
STUDIA MATHEMATICA 212 (2) (2012)

Besov algebras on Lie groups of polynomial growth

by

Isabelle Gallagher (Paris) and Yannick Sire (Marseille)

Abstract. We prove an algebra property under pointwise multiplication for Besov
spaces defined on Lie groups of polynomial growth. When the setting is restricted to
H-type groups, this algebra property is generalized to paraproduct estimates.

1. Introduction

1.1. Lie groups of polynomial growth. In this paper G is a unimod-
ular connected Lie group endowed with the Haar measure. By “unimodular”
we mean that the Haar measure is left- and right-invariant. Denoting by G
the Lie algebra of G, we consider a family X = {X1, . . . , Xk} of left-invariant
vector fields on G satisfying the Hörmander condition, i.e. G is the Lie al-
gebra generated by the Xi’s. In the following, although not stated, all the
function spaces depend on X.

A standard metric on G, called the Carnot–Carathéodory metric, is nat-
urally associated with X and is defined as follows: Let ` : [0, 1] → G be an
absolutely continuous path. We say that ` is admissible if there exist mea-
surable functions c1, . . . , ck : [0, 1]→ C such that, for almost every t ∈ [0, 1],

one has `′(t) =
∑k

i=1 ci(t)Xi(`(t)). If ` is admissible, its length is defined

by |`| =
	1
0(
∑k

i=1 |ci(t)|2 dt)1/2. For all x, y ∈ G, define d(x, y) as the infi-
mum of the lengths of all admissible paths joining x to y (such a curve exists
by the Hörmander condition).

This distance is left-invariant. For short, we denote by |x| the distance
between e, the neutral element of the group, and x so that the distance
from x to y is equal to |y−1x|. For all ρ > 0, denote by B(x, ρ) the open ball
in G with respect to the Carnot–Carathéodory distance and by V (ρ) the
Haar measure of any ball. There exists d ∈ N∗ (called the local dimension
of (G,X)) and 0 < c < C such that, for all ρ ∈ ]0, 1[,
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cρd ≤ V (ρ) ≤ Cρd

(see [NSW]). When ρ > 1, two situations may occur (see [G]):

• Either there exist c, C,D > 0 such that cρD ≤ V (ρ) ≤ CρD for all
ρ > 1 where D is called the dimension at infinity of the group (note
that, unlike d, D does not depend on X). The group is then said to
have polynomial growth.
• Or there exist c1, c2, C1, C2 > 0 such that c1e

c2ρ ≤ V (ρ) ≤ C1e
C2ρ for

all ρ > 1, and the group is said to have exponential growth.

When G has polynomial growth, it is plain that there exists a constant C > 0
such that V (2ρ) ≤ CV (ρ) for all ρ > 0. This implies in turn that there exist
C > 0 and κ > 0 such that V (θρ) ≤ CθκV (ρ) for all ρ > 0 and θ > 1.

We denote by ∆G =
∑k

i=1X
2
i the sublaplacian on G.

1.2. Nilpotent Lie groups. A Lie group is said to be nilpotent if its
Lie algebra G is nilpotent; more precisely, writing G1 = G and defining
inductivelyGk+1 = [Gk,Gk], there is n such that Gn = {0}. It can be shown
that such groups are always of polynomial growth (see for instance [Du]).

1.3. Stratified (Carnot) and H-type groups. Stratified groups are
a particular version of nilpotent groups, which admit a stratified structure
and for which V (ρ) ∼ ρQ for some positive Q, for all ρ > 0. One advantage
of this additional structure is that such groups admit dilations. Important
examples of such groups are H-type groups, a particular example being the
Heisenberg group.

More precisely, a stratified (or Carnot) Lie group G is simply connected
and its Lie algebra admits a stratification, i.e. there exist linear subspaces
V1, . . . , Vr of G such that G = V1⊕· · ·⊕Vr, [V1, Vi] = Vi+1 for i = 1, . . . , r−1
and [V1, Vr] = 0. Here [V1, Vi] is the subspace of G generated by the elements
[X,Y ] where X ∈ V1 and Y ∈ Vi. We say that G has step r.

Carnot groups are nilpotent. Furthermore, via the exponential map,
G and G can be identified as manifolds. The dilations γδ (δ > 0) are then
defined (on the Lie algebra level) by

γδ(x1 + · · ·+ xr) = δx1 + δ2x2 + · · ·+ δrxr, xi ∈ Vi.
We define the homogeneous dimension of G to be

Q = dimV1 + 2 dimV2 + · · ·+ r dimVr.

If G is a Carnot group, we have V (ρ) ∼ ρQ for all ρ > 0 (see [FS]). For
instance the Heisenberg group Hd is a Carnot group and Q = 2d+ 2.

The previous abstract definition of Carnot groups is not always very
practical. It is however possible to prove (see [BU]) that any N -dimensional
Carnot group of step 2 with m generators is isomorphic to (RN , ◦) with the



Besov algebras on Lie groups of polynomial growth 121

law given by (N = m+ n, x(1) ∈ Rm, x(2) ∈ Rn)

(x(1), x(2)) ◦ (y(1), y(2)) =

(
x
(1)
j + y

(1)
j , j = 1, . . . ,m

x
(2)
j + y

(2)
j + 1

2〈x
(1), U (j)y(1)〉, j = 1, . . . , n

)
,

where U (j) are m×m linearly independent skew-symmetric matrices.
With this at hand, one can give the definition of a group of Heisenberg-

type (H-type henceforth). These groups are two-step stratified nilpotent Lie
groups whose Lie algebra carries a suitably compatible inner product (see
[Ka]). One of these groups is the nilpotent Iwasawa subgroup of semisimple
Lie groups of split rank one (see [Ko]).

More precisely, an H-type group is a Carnot group of step 2 with the
following property: the Lie algebra G of G is endowed with an inner prod-
uct 〈·, ·〉 such that if Z is the center of G, then [Z⊥,Z⊥] = Z and moreover
for every z ∈ Z, the map Jz : Z⊥ → Z⊥ defined by 〈Jz(v), w〉 = 〈z, [v, w]〉
for every w ∈ Z⊥ is an orthogonal map whenever 〈z, z〉 = 1.

