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Abstract. Given a vector measure m with values in a Banach space X, a desir-
able property (when available) of the associated Banach function space L1(m) of all
m-integrable functions is that L1(m) = L1(|m|), where |m| is the [0,∞]-valued variation
measure of m. Closely connected to m is its X-valued integration map Im : f 7→

	
f dm for

f ∈ L1(m). Many traditional operators from analysis arise as integration maps in this way.
A detailed study is made of the connection between the property L1(m) = L1(|m|) and the
membership of Im in various classical operator ideals (e.g., the compact, p-summing, com-
pletely continuous operators). Depending on which operator ideal is under consideration,
the geometric nature of the Banach space X may also play a crucial role. Of particular
importance in this regard is whether or not X contains an isomorphic copy of the classical
sequence space `1. The compact range property of X is also relevant.

1. Introduction. Let X be a Banach space (with closed unit ball B[X]
and dual space X∗) andm : Σ → X be a vector measure, i.e.,m is σ-additive
on the σ-algebra Σ (of subsets of some non-empty set Ω). The variation
measure |m| : Σ → [0,∞] of m is defined analogously to that for scalar
measures [14, Ch. I, Definition 1.4]. Then the classical space L1(|m|) delivers
a certain collection of integrable functions associated with m. There are also
others. Namely, a Σ-measurable function f : Ω → C is called m-integrable if

(I1)
	
Ω |f | d|〈m,x

∗〉| <∞ for all x∗ ∈ X∗, and
(I2) for each A ∈ Σ there is

	
A f dm ∈ X satisfying〈 �

A

f dm, x∗
〉

=
�

A

f d〈m,x∗〉, ∀x∗ ∈ X∗

[25], [26]. Here, for each x∗ ∈ X∗, the scalar measure A 7→ 〈m(A), x∗〉, for
A ∈ Σ, is denoted by 〈m,x∗〉. The space of all m-integrable functions is
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denoted by L1(m); it is identified with its quotient space modulo m-null
functions, where an m-integrable function f is m-null if

	
A f dm = 0 for

all A ∈ Σ. These two spaces of integrable functions associated with m are
related via

(1.1) L1(|m|) ⊆ L1(m)

[38, Lemma 3.14]. If a set A ∈ Σ is called m-null whenever χA is an m-null
function, then one can also form the Banach space L∞(m) of all (equivalence
classes of) bounded Σ-measurable functions, equipped with the essential
sup-norm ‖ · ‖L∞(m) in the usual way, in which case L∞(m) ⊆ L1(m) [26,
p. 161]. Of course, the family simΣ of all Σ-simple functions is contained
in L∞(m). The space L1(m) is known to be complete with respect to the
lattice norm

(1.2) ‖f‖L1(m) := sup
x∗∈B[X∗]

�

Ω

|f | d|〈m,x∗〉|, ∀f ∈ L1(m),

i.e., L1(m) is a (complex) Banach lattice, the space simΣ is dense in L1(m),
and the integration map Im : L1(m)→ X defined by

(1.3) Im : f 7→
�

Ω

f dm, ∀f ∈ L1(m),

is linear, continuous and has operator norm ‖Im‖op = 1 [38, p. 152]. Its
restriction I|m| : L1(|m|) → X is also continuous because |〈m,x∗〉|(A) ≤
|m|(A)‖x∗‖ for all A ∈ Σ and x∗ ∈ X∗ implies that

(1.4) ‖I|m|(f)‖X =
∥∥∥ �

Ω

f dm
∥∥∥
X
≤

�

Ω

|f | d|m|, ∀f ∈ L1(|m|).

The inclusion (1.1) may be proper, even if m has finite variation, i.e.,
|m|(Ω) <∞. Since L1(|m|) is a classical L1-space, it is surely more tractable
than L1(m) in general. So, there is some interest in the situation when (1.1)
is actually an equality. For an arbitrary vector measure m, G. P. Curbera
showed that L1(m) = L1(|m|) iff the integration map Im is positive 1-
summing (also called cone absolutely summing) [8, Proposition 3.1]. It was
recently shown that Im is positive p-summing for some 1 ≤ p < ∞ iff
L1(m) is isomorphic to an AL-space [5, Theorem 2.7]. Combining this with
[38, Lemma 3.14(iii)] it follows that L1(m) = L1(|m|) iff Im is positive
p-summing for some 1 ≤ p < ∞. However, given a specific vector measure
m of finite variation, it is not always easy to identify the space L1(m) ex-
plicitly, although this is needed to test directly whether L1(m) = L1(|m|)
or whether Im is positive p-summing. Moreover, even if equality in (1.1) is
established, the positive p-summing nature of Im alone reveals little about
its possible finer structure, i.e., whether it is maybe weakly compact, or com-
pact, or completely continuous, etc. Our aim is to provide new results and



Operator ideals and vector measures 217

techniques which can be used in practise to decide when equality holds in
(1.1) and which also allow for a finer analysis of Im. We begin by formulat-
ing a general “Operator Ideal Principle” (cf. Proposition 1.1 below), which
reduces the question of equality in (1.1) to determining solely whether or
not m has finite variation. First some notation and terminology.

Given Banach spaces X and Y , let L(X,Y ) be the Banach space of all
continuous linear operators from X to Y . An operator ideal A is a method
of assigning to every couple (X,Y ) of Banach spaces a linear subspace
A(X,Y ) ⊆ L(X,Y ) which contains the finite rank operators and such that
R ◦ S ◦ T ∈ A(W,Z) for every pair (W,Z) of Banach spaces and all choices
of operators T ∈ L(W,X), R ∈ L(Y, Z) and S ∈ A(X,Y ) [13, p. 131].
Some examples relevant for this paper are when A is all compact, or all
p-summing, or all completely continuous operators. We point out that the
collection of positive p-summing operators, which require a Banach lattice
as domain space, does not form an operator ideal.

Let A be an operator ideal. A Banach space X is called A-variation ad-
missible if |m| is a finite measure for every X-valued vector measurem whose
integration map satisfies Im ∈ A. For instance, if Ac is the operator ideal of
all compact operators, then every Banach space is Ac-variation admissible
[36, Theorem 4]. Or, if Ap is the operator ideal of all p-summing operators
for some 1 ≤ p < ∞, then every Banach space is Ap-variation admissible.
This result was already presented in [39]; its complete proof will be given in
Section 2.

The following result is a useful tool for establishing equality in (1.1).

Proposition 1.1. Let A be an operator ideal and X be any A-variation
admissible Banach space. Then L1(|m|) = L1(m) for every X-valued vector
measure m whose integration map satisfies Im ∈ A.

The Banach sequence space `1 turns out to play a central role. Recall
that a continuous linear map between Banach spaces is completely continu-
ous if it maps weakly convergent sequences to norm convergent sequences.
Such operators are also called Dunford–Pettis operators. Let Acc denote the
operator ideal consisting of all completely continuous operators [13, p. 49].

Theorem 1.2. Every Banach space X with an unconditional basis and
not containing an isomorphic copy of `1 (briefly, `1 X↪→ X) is Acc-variation
admissible. In particular, L1(m) = L1(|m|) whenever m is an X-valued vec-
tor measure such that Im ∈ Acc.

According to a classical result of H. P. Rosenthal [2, p. 247], all non-
reflexive, weakly sequentially complete Banach spaces X have the property
that `1 ↪→ X. If m is any vector measure of infinite variation with values in
such a space X (such measures always exist as X is infinite-dimensional),
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then necessarily L1(|m|) ( L1(m). Restrict X further to come from the
subclass of all infinite-dimensional Banach spaces with the Schur property
(i.e., weakly convergent sequences are norm convergent or, equivalently, rel-
atively weakly compact sets are relatively norm compact). Then, in addition
to L1(|m|) ( L1(m), we also automatically have Im ∈ Acc. Examples of
such vector measures m also exist with finite variation; see Section 4. These
comments show that the requirement `1 X↪→ X cannot be omitted from The-
orem 1.2.

The class of Banach spaces covered by Theorem 1.2 includes all reflexive
spaces with an unconditional basis, the sequence space c0, and many more.

Recall that a Banach space X has the weak Radon–Nikodým property
(briefly, WRNP) if, whenever (Ω,Σ, µ) is any complete probability space
and m : Σ → X is any µ-continuous vector measure of finite variation,
then m has a Pettis µ-integrable, X-valued density. Of relevance to this
paper is that a Banach space X satisfies `1 X↪→ X iff X∗ has the WRNP [15,
Theorem 6.8], [41, Corollary 7.3.8]. A Banach space X has the compact range
property (briefly, CRP) if every X-valued vector measure of finite variation
has relatively compact range [30, Definition 2]. If X has the WRNP, then X
has the CRP [30, Proposition 4]. Also, in any weakly compactly generated
Banach space (hence, in all separable spaces and in all reflexive spaces), the
WRNP and the Radon–Nikodým property (briefly, RNP) are equivalent [29,
Corollary 3]. The same is true in arbitrary Banach lattices [17, Theorem 5].
In particular, every reflexive Banach space has the CRP [14, p. 218]. Such
spaces, even if separable, need not have an unconditional basis [27, p. 27].

The following “converse type” result should be compared with Theo-
rem 1.2.

Theorem 1.3. For a Banach space X the following assertions are equiv-
alent:

(i) X has the CRP.
(ii) Every X-valued vector measure m with L1(m) = L1(|m|) satisfies

Im ∈ Acc.
It is worth noting that the condition L1(m) = L1(|m|) in part (ii) of

Theorem 1.3 cannot be relaxed to the requirement thatm has finite variation.
Indeed, in Example 3.69 of [38] there is a vector measure m taking its values
in the reflexive space `p, 1 < p < ∞ (hence, has the CRP), such that m
has finite variation and L1(|m|) ( L1(m). Since its integration map Im :
L1(m) → `p is an isomorphism onto `p (and `p does not have the Schur
property), Im is surely not completely continuous. For a non-atomic example
(in the reflexive space Lr([0, 1]), 1 < r <∞) which exhibits the same features
we refer to the Lr([0, 1])-valued vector measure mr induced by the classical
Volterra kernel operator, namely mr(A) is the function in Lr([0, 1]) given
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by t 7→
	t
0 χA(s) ds for t ∈ [0, 1] and every Borel set A ∈ B([0, 1]) [38,

Example 3.26 & Proposition 3.52]. In this case Imr is not an isomorphism
but still fails to be completely continuous.

Suppose that Im is p-summing for some 1 ≤ p < ∞ [13, Ch. 2], in
which case L1(m) = L1(|m|). Then Im is also weakly compact and com-
pletely continuous [13, Theorem 2.17]. In general, neither the weak com-
pactness of Im alone implies that L1(m) = L1(|m|) (cf. the Volterra mea-
sures mr : B([0, 1]) → Lr([0, 1]) for 1 < r < ∞, mentioned above), nor
does complete continuity of Im alone imply that L1(m) = L1(|m|); consider
`1-valued measures as discussed after Theorem 1.2. We construct several
non-trivial examples of vector measures m (mostly arising in classical anal-
ysis) which show that Im may belong to Ac \ A1, or to A1 \ Ac, or even to
(
⋂
p<r<∞Ar) \ (Ap ∪ Ac) for every 2 < p <∞.

2. Operator Ideal Principle and p-summing integration maps.
Let m : Σ → X be a Banach-space-valued vector measure and let L0(Σ)
denote the space of all C-valued, Σ-measurable functions on Ω. Given f ∈
L1(m), its indefinite integral is the vector measure mf : Σ → X given by

(2.1) mf : A 7→
�

A

f dm, ∀A ∈ Σ;

the σ-additivity of mf follows from (I1), (I2) and the Orlicz–Pettis Theorem
[14, Ch. I, Corollary 4.4].

Lemma 2.1. Let m : Σ → X be a Banach-space-valued vector measure.

(i) A function f ∈ L1(m) belongs to L1(|m|) iff its indefinite integral mf

has finite variation, in which case ‖f‖L1(m) ≤ ‖f‖L1(|m|).
(ii) Let f ∈ L1(m). As an equality of vector spaces we have

(2.2) L1(mf ) = {g ∈ L0(Σ) : gf ∈ L1(m)}.
Moreover, for each g ∈ L1(mf ),

(2.3)
�

A

g dmf =
�

A

gf dm, ∀A ∈ Σ,

and also

(2.4) ‖g‖L1(mf ) = ‖gf‖L1(m).

The multiplication operator Mf : L1(mf ) → L1(m) defined by g 7→ gf for
g ∈ L1(mf ) is a linear isometry onto its range in L1(m) and

(2.5) Imf = Im ◦Mf .

