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Algebra of multipliers on the space
of real analytic functions of one variable

by

Paweł Domański (Poznań) and Michael Langenbruch (Oldenburg)

Abstract. We consider the topological algebra of (Taylor) multipliers on spaces of
real analytic functions of one variable, i.e., maps for which monomials are eigenvectors.
We describe multiplicative functionals and algebra homomorphisms on that algebra as
well as idempotents in it. We show that it is never a Q-algebra and never locally m-
convex. In particular, we show that Taylor multiplier sequences cease to be so after most
permutations.

1. Introduction. We consider multipliers on the space A (I) of real
analytic functions on an open set I ⊆ R, i.e., continuous linear maps M :
A (I) → A (I) such that every monomial is an eigenvector of M . Here and
throughout the paper we denote by I an arbitrary open subset of R. The
corresponding sequence (mn)n∈N of eigenvalues is called the multiplier se-
quence of M . Since monomials are linearly dense in A (I), any multiplier is
uniquely determined by its multiplier sequence. On the other hand the space
A (I) has no Schauder basis [12], in particular, monomials do not form a
basis in A (I) and therefore multipliers are not just diagonal operators. In
case 0 ∈ I, I connected, M(f)(z) =

∑∞
n=0mnfnz

n around zero whenever
f(z) =

∑∞
n=0 fnz

n around zero and (mn)n∈N is the corresponding multiplier
sequence (comp. [11, Prop. 2.1]).

Clearly, the space M(I) of all multipliers on A (I) is a subalgebra of
the algebra L(A (I)) of all continuous linear operators on A (I), and M(I)
is complete when we equip it with the topology of uniform convergence on
bounded subsets of A (I). Composition is a separately continuous multipli-
cation on M(I). In fact, it was proved in [10] that for connected open I the
space M(I) is either a Fréchet space or an LF-space. On the other hand,
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M(I) as an algebra can be identified with the family of multiplier sequences
with pointwise multiplication.

In the present paper we study properties ofM(I) as a topological algebra.
In case I is an open connected subset of the real line (i.e., an interval) we
describe all multiplicative functionals on M(I) (Corollaries 4.2 and 5.3),
idempotents in M(I) (Theorem 3.1), and algebra homomorphisms on M(I)
(Corollary 4.4, Theorems 5.6 and 5.7). In particular, we show that all such al-
gebra homomorphisms and multiplicative functionals are automatically con-
tinuous (Corollary 4.4, Proposition 5.5). As a consequence, we show that
M(I) is never a Q-algebra (Corollaries 4.3 and 5.4) and never locally m-
convex (Corollary 3.3). Finally, we describe closed ideals in M(I) whenever
0 ∈ I (Theorem 5.2) or I = (a, b), 0 < a < b < ∞ (Theorem 4.5). The
invertible elements in M(I), 0 6∈ I, are described in Corollary 4.3. The more
challenging problem of the case 0 ∈ I will be postponed to the forthcoming
paper [11]. The natural candidates for homomorphisms of the algebra M(I)
are permutations of the corresponding multiplier sequences. Our description
of the homomorphisms shows that very few such permutations indeed act
on M(I) (Theorem 5.7), which seems to be the most interesting conclusion
of the paper.

The main tools we use are the representation theorems proved in [10] and
repeated for the sake of convenience without proof in Section 2. In Section
3 we give results true for arbitrary open sets I ⊂ R. However, in most cases
the methods for 0 ∈ I and 0 6∈ I are different. We consider the latter case in
Section 4, and the former in Section 5.

In [10] we studied multipliers and proved some fundamental represen-
tation theorems. In the forthcoming paper [11] we will study invertibility
of multipliers on A (I) in the challenging case of 0 ∈ I. This is a part of a
broader project of studying operators on the space of real analytic functions:
see, for instance, [8], [9].

Let us introduce some notation. We call any (possibly unbounded) open
connected subset of R an interval. We denote by Ĉ the Riemann sphere and
by H(S) the space of holomorphic functions on some open neighbourhood of
S ⊆ Ĉ, whileH0(S) denotes the subspace consisting of holomorphic functions
vanishing at ∞. Clearly,

H0(Ĉ \ S) =
⋃

K⊂S,K compact

H0(Ĉ \K)

and H0(Ĉ \K) are Fréchet spaces. Hence, if S has a fundamental sequence
of compact subsets then H0(Ĉ \ S) as well as H(Ĉ \ S) are LF-spaces.