If m = dimZ⊥ and n = dimZ, then any H-type group is canonically
isomorphic to Rm+n with the above group law, where the matrices U (j)

satisfy the additional condition U (r)U (s) + U (s)U (r) = 0 for every r, s ∈
{1, . . . , n} with r 6= s. Whenever the center of the group is one-dimensional,
the group is canonically isomorphic to the Heisenberg group on Rm+1.

We shall always identify Z⊥ with C` with 2` = m and Z to Rn thanks
to the discussion above. Note that the homogeneous dimension of an H-type
group so defined is Q = 2` + n. On an H-type group G, the vector fields
given by

Xj =
∂

∂xj
+

1

2

n∑
k=1

2∑̀
l=1

zlU
(k)
l,j

∂

∂tk
and Yj =

∂

∂yj
+

1

2

n∑
k=1

2∑̀
l=1

zlU
(k)
l,j+`

∂

∂tk

for j = 1, . . . , `, z = (x, y) ∈ R2` and t ∈ Rn are in the algebra G.
In the following we shall denote by X any element of the family (X1, . . . ,

X`, Y1, . . . , Y`). The hypoelliptic Kohn Laplacian on an H-type group is

∆G =
m∑
j=1

∂2

∂x2j
+

1

4
|x|2

n∑
s=1

∂2

∂t2s
+

n∑
s=1

m∑
i,j=1

xiU
(s)
ij

∂2

∂ts∂xj
·

1.4. Main results and structure of the paper. In [CRT], the au-
thors investigate the algebra properties of the Bessel space

Lpα(G) = {f ∈ Lp(G) : (−∆G)α/2f ∈ Lp(G)}
and its homogeneous counterpart, where G is any unimodular Lie group.

Our first theorem concerns Besov spaces in the general setting of groups
with polynomial growth. The case s ∈ (0, 1) is obtained, for both inhomoge-
neous and homogeneous spaces, by using an equivalent definition in terms of
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differences (see [S]). The general case is only proved in the case of inhomo-
geneous spaces and uses the fact that local Riesz transforms are continuous
in Lp for 1 < p < ∞ (whence the restriction on p below), along with an
interpolation argument to obtain all values of s.

Theorem 1.1. Let G be a Lie group of polynomial growth. For every s ∈
(0, 1) and 1 ≤ p, q ≤ ∞, the spaces Bs

p,q(G) ∩ L∞(G) and Ḃs
p,q(G) ∩ L∞(G)

are algebras under pointwise multiplication. So is the space Bs
p,q(G)∩L∞(G)

for s ≥ 1 and 1 < p <∞.

Remark 1.2. In Propositions 3.3 and 3.4, we shall give a generalization
of Theorem 1.1 to the case when L∞(G) is replaced by Lr(G) .

One can obtain the full range of indices p, as well as homogeneous Besov
spaces, in the context of H-type groups thanks to the paraproduct algorithm.
Before stating the result let us give an intermediate statement in the case
of nilpotent groups. Its proof requires the continuity of Riesz transforms,
as well as a result which, to our knowledge, is new even for the Heisenberg
group (see Proposition 4.1) and which links Ḃs

p,q(G) and Ḃs+1
p,q (G) in terms

of the action of Xi and not only powers of the sublaplacian.

Theorem 1.3. Let G be a nilpotent Lie group. Then for every 1 ≤ s < d,
the space Ḃs

d/s,1(G) is embedded in L∞(G) and is an algebra. Moreover for

every s > 1 and 1 < p < ∞, if f, g ∈ Ḃs
p,(s−1)/s(G) ∩ L∞(G) then fg ∈

Ḃs
p,1(G) ∩ L∞(G).

Finally if 1 < p1, p2 < ∞ with 1/p = 1/p1 + 1/p2, 1 ≤ q ≤ ∞, f ∈
Ḃs
p1,q(G) ∩ Lp1(G) and g ∈ Ḃs

p2,q(G) ∩ Lp2(G) then fg ∈ Ḃs
p,q(G) ∩ Lp(G),

for any s > 0.

Remark 1.4. Unfortunately we are unable to obtain, in the case of
nilpotent groups, the full algebra property due to the (technical) fact that
Besov spaces do not interpolate well when the integrability indices are dif-
ferent. The second property in Theorem 1.3 is almost an algebra property,
except for a loss in the third (summation) index. As to the last property
this time the integrability index is changed in the product. The reason for
those losses will appear clearly in the proof of the theorem.

Finally, in the context of H-type groups, thanks to paraproduct tech-
niques, one can enlarge the range of admissible spaces and prove the follow-
ing result.

Theorem 1.5. Let G be an H-type group. For every s > 0 and every p
and q such that 1 ≤ p, q ≤ ∞, the spaces Bs

p,q(G) ∩ L∞(G) and Ḃs
p,q(G) ∩

L∞(G) are algebras under pointwise multiplication.
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Besov spaces are defined in the next section, and Theorems 1.1 and 1.3
are proved in Sections 3 and 4 respectively. We present the proof of Theo-
rem 1.5 in Section 5.

We shall write A . B if there is a universal constant C such that
A ≤ CB. Similarly we shall write A ∼ B if A . B and B . A.

2. Littlewood–Paley decomposition on groups of polynomial
growth, and Besov spaces. This section is devoted to a presentation
of the Littlewood–Paley decomposition on groups of polynomial growth,
together with some standard applications. A general approach to the Little-
wood–Paley decomposition on Lie groups of polynomial growth is investi-
gated in [FMV]. We also refer to [BGX] or [BG] for the case of the Heisenberg
group. We recall here the construction of the homogeneous and inhomoge-
neous decompositions. For details and proofs of the results presented in this
section we refer to [C2], [FMV] and [H].

2.1. Littlewood–Paley decomposition. We first review the dyadic
decomposition constructed in [FMV]. Let χ ∈ C∞(R) be an even function
such that 0 ≤ χ ≤ 1 and χ = 1 on [0, 1/4], χ = 0 on [1,∞[. Define ψ(x) =
χ(x/4)− χ(x), so that the support of ψ is included in [−4,−1/4] ∪ [1/4, 4].
Then

∀τ ∈ R∗,
∑
j∈Z

ψ(2−2jτ) = 1 and χ(τ) +
∑
j≥0

ψ(2−2jτ) = 1, ∀τ ∈ R.

Introduce the spectral decomposition of the hypoelliptic Laplacian

−∆G =

∞�

0

λ dEλ.

Then we have

χ(−∆G) =

∞�

0

χ(λ) dEλ and ψ(−2−2j∆G) =

∞�

0

ψ(2−2jλ) dEλ.