Proof. (i) See Lemma 3.14(i) in [38].
(ii) To establish (2.2), let g ∈ L1(mf ). By Theorem 3.5 of [38] applied

to mf there exists a sequence {sn}∞n=1 ⊆ simΣ such that sn → g pointwise
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and limn→∞
	
A sn dmf =

	
A g dmf for A ∈ Σ. Since also snf → gf pointwise

and
	
A sn dmf =

	
A snf dm for n ∈ N and A ∈ Σ, again by Theorem 3.5 of

[38], now applied to m, we can conclude that gf ∈ L1(m) and (2.3) holds.
So, g belongs to the right side of (2.2).

Conversely, let g belong to the right side of (2.2). Choose a sequence
{sn}∞n=1 ⊆ simΣ with sn → g pointwise and |sn| ≤ |g| pointwise for each
n ∈ N. Then |snf | ≤ |gf | pointwise for n ∈ N, with gf ∈ L1(m). The
Dominated Convergence Theorem for vector measures [38, Theorem 3.7(i)]
then yields snf → gf in L1(m). In particular,

	
A snf dm →

	
A gf dm for

A ∈ Σ [38, p. 112]. Since
	
A snf dm =

	
A sn dmf for A ∈ Σ and n ∈ N,

we can conclude from Theorem 3.5 of [38] that g ∈ L1(mf ) and that (2.3)
holds. So, (2.2) is valid. At the same time we have established (2.3).

The formula (2.4) follows from the identities

|〈mf , x
∗〉|(A) =

�

A

|f | d|〈m,x∗〉|, ∀x∗ ∈ X∗, A ∈ Σ

(cf. (I2) and (2.1)) together with the definition

‖g‖L1(mf ) := sup
x∗∈B[X∗]

�

Ω

|g| d|〈mf , x
∗〉|.

Then (2.2) and (2.4) ensure that Mf is a linear isometry from L1(mf ) onto
its range in L1(m). Finally, (2.5) follows routinely from the definitions in-
volved.

We can now establish the Operator Ideal Principle.

Proof of Proposition 1.1. Let A, X and m : Σ → X be as in the state-
ment of the result. Fix any f ∈ L1(m). Then the composition Imf = Im◦Mf :
L1(mf ) → X (cf. (2.5)) belongs to A because Im ∈ A (by assumption).
Since X is A-variation admissible, we can conclude that mf has finite vari-
ation, and hence, by Lemma 2.1(i), that f ∈ L1(|m|). This establishes that
L1(m) ⊆ L1(|m|) and, via (1.1), it follows that L1(m) = L1(|m|).

The following result, presented in [39], will now be established. The tech-
niques in the proof are of independent interest.

Theorem 2.2. Let 1 ≤ p < ∞ and Ap be the operator ideal consist-
ing of all p-summing operators. Then every Banach space is Ap-variation
admissible.

Proof. Let X be any Banach space. Fix an X-valued vector measure m
defined on a measurable space (Ω,Σ). Select any positive finite measure
µ : Σ → [0,∞) which has the same null sets as m, written briefly as m ' µ
[14, Ch. I, Corollary 2.6]. So, L∞(µ) = L∞(m) is continuously embedded,
via the natural embedding, say α, into L1(m). The proof is in several steps.
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Step 1. If Im ◦ α : L∞(µ) → X is q-summing for some 1 ≤ q < ∞,
then there is gq ∈ L1(µ) with gq(w) > 0 for every w ∈ Ω such that, with
continuous inclusions,

(2.6) L∞(µ) ⊆ Lq(gq dµ) ⊆ L1(m).

To verify this, observe that L∞(µ) is a (complex) AM-Banach lattice with
unit χΩ. By the Kakutani Representation Theorem [40, Theorem 7.4 &
p. 138], there is an isometric Banach lattice isomorphism β of L∞(µ) onto
C(K) with β(χΩ) = χK , for some (extremely disconnected) compact Haus-
dorff spaceK. Since β(|f |) = |β(f)|, it follows that β(|f |q) = |β(f)|q for each
f ∈ L∞(µ). By assumption, the composition Im ◦ α ◦ β−1 : C(K) → X is
q-summing so a factorization theorem of Pietsch [13, Corollary 2.15] implies
that there exists a finite regular Borel measure λ : B(K)→ [0,∞) satisfying

(2.7) ‖(Im ◦ α ◦ β−1)(ψ)‖X ≤
( �

K

|ψ|q dλ
)1/q

, ∀ψ ∈ C(K).

Let ξ ∈ L∞(µ)∗ denote the positive linear functional corresponding to λ ∈
M(K) = C(K)∗ via β∗, i.e., ξ := β∗(λ) where β∗ ∈ L(C(K)∗, L∞(µ)∗) is
the dual operator of β ∈ L(L∞(µ), C(K)). Then (2.7) implies that

(2.8) ‖(Im ◦ α)(f)‖X ≤ (〈|f |q, ξ〉)1/q, ∀f ∈ L∞(µ).

Define a finitely additive set function ηξ : A 7→ 〈χA, ξ〉 =
	
K β(χA) dλ ∈

[0,∞) for A ∈ Σ. Whenever A ∈ Σ is µ-null we have χA = 0 in L∞(µ) and so
β(χA) = 0 in C(K), i.e., ηξ(A) = 0. So, there exist a positive finite measure
η1 : Σ → [0,∞) and a purely finitely additive set function η2 : Σ → [0,∞)
such that ηξ = η1 + η2 on Σ [46, Theorem 1.23]; for the definition of a
positive purely finitely additive set function see [46, Definition 1.13]. Apply
[46, Theorem 1.22] to find a decreasing sequence {B(n)}∞n=1 in Σ such that
limn→∞ µ(B(n)) = 0 and η2(B(n))) = η2(Ω) for all n ∈ N. Consequently,
with A(n) := Ω\B(n) for n ∈ N, the increasing sequence {A(n)}∞n=1 in Σ has
the property that Ω \

⋃∞
n=1A(n) is µ-null and η2(A(n)) = 0 for each n ∈ N.

For each A ∈ Σ which is µ-null it follows from 0 ≤ η1(A)+η2(A) = ηξ(A) = 0
that η1(A) = 0 = η2(A). In particular, η1 is absolutely continuous with
respect to µ, and hence there is 0 ≤ h ∈ L1(µ) such that η1 = h dµ, i.e.,
η1(A) =

	
A h dµ for A ∈ Σ. Via Theorem (20.33) of [20], the set functions

η1, η2 correspond to positive linear functionals ξ1, ξ2 ∈ L∞(µ)∗ such that
ηj(A) = 〈χA, ξj〉 for A ∈ Σ and j ∈ {1, 2}. Of course, ξ = ξ1 + ξ2, as
ηξ = η1 + η2 and simΣ is dense in L∞(µ).

Fix f ∈ L∞(µ). The claim is that

(2.9) ‖(Im ◦ α)(f)‖X ≤
( �

Ω

|f |qh dµ
)1/q

.
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In fact, given n ∈ N, we have 〈|f |qχA(n), ξ2〉 = 0 because ξ2 ≥ 0 implies that

0 ≤ 〈|f |qχA(n), ξ2〉 ≤ 〈‖ |f |q ‖L∞(µ)χA(n), ξ2〉
= ‖ |f | ‖qL∞(µ)〈χA(n), ξ2〉 = ‖f‖qL∞(µ)η2(A(n)) = 0.

This and (2.8) with fχA(n) in place of f give, for each n ∈ N,

‖(Im ◦ α)(fχA(n))‖
q
X ≤ 〈|f |

qχA(n), ξ〉 = 〈|f |qχA(n), ξ1〉 =
�

A(n)

|f |qh dµ.

Since f ∈ L∞(m) ⊆ L1(m), we know that mf (cf. (2.1)) is a vector measure
and it is clearly absolutely continuous with respect to µ as m ' µ. Hence,

lim
n→∞

‖(Im ◦ α)(f − fχA(n))‖X = lim
n→∞

‖mf (Ω \A(n))‖X

= lim
n→∞

‖mf (B(n))‖X = 0.

This gives (2.9) because χA(n) ↑ χΩ µ-a.e. and

‖(Im ◦ α)(f)‖qX = lim
n→∞

‖(Im ◦ α)(fχA(n))‖
q
X

≤ lim
n→∞

�

A(n)

|f |qh dµ =
�

Ω

|f |qh dµ.

Define gq := h+χΩ ∈ L1(µ)+. It follows from (2.9) that ‖(Im◦α)(f)‖X ≤
(
	
Ω |f |

qgq dµ)1/q for each f ∈ L∞(µ). In other words, Im◦α admits a continu-
ous linear extension T : Lq(gq dµ)→ X because gq ≥ 1 pointwise everywhere
implies that L∞(µ) = L∞(gq dµ) ⊆ Lq(gq dµ) continuously. Moreover, the
continuous inclusion Lq(gq dµ) ⊆ L1(m) holds by [38, Theorem 4.14] because
T (χA) = m(A) for A ∈ Σ and because m ' gq dµ.

Step 2. If Im is p-summing and L∞(µ) ⊆ Lq(gq dµ) ⊆ L1(m) contin-
uously for some 1 ≤ q < ∞ and some everywhere strictly positive function
gq ∈ L1(µ), then Im ◦ α : L∞(µ)→ X is max

{
1, pq

p+q

}
-summing.

To prove this, let α1 : L∞(µ) → Lq(gq dµ) and α2 : Lq(gq dµ) → L1(m)
denote the corresponding natural embeddings. Then α1 is q-summing [13,
Example 2.9(d)]. So, [13, Theorem 2.22] gives that Im ◦ α1 is max

{
1, pq

p+q

}
-

summing, and hence so is Im ◦ α = (Im ◦ α1) ◦ α2.

Step 3. If Im : L1(m)→ X is p-summing, then there is g1 ∈ L1(µ) with
g1 > 0 pointwise everywhere such that L1(g1 dµ) ⊆ L1(m) continuously.

Indeed, since Im ◦ α is p-summing, Step 1 with q := p gives L∞(µ) ⊆
Lp(gp dµ) ⊆ L1(m) continuously for some gp ∈ L1(µ) with gp > 0 pointwise
everywhere. By Step 2 with q := p we know that Im ◦ α is max{1, p/2}-
summing. Again Steps 1 and 2, now with q := max{1, p/2}, give that Im ◦α
is max{1, p/3}-summing. We can continue this process to conclude that Im◦α
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is max{1, p/n}-summing for all n ∈ N. Selecting n ∈ N with n ≥ p shows
that Im ◦ α is 1-summing. Now apply Step 1 with q := 1 to obtain Step 3.

Step 4. If Im is p-summing, then m has finite variation.

By Step 3, we have the continuous inclusion L1(g1 dµ) ⊆ L1(m) for some
g1 ∈ L1(µ) which is positive everywhere. With C denoting the operator norm
of this continuous inclusion, we have

‖m(A)‖X = ‖Im(χA)‖X ≤ ‖χA‖L1(m)

≤ C
�

Ω

χAg1 dµ = C
�

A

g1 dµ, ∀A ∈ Σ,

which implies that |m|(Ω) <∞. This establishes Step 4.
Since m is an arbitrary X-valued vector measure, Step 4 implies that X

is Ap-variation admissible. This completes the proof of Theorem 2.2.

Corollary 2.3. Let m be a Banach-space-valued vector measure. Then
the integration map satisfies Im ∈ A1 iff Im ∈ A2.

Proof. Since A1 ⊆ A2 [13, Inclusion Theorem 2.8], we only need to con-
sider the case when Im is 2-summing. Suppose thatm isX-valued. According
to [13, Corollary 2.16], there is a probability measure µ and continuous lin-
ear maps α : L1(m) → L2(µ) and β : L2(µ) → X such that Im = β ◦ α.
But L1(m) = L1(|m|) by Theorem 2.2 and so Grothendieck’s Theorem [13,
Theorem 3.4], [44, p. 202] implies that α : L1(|m|) → L2(µ) is 1-summing.
Hence, also Im = β ◦ α ∈ A1.

Proposition 1.1 and Theorem 2.2 show, for any vector measure m with
Im ∈ Ap for some 1 ≤ p <∞, that L1(m) = L1(|m|). In certain situations a
converse is possible.

Proposition 2.4. Let 2 < p <∞ and m be an `p-valued vector measure
satisfying L1(m) = L1(|m|). Then Im ∈ Ar for all p < r <∞.