For any a ∈ R we denote by Ma the dilation map

Ma(f)(x) := f(ax).
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By ηk we denote the monomial function

ηk(x) := xk, k ∈ N.
Analogously, for z ∈ C and x ∈ R \ {0}, we define

η+z (x) := |x|z and η−z (x) := sgn(x)|x|z.
It is well-known via the so-called Köthe–Grothendieck duality (see

[1, Th. 1.3.5]) that every continuous linear functional T on H(K), K b C
compact, corresponds to a holomorphic function f ∈ H0(Ĉ \K) (called the
Cauchy transform of T ) where

T (g) =
1

2πi

�

γ

g(z)f(z) dz, f(z) :=

〈
1

z − ·
, T

〉
and γ is a curve surrounding K once and separating K from the singularities
of f . An analogous representation holds for continuous linear functionals on
H(U), U ⊂ C open.

We use without reference many facts on the spaces A (I)—for them we re-
fer to [7]. For unexplained notions from functional analysis see the book [16].

2. Representations. First, we recall the representation theorems proved
in [10]. They will be very useful later on. We define the dilation set V (I) for
an open set I ⊂ R by

V (I) :=
⋂
y∈I
{x : xy ∈ I} =

⋂
ε∈I, ε 6=0

(1/ε)I.

The name comes from the fact that the dilation Ma : A (I) → A (I) is
well-defined if and only if a ∈ V (I). Observe that 1 ∈ V (I), and that 0 ∈ I
if and only if 0 ∈ V (I).

The dilation set V (I) is crucial for the representation theorems presented
in this section. It has been calculated in [10, Section 3] for many open sets I.
We recall here the results for intervals to indicate what V (I) may be like.

Remark 2.1. (a) V (R) = R and V (]−∞, 0[) = V (]0,∞[) = ]0,∞[.
(b) Let −∞ < a < 0 < b < ∞. Then V (]a,∞[) = V (]−∞, b[) = [0, 1],

V (]a, 0[) = V (]0, b[) = ]0, 1] and V (]a, b[) = [−min(|a/b|, |b/a|), 1].
(c) Let 0 < a < b <∞. Then V (]a, b[) = {1}.
We need the following notion.

Definition 2.2. An open set I ⊂ R is nice if for every open neigh-
bourhood U of V (I) there are finitely many nonzero ε1, . . . , εp ∈ I such
that

p⋂
j=1

(1/εj)I ⊂ U.
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Notice the following easy observation:

Proposition 2.3 ([10, Prop. 2.4]). Every open interval (bounded or
unbounded) is nice.

For more on dilation sets and nice sets see [10, Section 3]. The follow-
ing is the fundamental representation theorem for multipliers via analytic
functionals.

The First Representation Theorem 2.4 ([10, Th. 2.6]). Let I ⊂ R
be an open set. The map

B : A (V (I))′b →M(I), B(T )(g)(y) := 〈g(y ·), T 〉,
is bijective and continuous, and the multiplier sequence of B(T ) is the se-
quence of moments of the analytic functional T , i.e. (〈zn, T 〉)n∈N. If I is nice
then B is even a homeomorphism.

Using the Köthe–Grothendieck duality we get the following representa-
tions.

The Second Representation Theorem 2.5 ([10, Th. 2.8]). For any
open set I ⊆ R the algebra of multipliers M(I) is isomorphic as an algebra
(even topologically isomorphic whenever I is a nice set) to the LF-algebra
of holomorphic functions H(Ĉ \ (1/V (I))) with Hadamard multiplication of
Taylor series, i.e.,

f ∗ g(z) =
∞∑
n=0

mnlnz
n

around zero where

f(z) =

∞∑
n=0

mnz
n, g(z) =

∞∑
n=0

lnz
n

around zero. Here 1/V (I) := {1/z : z ∈ V (I)}. The multiplier sequence of
the given multiplier is equal to the Taylor coefficients (mn) of the correspond-
ing function f .

Remark 2.6. (a) In fact, the identification H(Ĉ \ (1/V (I)))→M(I) is
continuous for an arbitrary open set I ⊂ R.

(b) If V (I) is a compact set, with I nice, then M(I) is a Fréchet space.
In general, if I is nice then M(I) is an LF-space.

(c) Moreover, the identification in the Second Representation Theorem
for compact V (I) represents the multiplier algebra as H(G) for some domain
G ⊂ Ĉ where 0 ∈ G and G is admissible, i.e., H(G) is an algebra with
Hadamard multiplication. In particular, G ⊆ C is admissible if and only if
the complement of G is a semigroup with multiplication (see the introduction
to [23]). Such algebras are studied, for instance, in [4], [23], [24], [22].
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(d) SinceM(I) is algebra isomorphic to H0(Ĉ \ V (I)), onM(I) there are
two different algebra structures: one given by composition of multipliers, the
other given by pointwise multiplication on H0(Ĉ \ V (I)). In case I is nice
these multiplications give two different topological algebra structures for the
same topology.