For j ∈ N we define

S0f = χ(−∆G)f and ∆jf = ψ(−2−2j∆G)f.

The homogeneous Littlewood–Paley decomposition of f ∈ S ′(G) is f =∑
j∈Z∆jf, while the inhomogeneous one is f = S0f +

∑∞
j=0∆jf.

Theorem 2.1 ([FMV]). Let G be a Lie group of polynomial growth

and p ∈ (1,∞). Then u ∈ Lp(G) if and only if S0u,
√∑∞

j=0 |∆ju|2 ∈ Lp(G).

Moreover,

‖u‖Lp(G) ∼ ‖S0u‖Lp(G) +
∥∥∥( ∞∑

j=0

|∆ju|2
)1/2∥∥∥

Lp(G)
.



124 I. Gallagher and Y. Sire

We shall denote by Ψj the kernel of the operator ψ(−2−2j∆G). One can
show that Ψj is mean free (see Corollary 5.1 of [C1] for Carnot groups, and
Theorem 7.1.2 of [C2] for an extension to groups of polynomial growth). On
Carnot groups, Ψj has the dilation property

Ψj(x) = 2QjΨ0(2
jx).

In the more general context of groups of polynomial growth, this does not
hold but one has nevertheless the following important estimates: Let α ∈ N,
I ∈

⋃
β∈N{1, . . . , k}β, p ∈ [1,∞]. Then (see [FMV])

(2.1) ∀j ≥ 0, ‖(1 + | · |)αXIΨj‖Lp(G) . 2j(d/p
′+|I|),

where 1/p + 1/p′ = 1. Here XI = Xi1 . . . Xiβ and |I| = β. Moreover as
proved in [C2, Theorem 7.1.2],

(2.2) ∀j ∈ Z, ‖XiΨj‖L1(G) . 2j .

Finally, putting together the classical estimates on the heat kernel (see
[CRT] or [VSC] for instance) and the methods of [FMV] yields, for any α ≥ 0,

(2.3) ∀j ∈ Z,
∥∥| · |αΨj∥∥L1(G)

. 2jα.

2.2. Besov spaces. As a standard application of the Littlewood–Paley
decomposition, one can define (inhomogeneous) Besov spaces on Lie groups
with polynomial growth in the following way: Let s ∈ R, 1 ≤ p ≤ ∞ and
0 < q ≤ ∞. Then Bs

p,q(G) is the space{
f ∈ S ′(G) : ‖f‖Bsp,q(G) = ‖S0f‖Lp(G) +

( ∞∑
j=0

(2js‖∆jf‖Lp(G))
q
)1/q

<∞
}
,

with the obvious modification if q = ∞. When p = q = 2 one recovers
the usual Sobolev spaces (see for instance [BG] for the case of the Heisen-
berg group). Note that when s > 0 one sees easily that ‖S0f‖Lp(G) may
be replaced by ‖f‖Lp(G). Using the Bernstein inequalities (Proposition 4.2
of [FMV]) one finds immediately that if s > 0 then

(2.4) p1 ≤ p2 ⇒ Bs+d/p1−d/p2
p1,q ∩ Lp2 ↪→ Bs

p2,q ∩ L
p1

where recall that d is the local dimension of G.
One can also define the homogeneous counterpart of the above norm:

‖f‖Ḃsp,q(G) =
(∑
j∈Z

(2js‖∆jf‖Lp(G))
q
)1/q

but proving that this does provide a (quasi)-Banach space is not an easy
matter, and this is actually not true in general, even in the euclidean case
(see for instance [BCD, Chapter 2] for comments on that subject). To ob-
tain a Banach space in the context of Carnot groups, the homogeneous space
Ḃs
p,q(G) can be defined as the set of functions in S ′(G) modulo polynomials,
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such that the above norm is finite (see [FM]). In the present study however
this will not be an issue, even if the group is not stratified: we define Ḃs

p,q(G)
as the completion for the above norm of the set of smooth functions such
that ∆jf → 0 as j → −∞, and we shall always be considering the intersec-

tion of Ḃs
p,q(G) with a Banach space (such as L∞).

Note that the Bernstein inequalities imply as in (2.4) that

p1 ≤ p2 ⇒ Ḃs+d/p1−d/p2
p1,q ↪→ Ḃs

p2,q.

Besov spaces are often defined using the heat flow (the advantage being
that this does not require the Littlewood–Paley machinery). In [FMV], the
authors prove that if s ∈ R, then f ∈ Bs

p,q(G) is equivalent to: for all t > 0,

the function et∆Gf belongs to Lp(G) and

(2.5)

( 1�

0

t−sq/2‖(t(−∆G))m/2et∆Gf‖qLp(G)

dt

t

)1/q

<∞

for m ≥ 0 greater than s. We shall not use this characterization here.

3. Proof of Theorem 1.1

3.1. The case s ∈ (0, 1). In the case s ∈ (0, 1), we use an idea of [CRT]
which consists in representing the Besov norm by suitable functionals. More
precisely, writing τwf(w′) = f(w′w) we introduce the following functional
(note that it differs slightly from that used in [CRT]):

Ss,pf(w) =
‖τwf − f‖Lp(G)

|w|s
·

Proposition 3.1. Let G be a Lie group of polynomial growth. Then for
any s ∈ (0, 1) and p, q ∈ [1,∞], we have

‖f‖Bsp,q(G) ∼ ‖f‖Lp(G) + ‖Ss,pf‖Lq(G,1|y|≤1dy/V (|y|)),

‖f‖Ḃsp,q(G) ∼ ‖Ss,pf‖Lq(G,dy/V (|y|)).

Once Proposition 3.1 is proved, the algebra property follows immediately
in the case when s ∈ (0, 1). Indeed, let f, g ∈ Bs

p,q(G)∩L∞(G) for s ∈ (0, 1).
It is easy to see that

(3.1) Ss,p(fg) ≤ ‖f‖L∞ Ss,pg + ‖g‖L∞ Ss,pf,
which gives the result after using the equivalence of Proposition 3.1. The
same holds in the homogeneous case.