Proof. By a result of P. Saphar, every operator from L(`1, `p) is r-
summing for all p < r <∞ (see [12, p. 321, Corollary], for example). By the
local technique lemma for operator ideals [12, p. 301], the same statement
holds if we replace `1 with any L1-space, in particular, by L1(|m|) (see also
[38, Example 2.61(ii)]). Since Im ∈ L(L1(m), `p) = L(L1(|m|), `p), it follows
that Im ∈ Ar for all p < r <∞.

From the proof, it is clear that the condition L1(m) = L1(|m|) in the
statement of Proposition 2.4 can be replaced with the requirement that
L1(m) is an L1-space.

Remark 2.5. The method of proof of Theorem 2.2 relies on three clas-
sical results, namely the Kakutani Representation Theorem, the Yosida–
Hewitt Decomposition Theorem and a factorization theorem of Pietsch. We
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point out that this argument can be adapted to provide a completely differ-
ent proof of the result mentioned in Section 1, namely that L1(m) = L1(|m|)
iff the integration map Im is positive p-summing for some 1 ≤ p < ∞ [5].
The proof given in [5] is based on p-concavity arguments.

Concerning a proof via the methods of this paper recall, for 1 ≤ p < ∞
and X a Banach space, that an X-valued, continuous linear operator T
defined on a (complex) Banach lattice W is called positive p-summing if
there exists C > 0 such that( n∑

j=1

‖Twj‖pX
)1/p

≤ C sup
w∗∈B[W ∗]

( n∑
j=1

|〈wj , w∗〉|p
)1/p

whenever {wj}nj=1 is a finite set of positive elements in W and n ∈ N [4,
Definition 1]. For such an operator T : W → X and for anyW -valued positive
operator S defined on a (complex) Banach lattice, the composition T ◦ S
is again positive p-summing [3, Proposition 1(d)]. Fix an X-valued vector
measurem defined on a measurable space (Ω,Σ) and let µ : Σ → [0,∞) be a
finite measure such that m ' µ. The natural embedding of L∞(µ) = L∞(m)
into L1(m) is denoted by α. When referring to Steps 1 to 4 we mean those
in the proof of Theorem 2.2.

Step 1′. If Im ◦ α : L∞(µ) → X is positive q-summing for some 1 ≤
q < ∞, then there is gq ∈ L1(µ) with gq(w) > 0 for every w ∈ Ω such that
(2.6) holds with continuous inclusions.

To establish Step 1′ let β : L∞(µ) → C(K) be the isometric Banach
lattice isomorphism as in the proof of Step 1. Then β−1 : C(K)→ L∞(µ) is
a positive operator and hence, as noted above, (Im ◦ α) ◦ β−1 : C(K) → X
is then positive q-summing. According to [4, Proposition 3] we see that Im ◦
α ◦ β−1 is actually q-summing, and hence so is Im ◦ α = (Im ◦ α ◦ β−1) ◦ β
as β is a positive operator. Thus, Step 1 can be applied to obtain (2.6) with
continuous inclusions.

Step 2′. If Im is positive p-summing and (2.6) holds continuously for
some 1 ≤ q <∞ and some everywhere strictly positive function gq ∈ L1(µ),
then Im ◦ α : L∞(µ)→ X is positive max

{
1, pq

p+q

}
-summing.

To see this, let α1 : L∞(µ) → Lq(gq dµ) and α2 : Lq(gq dµ) → L1(m)
denote the respective embeddings determined by (2.6). As noted in the proof
of Step 2, α1 is q-summing, and hence so is α := α2 ◦ α1. An examination
of the proof of the Composition Theorem 2.22 (and Lemma 2.23) in [13]
shows that it can be adapted to show that the composition Im ◦α is positive
max

{
1, pq

p+q

}
-summing.

Step 3′. If Im is positive p-summing, then there is g1 ∈ L1(µ) with
g1 > 0 pointwise everywhere such that L1(g1 dµ) ⊆ L1(m) continuously.
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The proof of Step 3′ is similar to that of Step 3, by applying Steps 1′ and
2′ repeatedly.

Step 4′. If Im is positive p-summing, then m has finite variation.

The continuous inclusion L1(g1 dµ) ⊆ L1(m), guaranteed by Step 3′,
establishes Step 4′ as in the proof of Step 4.

It remains to show that L1(m) = L1(|m|) whenever Im is positive p-
summing for some 1 ≤ p < ∞. Since the positive p-summing operators do
not form an operator ideal, we cannot appeal to Proposition 1.1. Now, by
Lemma 2.1(i) we have L1(|m|) ⊆ L1(m). To prove the reverse inclusion, let
f ∈ L1(m). Select non-negative functions f (j) ∈ L1(m) for j = 1, . . . , 4 such
that f = f (1)−f (2) + i(f (3)−f (4)). For j fixed the continuous multiplication
operator Mf (j) : L1(mf (j)) → L1(m), as given in Lemma 2.1(ii), is positive,
and hence the composition Im

f(j)
= Im ◦Mf (j) is positive p-summing. Via

Step 4′, with mf (j) in place of m, it follows that mf (j) has finite variation.
Since ‖mf (A)‖X ≤

∑4
j=1 ‖mf (j)(A)‖X for A ∈ Σ, it follows thatmf also has

finite variation. So, f ∈ L1(|m|) (cf. Lemma 2.1(i)). Thus, L1(m) ⊆ L1(|m|).
This establishes that L1(m) = L1(|m|).

As already noted in Section 1, the operator ideal Ac has the property
that every Banach space is Ac-admissible [36, Theorem 4]. According to
Theorem 2.2, the same is true for the operator ideal Ap, 1 ≤ p < ∞. We
now show that there exist vector measures m for which Im ∈ Ac \ Ap and
others for which Im ∈ Ap \ Ac.

Example 2.6. Let G be any infinite compact abelian group with nor-
malized Haar measure µ. For each 1 ≤ p < ∞ and each regular, complex
Borel measure λ ∈ M(G), the linear operator C(p)

λ of convolution with λ
belongs to L(Lp(G)) where, for f ∈ Lp(G) := Lp(µ), we have

C
(p)
λ (f) : x 7→

�

G

f(x− y) dλ(y) µ-a.e. x ∈ G.

Indeed, ‖C(p)
λ ‖op ≤ |λ|(G). The operator C(p)

λ induces the vector measure
m

(p)
λ : B(G)→ Lp(G) defined by

m
(p)
λ : A 7→ C

(p)
λ (χA) = χA ∗ λ, ∀A ∈ B(G).

It is known that m(p)
λ ' µ (provided λ 6= 0) and, with continuous (natural)

inclusions, that Lp(G) ⊆ L1(m(p)
λ ) ⊆ L1(G). Moreover, the integration map

I
m

(p)
λ

: L1(m(p)
λ )→ Lp(G) is also given by convolution, i.e.,

(2.10) I
m

(p)
λ

(f) = f ∗ λ, ∀f ∈ L1(m(p)
λ ).
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For λ � µ, i.e., there exists g ∈ L1(G) such that λ(A) =
	
A g dµ for A ∈

B(G), we write g dµ for λ and C(p)
g (resp. m(p)

g ) for C(p)
λ (resp. m(p)

λ ). All of
the above claims can be found in [38, Ch. 7, §7.4], for example. The following
characterization occurs in Theorem 7.67 of [38].

Fact. Let 1 < p <∞ and λ ∈M(G) \ {0}. The following assertions are
equivalent:

(i) There exists g ∈ Lp(G) such that λ = g dµ.
(ii) The integration map I

m
(p)
λ

: L1(m(p)
λ )→ Lp(G) is compact.

(iii) L1(m(p)
λ ) = L1(|m(p)

λ |) = L1(G).

Concerning 1-summing operators we require the following result.

Lemma 2.7. Let 1 ≤ p < 2 and g ∈ Lp(G). Then L1(m(p)
g ) = L1(G), and

the integration map I
m

(p)
g

: L1(m(p)
g )→ Lp(G) is 1-summing iff g ∈ L2(G).

Proof. In view of (2.10) and the above Fact we see that L1(m(p)
g ) = L1(G)

and that I
m

(p)
g

is precisely the bounded operator C(1,p)
g : L1(G)→ Lp(G) of

convolution with g.
Suppose that g ∈ L2(G). Let J (2,p) : L2(G)→ Lp(G) denote the natural

inclusion and C(1,2)
g : L1(G) → L2(G) be the bounded operator of convolu-

tion with g. Since C(1,2)
g is necessarily 1-summing [13, Theorem 3.4], so is

the composition I
m

(p)
g

= C
(1,p)
g = J (2,p) ◦ C(1,2)

g .

Conversely, suppose that C(1,p)
g is 1-summing. Since g ∈ Lp(G), the set

S(ĝ) := {γ ∈ Γ : ĝ(γ) 6= 0} is countable, where Γ is the dual group of G and
ĝ is the Fourier transform of g, i.e., ĝ(γ) :=

	
G (x, γ)g(x) dµ(x) for γ ∈ Γ ,

with (x, γ) denoting the value of the character γ at x ∈ G. The trigonometric
monomial x 7→ (x, γ) on G is denoted by (·, γ). Since

∑
γ∈S(bg) |〈(·, γ), ϕ〉|2 =∑

γ∈S(bg) |(ϕ)̂ (γ)|2 < ∞ for each ϕ ∈ L∞(G) = L1(G)∗ ⊆ L2(G), the se-
quence {(·, γ) : γ ∈ S(ĝ)} ⊆ L1(G) is weakly 2-summable in L1(G) (cf. [13,
p. 32] for the definition). But C(1,p)

g is also 2-summing [13, Inclusion Theo-
rem 2.8], and hence C(1,p)

g maps {(·, γ) : γ ∈ S(ĝ)} to a norm 2-summable
sequence in Lp(G) [13, Proposition 2.1], i.e.,∑
γ∈S(bg) |ĝ(γ)|

2 =
∑

γ∈S(bg) ‖ĝ(γ)(·, γ)‖
2
Lp(G) =

∑
γ∈S(bg) ‖C

(1,p)
g ((·, γ))‖2Lp(G) <∞.

Hence, ĝ ∈ `2(Γ ), i.e., g ∈ L2(G).

It follows from the above Fact and Lemma 2.7 that, for every 1 < p < 2
and g ∈ Lp(G) \ L2(G) (such functions g exist as µ is non-atomic [38,
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Lemma 7.97]), the integration map I
m

(p)
g

is compact, but fails to be 1-
summing.

Consider now p :=∞, i.e., X = L∞(G), and the finitely additive L∞(G)-
valued set function m

(∞)
λ : A 7→ C

(∞)
λ (χA) for A ∈ B(G), where C(∞)

λ ∈
L(L∞(G)) is again the operator of convolution with λ ∈M(G). Thenm(∞)

λ is
norm σ-additive (i.e., a vector measure) iff λ = g dµ for some g ∈ L1(G) [34,
Theorem 1], in which case the integration map I

m
(∞)
g

is compact iff g ∈ C(G)

[34, Corollary 3]. On the other hand, I
m

(∞)
g

is 1-summing iff ĝ ∈ `1(Γ ) [34,
Proposition 4], i.e., iff g ∈ A(G) in the notation of Example 3.5(ii) below.
So, I

m
(∞)
g

is compact but fails to be 1-summing whenever g ∈ C(G) \A(G).
That the inclusion A(G) ( C(G) is always proper is known [19, Theorem
(37.4)].

In the proof of Lemma 2.7, it was observed that the integration map
I
m

(p)
g

: L1(G) → Lp(G) is the continuous convolution operator C(1,p)
g : f 7→

f ∗g from L1(G) into Lp(G). A detailed study of those convolution operators
belonging to L(Lp(G)) and to L(L1(G), Lp(G)), for 1 ≤ p ≤ ∞, and which
are 1-summing appears in [37]. For the latter case, i.e., for L(L1(G), Lp(G)),
such convolution operators always arise as the integration map of an Lp(G)-
valued vector measure.

We now present some examples of m with Im ∈ A1 \ Ac.

Example 2.8. (i) Let (Ω,Σ, µ) be a finite positive measure space for
which there exists an infinite partition {A(n)}∞n=1 ⊆ Σ of Ω with µ(A(n))
> 0 for n ∈ N. Let X be any infinite-dimensional Hilbert space. According to
Lemma 2.5 in [36] (see also its proof), there exists a sequence {xn}∞n=1 ⊆ X
of unit vectors which is not a relatively compact subset of X and a finite set
F ⊆ X∗ such that

(2.11) 1 = ‖xn‖X ≤
∑
x∗∈F

|〈xn, x∗〉|, ∀n ∈ N.