Let us denote the support function of a convex compact set K by

HK(y) := sup
z∈K

(Re zy).

Then for any convex compact set K and any convex set Ω we define

Exp(K) := {f ∈ H(C) : ∀ε > 0 : ‖f‖K,ε <∞}, Exp(Ω) :=
⋃
KbΩ

Exp(K),

where
‖f‖K,ε := sup

z∈C
|f(z)| exp(−HK(z)− ε|z|).

For a set A ⊂ R+ we put logA := {log x : x ∈ A}.
For open sets I with 0 /∈ I there is an additional representation of mul-

tipliers which is especially simple and precise if I is connected.

The Third Representation Theorem 2.7 ([10, Th. 5.3]). For any
open set I ⊂ R with 0 /∈ I and V (I) connected, the map

M :M(I)→ Exp(log V (I)), M (B(T ))(z) := 〈η+z , T 〉, T ∈ A (V (I))′,

is an algebra isomorphism where B(T ) is defined as in Theorem 2.4 and
Exp(log V (I)) is equipped with pointwise multiplication. If I is nice then M
is a homeomorphism.

The multiplier sequence corresponding to M is (M (M)(n))n∈N.

Corollary 2.8 ([10, Cor. 5.5]). For any open set I ⊂ R \ {0} the map

M+ ×M− :M(I)→ Exp(R)× Exp(R), M±(M)(z) = 〈η±z , T 〉,
is an injective algebra homomorphism, where T ∈ A (V (I))′, B(T ) =M and
Exp(R) is equipped with pointwise multiplication. The multiplier sequence
corresponding to M is (M (−1)n(M)(n))n∈N.

3. Algebra of multipliers. Summarizing the consequences of the sec-
tion above: the multipliers form a commutative subalgebraM(I) of L(A (I))
with composition as a separately continuous multiplication. It is either an
LF-algebra or a Fréchet algebra (at least for nice open sets I) according to
the First and Second Representation Theorems. Now, we explore the algebra
structure of M(I).

Especially interesting are those multipliers which are projections, i.e.,
idempotents. Surprisingly, there exist very few such multipliers.
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Theorem 3.1. Let I ⊂ R be an arbitrary open set. Every idempotent in
M(I) has a multiplier sequence which is the characteristic function of a set
A ⊂ N belonging to an algebra E (I) of subsets of N. Moreover,

(a) if 0 6∈ I and I is not symmetric, then E (I) = {∅,N};
(b) if 0 6∈ I and I is symmetric, then E (I) = {∅, 2N,N,N \ 2N};
(c) if 0 ∈ I and I is not symmetric, then E (I) is generated by all finite

sets;
(d) if 0 ∈ I and I is symmetric, then E (I) is generated by all finite sets

and the set 2N.

We call the algebra E (I) of sets the idempotent algebra for A (I).

Proof. We use the Second Representation Theorem (i.e., Theorem 2.5).
Idempotents correspond to the functions f(z) =

∑
n∈S z

n for some set S with
only real singularities. Moreover, the family of possible sets S is easily seen to
be an algebra. Clearly, either f is a polynomial or the radius of convergence
is equal 1. By Szegö’s Theorem (see [3, Satz 6.1] or [20, Ch. 11.4, p. 260]), f
is of the form P (z)/(1− zm) for some polynomial and m ∈ N. In order that
f ∈

⋃
K⊂1/V (I)H(Ĉ \K) we must have m = 1 or m = 2. This shows that

E (I) is contained in the algebra of sets generated by all finite sets and the
set of even numbers.

It is easy to observe that in the representation via H(Ĉ \ (1/V (I))) the
unit multiplier is given by 1/(1− z), and the idempotent with multiplier
sequence being the characteristic function of the set of even numbers is given
by 1/(1− z2). Idempotents corresponding to finite sets are polynomials. By
the Second Representation Theorem, singularities of the representation of
idempotents in H(Ĉ \ (1/V (I))) must be in 1/V (I). For open sets I the
set of even numbers belongs to the idempotent algebra E (I) if and only if
−1 ∈ V (I), i.e., I is symmetric with respect to 0. Analogously, any finite set
belongs to E (I) for an open set I ⊂ R if and only if 0 ∈ V (I), i.e., if 0 ∈ I.

The algebra M(I) has plenty of multiplicative functionals.
Let us define τj : M(I) → C, τj(M) = mj , where (mn)n∈N is the mul-

tiplier sequence of M . Clearly, τj is a multiplicative functional on M(I) for
any open subset I ⊆ R.

Proposition 3.2. For every j ∈ N and every open set I ⊆ R the func-
tional τj is a non-zero continuous linear multiplicative functional on M(I).