Remark 3.2. One can extend (3.1) to the following, with 1/ai + 1/bi
= 1/p:

Ss,p(fg) ≤ ‖f‖La1Ss,b1g + ‖g‖La2Ss,b2f .
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We now prove Proposition 3.1. Note that this result was already proved
in [S] using the characterization (2.5). We present a proof using the Little-
wood–Paley definition here, which is inspired by the proof of the euclidean
case in [BCD] for instance. We need to prove that for s ∈ (0, 1),∑

j∈Z
(2js‖∆jf‖Lp)q ∼ ‖f‖qLp +

�

G

1|w|≤1
‖τwf − f‖qLp
V (|w|)|w|sq

dw

with the obvious modification if q =∞. Compared to the euclidean case, we
miss the usual dilation property, which will be replaced by estimate (2.1).
The classical proof also uses a Taylor expansion at order one, which we must
adapt to our context in order to use only horizontal vector fields (which alone
appear in (2.1)). Let us start by noticing that

‖f‖qLp ≤
∑
j≤0

(2js‖∆jf‖Lp)q.

Next let us bound ‖τw∆jf −∆jf‖Lp . Recalling that ∆j =
∑
|j′−j|≤1∆j∆j′ ,

we have
τw∆jf −∆jf =

∑
|j′−j|≤1

∆j′f ? (τwΨj − Ψj),

where Ψj is the kernel associated with ψ(2−2j∆G). It follows by Young’s
inequality that

‖τw∆jf −∆jf‖Lp ≤
∑
|j′−j|≤1

‖∆j′f‖Lp‖τwΨj − Ψj‖L1 .

Now we estimate ‖τwΨj − Ψj‖L1 . We have

(τwΨj − Ψj)(x) =

1�

0

d

ds
Ψj(xϕ(s)) ds

=

k∑
`=1

1�

0

c`(s)(X`(xϕ(s))Ψj)(xϕ(s)) ds,

where ϕ is an admissible path linking e to w. It follows that

‖τwΨj − Ψj‖L1 ≤
�

G

k∑
`=1

1�

0

|c`(s)| |(X`(xϕ(s))Ψj)(xϕ(s))| ds dx

≤
k∑
`=1

1�

0

|c`(s)| ds ‖X`Ψj‖L1

by the Fubini theorem and a change of variables. Using (2.2) we get

∀j ∈ N, ‖τwΨj − Ψj‖L1 . 2j
k∑
`=1

1�

0

|c`(s)| ds,
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so by definition of |w| and the Cauchy–Schwarz inequality we find

∀j ∈ N, ‖τwΨj − Ψj‖L1 . 2j |w|.
This implies that there is a sequence (cj) in the unit ball of `q such that

(3.2) ∀j ∈ N, ‖τw∆jf −∆jf‖Lp . cj |w|2j(1−s)‖f‖Bsp,q .
On the other hand one has of course

(3.3) ‖τw∆jf −∆jf‖Lp . cj2
−js‖f‖Bsp,q .

Now let jw ∈ Z be such that 1/|w| ≤ 2jw ≤ 2/|w|. Using (3.2) for low
frequencies and (3.3) for high frequencies yields

‖τwf − f‖Lp . ‖f‖Bsp,q
(∑
j≤jw

cj2
j(1−s)|w|+

∑
j>jw

cj2
−js
)
.

Let us first consider the case q =∞. Then one finds directly that

‖τwf − f‖Lp . |w|s‖f‖Bsp,∞ ,
which proves one side of the equivalence.

The case q < ∞ is slightly more technical but is very close to the eu-
clidean case. We include it here for the sake of completeness. We have∥∥∥∥‖τwf − f‖Lp|w|s

∥∥∥∥q
Lq(G,1|w|≤1/V (|w|))

. 2q‖f‖q
Ḃsp,q

(I1 + I2)

where

I1 =
�

G

1|w|≤1

( ∑
j≤jw

cj2
j(1−s)

)q |w|q(1−s) dw
V (|w|)

,

I2 =
�

G

1|w|≤1

( ∑
j>jw

cj2
−js
)q |w|−qs dw

V (|w|)
.

Hölder’s inequality with weight 2j(1−s) and the definition of jw imply( ∑
j≤jw

cj2
j(1−s)

)q
. |w|−(1−s)(q−1)

∑
j≤jw

cqj2
j(1−s).

By Fubini’s theorem, we deduce that

I1 .
∑
j∈N

�

B(0,2−j+1)

|w|1−s dw

V (|w|)
2j(1−s)cqj . 1,

since ‖(cj)‖`q ≤ 1. The estimate on I2 is very similar. Note that it is crucial
here that s ∈ (0, 1).

The converse inequality is easy to prove and only depends on the fact
that the mean value of Ψj is zero. We write indeed

∆jf(w) =
�
τvf(w)Ψj(v) dv =

�
(τvf(w)− f(w))Ψj(v) dv
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so that

2js‖∆jf‖Lp ≤ sup
v∈G

‖τvf − f‖Lp
|v|s

�
2js|v|s|Ψj(v)| dv.

Then (2.3) implies that

2js‖∆jf‖Lp ≤ sup
v∈G

‖τvf − f‖Lp
|v|s

.

Since

sup
|v|≥1

‖τvf − f‖Lp
|v|s

≤ 2‖f‖Lp ,

we get finally

sup
j∈Z

2js‖∆jf‖Lp ≤ sup
|v|≤1

‖τvf − f‖Lp
|v|s

+ 2‖f‖Lp ,

and the result follows in the case q =∞. The case q <∞ is similar though
a little more technical, as above.

The homogeneous case is dealt with in a similar fashion. We leave the
details to the reader. This proves Proposition 3.1.

Using Remark 3.2, the same proof provides the following result, which
will be useful in the next section.

Proposition 3.3. Let G be a Lie group of polynomial growth. For every
0 < s < 1 and 1 ≤ p, q ≤ ∞ one has, writing 1/p = 1/ai + 1/bi,

‖fg‖Bsp,q(G) ≤ ‖f‖La1 (G)‖g‖Bsb1,q(G) + ‖g‖La2 (G)‖f‖Bsb2,q(G)

and

‖fg‖Ḃsp,q(G) ≤ ‖f‖La1 (G)‖g‖Ḃsb1,q(G) + ‖g‖La2 (G)‖f‖Ḃsb2,q(G).