Define H : Ω → X by H(w) :=
∑∞

n=1 χA(n)(w)xn for w ∈ Ω, in which case
H is strongly measurable (its range is separable) and bounded, as ‖H(w)‖ =∑∞

n=1 χA(n)(w) = 1 for w ∈ Ω. Hence, H is Bochner µ-integrable and so the
vector measure m : Σ → X defined by m(A) :=

	
AH dµ for A ∈ Σ has finite

variation. Indeed, |m| = µ since |m|(A) =
	
A ‖H(w)‖ dµ(w) for A ∈ Σ [14,

Ch. II, Theorem 1.4]. For each x∗ ∈ F and A ∈ Σ we have

|〈m,x∗〉|(A) =
�

A

|〈H(w), x∗〉| dµ(w) =
∞∑
n=1

|〈xn, x∗〉|µ(A ∩A(n)),

and hence
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∑
x∗∈F

|〈m,x∗〉|(A) =
∞∑
n=1

µ(A ∩A(n))
∑
x∗∈F

|〈xn, x∗〉| =
∞∑
n=1

αnµ(A ∩A(n)),

where αn :=
∑

x∗∈F |〈xn, x∗〉| ≥ 1 for all n ∈ N (cf. (2.11)). Accordingly,

|m|(A) = µ(A) =
∞∑
n=1

µ(A ∩A(n)) ≤
∞∑
n=1

αnµ(A ∩A(n)) =
∑
x∗∈F

|〈m,x∗〉|(A)

for each A ∈ Σ, and so L1(m) = L1(|m|) = L1(µ) [36, Lemma 2.6(i)].
Observe that

{
1

µ(A(n))χA(n)

}∞
n=1
⊆B[L1(µ)]=B[L1(|m|)] with B[L1(|m|)]

⊆ B[L1(m)] (see Lemma 2.1(i)). Since

Im

(
1

µ(A(n))
χA(n)

)
=

1
µ(A(n))

�

A(n)

H dµ = xn, ∀n ∈ N,

and {xn}∞n=1 is not relatively compact, it follows that the integration map
Im fails to be compact. However, since L1(m) = L1(µ) with equivalence of
norms, Im : L1(m) → X is surely 1-summing by Grothendieck’s Theorem
[44, p. 202]. So, Im ∈ A1 \ Ac.

(ii) Let the measure space (Ω,Σ, µ) and the partition {A(n)}∞n=1 of Ω
be as in (i) above. Define a vector measure m : Σ → `1 by

(2.12) m(A) := µ(A)f1 +
∞∑
n=1

µ(A ∩A(n))fn+1, ∀A ∈ Σ,

where {fn}∞n=1 is the canonical basis of `1, and observe that m is precisely
the vector measure of Example 3.7 in [33]. According to Proposition 3.5 of
[33] we have L1(m) = L1(µ), in which case L1(m) = L1(|m|) with equivalent
norms [38, Lemma 3.14]. As noted in Example 3.7 of [33] the integration map
Im : L1(m) → `1 is not compact. Since `1 has the Schur property, Im also
fails to be weakly compact, and hence is not 1-summing [13, Theorem 2.17].

For 2 ≤ p < ∞, let j(1,p) : `1 → `p be the natural embedding. Then
mp := j(1,p) ◦m is an `p-valued vector measure on Σ. It is clear from (2.12)
that m,mp and µ all have the same null sets. Since j(1,p) is injective, it
follows that L1(m) ⊆ L1(mp) [38, Lemma 3.27]. Suppose that f ∈ L1(mp).
For e∗1 := (1, 0, 0, . . .) ∈ (`p)∗ we have

	
Ω |f | dµ =

	
Ω |f | d|〈mp, e

∗
1〉| < ∞,

and so f ∈ L1(µ) = L1(m). Accordingly, L1(m) = L1(mp) = L1(µ) with
equivalence of norms, for each 2 ≤ p <∞.

Now, Im2 : L1(m2) → `2 is 1-summing by Grothendieck’s Theorem
(see (i) above). Let j(2,p) : `2 → `p be the natural inclusion. Then Imp =
j(2,p) ◦ Im2 , and so Imp is 1-summing for every 2 ≤ p <∞.

Observe that
{

1
µ(A(n))χA(n)

}∞
n=1
⊆ B[L1(µ)], and so

{
1

µ(A(n))χA(n)

}∞
n=1

is also contained in a multiple of B[L1(mp)]. It follows from the formula
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Imp(f) =
( �

Ω

f dµ,
�

A(1)

f dµ,
�

A(2)

f dµ, . . .
)
, ∀f ∈ L1(mp),

that Imp
(

1
µ(A(n))χA(n)

)
= e1+en+1 for n ∈ N, where {en}∞n=1 is the canonical

basis of `p. Since {e1 + en}∞n=1 is not relatively compact in `p, we conclude
that Imp is not compact, for each 2 ≤ p <∞.

Example 2.9. Let (Ω,Σ, µ) be a finite positive measure space and
{A(n)}∞n=1 be a partition of Ω as in Example 2.8(i). Fix any 2 < p <∞. We
exhibit a vector measure m : Σ → `p such that

(2.13) Im ∈
( ⋂
p<r<∞

Ar
)
\ (Ap ∪ Ac) .

The canonical unit basis of `1 (resp. `p) is denoted by {fn}∞n=1 (resp.
{en}∞n=1). Select any operator T ∈ L(`1, `p) which is not p-summing [23,
Lemma 4.1]; a concrete construction of such a T is presented in [24, §4]. Since
`p is a separable Banach space, there is a surjective operator Q ∈ L(`1, `p)
[27, p. 108]. In particular, Q is not compact. By the lifting property of `1
[27, Proposition 2.f.7], we have T = Q ◦ S for some S ∈ L(`1). So, Q is not
p-summing as T is not p-summing. On the other hand, Q is r-summing for
all p < r < ∞ because every operator in L(`1, `p) is r-summing for such r
[12, Corollary 24.6]. The surjective linear operator P : L1(µ)→ `1 given by
P (h) :=

∑∞
n=1(

	
A(n) h dµ)fn for h ∈ L1(µ) is continuous, and hence Q ◦P ∈

L(L1(µ), `p) is r-summing for all p < r <∞. But, being a surjection, Q ◦ P
is not compact. Also, Q◦P is not p-summing because, with J ∈ L(`1, L1(µ))
denoting the injection ϕ 7→

∑∞
n=1(ϕ(n)/µ(A(n)))χA(n) for ϕ ∈ `1, we have

Q = Q ◦ (P ◦ J) = (Q ◦ P ) ◦ J as P ◦ J is the identity operator in L(`1).
Let R ∈ L(`p) denote the forward shift operator, i.e., R(

∑∞
n=1 anen) :=∑∞

n=1 anen+1 for
∑∞

n=1 anen ∈ `p. Since R ◦Q ◦ P is continuous and L1(µ)
has σ-order continuous norm, it follows that m : Σ → `p defined by

m(A) := µ(A)e1 + (R ◦Q ◦ P )(χA), ∀A ∈ Σ,
is a vector measure. Observing that the range ofR◦Q◦P lies in span({en}∞n=2)
⊆ `p, it follows that m ' µ. Moreover, L1(µ) ⊆ L1(m) as

�

A

f dm =
( �

A

f dµ
)
e1 + (R ◦Q ◦ P )(fχA), ∀f ∈ L1(µ), A ∈ Σ.

Let e∗1 denote the continuous linear functional
∑∞

n=1 ψ(n)en 7→ ψ(1) on `p.
Then L1(m) = L1(〈m, e∗1〉) = L1(µ). Hence, L1(m) = L1(µ) as isomorphic
Banach spaces with

Im(f) = Iµ(f)e1 + (R ◦Q ◦ P )(f), ∀f ∈ L1(m).

Since f 7→ Iµ(f)e1 is a rank-1 operator in L(L1(m), `p) and R is a linear
isometry onto its (closed) range span({en}∞n=2) ⊆ `p, it follows that Im is



230 S. Okada et al.

r-summing for each p < r < ∞, but Im is neither p-summing nor is it
compact. That is, (2.13) holds.

To conclude this section, let us point out that there exist vector measures
m satisfying L1(m) = L1(|m|) and Im is neither compact nor 1-summing.

For 1 < r < ∞, consider the Volterra vector measure mr : B([0, 1]) →
Lr([0, 1]) (see Section 1). Then mr has finite variation with L1(|mr|) (
L1(mr) [38, Example 3.26]. Moreover, Imr is not compact [38, p. 154]. Since
Imr fails to be completely continuous [38, Proposition 3.52], it fails to be p-
summing for every 1 ≤ p <∞ [13, Theorem 2.17]. Consider now r ∈ {1,∞},
in which case the Volterra measure mr is defined by the same formula as for
1 < r < ∞ given in Section 1. According to Example 3.26 in [38] we have
L1(m1) = L1(|m1|) and L1(|m∞|) = L1(m∞), which implies that Imr ∈ Acc.
Indeed, the range mr(B([0, 1])) of mr is relatively compact because the clas-
sical Volterra integral operator Vr from Lr([0, 1]) into itself is compact [38,
pp. 113–114]. Since L1(mr) = L1(|mr|), the complete continuity of Imr = Vr
follows from [38, Corollary 2.42]. However, since both Im1 and Im∞ fail to
be weakly compact [38, Example 3.49(iv)], they also fail to be compact and
fail to be p-summing for every 1 ≤ p <∞ [13, Theorem 2.17].

Or, let 0 < α < 1 and consider the Sobolev vector measure m : B([0, 1])→
L∞([0, 1]) defined by

(2.14) m(A) : t 7→
1�

t

χA(s)s−α ds, ∀t ∈ [0, 1], A ∈ B([0, 1]).

Then L1(m) = L1(|m|) [11, Proposition 2.1], and the integration map Im :
L1(m)→ L∞([0, 1]) fails to be weakly compact [11, Proposition 2.2]. By an
argument as for the Volterra measures with r ∈ {1,∞} we can conclude that
Im is not compact and not p-summing, for every 1 ≤ p <∞. Suppose that X
is any rearrangement invariant Banach function space on [0, 1] which is not
isomorphic to L∞([0, 1]). Since L∞([0, 1]) imbeds continuously into X, the
same formula (2.14) specifies an X-valued vector measure, denoted by mX ,
which has finite variation [11, Proposition 3.1], and whose integration map
ImX : L1(mX)→ X is not compact [11, Proposition 3.6]. If X happens to be
a Lorentz Λϕ-space with ϕ an increasing concave function on [0, 1] such that
ϕ(0) = 0 (and with the norm ‖f‖Λϕ :=

	1
0 f
∗(s) dϕ(s), where f∗ is the de-

creasing rearrangement of f), then actually L1(mΛϕ) = L1(|mΛϕ |) and ImΛϕ
fails to be weakly compact [11, Proposition 3.8 & Corollary 4.3]. Arguing as
above we can conclude that ImΛϕ is not p-summing, for every 1 ≤ p <∞.

Finally, consider the vector measure m : Σ → `1 occurring in (2.12)
in Example 2.8(ii), where it was observed that L1(m) = L1(|m|) and Im :
L1(m) → `1 is not weakly compact. Hence, Im is not compact and not
p-summing, for every 1 ≤ p <∞.
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3. Proof of Theorem 1.2. The proof of Theorem 1.2 proceeds via a
series of lemmata. We begin with a result from the realm of Banach space
theory. Sometimes we will express sequences of scalars (i.e., elements of CN)
as functions defined on N. Vectors from the finite-dimensional space RN are
denoted by (ξn)Nn=1.

Lemma 3.1. Let X be a Banach space, Kn ⊆ B[X] for n ∈ N be a
sequence of non-empty compact sets, and δ > 0 be such that

(3.1) δ
N∑
n=1

|an| ≤ sup
{∥∥∥ N∑

n=1

anxn

∥∥∥
X

: xn ∈ Kn, n = 1, . . . , N
}

for all choices of N ∈ N and {an : n = 1, . . . , N} ⊆ C. Then there exists
x∗0 ∈ B[X∗] such that

(3.2) lim sup
n→∞

( sup
x∈Kn

|〈x, x∗0〉|) > 0.

Proof. Define a set of real sequences by

W := {(εn|〈xn, x∗〉|)∞n=1∈RN : x∗∈B[X∗], εn∈{−1, 1}, xn∈Kn, ∀n∈N}.
Then W ⊆ B[`∞] and the convex hull co(W ) of W in `∞ also consists of real
sequences belonging to B[`∞]. Clearly co(W ) 6= ∅.