Proof. For any ηk ∈ A (I) there is a continuous functional fk ∈ A (I)′

such that fk(ηk) = 1. Then τk(M) = fk(M(ηk)), hence τk is continuous. It
is clear that it is multiplicative.

Corollary 3.3. For an arbitrary open set I ⊂ R the algebra M(I) is
never locally m-convex.
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Proof. By [10, Section 4], the operator θ : A (I) → A (I), (θf)(z)
:= zf ′(z), is always a multiplier. Assume that M(I) is locally m-convex.
Then it is easily seen that every entire function ϕ acts on M(I) (comp.
[26, Section 16]), i.e., if ϕ(z) =

∑∞
n=0 anz

n, then for any M ∈ M(I) the
series

∑∞
n=0 anM

n is convergent. Let us apply that to M = θ. By Proposi-
tion 3.2,

τj

( ∞∑
n=0

anθ
n
)
=
∞∑
n=0

anτj(θ)
n =

∞∑
n=0

anj
n = ϕ(j).

We have proved that for any ϕ ∈ H(C) the sequence (ϕ(j))j∈N is a multiplier
sequence for some M ∈ M(I). Since an arbitrary sequence is of that form,
this contradicts Theorem 2.5.

4. Case of sets not containing zero. For I open not containing zero,
the algebra M(I) has many more multiplicative functionals than in the gen-
eral case.

Proposition 4.1 ([10, Prop. 5.1]). If I ⊂ R is an arbitrary open set not
containing zero then every function η±z is an eigenvector of every multiplier
on A (I). Hence, for any z ∈ C the map

τ±z (M) :=
M(η±z )

η±z

is a continuous multiplicative functional on M(I).

If I is an interval, we even have a precise description. From the Third
Representation Theorem (Theorem 2.7) we will deduce

Corollary 4.2. If I ⊂ R is an arbitrary open set not containing zero
such that V (I) is connected then the only non-zero multiplicative functionals
on M(I) are defined as follows:

τ+z (M) := M (M)(z) for any z ∈ C.

In particular, all multiplicative functionals are automatically continuous.

Proof. It is enough to find multiplicative functionals on the isomorphic
algebra Exp(log V (I)). Clearly, point evaluations at every z ∈ C are non-zero
multiplicative functionals. Since they coincide with the functionals defined
in Proposition 4.1, they are continuous on M(I).

Let δ be a non-zero multiplicative functional on Exp(log V (I)). Obvi-
ously, ηj(z) := zj , j ∈ N0, belongs to the algebra and

δ(η1) =: w, δ(η0) = 1.

It is easily seen that the function f−f(w)·η0
η1−w·η0 belongs to Exp(log V (I)) for any
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f in the same class. Hence

δ(f − f(w)η0) = δ

(
f − f(w) · η0
η1 − w · η0

)
δ(η1 − wη0) = 0.

On the other hand,

δ(f − f(w)η0) = δ(f)− f(w).
We have proved that δ is the point evaluation at w.

Corollary 4.3. Let I ⊂ R be an arbitrary open set not containing zero.
If I is not symmetric with respect to zero then the invertible elements inM(I)
are exactly of the form

M = B ·Ma, Ma(f)(x) = f(ax),

where B ∈ C\{0}, a, a−1 ∈ V (I). If I is symmetric with respect to zero then
the invertible elements in M(I) are either as above or of the form

M = B+

(
Ma+ +M−a+

2

)
+B−

(
Ma− −M−a−

2

)
,

where B+, B− ∈ C \ {0}, ±a+,±a−,±a−1+ ,±a−1− ∈ V (I).
In particular, the set of non-invertible elements is dense (i.e., M(I) is

not a Q-algebra) and if V (I) = {1} then the only invertible multipliers are
non-zero constants.

In the non-symmetric case the closure of the set Inv(M(I)) of invert-
ible elements of M(I) is equal to Inv(M(I)) ∪ {0}. In the symmetric case
Inv(M(I)) consists of all multipliers such that the even and odd parts of their
multiplier sequences are either zero, or they are the even and odd parts of
the multiplier sequence of an invertible multiplier of the form B ·Ma, i.e.,
B ∈ C \ {0}, a, a−1 ∈ V (I).

Proof. By Corollary 2.8, if M is invertible then M+(M),M−(M) ∈
Exp(R) cannot have zeroes. By the classical Hadamard representation the-
orem for entire functions of finite order, for some A+, A−, B+, B− ∈ C we
have

M+(M)(z) = B+ exp(A+z), M−(M)(z) = B− exp(A−z).