3.2. The case s ≥ 1 (inhomogeneous spaces). We shall first deal
with the case when s is not an integer. We use the well-known fact that the
“local Riesz transforms” Xi(Id−∆G)−1/2 are bounded on Lp(G) for 1 < p
<∞ (see for instance [Du]). This implies easily (see the next section where
the same result is proved in the more difficult homogeneous case) that

f ∈ Bs+1
p,q ⇔ f ∈ Bs

p,q and Xif ∈ Bs
p,q ∀i = 1, . . . , k.

We can then follow the lines of [CRT], by writing ‖fg‖Bs+1
p,q
∼ ‖fg‖Bsp,q +∑k

i=1 ‖Xi(fg)‖Bsp,q and by arguing by induction.

Let us detail the case s = 1 + s′ with 0 < s′ < 1. On the one hand we
know that for all 1 ≤ p, q ≤ ∞, if 1/ai + 1/bi = 1/p,

‖fg‖Bs′p,q . ‖f‖La1‖g‖Bs′b1,q
+ ‖g‖La2‖f‖Bs′b2,q

.
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Then we write, by the Leibniz rule,

‖Xi(fg)‖Bs′p,q ≤ ‖fXig‖Bs′p,q + ‖gXif‖Bs′p,q ,

and we have, by Proposition 3.3,

(3.4) ‖fXig‖Bs′p,q . ‖f‖La1‖Xig‖Bs′b1,q
+ ‖f‖Bs′a2,q‖Xig‖Lb2 .

The estimate on gXif in Bs′
p,q is similar so we shall not write out the details

for that term.

The first term on the right-hand side of (3.4) is very easy to estimate
since

‖Xig‖Bs′b1,q
. ‖g‖Bsb1,q .

So let us turn to the second term. Let us first estimate f in Bs′
a2,q. We have

clearly, since s′ ≤ s,
‖f‖Bs′a2,q . ‖f‖B

s
a2,q

.

Now we estimate Xig in Lb2 , choosing 1 < b2 <∞. We use the fact that

‖Xig‖Lb2 . ‖Xi(Id−∆)−1/2(Id−∆)1/2g‖Lb2
. ‖(Id−∆)1/2g‖Lb2

by the continuity of the local Riesz transforms. Since [∆j , ∆G] = 0, Bern-
stein’s lemma (see Proposition 4.3 of [FMV]) implies

‖∆j(Id−∆)1/2g‖Lb2 . 2j‖∆jg‖Lb2 .
This implies that

‖(Id−∆)1/2g‖Lb2 . ‖S0(Id−∆)1/2g‖Lb2 +
∑
j≥0

2j‖∆jg‖Lb2

≤ ‖g‖Lb2 +
∑
j≥0

2js‖∆jg‖Lb22j(1−s) . ‖g‖Bsb2,q

since s > 1. This gives the required estimate for the second term in (3.4)
and allows us to conclude the proof of Theorem 1.1 when s ∈ R+ \ N.

The general case s > 0 is then obtained by interpolation: we recall indeed
that the following complex interpolation is true (see [BL, Theorem 6.4.5],
whose proof only relies on the dyadic decomposition and may be easily
adapted to our situation):

(3.5) [B1−ε
p,q ;B1+ε

p,q ]1/2 = B1
p,q.

The multilinear interpolation result of [BL, Theorem 4.4.1] provides the
case s = 1 and the other integer cases are obtained similarly.

Note that the above proof actually gives the following result.
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Proposition 3.4. Let G be a Lie group of polynomial growth. For every
s ≥ 1, 1 ≤ q ≤ ∞ and 1 < p < ∞ one has, writing 1/p = 1/ai + 1/bi and
choosing 1 < ai, bi <∞,

‖fg‖Bsp,q(G) ≤ ‖f‖La1 (G)‖g‖Bsb1,q(G) + ‖g‖La2 (G)‖f‖Bsb2,q(G).

4. Proof of Theorem 1.3. As in the previous case, the idea is to argue
by induction for noninteger values of s, and then by interpolation. To do so,
we need the following result, which is new to our knowledge, even for the
Heisenberg group.

Proposition 4.1. Let G be a nilpotent Lie group and let s > 0 and p ∈
(1,∞) be given. Then f ∈ Ḃs+1

p,q (G) if and only if Xif ∈ Ḃs
p,q(G) for all

i = 1, . . . , k.

Proof. On the one hand we need to prove that for all i = 1, . . . , k and
j ∈ N,

‖∆jXkf‖Lp . 2j‖∆jf‖Lp .

Using Bernstein’s inequalities and by density of polynomials in the space of
continuous functions it is then actually enough to prove that for all inte-
gers m,

(4.1) ‖(−∆G)m/2(−∆G)−1/2Xkf‖Lp . ‖(−∆G)m/2f‖Lp .

Indeed, if (4.1) holds, then one also has, multiplying both sides by 2jm,

‖(−22j∆G)m/2(−∆G)−1/2Xkf‖Lp . ‖(−22j∆G)m/2f‖Lp ,

so for smooth compactly supported function ϕ, we get by functional calculus

(4.2) ‖ϕ(−22j∆G)(−∆G)−1/2Xkf‖Lp . ‖ϕ(−22j∆G)f‖Lp .

But recalling that ∆j = ψ(−22j∆G) we have

‖∆jXkf‖Lp = ‖ψ(−22j∆G)Xkf‖Lp

= ‖ψ(−22j∆G)(−∆G)1/2(−∆G)−1/2Xkf‖Lp .
Then we can write

‖ψ(−22j∆G)(−∆G)1/2(−∆G)−1/2Xkf‖Lp

. 2j‖ψ(−22j∆G)(−∆G)−1/2Xkf‖Lp . 2j‖∆jf‖Lp
due to Bernstein’s inequality

‖∆j(−∆G)1/2f‖Lp . 2j‖∆jf‖Lp

along with (4.2).

So let us prove (4.1). Actually according to [LV] the operator Lkm =
(−∆G)(m−1)/2Xk(−∆G)−m/2 is bounded on Lp(G) for 1 < p < ∞. That is
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false if the group is not nilpotent (see for instance [A]) so it is here that the
assumption that G is nilpotent is used. Now writing

(−∆G)m/2(−∆G)−1/2Xkf

= (−∆G)m/2(−∆G)−1/2Xk(−∆G)−m/2(−∆G)m/2f

= Lkm(−∆G)m/2f,

the result follows.

On the other hand, using again the fact that polynomials are dense in
the space of continuous functions, we also need to check that for all f ,

‖(−∆G)(m+1)/2f‖Lp . sup
k
‖(−∆G)m/2Xkf‖Lp .