Step 1. For each N ∈ N, there exists ϕN ∈ co(W ) satisfying

ϕN (n) > δ/2, ∀n = 1, . . . , N.

To see this, fix N ∈ N, define an R-linear map ΦN : `∞ → RN by
ΦN (ψ) := (Re(ψ(n)))Nn=1 ∈ RN for ψ ∈ `∞, and set UN := Φ(co(W )) ⊆ RN .
Let

VN := {(ξn)Nn=1 ∈ RN : ξn > δ/2, ∀n = 1, . . . , N}.
Now, suppose that the conclusion of Step 1 is not valid, i.e., for every ϕ ∈
co(W ) we have ϕ(n) ≤ δ/2 for some n ∈ {1, . . . , N}, depending on ϕ. Then
UN ∩VN = ∅. Since UN 6= ∅ is convex and VN 6= ∅ is convex and open, there
exist (an)Nn=1 ∈ (RN )∗ and r ∈ R such that

(3.3)
N∑
n=1

anξn ≤ r <
N∑
n=1

anηn, ∀(ξn)Nn=1 ∈ UN , (ηn)Nn=1 ∈ VN

[22, First Separation Theorem, p. 130]. We claim that also

(3.4)
N∑
n=1

|an|ξn ≤ r, ∀(ξn)Nn=1 ∈ UN .

In fact, fix (ξn)Nn=1 ∈ UN and select ϕ ∈ co(W ) satisfying ϕ(n) = ξn for
n = 1, . . . , N . Choose j0 ∈ N, bk ∈ [0, 1] with

∑j0
k=1 bk = 1, and ϕk ∈ W

for k = 1, . . . , j0 such that ϕ =
∑j0

k=1 bkϕk. Furthermore, there exist εn ∈
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{−1, 1} for n = 1, . . . , N satisfying εnan = |an|. For each k = 1, . . . , j0 define
a function ψk on N by

ψk(i) :=
{
εiϕk(i) for i ∈ {1, . . . , N},
ϕk(i) for i > N .

It is routine to check from the definition ofW that {ψ1, . . . , ψj0} ⊆W . More-
over, direct calculation yields

∑N
n=1 |an|ξn =

∑N
n=1 |an|(

∑j0
k=1 bkψk)(n).

Since ψ :=
∑j0

k=1 bkψk ∈ co(W ), it follows from the left inequality in (3.3),
applied to (ψ(n))Nn=1 ∈ UN , that

∑N
n=1 |an|ξn ≤ r. This establishes (3.4).

Next we claim that

(3.5) sup
{∥∥∥ N∑

n=1

anxn

∥∥∥
X

: xn ∈ Kn, n = 1, . . . , N
}
≤ r.

Indeed, fix any choice of xn ∈ Kn for n = 1, . . . , N . For each x∗ ∈ B[X∗]
it follows from the fact that (|〈xn, x∗〉|)Nn=1 ∈ UN and (3.4) that

∑N
n=1 |an| ·

|〈xn, x∗〉| ≤ r. Accordingly,∥∥∥ N∑
n=1

anxn

∥∥∥
X
≤ sup

x∗∈B[X∗]

N∑
n=1

|an| · |〈xn, x∗〉| ≤ r.

Since xn ∈ Kn for n = 1, . . . , N are arbitrary, this establishes (3.5).
It follows from (3.1) and (3.5) that δ

∑N
n=1 |an| ≤ r. On the other hand,

since (3δ/4)(1, . . . , 1) ∈ VN , from the right inequality in (3.3) we have
r <

∑N
n=1 3δan/4 < δ

∑N
n=1 |an|, which contradicts δ

∑N
n=1 |an| ≤ r. Hence,

Step 1 is established.

Step 2. Let W σ∗ denote the closure of W in `∞ with respect to the
weak-∗ topology σ(`∞, `1). Then (W σ∗) \ c0 is non-empty, where c0 is con-
sidered as a closed subspace of `∞.

To establish Step 2, first observe that B[`∞] is compact for the weak-∗
topology [28, Theorem 2.6.18]. Recalling that W ⊆ B[`∞] it follows that
W

σ∗ ⊆ B[`∞], and henceW σ∗ is also weak-∗ compact. Proceeding by contra-
diction, suppose that (W σ∗)\c0 = ∅, i.e.,W σ∗ ⊆ c0. Since the weak topology
σ(c0, `1) on c0 is that induced by the weak-∗ topology of `∞, it follows that
W

σ∗ is weakly compact in c0, and hence so is its closed convex hull co(W σ∗)
[28, Theorem 2.8.14]. Choose a sequence {ϕN}∞N=1 ⊆ co(W ) ⊆ co(W σ∗) ac-
cording to Step 1, which then admits a subsequence converging weakly in c0
(hence also pointwise on N) to some element ϕ ∈ c0 [28, Theorem 2.8.6].
It follows that ϕ(n) ≥ δ/2 for each n ∈ N because ϕN (n) > δ/2 for
1 ≤ n ≤ N whenever N ∈ N. This is impossible as ϕ ∈ c0. So, we must
have (W σ∗) \ c0 6= ∅.
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Step 3. There exist c > 0, a vector x∗0 ∈ B[X∗] and an infinite subset
∆ ⊆ N such that

sup
x∈Kn

|〈x, x∗0〉| ≥ c, ∀n ∈ ∆.

To see this, use Step 2 to select ψ ∈W σ∗ \ c0. Since the Banach space `1
is separable, its dual unit ball B[`∞] is metrizable for the weak-∗ topology
[28, Corollary 2.6.20]. Recalling that W σ∗ ⊆ B[`∞] enables us to choose a
sequence {ψj}∞j=1 ⊆ W which converges weak-∗ to ψ. As ψ ∈ `∞ \ c0, there
is c > 0 such that ∆ := {n ∈ N : |ψ(n)| > c} is an infinite subset of N. By
the definition of W , given j ∈ N there exist εj,n ∈ {−1, 1}, xj,n ∈ Kn and
x∗j ∈ B[X∗] such that

ψj(n) = εj,n|〈xj,n, x∗j 〉|, ∀n ∈ N.

Now, the closed subspace Y := span(
⋃∞
n=1Kn) of X is separable because

each set Kn for n ∈ N is compact; this follows routinely from [28, Theo-
rem 1.12.15]. Accordingly, B[Y ∗] is compact and metrizable for the weak-∗
topology σ(Y ∗, Y ) [28, Theorem 2.6.18 & Corollary 2.6.20]. Since the re-
strictions y∗j := x∗j |Y for j ∈ N belong to B[Y ∗], there is a subsequence
{y∗j(k)}

∞
k=1 of {y∗j }∞j=1 which admits a weak-∗ limit y∗0 ∈ B[Y ∗]. In particular,

limk→∞〈y, y∗j(k)〉 = 〈y, y∗0〉 for all y ∈ Y . We claim that

(3.6) sup
y∈Kn

|〈y, y∗0〉| ≥ c, ∀n ∈ ∆.

Indeed, fix n ∈ ∆. Then, Kn being also compact in Y , the bounded sequence
{y∗j(k)}

∞
k=1 ⊆ B[Y ∗], which converges pointwise on Y to y∗0, also converges

uniformly over Kn to y∗0 [22, Banach Steinhaus Theorem, p. 220]. In other
words, the seminorm

pn(y∗) := sup
y∈Kn

|〈y, y∗〉|, ∀y∗ ∈ Y ∗,

satisfies limk→∞ pn(y∗j(k) − y∗0) = 0. On the other hand, since the subse-
quence {ψj(k)}∞k=1 converges weak-∗ to ψ, it follows that limk→∞ |ψj(k)(n)| =
|ψ(n)| > c (as n ∈ ∆). Choose k0 ∈ N such that |ψj(k)(n)| > c for all k ≥ k0.
For such k we have, as xj(k),n ∈ Kn ⊆ Y ,

pn(y∗j(k)) ≥ |〈xj(k),n, y
∗
j(k)〉| = |〈xj(k),n, x

∗
j(k)〉| = |ψj(k)(n)| > 0.

This implies that

sup
y∈Kn

|〈y, y∗0〉| = pn(y∗0) = lim
k→∞

pn(y∗j(k)) ≥ c.

Since n ∈ ∆ is arbitrary, (3.6) holds.
Now, let x∗0 ∈ B[X∗] be any continuous linear extension of y∗0 ∈ B[Y ∗]

to X [28, Theorem 1.9.6]. Then (3.6) establishes Step 3.
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The proof of Lemma 3.1 is thereby complete, as Step 3 means precisely
that (3.2) holds.

We now require further preparatory results from vector measure theory.

Lemma 3.2. Let m be a Banach-space-valued vector measure. For each
f ∈ L1(m), the subset of L1(m) given by

(3.7) fB[L∞(m)] := {fψ : ψ ∈ B[L∞(m)]}
is convex and weakly compact.

Proof. Convexity is clear.
The boundedness of fB[L∞(m)] follows from the inequality (cf. (1.2))

(3.8) ‖fψ‖L1(m) ≤ ‖ψ‖L∞(m)‖f‖L1(m), ∀ψ ∈ L∞(m).

Next we show that fB[L∞(m)] is weakly closed in L1(m); by convexity
it suffices to establish its norm-closedness. So, let {fψn}∞n=1 ⊆ fB[L∞(m)]
converge in L1(m) to g ∈ L1(m). In view of [38, Proposition 2.2(ii) & The-
orem 3.7(iii)] there is a subsequence {fψn(k)}∞k=1 such that fψn(k) → g
pointwise m-a.e. as k →∞. Since |fψn(k)| ≤ ‖ψn(k)‖L∞(m)|f | ≤ |f | (m-a.e.)
for each k ∈ N, it follows that |g| ≤ |f | (m-a.e.). Define the measurable set
A := {w : f(w) 6= 0}, so fχA = f , and the function h ∈ B[L∞(m)] by
setting h := (g/f)χA. Since

‖fψn − fh‖L1(m) = ‖fψnχA − gχA‖L1(m) ≤ ‖χA‖L∞(m)‖fψn − g‖L1(m)

for each n ∈ N, we conclude that g = fh and so g ∈ fB[L∞(m)]. This shows
that fB[L∞(m)] is closed in L1(m) and hence, as noted, its weak closedness
follows.

Let µ be a finite positive measure on Σ satisfying m ' µ. It follows from
(3.8) and the fact that χΩ ∈ B[L∞(m)] that

‖fχA‖L1(m) = sup{‖fχAψ‖L1(m) : ψ ∈ B[L∞(m)]}, ∀A ∈ Σ.

But L1(m) is a σ-order continuous Banach function space (relative to
(Ω,Σ, µ)) [38, p. 23 & Theorem 3.7(iii)], and so Lemma 2.37(ii) of [38] yields

(3.9) lim
µ(A)→0

sup
ψ∈B[L∞(m)]

‖fψχA‖L1(m) = lim
µ(A)→0

‖fχA‖L1(m) = 0,

i.e., the bounded subset fB[L∞(m)] ⊆ L1(m) is uniformly µ-absolutely con-
tinuous [38, p. 56]. It then follows that fB[L∞(m)] is a relatively weakly com-
pact subset of L1(m) [38, Proposition 2.39(ii)]. Since fB[L∞(m)] is weakly
closed, it is actually a weakly compact subset of L1(m).

Lemma 3.3. Let (Ω,Σ) be a measurable space and m : Σ → X be a
Banach-space-valued vector measure with relatively compact range. Fix any
f ∈ L1(m).
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(i) Im(fB[L∞(m)]) is a compact subset of X.
(ii) There exists ψf ∈ B[L∞(m)] satisfying ‖f‖L1(m) = ‖Im(fψf )‖X .
Proof. (i) Let µ : Σ → [0,∞) be a scalar measure satisfying m ' µ.

As shown in the proof of Lemma 3.2, the set fB[L∞(m)] is bounded and
uniformly µ-absolutely continuous in L1(m). This implies that its image
Im(fB[L∞(m)]) is relatively compact in X because {Im(χA) : A ∈ Σ} =
m(Σ) is relatively compact (by assumption); see Proposition 2.41 of [38]
with T := Im there. On the other hand, fB[L∞(m)] is weakly compact in
L1(m) (see Lemma 3.2). Since Im : L1(m) → X is also continuous when
both L1(m) and X are equipped with their respective weak topologies [28,
Theorem 2.5.11], it follows that Im(fB[L∞(m)]) is weakly compact in X
and, in particular, norm-closed. Being relatively norm-compact in X, it is
actually norm-compact.

