(h()h(B)) = Tu(h(e))Tu(h(B)), «,B€R.
It follows that T, is a generalized power function H, and g, = H, o h.
Now consider the case of univariate E. Then

(16) F(z)=F(z1€) = ge(v1) = He(z1 + /1 +22), z1 €R.

If the dimension of E' is greater than 1, then we can choose orthogonal
x,y in (14). For such x and y that equation reads

Fy+2v (1 +[ly[H A+ [[2]2)x) = F(2y/1 + [l =) F(y).
Thus for any y, z € E such that (y,z) = 0 we have

F(y+z) = F(z/vV1+ yl?)F(y).
This follows from the fact that the last equation can be reduced to the
previous one by defining « through 2z = 21/(1 + [|z[|2)(1 + [ly[|?) z. It can be
checked by simple computation, involving solution of a quadratic equation,
that x is correctly defined.
Now, by symmetry, we get

(17) F(z/\V1+ ) Fy) = F(y/vV1+]2]°) F(2)

if only (y, z) = 0. Since F' is positive we can rewrite the above equation as
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(18) FE/NVI+WIP) _ Fly/vi+1=1%)
F(z) F(y)
for (y,z) = 0. Insert into (18) new variables z = au and y = Bv, where «, 3

are any real numbers and u, v are orthogonal unit vectors. Then, upon using
the properties of the generalized power function, we arrive at

a+ /14 a2 + (2 B+ 1+ a2+ 32

(19) H, =H,

V14 B2 (a+V1+a?) VI+a?2(B+/1+62)
for any «, 8 € R. Now for o = 3 one gets

< a+vV1+2a? >—H< a+vV1+2a? >

V1+a?(a+V1+a?) V1+a?(a+V1+a?)
for any real a. Since the argument as a function of « is a surjection from
R onto (0, 00) we conclude that H, = H, for any orthogonal unit vectors u

and v. Consequently, we can replace H, on the right hand side of (19) by
H,,. Taking then 8 = —a we obtain

i <a+\/1+2a2> _ (—a+\/1+2a2>
“Na+vVita? \ —a+V1+a2

for any real a. Thus, as H,, is a generalized power function we have

(22
Vit2 o) Vitae-—a))

Note that the argument of H, in (20) is a continuous positive func-
tion on R, say r, evaluated at a € R. Moreover lim,—,_ oo () = 0 and
limg 00 7(a) = 00. Thus 7 : R — (0, 00) is surjective. Consequently, H, =1
for any u € E such that ||u| = 1.

Finally, we conclude that g, = 1, which implies that 1 = F(-) = G(1,).

Insert now into (13) the variables

x = (a'*0) and y=(V1+][y[*/a,y/Va)
for any @ > 0 and y € E. Note that det(y) = 1. Then G is expressed in
terms of G(-,¢) = f(-,¢) = H and G(1,-) = F as
Gla,y) = H(a)F(y/Va).
Finally, if the dimension of E is greater than one, since F' = 1, it suffices

to refer to the definition of G given in (12). In the case of univariate E one
has to refer to (16). Then (12) implies

(20)

f((l)(),(l)l):H( %) ‘rl

\/ﬁo_ﬂjl _:r].
= Hy(zo + z1)Ha(x0 — 1)

for some generalized power functions H; and Ho. =
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4. The equation of ratios. In BW1 the authors proved a characteri-
zation of the Wishart distribution on the cone of positive definite symmetric
matrices, which was a new version of the celebrated Lukacs characterization
of the gamma distribution on (0, 00). The main novelty of that result was
that no invariance of the distribution of the “quotient” (X +Y)~Y/2X (X +
Y)_l/ 2 was imposed. The invariance property was rather crucial in ear-
lier results of this kind, like those of Olkin and Rubin (1962), Casalis and
Letac (1996) and Letac and Massam (1998). However, in BW1 technical
smoothness assumptions were imposed on the densities of the random ma-
trices considered. Those assumptions played an important role in solving
two functional equations. As mentioned earlier, the first of the equations
(see Theorem 2 in BW1) is a version of the functional equation of ratios (1)
in Vy:

2129 2:1/2
(21) aly) = L& v )

f(@'2 (e — y)z'/2)

forany x € Vi andye D={z €V, : e—z €V}, where e is the identity
matrix, and a : D — (0,00), f: V4 — (0,00). The equation (21) was solved
under the assumption that f is differentiable.