To prove that, we simply use again the fact that Lkm is bounded on Lp(G)
for every 1 < p <∞. Indeed, we can write

‖(−∆G)(m+1)/2f‖Lp ≤
∑
k

‖(−∆G)(m−1)/2X2
kf‖Lp

=
∑
k

‖(−∆G)(m−1)/2Xk(−∆G)−m/2(−∆G)m/2Xkf‖Lp

=
∑
k

‖Lkm(−∆G)m/2Xkf‖Lp ,

whence the result. Proposition 4.1 is proved.

Proposition 4.1 allows us to obtain Theorem 1.3 rather easily when s ∈
R+ \ N, using also Proposition 3.3. Let us give the details.

The fact that Ḃs
d/s,1(G) is embedded in L∞(G) follows from easy calcu-

lations:
‖f‖L∞ ≤

∑
j∈Z
‖∆jf‖L∞ .

∑
j∈Z

2js‖∆jf‖Ld/s

by the Bernstein inequalities (Proposition 4.2 of [FMV]).

Now let us prove that Ḃs
d/s,1(G) is an algebra, and then that for every

s > 1 and 1 < p <∞, if f, g ∈ Ḃs
p,(s−1)/s ∩L

∞(G) then fg ∈ Ḃs
p,1 ∩L∞(G).

We follow the lines of the inhomogeneous case treated above, but we need to
be careful because the norms are now homogeneous. Let us define s = 1 + s′

with s′ ∈ (0, 1). As in the inhomogeneous case, by the Leibniz rule, we have

‖Xi(fg)‖Ḃs′p,q ≤ ‖fXig‖Ḃs′p,q + ‖gXif‖Ḃs′p,q ,

and we study in more detail the first term on the right-hand side, which
satisfies due to Proposition 3.3, for 1/ai + 1/bi = 1/p (and choosing from
now on 1 < ai, bi <∞),

(4.3) ‖fXig‖Ḃs′p,q . ‖f‖La1‖Xig‖Ḃs′b1,q
+ ‖f‖Ḃs′a2,q‖Xig‖Lb2 .
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On the one hand

‖Xig‖Ḃs′b1,q
. ‖g‖Ḃsb1,q

,

so it suffices to estimate ‖f‖Ḃs′a2,q‖Xig‖Lb2 .

In the case when q = 1 and p = d/s we choose a2 = d/(s − 1) = d/s′

and b2 = d and use Bernstein’s inequality which states that

‖f‖
Ḃs
′
a2,1

. ‖f‖Ḃs
d/s,1

.

Then according to [CRT] we have

‖Xig‖Ld . ‖(−∆G)s/2g‖1/s
Ld/s
‖g‖1−1/sL∞

and moreover

‖(−∆G)s/2g‖Ld/s ≤
∑
j∈Z
‖∆j(−∆G)s/2g‖Ld/s

.
∑
j∈Z

2js‖∆jg‖Ld/s . ‖g‖Ḃs
d/s,1

by Bernstein’s inequalities, so we infer that

‖Xig‖Ld . ‖g‖
1/s

Ḃs
d/s,1

‖g‖1−1/sL∞

and the result follows in the case 1 < s < 2. The other noninteger cases are
obtained by induction.

To prove the result in the integer case we use a nonlinear interpolation
argument as in the inhomogeneous case above. Let us detail the case s = 1
for instance. We have indeed (as pointed out in [BL], the interpolation results
hold in the homogeneous case)

[Ḃ1−ε
d/(1−ε),1; Ḃ

1+ε
d/(1+ε),1]1/2 = Ḃ1

d,1,

so the result follows. The other cases are obtained similarly.

In the case when f, g ∈ Ḃs
p,(s−1)/s, we use as above the fact that

‖f‖La1‖Xig‖Ḃs′b1,q
. ‖f‖La1‖g‖Ḃsb1,q

,

and in particular we can take a1 = ∞ and b1 = p, and we choose a2 =
ps/(s− 1) and b2 = ps. Then Hölder’s inequality gives

2js
′‖∆jf‖Lps/(s−1) . 2js

′‖∆jf‖(s−1)/sLp ‖∆jf‖1/sL∞

. (2js‖∆jf‖Lp)(s−1)/s‖f‖1/sL∞ .

Since as above

‖Xig‖Lps . ‖(−∆G)s/2g‖1/sLp ‖g‖
1−1/s
L∞ . ‖g‖1/s

Ḃsp,1
‖g‖1−1/sL∞

the result follows when s > 1 is noninteger.
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Let us detail for instance how to deduce the case s = 2. We write for
instance

[Ḃ
9/4
p,5/9; Ḃ

9/5
p,4/9]5/9 = Ḃ2

p,1/2,

so the result follows by bilinear interpolation. The other cases are obtained
similarly.

Finally, let us turn to the last statement of the theorem, namely that
if 1 < p1, p2 <∞ with 1/p = 1/p1+1/p2, 1 ≤ q ≤ ∞, and f ∈ Ḃs

p1,q∩L
p1(G)

and g ∈ Ḃs
p2,q ∩L

p2(G) then fg ∈ Ḃs
p,q ∩Lp(G). We recall the real interpola-

tion result [BL, Theorem 6.4.5] (which holds also in the homogeneous case
as indicated in [BL])

(4.4) [Ḃs1
p,q1 ; Ḃs2

p,q2 ]θ,r = Ḃs
p,r, s = θs1 + (1− θ)s2, s1 6= s2

so in particular

[Ḃ0
a2,∞; Ḃs

a2,q](s−1)/s,1 = Ḃs′
a2,1 ↪→ Ḃs′

a2,q.

We infer that f belongs to Ḃs′
a2,q as soon as f belongs to La2 ∩ Ḃs

a2,q ↪→
Ḃ0
a2,∞ ∩ Ḃ

s
a2,q. Similarly

[Ḃ0
b2,∞; Ḃs

b2,q]1/s,1 = Ḃ1
b2,1,

so using the fact that

‖Xig‖Lb2 . ‖Xig‖Ḃ0
b2,1

. ‖g‖Ḃ1
b2,1

we infer that Xig belongs to Lb2 as soon as g ∈ Lb2 ∩ Ḃs
b2,q
⊂ Ḃ0

b2,∞ ∩ Ḃ
s
b2,q

.
The result follows for 1 < s < 2, and the theorem is proved by an easy
induction and interpolation, as in the inhomogeneous case.