(ii) The restriction of ‖ · ‖X : X → [0,∞) to the compact subset
Im(fB[L∞(m)]) ⊆ X attains its maximum at fψf for some ψf ∈ B[L∞(m)],
i.e.,

‖Im(fψf )‖X = sup{‖Im(fψ)‖X : ψ ∈ B[L∞(m)]} = ‖f‖L1(m),

where the second equality is known (see the identity (3.60) on p. 132 of
[38]).

We recall some facts about a Banach space (X, ‖ · ‖X) with an uncondi-
tional basis, say {en}∞n=1 [1, Section 3.1], [28, Section 4.2]. Let {e∗n}∞n=1 ⊆ X∗
denote the biorthogonal coordinate functionals associated with {en}∞n=1, i.e.,
x =

∑∞
n=1〈x, e∗n〉en for x ∈ X, with 〈ek, e∗n〉 = δk,n for k, n ∈ N [28, Sec-

tion 4.1 & Corollary 4.1.16]. Define

(3.10) |||x|||X := sup
{∥∥∥ ∞∑

n=1

cn〈x, e∗n〉en
∥∥∥
X

: (cn)∞n=1 ∈ B[`∞]
}
, ∀x ∈ X.

Then |||en|||X = ‖en‖X for n ∈ N. The function ||| · |||X : X → [0,∞) is a
norm on X equivalent to ‖ · ‖X , and |||x||| ≤ |||y||| whenever x, y ∈ X satisfy
|〈x, e∗n〉| ≤ |〈y, e∗n〉| for all n ∈ N [13, p. 344], [28, pp. 373–375]. It follows
from the definition of ||| · |||X that

(3.11)
∣∣∣∣∣∣∣∣∣ ∞∑
n=1

〈x, e∗n〉en
∣∣∣∣∣∣∣∣∣
X

=
∣∣∣∣∣∣∣∣∣ ∞∑
n=1

|〈x, e∗n〉|en
∣∣∣∣∣∣∣∣∣
X
, ∀x ∈ X.

Moreover, for arbitrary choices of εn ∈ {0, 1}, for n ∈ N, we have

(3.12)
∣∣∣∣∣∣∣∣∣ ∞∑
n=1

εn〈x, e∗n〉en
∣∣∣∣∣∣∣∣∣
X
≤
∣∣∣∣∣∣∣∣∣ ∞∑
n=1

〈x, e∗n〉en
∣∣∣∣∣∣∣∣∣
X
, ∀x ∈ X.

Note that {(|||en|||X)−1en}∞n=1 is a normalized unconditional basis for (X, |||·|||X)
[28, Corollary 4.2.13]. Henceforth, it is assumed that the norm of X is chosen
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to be ||| · |||X and that {en}∞n=1 is a normalized unconditional basis relative to
||| · |||X .

Fix k ∈ N and consider the kth natural projection

Pk : x 7→
k∑

n=1

〈x, e∗n〉en, ∀x ∈ X,

necessarily continuous [28, Theorem 4.1.15], of X onto the finite-dimensional
subspace span({en}kn=1) ⊆ X. Since Pk is a non-zero projection we always
have ‖Pk‖op ≥ 1, whereas (3.12) then implies that actually ‖Pk‖op = 1. By
a similar argument, also ‖Qk‖op = 1 where Qk := I − Pk, i.e.,

Qk : x 7→
∞∑

n=k+1

〈x, e∗n〉en, ∀x ∈ X,

is the natural projection of X onto its closed subspace span({en}∞n=k+1).

Lemma 3.4. Let (X, ‖ · ‖X) be a Banach space with a normalized uncon-
ditional basis {en}∞n=1. Equip X with the equivalent norm ||| · |||X given by
(3.10) and let Pk, Qk, for k ∈ N, be the natural projections associated with
{en}∞n=1. Let m be any X-valued vector measure, defined on a measurable
space (Ω,Σ), whose range is relatively compact in X and which has infinite
variation.

(i) There exist a strictly increasing sequence {k(j)}∞j=1 in N and a se-
quence {A(j)}∞j=1 ⊆ Σ of non-m-null sets such that
(3.13)

sup
x∈Kj

|||Pk(j−1)(x)|||X ≤
1
2j

and sup
x∈Kj

|||Qk(j)(x)|||X ≤
1
2j
, ∀j ∈ N,

with k(0) := 0 and Pk(0) := 0, where the compact sets Kj 6= ∅ are given by

(3.14) Kj :=
{ �

Ω

fjψ dm : ψ ∈ B[L∞(m)]
}

= Im (fjB[L∞(m)]) , ∀j ∈ N,

with the corresponding non-negative functions {fj}∞j=1 ⊆ L1(m) defined by

(3.15) fj := (‖χA(j)‖L1(m))
−1χA(j), ∀j ∈ N.

(ii) There exists a sequence {ψj}∞j=1 ⊆ B[L∞(m)] satisfying

(3.16) |||Im(fjψj)|||X = ‖fj‖L1(m) = 1, ∀j ∈ N,
and also

(3.17) |||Im(fjψj)− Im(fqψq)|||X ≥ 1/4, ∀j, q ∈ N with j 6= q.

Proof. (i) Let µ : Σ → [0,∞) be a scalar measure satisfying m ' µ. Set
A(1) := Ω and then define f1 by (3.15). The subset K1 := Im(f1B[L∞(m)])
⊆ X is compact by Lemma 3.3(i). Since supk∈N ‖Qk‖op = 1 < ∞ and
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|||Qk(x)|||X → 0 as k → ∞, for every x ∈ X, it follows from the Banach–
Steinhaus Theorem [22, p. 220], that Qk → 0 uniformly over the compact
set K1, i.e., supx∈K1

|||Qk(x)|||X → 0 as k → ∞. So, choose k(1) ∈ N such
that supx∈K1

|||Qk(1)(x)|||X ≤ 1/2. Then (3.13) holds with j := 1 as Pk(0) = 0.
Now assume, for some fixed N ∈ N, that (3.13) holds for each j =

1, . . . , N . Since |||en|||X =1, for n∈N and for each x∈X we have 〈Pk(N)(x), e∗n〉
= 〈x, e∗n〉 if 1 ≤ n ≤ k(N) and 0 otherwise, it follows that

(3.18) |||Pk(N)(x)|||X =
∣∣∣∣∣∣∣∣∣ k(N)∑
n=1

〈Pk(N)(x), e
∗
n〉en

∣∣∣∣∣∣∣∣∣
X
≤

k(N)∑
n=1

|〈Pk(N)(x), e
∗
n〉|

for each x ∈ X. Let 0 ≤ ϕ ∈ L1(µ) be the Radon–Nikodým derivative of the
non-negative scalar measure

∑k(N)
n=1 |〈m, e∗n ◦Pk(N)〉| with respect to µ. Then

there exists a set A(N + 1) ∈ Σ such that

(3.19) 2N+1
�

A(N+1)

ϕdµ < |||m(A(N + 1))|||X ≤ ‖χA(N+1)‖L1(m).

Indeed, if the first inequality failed to hold for some A(N + 1) ∈ Σ, then
|||m(A)|||X ≤ 2N+1

	
A ϕdµ for all A ∈ Σ, which contradicts |m|(Ω) =∞. The

inequality |||m(A)|||X ≤ ‖χA‖L1(m) always holds for every A ∈ Σ [38, (3.21),
p. 112]. So, with A(N + 1) satisfying (3.19) we can define fN+1 ∈ L1(m)
by (3.15).

Given ψ ∈ B[L∞(m)], it follows from (3.18) with x := Im(fN+1ψ) there,
the definition of fN+1 (cf. (3.15)), and (3.19) that

|||(Pk(N) ◦ Im)(fN+1ψ)|||X ≤
k(N)∑
n=1

|〈Pk(N)(Im(fN+1ψ)), e∗n〉|

=
k(N)∑
n=1

∣∣∣〈 �

Ω

fN+1ψ dm, e
∗
n ◦ Pk(N)

〉∣∣∣ ≤ k(N)∑
n=1

�

Ω

fN+1|ψ| d|〈m, e∗n ◦ Pk(N)〉|

=
�

Ω

fN+1|ψ|ϕdµ ≤
( �

A(N+1)

ϕdµ
)/
‖χA(N+1)‖L1(m) ≤ 2−(N+1).

So, with KN+1 := Im(fN+1B[L∞(m)]) we have shown that

sup
x∈KN+1

|||Pk(N)(x)|||X ≤
1

2N+1
.

Next, since KN+1 ⊆ X is compact (cf. Lemma 3.3(i)), we can repeat the
argument used to produce k(1) to find k(N + 1) ∈ N with k(N + 1) > k(N)
such that

sup
x∈KN+1

|||Qk(N+1)(x)|||X ≤
1

2N+1
.

Accordingly, (3.13) holds for all j = 1, . . . , N + 1.
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(ii) Given j ∈ N, apply Lemma 3.3(ii) to find ψj ∈ B[L∞(m)] sat-
isfying the first equality in (3.16). The second equality in (3.16) is clear
from (3.15).

To verify (3.17), let j < q. For ease of notation set xj := Im(fjψj) ∈ Kj

and xq := Im(fqψq) ∈ Kq. Then it follows from (3.13), from the identities
‖Pk(j)‖op = 1, Pk(j) +Qk(j) = I and Pk(j) = Pk(j) ◦Pk(q−1) (as j < q implies
that k(j) ≤ k(q − 1)), and from (3.16) which yields |||xj |||X = ‖fj‖L1(m) = 1,
that

|||xj − xq|||X ≥ |||Pk(j)(xj − xq)|||X = |||xj −Qk(j)(xj)− Pk(j)(xq)|||X
≥ |||xj |||X − |||Qk(j)(xj)||| − |||Pk(j) ◦ Pk(q−1)(xq)|||X

≥ 1− 1
2j
− |||Pk(q−1)(xq)|||X ≥ 1− 1

2j
− 1

2q
≥ 1

4
.

This is precisely (3.17).

Let us see that the hypotheses on X and m as required in Lemma 3.4
arise in many interesting settings.

Example 3.5. (i) Let X = `p for 1 ≤ p < 2, in which case X has an
unconditional basis. Moreover, by a result of H. P. Rosenthal, every X-valued
vector measure has relatively compact range (see Lemma 3.53(v) in [38] and
its proof). So, for every X-valued vector measure m of infinite variation,
all the hypotheses of Lemma 3.4 are satisfied. We point out that in every
infinite-dimensional Banach space there always exist vector measures m of
infinite variation, which can even be chosen to be either purely atomic or
non-atomic: consider the vector measure mf constructed in the proof of
Proposition 4.4 below.

Or, let X be any infinite-dimensional Banach space with the Schur prop-
erty. Then the range of every X-valued measure, being relatively weakly
compact, is also relatively compact. If, in addition, X has an unconditional
basis, then again for every X-valued vector measure m of infinite variation
all the hypotheses of Lemma 3.4 are fulfilled. It is worth noting that such
spaces X exist besides `1. Indeed, for any sequence {pn}∞n=1 ⊆ (1,∞) de-
fine

`(pn) :=
{

(xn)∞n=1 ∈ RN :
∞∑
n=1

|txn|pn <∞ for some t > 0
}
,

equipped with the norm

‖(xn)∞n=1‖ := inf
{
t > 0 :

∞∑
n=1

|xn/t|pn ≤ 1
}
, ∀(xn)∞n=1 ∈ `(pn).

Then `(pn) is a (real) Banach lattice [7, §2], [18], [42], [43]. Moreover, the
closed ideal `(pn)

a consisting of all absolutely continuous elements of `(pn) is
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precisely

`(pn)
a =

{
(xn)∞n=1 ∈ `(pn) :

∞∑
n=1

|txn|pn <∞, ∀t ≥ 0
}

[42, p. 485]. A result of I. Halperin and H. Nakano states that `(pn) has
the Schur property iff limn→∞ pn = 1 [18]; see also [43, pp. 1–3]. In this
case, also the closed subspace `(pn)

a has the Schur property. Since spaces
with the Schur property are hereditarily `1 [43, p. 4], i.e., every infinite-
dimensional closed subspace contains another closed subspace isomorphic
to `1, it follows that `(pn)

a cannot contain a copy of c0 [2, Theorem 14.21].
Accordingly, Theorem 3.5 of [45] with Mn(s) := spn for s ∈ [0,∞) and
n ∈ N (in which case the space c{Mn} given there is precisely `(pn)

a ) shows
that `(pn) = `

(pn)
a and that the canonical unit vectors form an uncondi-

tional basis of `(pn). It follows that `(pn) has the Schur property and pos-
sesses an unconditional basis whenever limn→∞ pn = 1. If, in addition, we
have limn→∞ pn/(pn − 1) ln(n) = 0, then `(pn) is not isomorphic to `1 [42,
Lemma 4]. For instance, pn := 1 + (ln(n))−1/2 for n ≥ 2 satisfies this con-
dition. Actually, this same choice of {pn}∞n=2 also satisfies the condition
1/p2n − 1/pn ≤ a/ ln(n) for n ≥ 2 (with a = 1), and hence the canoni-
cal unit vectors are actually the only unconditional basis (up to equivalence)
in `(pn) [7, Theorem 5.8].