The second equation (see Theorem 3 in BW1) was more involved and
a more restrictive smoothness assumption on one of the unknown functions
was imposed.

It is worth mentioning that the approach to Lukacs-type characteriza-
tion developed in BW1 has been recently used to obtain its analogue on
homogeneous cones in Boutouria (2005). In that paper again smoothness
assumptions were imposed on functions which appeared in two functional
equations, analogous to the equations from BW1. Thus the version of the
functional equation of ratios for homogeneous cones was solved there under
a differentiability condition. Note that any symmetric cone, hence also the
Lorentz cone, is homogeneous. Thus the Lukacs-type characterization of the
Wishart distribution on the Lorentz cone, under smoothness assumptions,
follows from the result of Boutouria (2005). Unfortunately, we are unable
to solve the Lorentz cone version of the second equation of BW1 in full
generality. Consequently, no improvement of the Wishart characterization is
available at present.

Our goal in this section is to solve the Lorentz cone version of the equation
of ratios (1) (or (21)) without any smoothness conditions. This seems of
interest not only in its own right, but also as a first step towards a possible
improvement of the Lukacs-type result for the Lorentz cone.

THEOREM 2. Let V be a Lorentz cone in R x E. Set D = {x € V :
e—x€eV} Leta:D — (0,00) and f: V — (0,00) satisfy
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__ [fxey)
(22) a(y) = Fixo(e—y))

If the dimension of E is greater than one, then there exists a positive constant
A such that

f(x) = AH(det(x)), x€V, a(y)=H(det(y(e—y)™)), yeD,
where H is a generalized power function.

In the case of univariate E = {x1e : 1 € R} there exists a positive
constant \ such that for any x = (zg,z1€) € V and any 'y = (yo0,y1€) € D,

f(l‘o,l‘le) = )\Hl(l‘o — l‘l)HQ(ZL‘O + 1‘1),
Hi(yo — y1)Ha(yo + y1)
Hy(1—yo+y1)Ha(l —yo —y1)’

where Hy and Ho are generalized power functions.

Proof. Take x = e in (22). Then for any x € D,

Vye D, VxeV.

(y07 yle)

_ I
(23) a(y) - f(e _ y) :
Consequently, for any x € V and y € D,
fy) _ flxoy)

fle—y) [flxo(e—y))
Plugging y = x~! into the above equation one gets

fly) _  fle) D
fle-y) fy - YT
Define a new function i on V' by i(x) = f(x)/f(e), x € V. Then combining

the above two equations we have

(24) i(xoy)ily™' —e)=i(xo(e—y))
for any x € V and y € D. Define now G : (0, )><E—>Rby
(25) G(det(x),z) =i(x), x=(z0,7)€
Note that, by (8), for any y € D,
_ _ det(e—y)
det(y ! —e) = —aety)

Then, for x changed to x? the equation (24) can be written as (see (7))
det(e —y) y
det(y) ’_det(y)>
= G([det(x)]? det(e — y), — det(x)y + 2[x, e — y]z)
for any x € V and y € D. Now we insert into (26) y = (a,¢) and x such
that det(x) = 1/(1 — a) for some a € (0, 1) to get

(26)  G([det(x))*det(y), det(x)y + 2[x, y]:v)G(
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(( > 2ax0x>G<<1;a>2,¢> — G(1,2(1 — a)zor)
©

for any a € (0,1) and x € E with 22 — ||z]|> = (1 — a)~!. Define z = 2azox
EEanda_( )% > 0. Then

GO, z/Va)
27 G = AV
for any o € (0,00) and z € E.
Using the above identity we rewrite (26) as

(1 det(X)y+2[x,y]x) (1,- y )
98 7 det(x)4/det(y) ’ det(y) det(e—y)
(28) €] () ' G (-dety)

et dei(y) (37 2)

— det(x)y+2[x,e—ylz
G(L det(x \/dete y) )

G (@ ame)?)