By Corollary 2.8, the corresponding multiplier sequences are of the form
(mn)n∈N, where

mn =

{
B+ exp(A+n) for even n,
B− exp(A−n) for odd n.

Invertibility of M implies that B+, B− 6= 0. By the Second Representation
Theorem 2.5, M corresponds to f ∈ H(Ĉ \ (1/V (I))),

f(z) =

∞∑
n=0

mnz
n,
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so for a+ := exp(A+), a− := exp(A−),

f(z) =



B+

1− a+z
for B+ = B− and A+ = A−,

B+

1 + a+z
for B+ = −B− and A+ = A−,

B+

2

(
1

1−a+z
+

1

1+a+z

)
+
B−
2

(
1

1−a−z
− 1

1+a−z

)
otherwise.

Thus if B+ = B−, A+ = A− thenM is just B+ ·Ma+ . Since the singularities
of f must be contained in 1/V (I) we get a+ ∈ V (I). If B+ = −B−, A+ = A−
then M = B+ ·M−a+ with negative −a+ ∈ V (I). In both cases invertibility
means that the singularities a−1+ or −a−1+ of the function corresponding to
the inverse belong to 1/V (I) as well.

In the other case, ±a+,±a− ∈ V (I) and

M = B+

(
Ma+ +M−a+

2

)
+B−

(
Ma− −M−a−

2

)
.

Hence M is invertible iff ±a−1+ ,±a−1− ∈ V (I). Since V (I) is a semigroup (see
[10, Prop. 2.1]), −1 = (−a+) · a−1+ ∈ V (I) and I is symmetric with respect
to zero.

Let (M (n))n∈N be a sequence of invertible multipliers convergent to M .
Without loss of generality we may assume that either

M (n) = CnMan , (an) ⊂ V (I), Cn 6= 0 for any n ∈ N,

or

M (n) = B
(n)
+

(
Man,+ +M−an,+

2

)
+B

(n)
−

(
Man,− −M−an,−

2

)
with (an,+), (an,−) ⊂ V (I), B(n)

+ , B
(n)
− 6= 0 for any n ∈ N.

Let us consider the first case. Let Cn ∈ C, (an) ⊂ V (I) and CnMan →
M ∈ M(I). Then CnMan(1) = Cn → M(1) and CnMan(ηk)(1) = Cna

k
n →

M(ηk)(1). If M(1) 6= 0 then an → a and CnMan → CMa. If M(1) = 0 then
Cna

k
n is convergent for every k ∈ N so Cnakn → 0 and CnMan → 0.
Let us consider the second case. Here

M (n)(η+0 )(1) = B
(n)
+ →M(η+0 )(1), M (n)(η−0 )(1) = B

(n)
− →M(η−0 )(1)

and
M (n)(η+k )(1) = B

(n)
+ akn,+ →M(η+k )(1).

If M(η+0 )(1) 6= 0 then an,+ → a+ for some a+ ∈ R. If M(η+0 )(1) = 0 then
B

(n)
+ akn,+ is convergent for every k ∈ N, hence B(n)

+ akn,+ → 0. Therefore
the even part of the multiplier sequence (mn)n∈N of M is either zero or
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equal to the even part of the multiplier sequence of the invertible multiplier
M(η+0 )(1) ·Ma+ . Analogously,

M (n)(η−k )(1) = B
(n)
− akn,− →M(η−k )(1).

If M(η−0 )(1) 6= 0 then an,− → a− for some a− ∈ R. As in the previous case,
the odd part of the multiplier sequence is either zero or the odd part of the
multiplier sequence of the invertible multiplier M(η−0 )(1) ·Ma− .

It is easily seen that Ma + εE for a ∈ V (I) and a non-zero multiplier E
tends to Ma as ε → 0 but it can be chosen non-invertible according to the
above description.

Corollary 4.4. Let I ⊂ R \ {0} be an open set with V (I) connected.
Then every algebra homomorphism H :M(I)→M(I) can be represented as

Cϕ : Exp(log V (I))→ Exp(log V (I)), Cϕ(f) = f ◦ ϕ, ϕ = H ′|C,

where z ∈ C is identified with a multiplicative functional τz, and ϕ belongs
to Exp(log V (I)). If I is nice then H is automatically continuous.

Proof. Continuity follows from Corollary 4.2 and the closed graph theo-
rem (by the First Representation Theorem,M(I) is an LF-space). Moreover,
ϕ = η1 ◦ ϕ ∈ Exp(log V (I)).

The ideal structure of Exp({0}) is described in [19]. In particular, the
following result holds:

Theorem 4.5 ([5, Ths. 4. and 5, Cor. 2]). Let I be a nice open set with
V (I) = {1}, 0 6∈ I. Every non-trivial closed ideal in M(I) is of the form

I(α) := {M ∈M(I) : |x|αn ∈ kerM}

for some α = (αn) either finite or with |αn|/n → ∞ as n → ∞. Moreover,
every closed ideal in M(I) has either one or two generators (both cases can
happen).