(ii) In the notation of Example 2.6, let G be any infinite compact abelian
group with dual group Γ and normalized Haar measure µ. Recall the clas-
sical Banach algebra A(G) := {f ∈ L1(G) : f̂ ∈ `1(Γ )} under convolution
and equipped with the norm

‖f‖A(G) := ‖f̂‖`1(Γ ) :=
∑
γ∈Γ
|f̂(γ)|, ∀f ∈ A(G).

According to [19, Corollary 34.7], the Fourier transform map f 7→ f̂ is an
isometric isomorphism of (A(G), ‖ · ‖A(G)) onto (`1(Γ ), ‖ · ‖`1(Γ )), and hence
A(G) has the Schur property. Moreover, if G is also metrizable, then Γ is
countable and so the characters {(·, γ) : γ ∈ Γ} form an unconditional
basis for A(G). Let ϕ ∈ L2(G). Since L2(G) ∗ L2(G) = A(G) [19, Corol-
lary 34.16], we can define a finitely additive set function mϕ : B(G)→ A(G)
bymϕ : A 7→ χA∗ϕ for A ∈ B(G). It turns out thatmϕ is actually σ-additive
[35, Proposition 2.3 & Corollary 3.4]. As A(G) has the Schur property, mϕ

necessarily has relatively compact range. However, mϕ has finite variation
iff ϕ ∈ A(G) [35, Theorem 3.8], i.e., mϕ has infinite variation whenever
ϕ ∈ L2(G) \A(G).

(iii) Let G be as in (ii) above (and metrizable). Recall that µ is nec-
essarily non-atomic (cf. Example 2.6). Since G is a Polish space, for each
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1 < p <∞ the Banach space Lp(G) is isometrically isomorphic to Lp([0, 1])
[1, p. 125]. But Lp([0, 1]) has an unconditional basis [1, Theorem 6.1.6], and
hence so does Lp(G) [28, Proposition 4.2.14]. For each measure λ ∈ M(G),
let m(p)

λ : B(G) → Lp(G) be the vector measure defined in Example 2.6.
If M0(G) := {ν ∈ M(G) : ν̂ ∈ c0(Γ )}, where ν̂ : Γ → C is the Fourier–
Stieltjes transform of ν, i.e., ν̂(γ) :=

	
G (x, γ) dν(x) for γ ∈ Γ , then it

is known that the vector measure m
(p)
λ has relatively compact range in

Lp(G) iff λ ∈ M0(G) [38, Proposition 7.58]. On the other hand, m(p)
λ has

finite variation iff there exists h ∈ Lp(G) such that λ(A) =
	
A h dµ for

A ∈ B(G) [38, Theorem 7.67], i.e., m(p)
λ has infinite variation whenever

λ ∈M0(G) \ Lp(G).
More generally, let 1 < p ≤ 2 and ψ ∈ `∞(Γ ) be any Fourier p-

multiplier for G, i.e., there exists an operator T (p)
ψ ∈ L(Lp(G)), necessarily

commuting with all translation operators, such that (T (p)
ψ f )̂ = ψf̂ for all

f ∈ Lp(G). The convolution operators C(p)
λ (= T

(p)bλ ) for λ ∈ M(G) form
a proper subclass of the Fourier p-multiplier operators. For each Fourier
p-multiplier ψ 6= 0, the set function m

(p)
ψ : A 7→ T

(p)
ψ (χA) for A ∈ B(G)

is a vector measure with m
(p)
ψ ' µ [32, Proposition 2.2]. It is known that

m
(p)
ψ has relatively compact range in Lp(G) precisely when ψ ∈ c0(Γ ) (for

ψ := λ̂ with λ ∈ M(G) this corresponds to λ ∈ M0(G)) [32, Proposi-
tion 2.3], whereas m(p)

ψ has finite variation iff ψ = λ̂ for some λ ∈ Lp(G),
[32, Proposition 2.8]. For the circle group G = T, we note (for every 1 <
p ≤ 2) that there exist Fourier p-multipliers ψ ∈ c0(Z) which are not of
the form λ̂ for any λ ∈ M0(T) [32, Remark 2.6(ii)]. In particular, such a p-
multiplier ψ cannot be the Fourier–Stieltjes transform of any function from
Lp(T).

Proposition 3.6. Let X be a Banach space with an unconditional basis.
If there exists an X-valued vector measure m having infinite variation and
satisfying Im ∈ Acc, then `1 ↪→ X.

Proof. Let {en}∞n=1 be a normalized unconditional basis of X and equip
X with the norm ||| · |||X as given by (3.10). Since Im ∈ Acc, the range
of m is a relatively compact subset of X [38, p. 153]. Let the sequence of
non-empty compact sets {Kj}∞j=1 ⊆ X be given by (3.14), the functions
{fj}∞j=1 ⊆ L1(m) be given by (3.15), and the sequence {ψj}∞j=1 ⊆ B[L∞(m)]
be as in Lemma 3.4(ii).

Step 1. There exists a strictly increasing sequence {j(n)}∞n=1 ⊆ N such
that {fj(n)ψj(n)}∞n=1 is a basic sequence in L1(m) which is equivalent to the
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canonical basis of `1. In particular, there exists δ > 0 such that

(3.20) δ
N∑
n=1

|an| ≤
∥∥∥ N∑
n=1

anfj(n)ψj(n)

∥∥∥
L1(m)

for all choices of N ∈ N and {an : n = 1, . . . , N} ⊆ C.

To see this, first observe that (3.8) and (3.16) imply that ‖fjψj‖L1(m) ≤ 1
for all j ∈ N. Moreover, (3.17) shows that {fjψj}∞j=1 ⊆ L1(m) cannot contain
any weak Cauchy subsequences because the completely continuous operator
Im maps such subsequences of L1(m) to norm-convergent sequences in X.
So, a result of H. P. Rosenthal [2, Theorem 14.24] establishes Step 1.

Step 2. With {j(n)}∞n=1 ⊆ N as in Step 1, there exists x∗0 ∈ B[X∗] such
that

(3.21) ε := lim sup
n→∞

( sup
x∈Kj(n)

|〈x, x∗0〉|) > 0.

Indeed, it follows from ‖Im‖op = 1, the definition of Kj(n) (cf. (3.14)),
and (3.16) that Kj(n) ⊆ B[X] for n ∈ N. Fix (an)∞n=1 ∈ CN. Given N ∈ N,
Lemma 3.3(ii) with the m-integrable function

∑N
n=1 anfj(n)ψj(n) in place of

f guarantees the existence of ψ ∈ B[L∞(m)] satisfying

(3.22)
∥∥∥ N∑
n=1

anfj(n)ψj(n)

∥∥∥
L1(m)

=
∣∣∣∣∣∣∣∣∣Im( N∑

n=1

anfj(n)ψj(n)ψ
)∣∣∣∣∣∣∣∣∣

X
.

Since {ψj(n)ψ}∞n=1 ⊆ B[L∞(m)], we have Im(fj(n)ψj(n)ψ) ∈ Kj(n) for n =
1, . . . , N . It then follows from (3.20) and (3.22) that

δ

N∑
n=1

|an| ≤
∣∣∣∣∣∣∣∣∣ N∑
n=1

anIm(fj(n)ψj(n)ψ)
∣∣∣∣∣∣∣∣∣
X

≤ sup
{∣∣∣∣∣∣∣∣∣ N∑

n=1

anxn

∣∣∣∣∣∣∣∣∣
X

: xn ∈ Kj(n), n = 1, . . . , N
}
.

This shows that (3.1) in the statement of Lemma 3.1 holds for the sequence
{Kj(n)}∞n=1 of non-empty compact sets. Hence, (3.2) yields (3.22), i.e., Step 2
is valid.

Step 3. Let Rn := Pk(j(n)) − Pk(j(n)−1) for n ∈ N, with {j(n)}∞n=1 as in
Step 1, and let x∗0 ∈ B[X∗] satisfy (3.21). Then there exist an infinite subset
∆ ⊆ N and vectors yn ∈ Rn(Kj(n)) for n ∈ N such that

ε/3 < |〈yn, x∗0〉|, ∀n ∈ ∆.
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To see this first observe, for each n ∈ N, that

(3.23) Rn(x) =
k(j(n))∑

i=k(j(n)−1)+1

〈x, e∗i 〉ei, ∀x ∈ X,

and hence via (3.12) it follows that ‖Rn‖op = 1. Apply Step 2 to obtain an
infinite subset ∆0 ⊆ N such that

ε/2 < sup
x∈Kj(n)

|〈x, x∗0〉|, ∀n ∈ ∆0.

Fix n ∈ ∆0. Select xn ∈ Kj(n) such that |〈xn, x∗0〉| > ε/2 and observe that

xn = Pk(j(n)−1)(xn) +Rn(xn) +Qk(j(n))(xn).

So, apply (3.13) with j(n) in place of j to obtain

|〈xn −Rn(xn), x∗0〉| ≤ |||xn −Rn(xn)|||X
≤ |||Pk(j(n)−1)(xn)|||X + |||Qk(j(n))(xn)|||X

≤ 1
2j(n)

+
1

2j(n)
=

1
2j(n)−1

,

which implies (as xn ∈ Kj(n)) that

|〈Rn(xn), x∗0〉| ≥ |〈xn, x∗0〉| − |〈xn −Rn(xn), x∗0〉|

≥ |〈xn, x∗0〉| −
1

2j(n)−1
>
ε

2
− 1

2j(n)−1
.

In view of this inequality, which is valid for each n ∈ ∆0, there is an infinite
subset ∆ ⊆ ∆0 such that

(3.24) ε/3 < |〈Rn(xn), x∗0〉|, ∀n ∈ ∆.
So, with yn := Rn(xn) for n ∈ ∆, we have established Step 3.

Step 4. Let ∆ be as in Step 3 and {n(q) : q ∈ N} be an enumeration of
∆ with {n(q)}∞q=1 a strictly increasing sequence in N. Then {yn(q)}∞q=1 is a
basic sequence in X which is equivalent to the canonical basis of `1.

Indeed, since (3.23) holds for n(q) in place of n with yn(q) = Rn(q)(xn(q))
6= 0 (because of (3.24)), the vectors yn(q) for q ∈ N form a block basic sequence
taken from {en}∞n=1 [28, Definition 4.3.15]. In particular, {yn(q)}∞q=1 is an
unconditional basic sequence in X [28, p. 398, Ex. 4.39], i.e., {yn(q)}∞q=1 is
an unconditional basis for the closed subspace Y := span({yn(q)}∞q=1) of X.
So, there exist positive constants α, β and a norm ||| · ||| in Y satisfying

α ||| y ||| ≤ |||y|||X ≤ β ||| y |||, ∀y ∈ Y,
and with the property that

(3.25)
 ∞∑
q=1

cqyn(q)

 =
 ∞∑
q=1

|cq|yn(q)

, ∀y =
∞∑
q=1

cqyn(q) ∈ Y.
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Given N ∈ N and {aq}Nq=1 ⊆ C we claim that

(3.26)
ε

3

N∑
q=1

|aq| ≤
β

α

∣∣∣∣∣∣∣∣∣ N∑
q=1

aqyn(q)

∣∣∣∣∣∣∣∣∣
X
≤ β

α

N∑
q=1

|aq|.

In fact, for each q = 1, . . . , N , we have 〈yn(q), x
∗
0〉 6= 0 (cf. (3.24)) and

so we can define bq := |〈yn(q), x
∗
0〉|/〈yn(q), x

∗
0〉, in which case |bq| = 1 and

|〈yn(q), x
∗
0〉| = 〈bqyn(q), x

∗
0〉. It then follows from (3.25) and Step 3 that

ε

3

N∑
q=1

|aq| ≤
N∑
q=1

|aq| · |〈yn(q), x
∗
0〉| =

N∑
q=1

|aq|〈bqyn(q), x
∗
0〉

=
〈 N∑
q=1

|aq|bqyn(q), x
∗
0

〉
≤ β

 N∑
q=1

|aq|bqyn(q)

 = β
 N∑
q=1

|aq| · |bq|yn(q)


= β

 N∑
q=1

aqyn(q)

 ≤ β

α

∣∣∣∣∣∣∣∣∣ N∑
q=1

aqyn(q)

∣∣∣∣∣∣∣∣∣
X
.