5. Paradifferential calculus on H-type groups. In this section, we
consider several topics related to harmonic analysis on H-type groups, which
we recall are particular cases of Carnot groups, where it turns out that an
explicit Fourier transform is available.

5.1. Fourier transforms. In order to construct paradifferential and
pseudodifferential calculus on H-type groups, one needs to introduce a suit-
able Fourier transform. This is classically done through infinite-dimensio-
nal unitary irreducible representations on a suitable Hilbert space since
H-type groups are noncommutative. Two representations are available: the
Bargmann representation (see [KR] for instance) and the Schrödinger rep-
resentation (see [CG] for instance).

5.1.1. General definitions. Let us define generally what a Fourier trans-
form is on noncommutative groups. The irreducible unitary representations
of G (over K = R or C) are parametrized by λ ∈ Rn \ {0} where n is the
dimension of the center of the group. Each such representation πλ acts on a
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Hilbert space Hλ(K`) of functions defined on K`. We then have the following
definition.

Definition 5.1. Let f ∈ L1(G). Then the Fourier transform of f is the
operator on Hλ(K`) parametrized by λ ∈ Rn \ {0} defined by

F(f)(λ) =
�

G

f(w)πλ(w) dw.

Note that F(f ?g)(λ) = F(f)(λ)◦F(g)(λ). Let Fα,λ, α ∈ Λ, be a Hilbert
basis of Hλ(K`). We recall that an operator A(λ) on Hλ such that∑

α∈Λ
|(A(λ)Fα,λ, Fα,λ)Hλ | <∞

is said to be of trace class. One then sets

tr(A(λ)) =
∑
α∈Λ

(A(λ)Fα,λ, Fα,λ)Hλ ,

and the following inversion theorem holds.

Theorem 5.2. If a function f on G satisfies∑
α∈Λ

�

Rn
‖F(f)(λ)Fα,λ‖Hλ |λ|

` dλ <∞

then for almost every w ∈ G,

f(w) =
2`−1

π`+1

�

Rn
tr
(
πλ(w−1)F(f)(λ)

)
|λ|` dλ.

By [Y], the representation πλ of G determines a representation π∗λ of its
Lie algebra G on the space of C∞ vectors. The representation π∗λ is defined
by

π∗λ(X)f =

(
d

dt
πλ(exp(tX))f

)∣∣∣∣
t=0

for every X in G. We can extend π∗λ to the universal enveloping algebra of
left-invariant differential operators on G. Let K be a left-invariant operator
on G. Then

K(πλf, g) = (πλπ
∗
λ(K)f, g)

where (·, ·) stands for the Hλ inner product.

5.1.2. Bargmann representations on H-type groups. For λ ∈ Rn \ {0},
consider the Hilbert space (called the Fock space) Hλ(C`) of all entire holo-
morphic functions F on C` such that

‖F‖2Hλ =

(
2|λ|
π

)` �

C`
|F (ξ)|2e−|λ| |ξ|2 dξ.
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The corresponding irreducible unitary representation πλ of the group G is
realized on Hλ(C`) by (recall that t ∈ Rn and z, ξ ∈ C`; see [Do])

(πλ(z, t)F )(ξ) = F (ξ − z)ei〈λ,t〉−|λ|(|z|2+〈z,ξ〉).
It is well known that the Fock space admits an orthonormal basis given by
the monomials

Fα,λ(ξ) =
(
√

2|λ| ξ)√
α !

α

, α ∈ N`.

The following classical diagonalization result (see [KR], or [BFG] and the
references therein) is important for us:

Proposition 5.3. Let FB be the Fourier transform associated to the
Bargmann representation π. The following diagonalization property holds:
for every f ∈ S(G),

FB(∆Gf)(λ)Fα,λ = −4|λ|(2|α|+ `)FB(f)(λ)Fα,λ.

This allows us to define, for every ρ ∈ R,

FB((−∆G)ρf)(λ)Fα,λ = (4|λ|(2|α|+ `))ρFB(f)(λ)Fα,λ.

5.1.3. The L2 representation on H-type groups. Another useful repre-
sentation is the so-called Schrödinger, or L2 representation. In this case,
the unitary irreducible representations are given on L2(R`) by setting, for
λ ∈ Rn (and writing z = (x, y)),

(π̃λ(z, t)F )(ξ) = ei〈λ,t〉+|λ|i(
∑`
j=1 xjξj+

1
2
xjyj)F (ξ + y).

The intertwining operator between the Bargmann and the L2 representa-
tions is the Hermite–Weber transform Kλ : Hλ → L2(R`) given by

(Kλφ)(ξ) = C`|λ|`/4e|λ| |ξ|
2/2φ

(
− 1

2|λ|
∂

∂ξ

)
e−|λ| |ξ|

2
,

which is unitary and satisfies Kλπλ(z, t) = π̃λ(z, t)Kλ. Following [Y] and
the previous description, we have π̃∗λ(Xj) = i|λ|ξj and π̃∗λ(Yj) = ∂/∂ξj for
j = 1, . . . , `, and similarly π̃∗λ(∂tk) = iλk for k = 1, . . . , n. Therefore,

π̃∗λ(−∆G) = −
n∑
j=1

∂2

∂ξ2j
+ |λ|2|ξ|2.

Notice that this is a Hermite operator and the eigenfunctions of π∗λ(−∆G)

are Φλα(ξ) = |λ|n/4Φα(
√
|λ| ξ), α = (α1, . . . , α`), where Φα(ξ) is the product

ψα1(ξ1) . . . ψα`(ξ`) and ψαj (ξj) is the eigenfunction of −∂2/∂ξ2j + ξ2j with
eigenvalue 2αj + 1. This leads to the following formula, where |α| = α1 +
· · ·+ α`:

π̃∗λ(−∆G)Φλα = (2|α|+ `)|λ|Φλα.
As a consequence, one has the following lemma.
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Lemma 5.4. Let FS be the Fourier transform associated to the Schrödin-
ger representation π̃. The following diagonalization property holds: for every
f in S(G),

FS((−∆G)f)Φλα = (2|α|+ `)|λ|FS(f)Φλα.

Proof. We have by definition

FS((−∆G)f)Φλα =
�

G

(−∆G)f(z, t)π̃λ(z, t)Φλα =
�

G

f(z, t)(−∆G)π̃λ(z, t)Φλα.