Proof. Let us note that by the Second Representation Theorem 2.5, every
M ∈ M(I) corresponds via the isomorphism to f ∈ H∗0 as defined in [5].
Then by the Third Representation Theorem 2.7, M (M) = f̂ as defined
in [5]. Vanishing of M (M)(αn) means exactly that | · |αn belongs to the
kernel of M . Via [5, Th. 4] this completes the proof of the description of
closed ideals. The rest follows from [5, Th. 5].

Problem 4.6. Describe the closed ideals in M(I) for 0 6∈ I, V (I) 6= {1}.

Problem 4.7. Describe all multiplicative functionals on M(I) for arbi-
trary I ⊂ R, 0 6∈ I.
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5. Case of sets containing zero. By the representation of M(I) as
H(Ĉ \ (1/V (I))) (see Theorem 2.5), we observe that there is a finite non-
zero multiplier sequence on A (I) if and only if 0 ∈ I. In that case all finite
non-zero sequences are multiplier sequences. So a special role is played by
multipliers en, n ∈ N, with multiplier sequence of zeros except 1 at the nth
place. It is easily seen that en · en = en and M · en ∈ lin en for all n ∈ N and
any M ∈ M(I). Moreover, if 0 ∈ I then lin{en : n ∈ N} is dense in M(I)
whenever I is nice and V (I) is connected. By [10, Prop. 3.1], this holds if I
is an interval. Summarizing, the algebra M(I), when I is an open interval
containing zero, satisfies the assumptions of [23, Section 3]. Hence we obtain:

Lemma 5.1 ([23, Lemma 3.2]). Let I be an open interval containing zero.
If J is an ideal in M(I) then for each n, either J ⊆ ker τn or en ∈ J .

Recall that τn(M) = mn whenever (mn)n∈N is the multiplier sequence
of M .

Theorem 5.2 ([23, Theorem 3.3, Corollary 3.4, Theorem 3.5]). Let I be
an open interval containing zero. Let J be an ideal in M(I).

(1) The following assertions are equivalent:
• J is a prime ideal contained in a closed ideal;
• J is a closed prime ideal;
• J is a closed maximal ideal;
• J = ker τn for some n ∈ N.

(2) J is not dense if and only if J ⊂ ker τn for some n ∈ N.
(3) J is closed if and only if J = JB =

⋂
n∈B ker τn, where B := {n ∈ N :

τn(M) = 0 for all M ∈ J}.

In the case 0 ∈ I, I an open interval, it turns out that all multiplicative
functionals are described in Proposition 3.2. Since Theorem 2.5 gives a repre-
sentation of M(I) as the algebra H(Ĉ \ (1/V (I))) of holomorphic functions
with Hadamard multiplication, we can use the description of multiplicative
functionals due to Render and Sauer [23, Th. 3.10]. In fact, if 0 ∈ I, I an
open interval, then V (I) is [0, 1], [−s, 1] for some s ∈ (0, 1], or R (see [10,
Prop. 3.2]). So the first two cases are directly covered by the result of Ren-
der and Sauer, while the case V (I) = R is obtained with verbatim the same
proof:

Corollary 5.3. Let I be an open interval containing zero. Every multi-
plicative functional on M(I) is of the form τn, n ∈ N, so it is automatically
continuous.

This means that M(I) can be represented as a function algebra with
pointwise multiplication only taking functions on the set of natural numbers.
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Corollary 5.4. Let I be an open interval containing zero. The algebra
M(I) is never a Q-algebra.

Proof. Since elements of the linear span of en, n ∈ N, are not invertible,
the set of non-invertible elements is dense (en corresponds to monomials in
H(Ĉ \ (1/V (I))).

The weak-algebra topology on an algebra is the weak∗-topology with re-
spect to all non-zero multiplicative functionals. It is easily seen that every
algebra homomorphism is weak-algebra continuous. As a consequence we
have:

Proposition 5.5. For every open interval I containing zero, every al-
gebra homomorphism on M(I) is continuous.

Proof. Just observe that, since multiplicative functionals are all continu-
ous, the weak-algebra topology is weaker than the original topology ofM(I).
Then apply the closed graph theorem on the LF-space M(I).