for any x € V and y € D. Inserting y = (a,¢) and x = (b, 9) we get

1 a? 1
(=) (o) =< (o ae)
for any a € (0,1) and b € (0,00). Now taking t = a?/(1 — a)? and u =
1/(b*a®) we get
(29) G(ut,) = G(u,0)G(t,0)

for any t,u € (0,00). Thus G(-,¢) = H(-), where H is a generalized power
function.
Using (29) in (28) we can cancel denominators and arrive at

G<1’ dztészf) +§e[r)t((7;f,)]x) ‘ G<1’ \/det zet (e — y))
_ G<1 —det(x)y + 2[x,e — y]:p)
" det(x)/det(e — y)

forany x € D andy € V.
Taking yo = 0.5 we get det(y) = det(e — y) and the above equation can
be written as

() ()
— F<_ det(x)y +2[x,e — y]m)
det(x)+/det(y)

for F(-) = G(1,-).
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Taking in the above equation z( such that det(x) = (det(y))~/2, i.e.

il [

1
0o \/ NoyZea e

we get

+ ) +

Y
N 2<x’y>x>
T
F< i- ||y||2)

=F|x 1 o [ —— TN
F<\/ e AV vy )

We plug into this equation y = au, |a| < 1/2, and = = fBu, § € R, where
u € E is such that ||u]| = 1. Thus, for the function g, defined on R by
gu(a) = F(au), we get the equation

1
(31) F(x\/—1/4 I

%@%z%?§+@+7ﬁ%§+mwﬁ&—m£p)

_|_ﬁ2_

o+ )

Changing the variable

2

— 2(126,

1 «
7:ﬁ\/—,m” T iAo

after some tedious computation we get
(32) AR R VAN Y (R

for any v € R and a € R such that |a| < 1/2. Setting v = a = 0 we get
94(0) = 1, since ¢,,(0) = 0 is forbidden by the assumption. Now we set v = 0
in (32) and define v(a) = a/(1/4 — a?). Note that v : (—=1/2,1/2) — R is
surjective. Hence g, (v)gy(—v) = 1 for any real v. Introducing now

o«
C1/4—a?’

after some easy transformations we get

Gu(YV 1+ 0%+ 6v1+7%) = gu(7)9u(0)

for any real v and d, i.e. the same equation as in the earlier proof (see (15)).

J



274 J. Wesolowski

Thus, repeating the reasoning used in the proof of Theorem 1, we obtain
(33) gu(a) = Hy(a++vV14+a?), acR.

Consequently, for univariate £ = {x1e : 21 € R} we have
(34) F(z) = F(z1€) = ge(r1) = He(w1 + /1 +22), x1 €R.

If the dimension of F is greater than one, we take z,y € E orthogonal
n (31). Since F(x)F(—z) = 1, we then have

i T ! x|
(e \/ T+ 1)

Y —x ! 22 =F(—Y
F<\/1/4—||y‘|2 W/l/zx—nyn”” ) = ()

Changing variables into

-y 2
wm e e
V1/4A=Tlyl? 1/4 [yl

where «, 3 are real numbers and u, v are orthogonal unit vectors, we obtain
F(au+ pv)F(au — fv) = F(au)

for any «, 0 € R and any pair of orthogonal unit vectors u and v. The right

hand side can be expressed in terms of g, and consequently in terms of a

generalized power function H, function evaluated at a++/1 + 2. But the left
hand side is a product of two generalized power functions: H (cu+50)//aZT B

. 2 2 .
and H(aufﬁv)/\/m evaluated at the same point y/«a? + (2. This product
is again a generalized power function, denoted H(, 5). Consequently,

Hp) (Va2 4+ 3%) = Hy(a+ V14 a?)

for any real a and . If o, 3 € R, are such that o + 32 = 1, then the left
hand side of the above equation is 1, and thus for « such that |o| < 1 we get

Rising the argument to a suitable power one can get any positive number.
Consequently, H, = 1.

Finally, if the dimension of E is greater than one we use (33), the defi-
nition of G in terms of g, and the representation (27) to recover i through
(25). Then the f of (22) in Theorem 2 is obtained by its definition in terms
of 4. If E is univariate the result follows by (34), (27) and (25). =
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