So, the first inequality in (3.26) is valid. The second inequality in (3.26) is
a consequence of |||yn(q)|||X = |||Rn(q)(xn(q))|||X ≤ ‖Rn(q)‖op|||xn(q)|||X together
with ‖Rn(q)‖op = 1 and |||xn(q)|||X ≤ 1 as xn(q) ∈ Kj(n(q)) ⊆ B[X], for q ∈ N.

Step 4 is now immediate from (3.26) (see also [28, Theorem 4.3.6]) as
|||yn(q)|||X ≤ 1 for q ∈ N.

Finally, Step 4 implies that `1 ↪→ X [28, Theorem 4.3.17], which com-
pletes the proof of Proposition 3.6.

Proof of Theorem 1.2. Let X be a Banach space with an unconditional
basis and such that `1 X↪→ X. If m is any X-valued vector measure with Im ∈
Acc, then Proposition 3.6 implies that m must have finite variation, i.e., X
is Acc-variation admissible. By Proposition 1.1 we have L1(m) = L1(|m|).

As an application, for each 1 < r <∞ consider the Volterra vector mea-
suremr : B([0, 1])→ Lr([0, 1]) (see Section 2). As the Banach space Lr([0, 1])
is reflexive, we surely have `1 X↪→ Lr([0, 1]). Moreover, it was observed in Ex-
ample 3.5(iii) that Lr([0, 1]) has an unconditional basis. Since mr has finite
variation but L1(|mr|) ( L1(mr) (cf. Section 2), Theorem 1.2 implies that
the integration map Imr fails to be completely continuous. An alternative
proof (rather non-trivial) of this fact can be found in [38, pp. 154–157].

We end this section with a

Question. Does there exist a Banach spaceX with `1 X↪→ X such thatX
is notAcc-variation admissible? Of course,X could not have an unconditional
basis.
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4. Theorem 1.3 and related results. In this final section we establish
Theorem 1.3 and present some related results and relevant examples.

Proof of Theorem 1.3. (i)⇒(ii). Let X be a Banach space with the CRP
and m : Σ → X be any vector measure satisfying L1(m) = L1(|m|). Then
m has finite variation, and hence its range m(Σ) is relatively compact in X.
Since {Im(χA) : A ∈ Σ} = m(Σ), it follows that Im ∈ Acc [38, Corol-
lary 2.42].

(ii)⇒(i). Proceeding via a contrapositive argument suppose that X fails
the CRP, in which case there exists a vector measure ν : Σ → X with finite
variation such that ν(Σ) is not relatively compact in X.

Fix u ∈ X \{0} with ‖u‖X = 1 and choose x∗ ∈ X∗ such that 〈u, x∗〉 = 1.
Then X = Cu⊕ Y with Y := Ker(x∗). Let P be any continuous projection
of X onto Y , in which case η := P ◦ ν is a Y -valued vector measure on Σ
whose range η(Σ) is not relatively compact. Since

‖η(A)‖Y ≤ ‖P‖op‖ν(A)‖X ≤ ‖P‖op|ν|(A), ∀A ∈ Σ,
it is clear that η has finite variation and satisfies |η|(A) ≤ ‖P‖op|ν|(A) for
A ∈ Σ. Define the vector measure m : Σ → X by

(4.1) m(A) := |η|(A)u+ η(A), ∀A ∈ Σ.
Then ‖m(A)‖X ≤ 2|η|(A) for A ∈ Σ implies that m has finite variation and
satisfies |m|(A) ≤ 2|η|(A) for A ∈ Σ. Moreover,

〈m,x∗〉(A) = |η|(A)〈u, x∗〉+ 〈η(A), x∗〉 = |η|(A), ∀A ∈ Σ,
as η(Σ) ⊆ Y . Accordingly, |m| ≤ 2|η| = 2|〈m,x∗〉| setwise on Σ and so x∗
is a Rybakov functional for m [14, Ch. IX, §2], [38, p. 108]. In particular,
L1(m) = L1(|m|) [38, Corollary 3.19(i)].

In view of the fact that Im ∈ Acc iff {Im(χA) : A ∈ Σ} = m(Σ) ⊆ X
is relatively compact [38, Corollary 2.42], it remains to check that m(Σ) is
not relatively compact in X. But ‖ |η|(A)u‖X ≤ |η|(Ω) for all A ∈ Σ and
so {|η|(A)u : A ∈ Σ} is contained in a compact subset of the 1-dimensional
space Cu. It then follows from (4.1) and the fact that η(Σ) is not relatively
compact in Y that m(Σ) indeed fails to be relatively compact in X.

Remark 4.1. A Banach space X has the CRP iff L(L1([0, 1]), X) ⊆ Acc.
This is stated in [41, Ch. 7]; a proof can be found in [16].

A local version of Theorem 1.3 is also available for an individual vector
measure. Given anX-valued vector measurem letXm denote the closed sub-
space of X generated by the range of m. Since the simple functions are dense
in L1(m), it follows that Xm is also the closure in X of the range Im(L1(m))
of Im. Observe that Xm is weakly compactly generated [14, Ch. I, Corol-
lary 2.7], and hence Xm has the WRNP iff it has the RNP (cf. Section 1).
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Proposition 4.2. Let X be a Banach space and m : Σ → X be a vector
measure such that L1(m) = L1(|m|). If Xm has the CRP, then Im ∈ Acc.

Proof. Let m̃ : Σ → Xm be the vector measure m̃ : A 7→ m(A) for
A ∈ Σ, and j : Xm → X be the identity imbedding. It follows from [38,
Theorem 3.5] that L1(m) = L1(m̃). Since |m̃| = |m| is a finite measure, we
can apply Theorem 1.3 to m̃ in Xm to conclude that Iem ∈ Acc. Hence, also
Im = j ◦ Iem ∈ Acc.

Remark 4.3. (i) If `1 X↪→ X and m is any X∗-valued vector measure
satisfying L1(m) = L1(|m|), then Im ∈ Acc. This follows from Theorem 1.3
and the fact that X∗ has the CRP (cf. Section 1).

(ii) Let m be any purely atomic vector measure with finite variation. If
L1(m) = L1(|m|), then Im ∈ Acc. Indeed, m necessarily has compact range
[21, Theorem 10], and so [38, Corollary 2.42] implies that Im ∈ Acc.

The converse is false. To see this, let X be any infinite-dimensional Ba-
nach space with the Schur property. Then Im ∈ Acc for every X-valued
vector measure m. On the other hand, Proposition 4.4 below shows that
there always exists a purely atomic, X-valued vector measure m with finite
variation such that L1(|m|) ( L1(m). Many examples of Schur spaces (and
their properties) occur in [43]; see also the references. Every Banach lattice
with the Schur property has the RNP [43, Theorem 5]. Of course, Banach
spaces with the Schur property always have the CRP.

Proposition 4.4. In every infinite-dimensional Banach space there ex-
ists a vector measure m with finite variation such that L1(|m|) ( L1(m).
Moreover, m can be chosen to be purely atomic or to be non-atomic.

Proof. Let X be an infinite-dimensional Banach space and
∑∞

n=1 xn be
any unconditionally convergent series in X which is not absolutely conver-
gent [13, Theorem 1.2]. Let µ : Σ → [0,∞) be any measure for which there
exists a sequence {A(n)}∞n=1 ⊆ Σ of pairwise disjoint sets with µ(A(n)) > 0
for n ∈ N. Define m : Σ → X by

m(A) :=
∞∑
n=1

µ(A ∩A(n))xn, ∀A ∈ Σ.

The Vitali–Hahn–Saks Theorem [14, Ch. I, Corollary 5.6] ensures that m
is σ-additive. Moreover, ‖m(A)‖X ≤ (supn∈N ‖xn‖X) · µ(A) for A ∈ Σ, so
that m has finite variation. Now, the function f :=

∑∞
n=1

1
µ(A(n))χA(n) is

m-integrable with
�

A

f dm =
∞∑
n=1

µ(A ∩A(n))
µ(A(n))

· xn, ∀A ∈ Σ.
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However, in the notation of (2.1), we have

|mf |(Ω) ≥
∞∑
n=1

|mf |(A(n)) ≥
∞∑
n=1

‖mf (A(n))‖X =
∞∑
n=1

‖xn‖X =∞,

and hence f ∈ L1(m) \ L1(|m|) (see Lemma 2.1(i)).
Finally,m is purely atomic (resp. non-atomic) iff µ is purely atomic (resp.

non-atomic).

Recall that a Banach-space-valued vector measure m is called σ-de-
composable if there exist (countably) infinitely many pairwise disjoint, non-
m-null sets [38, p. 129].

Proposition 4.5. Let m be any Banach-space-valued vector measure.

(i) If Im ∈ Acc, then c0 X↪→ L1(m).
(ii) If m is σ-decomposable and Im ∈ Acc, then `1 ↪→ L1(m).

Proof. (i) According to [6, Theorem 3.6] and [38, Proposition 3.38(I)],
Im ∈ Acc implies that the Banach lattice L1(m) is weakly sequentially com-
plete. Hence, c0 X↪→ L1(m) [2, Theorem 14.12].

(ii) Since L1(m) is weakly sequentially complete (cf. proof of part (i)), it
follows from Rosenthal’s Theorem [2, p. 247] that either L1(m) is reflexive
or `1 ↪→ L1(m).

Suppose that L1(m) is reflexive. It then follows that Im : L1(m)→ X, be-
ing already completely continuous, is compact, and so L1(m) = L1(|m|) (see
Section 1). Let {A(n)}∞n=1 be any sequence of measurable, pairwise disjoint,
non-m-null sets. Then each function ϕn := (|m|(A(n)))−1χA(n) belongs to
L1(|m|) with ‖ϕn‖L1(|m|) = 1 for n ∈ N. It is routine to check that the linear
map u 7→

∑∞
n=1 unϕn for u = (un)∞n=1 ∈ `1 is a bicontinuous linear isomor-

phism of `1 onto a closed subspace of L1(|m|). This contradicts the reflexivity
of L1(|m|) = L1(m). Hence, L1(m) is not reflexive, i.e., `1 ↪→ L1(m).

Remark 4.6. (i) The analogue of Proposition 4.5(ii) with Ac in place of
Acc is known [10, Claim, p. 3800].

(ii) Let m : Σ → X be a σ-decomposable, Banach-space-valued vector
measure. According to Proposition 4.5(ii) we have Im /∈ Acc whenever `1 X↪→
L1(m) (equivalently, whenever the Banach lattice L1(m)∗ has the RNP; see
Section 1). The condition `1 X↪→ L1(m) has some useful consequences. For
instance, it implies that the ideal in the dual Banach lattice L1(m)∗ which
is generated by the family of continuous linear functionals ϕx∗,A : f 7→	
A f d〈m,x

∗〉 for f ∈ L1(m), for all x∗ ∈ X∗ and A ∈ Σ (cf. (1.2)), is
dense in L1(m)∗. This in turn implies that weak convergence of bounded
nets in L1(m) is characterized by weak convergence (in X) of the integrals
over arbitrary sets, i.e., if supα ‖fα‖L1(m) < ∞, then limα fα = f weakly
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in L1(m) iff limα Im(fαχA) = Im(fχA) weakly in X for every A ∈ Σ [9,
Theorem 4].

(iii) The converse of Proposition 4.5(ii) is false. Let X = `2. Section 6
of [10] exhibits a vector measure m : Σ → X (denoted there by ν) and a
bounded basic sequence {fn}∞n=1 in L1(m), equivalent to the canonical basis
of `1, such that

(4.2) lim
n→∞

ϕx∗,A(fn) = 0, ∀x∗ ∈ X∗, A ∈ Σ.

In particular, `1 ↪→ L1(m) and {fn}∞n=1 is not weakly convergent to zero
in L1(m). If Im ∈ Acc, then m(Σ) is relatively compact in X [38, p. 153].
Hence, (4.2) and [31, Proposition 17] imply that {fn}∞n=1 converges weakly
to zero in L1(m); contradiction! So, Im /∈ Acc.

(iv) Since L1(m) is a Banach lattice with order continuous norm [38,
Theorem 3.7(iii)], it is known that `1 X↪→ L1(m) iff c0 X↪→ L1(m)∗ [2, p. 246,
Ex. 13].
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