The following result is a generalization of [24, Th. 1.1], [25, Prop. 3.1].
Theorem 5.6. Let I be an open interval containing zero. For every al-

gebra homomorphism Φ : M(I) → M(I), there exists a set-valued map
κΦ = κ : N → 2N with pairwise disjoint values where the characteristic
functions of values are multiplier sequences of idempotents in M(I) such
that

Φ
( ∞∑
n=0

mnen

)
=

∞∑
n=0

mn

∑
j∈κ(n)

ej ,

the series being weak-algebra convergent.
Proof. Since en are idempotents, their Φ-images have to be idempotents

as well. Thus there is a set-valued map κ : N→ 2N such that

Φ(en) =
∑
j∈κ(n)

ej .

Since en · em = 0 for n 6= m we get
Φ(en) · Φ(em) = Φ(0) = 0,

hence κ(n) ∩ κ(m) = ∅ for n 6= m. Since Φ is automatically weak-algebra
continuous, the conclusion follows.

For every algebra homomorphism Φ : M(I)→M(I), I an open interval
containing zero, we define FΦ := {n : κΦ(n) 6= ∅ finite}.

Every algebra homomorphism Φ maps idempotents into idempotents. Let
us note that by Theorem 3.1 the set κ(n) has to be of a very special form. So
clearly, only one or at most two (only in the symmetric case) sets κ(n) can
be infinite. Moreover, if Φ is infinite-dimensional then FΦ must be infinite
and no κ(n) can be infinite (in case I is non-symmetric) or at most one κ(n)
can be infinite (in case I is symmetric).
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The bijective case of the following theorem for compact V (I) is due to
Render and Sauer (see [24, Th. 1.3, Th. 4.3], [25, Th. 3.4]). The non-compact
case (i.e., I = R) requires a new idea. The generalization to non-surjective
Φ is interesting since it shows that multiplier sequences of A (I) are permu-
tation sensitive even if the permutation is not onto.

Theorem 5.7. Let I be an open interval containing zero. Let Φ :
M(I)→M(I) be an algebra homomorphism.

(a) If Φ is infinite-dimensional then the set FΦ is infinite, and there are
two polynomials h+, h− and n0 ∈ N such that for n > n0,

κ(n) = (h−1+ (n) ∩ 2N) ∪ (h−1− (n) ∩ (2N+ 1)),

where h+ = h− in case I is non-symmetric. Moreover,

lim
n→∞, n∈FΦ

minκ(n)

log n
=∞, sup

n∈FΦ

maxκ(n)

n
<∞.

(b) If Φ is injective then FΦ = N and there are p, r ∈ Z with p+ r even
and n0 ∈ N such that for every n > n0,

κ(n) =

{ {n+ p} for n even,
{n+ r} for n odd.

If I is non-symmetric then p = r.
(c) If Φ is bijective then there are p ∈ Z and n0 ∈ N such that for every

n > n0,

κ(n) =

{ {n+ p} for n even,
{n− p} for n odd.

If I is non-symmetric then p = 0.

Remark. (a) The above result shows that the set of multiplier sequences
for M(I) is very permutation sensitive for open intervals I containing zero,
much more than one can suspect. Assume that the sequence (m′n)n∈N is
obtained from a multiplier sequence (mn)n∈N via rearrangement and adding
some zeros, i.e, there is an injective map π : N → N such that mn = m′π(n)
and mj = 0 for j /∈ π(N). Then all (m′n)n∈N are multiplier sequences if and
only if π is as in part (b) of the theorem above, i.e., for n > n0 we have
π(n) = n + p for n even and π(n) = n + r for n odd, with p + r even (for
non-symmetric I we necessarily have p = r).

(b) It follows that for every injective algebra homomorphism Φ its image
Φ(M(I)) has a finite codimension.

(c) One can easily construct an injective Φ satisfying the condition in (b)
above for any given n0, p and r as in (b). Similarly, one can easily construct
a bijective Φ for any n0 and p as in (c).
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Proof of Theorem 5.7. Let us identify M(I) with H(Ĉ \ (1/V (I)));
here en identifies with the monomial zn, and the unit identifies with γ(z) =
1/(1 − z) according to Theorem 2.5. Then Φ acts as an algebra homomor-
phism on that space with Hadamard multiplication.

(a) The fact that FΦ is infinite has been proved just before this theorem.
We will use the functions γk := θk(γ), θ(f)(z) = z d

dzf(z), identified with∑∞
n=0 n

ken. If I 6= R then the unit disc is contained in Ĉ \ (1/V (I)), thus
the Taylor series of Φ(γ1) at zero, which is equal to

∑∞
n=0 n

∑
j∈κ(n) z

j , has
radius of convergence ≥ 1, i.e.,

lim
n→∞, n∈FΦ

minκ(n)

log n
=∞.