Using the definition of the dual representation, we have

FS((−∆G)f)Φλα =
�

G

f(z, t)πλ(z, t)π∗λ(−∆G)Φλα,

and by the properties of the Hermite operator, this gives the result.

5.2. A localization lemma. As in [BG], one can prove a localization
lemma (also called the Bernstein lemma), which we state here in the context
of the Bargmann representation. The proof is omitted as it is identical to the
Heisenberg situation treated in [BG]. Note that using Proposition 4.1, the
last statement of the lemma could be extended to iterated vector fields XI .
We denote by C0 the annulus {τ ∈ R : 1/2 ≤ |τ | ≤ 4} and by B0 the ball
{τ ∈ R : |τ | ≤ 2}.

Lemma 5.5. Let p, q ∈ [1,∞] with p ≤ q, and let u ∈ S(G) satisfy

FB(u)(λ)Fα,λ = 1(2|α|+`)−122jB0(λ)FB(u)(λ)Fα,λ

for all α ∈ N`. Then

∀k ∈ N, sup
|β|=k

‖X βu‖Lq(G) ≤ Ck2Nj(1/p−1/q)+kj‖u‖Lp(G).

On the other hand, if

FB(u)(λ)Fα,λ = 1(2|α|+`)−122jC0(λ),

then for all ρ ∈ R,

C−1ρ 2−jρ‖(−∆G)ρ/2u‖Lp(G) ≤ ‖u‖Lp(G) ≤ Cρ2−jρ‖(−∆G)ρ/2u‖Lp(G).

5.3. Paraproduct on H-type groups. In order to develop a para-
product on H-type groups, one has to prove that the product of two functions
is localized in frequencies whenever the functions are localized. This is the
object of the next lemma, whose proof is the same as that of Proposition 4.2
of [BG].

Lemma 5.6. There is a constant M1 ∈ N such that the following holds.
Let f, g ∈ S(G) be such that
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FB(f)(λ)Fα,λ = 1(2|α|+`)22mC0(λ)FB(f)(λ)Fα,λ,

FB(g)(λ)Fα,λ = 1(2|α|+`)22m′C0(λ)FB(g)(λ)Fα,λ,

for some integers m and m′. If m′ −m > M1, then there exists an annulus
C̃ such that

FB(fg)(λ)Fα,λ = 1
(2|α|+`)22m′ C̃(λ)FB(fg)(λ)Fα,λ,

while if |m′ −m| ≤M1, then there exists a ball B̃ such that

FB(fg)(λ)Fα,λ = 1
(2|α|+`)22m′ B̃(λ)FB(fg)(λ)Fα,λ.

Definition 5.7. We define the paraproduct of v by u, denoted by Tuv,
to be the bilinear operator

Tuv =
∑
j

Sj−1u∆jv.

We define the remainder of u and v, denoted by R(u, v), to be

R(u, v) =
∑
|j−j′|≤1

∆ju∆j′v.

Remark 5.8. It is clear that formally

uv = Tuv + Tvu+R(u, v).

One of the classical consequences of Lemma 5.6 is the following result,
which is obtained using the previous decomposition as well as localization
properties of the paraproduct and remainder terms.

Corollary 5.9. Let ρ > 0 and (p, r) ∈ [1,∞]2. Then

‖fg‖Bρp,r(G) ≤ C(‖f‖L∞(G)‖g‖Bρp,r(G) + ‖g‖L∞(G)‖f‖Bρp,r(G)).

If ρ1+ρ2 > 0 and if p1 is such that ρ1 < Q/p1, then for all (p2, r2) ∈ [1,∞]2,
writing ρ = ρ1 + ρ2 −Q/p1, we have

‖fg‖Bρp2,r2 (G) ≤ C(‖f‖Bρ1p1,∞(G)‖g‖Bρ2p2,r2 (G) + ‖g‖Bρ1p1,∞(G)‖f‖Bρ2p2,r2 (G)).

Moreover, if ρ1 + ρ2 ≥ 0, ρ1 < Q/p1 and 1/r1 + 1/r2 = 1, then

‖fg‖Bρp,∞(G) ≤ C(‖f‖Bρ1p1,r1 (G)‖g‖Bρ2p2,r2 (G) + ‖g‖Bρ1p1,r1 (G)‖f‖Bρ2p2,r2 (G)).

Finally if ρ1 + ρ2 > 0, ρj < Q/pj and p ≥ max(p1, p2), then for all (r1, r2),

‖fg‖Bρ12p,r (G) ≤ C‖f‖Bρ1p1,r1 (G)‖g‖Bρ2p2,r2 (G),

with

ρ12 = ρ1 + ρ2 −Q
(

1

p1
+

1

p2
− 1

p

)
and r = max(r1, r2),

and if ρ1 + ρ2 ≥ 0, ρj < Q/pj and 1/r1 + 1/r2 = 1, then for all p ≥
max(p1, p2),

‖fg‖Bρ12p,∞(G) ≤ C‖f‖Bρ1p1,r1 (G)‖g‖Bρ2p2,r2 (G).
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The same results hold in the case of homogeneous Besov spaces. Once
the paraproduct algorithm is in place, one can obtain (refined) Sobolev
and Hardy inequalities (see [CX] and [BG] for Sobolev embeddings in the
euclidean case and for the Heisenberg group, and [BCG] for the Hardy in-
equalities; see also [C1] for recent extensions). One can also construct, in the
context of H-type groups, an algebra of pseudo-differential operators exactly
as on the Heisenberg group. We refer to [BFG] for details.
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BLAN-0301-01 “Mathocéan”, as well as by the Institut Universitaire de
France. The second author is supported by the ANR project “PREFERED”.

References

[A] G. Alexopoulos, An application of homogenization theory to harmonic analysis:
Harnack inequalities and Riesz transforms on Lie groups of polynomial growth,
Canad. J. Math. 44 (1992), 691–727.

[BCD] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear PDEs,
Grundlehren Math. Wiss. 343, Springer, Heidelberg, 2011.

[BCG] H. Bahouri, J.-Y. Chemin and I. Gallagher, Refined Hardy inequalities, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006), 375–391.

[BFG] H. Bahouri, C. Fermanian-Kammerer and I. Gallagher, Phase-space analysis and
pseudodifferential calculus on the Heisenberg group, Astérisque 342 (2012), 127 pp.
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