Since Φ :M(R)→M(R) acts on an LF-space, by the Grothendieck fac-
torization theorem, it maps every step into some step space, i.e., there is
a > 0 such that if f belongs to H

(
Ĉ \ ((−∞,−1] ∪ [1,∞))

)
then Φ(f) is in

H
(
Ĉ \ ((−∞,−a] ∪ [a,∞))

)
. Let us observe that all the functions γk iden-

tified with
∑∞

n=0 n
ken belong to H

(
Ĉ \ ((−∞,−1] ∪ [1,∞))

)
so the Taylor

series at zero of every function Φ(γk) has to have convergence radius at least
a for some fixed a not depending on k. The Taylor series of Φ(γk) at zero is
equal to ∑

n∈N
nk

∑
j∈κ(n)

zj .

If infinitely many of n ∈ FΦ satisfy minκ(n) < A log n, A > 0 (or equiva-
lently, the radius of convergence of the above series for k = 1 is strictly less
than 1), then for infinitely many n ∈ FΦ we have

minκ(n)
√
n > exp(1/A),

so the convergence radius of the Taylor series of Φ(γk) at zero is smaller than
exp(−k/A); a contradiction.

We have proved that for any I with 0 ∈ I,

lim
n→∞, n∈FΦ

minκ(n)

log n
=∞

and moreover that Φ(γ1) ∈ H
(
Ĉ \ ((−∞,−1] ∪ [1,∞))

)
. Further, the Taylor

series of Φ(γ1) at zero has only natural coefficients. By the Pólya–Carlson
Theorem [20, Ch. 11.4, p. 265], every such function is of the form

Φ(γ1) = p1(z) +
q(z)

(1− zl)m

with deg q(z) < lm. In the symmetric case Ĉ \ (1/V (I)) does not contain
roots of unity of order larger than 2 and in the non-symmetric case larger
than 1, so l = 2 or l = 1, respectively. In case l = 2 the second summand is
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of the form
q1(z)

(1− z)m
+

q2(z)

(1 + z)m
.

Moreover, by [3, Satz 1.3.X],

q1(z)

(1− z)m
=
∞∑
n=0

w1(n)z
n,

q2(z)

(1 + z)m
=
∞∑
n=0

w2(n)(−z)n

for some polynomials w1, w2. Summarizing,

Φ(γ1) = p1(z) +
∞∑
n=0

h+(2n)z
2n +

∞∑
n=0

h−(2n+ 1)z2n+1

for some polynomials h+, h− which are equal in the non-symmetric case. On
the other hand, as we have seen before,

Φ(γ1) =
∑
n∈N

n
∑
j∈κ(n)

zj .

This shows that

κ(n) = (h−1+ (n) ∩ 2N) ∪ (h−1− (n) ∩ (2N+ 1))

for n large enough, which implies immediately that

sup
n∈FΦ

maxκ(n)

n
<∞.

(b) If Φ is injective then no κ(n) can be empty and Φ has to be infinite-
dimensional. If some κ(n) is infinite then from the statements above it follows
that I has to be symmetric and κ(n) has to contain all but finitely many
even numbers or odd numbers. Assume for simplicity that n is even. Then
S =

⋃
j∈N κ(2j) is an element of the idempotent algebra containing κ(n)

such that S \ κ(n) is infinite. Therefore N \ S is finite; a contradiction, since
infinitely many sets κ(2j + 1) have to be empty. We have proved that no
κ(n) is infinite.

Therefore, h+(2N) ∪ h−(2N + 1) contains all sufficiently large positive
integers. In the case of I non-symmetric, h+ = h− = h and the latter must
be a polynomial of order one and leading coefficient 1, i.e., h(n) = n+ p for
some p ∈ Z. In the case of I symmetric,

⋃
n∈N κ(2n) and

⋃
n∈N κ(2n+1) are

disjoint infinite idempotent sets, thus h+(2N) contains all sufficiently large
even integers or all sufficiently large odd integers. Let us consider the first
case. Then h+(n) = n+ p for some p ∈ Z even but h−(2N+1) must contain
all sufficiently large odd integers so h−(n) = n + r with r even. The other
case is similar but then p and r are odd.

(c) In that case κ(n) is always a singleton and κ can be treated as a
bijective permutation of N. In (b) we may assume without loss of generality
that n0 = 2k0−1 thus

⋃
j≥k0 κ(2j)∪κ(2j+1) = {2k0+p, 2k0+2+p, . . . }∪
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{2k0+1+ r, 2k0+3+ r, . . . } =: S. Since there must be a bijective map from
{0, 1, 2, . . . , 2k0 − 1} onto N \ S it follows that r = −p.

Problem 5.8. Describe all non-injective infinite-dimensional algebra ho-
momorphisms on M(I) for open intervals I containing zero.
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