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The Lebesgue constant for the periodic Franklin system

by

Markus Passenbrunner (Linz)

Abstract. We identify the torus with the unit interval [0, 1) and let n, ν ∈ N with
0 ≤ ν ≤ n− 1 and N := n+ ν. Then we define the (partially equally spaced) knots

tj =


j/(2n) for j = 0, . . . , 2ν,

(j − ν)/n for j = 2ν + 1, . . . , N − 1.

Furthermore, given n, ν we let Vn,ν be the space of piecewise linear continuous functions
on the torus with knots {tj : 0 ≤ j ≤ N−1}. Finally, let Pn,ν be the orthogonal projection
operator from L2([0, 1)) onto Vn,ν . The main result is

lim
n→∞, ν=1

‖Pn,ν : L∞ → L∞‖ = sup
n∈N, 0≤ν≤n

‖Pn,ν : L∞ → L∞‖ = 2 +
33− 18

√
3

13
.

This shows in particular that the Lebesgue constant of the classical Franklin orthonormal

system on the torus is 2 + 33−18
√

3
13

.

1. Introduction. Let (Nk)k≥0 be an orthonormal basis in L2[0, 1]. The
Fourier partial sums with respect to this basis are given by

(1.1) PN (f) =
N∑
k=0

〈f,Nk〉Nk.

Clearly, every PN is a projection onto its (finite-dimensional) range and
its norm as an operator from L∞[0, 1] to L∞[0, 1] (or as an operator from
L1[0, 1] to L1[0, 1]) is given by

LN = ess sup
s∈[0,1]

1�

0

|KN (s, t)| dt,

where KN is the Dirichlet kernel

KN (s, t) =
N∑
k=0

Nk(s)Nk(t).
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The Lebesgue constant of the basis (Nk)k≥0 is now defined as

L := sup
N≥0

LN .

As a particular instance of an orthonormal basis in L2[0, 1], we consider the
general Franklin system (Nk)k≥0 on the torus T = R/Z, that is, we choose
a sequence T = (tk)k≥0 of points in [0, 1) (we identify this interval with
the torus) which is dense in [0, 1) and with t0 = 0. The space of piecewise
linear and continuous functions on T with knots {t0, . . . , tN} is denoted by
VN (T ). Then we define f0 ≡ 1 on T and inductively, for k ≥ 1, the kth
Franklin function corresponding to the sequence T is uniquely determined
by the conditions

fk ∈ Vk(T ), fk ⊥ Vk−1(T ), ‖fk‖2 = 1, fk(tk) > 0.

The Franklin functions fk are splines of degree d = 1. We now make a
few comments about the history of calculating or estimating the Lebesgue
constant of splines of degree d.

For d = 0 (piecewise constant functions), the projection is easily calcu-
lated and the Lebesgue constant is 1.

For d = 1 (piecewise linear functions), Z. Ciesielski ([2]) proved that
for any partition π of [0, 1], the L∞-norm of the projection onto piecewise
linear functions with knots π is ≤ 3. He showed this for the non-periodic
case, but exactly the same argument gives the upper bound 3 in the pe-
riodic case. Moreover, P. Oswald ([15]) and K. Oskolkov ([14]) proved in-
dependently that in the non-periodic case, the constant 3 is optimal if one
considers arbitrary partitions π. Moreover, Ciesielski ([5]) showed that in
the case of uniform partitions the exact upper bound is 2. Some numerical
experiments suggested that for the (classical, corresponding to dyadic knots)
non-periodic Franklin system, the exact upper bound is 2 + (2−

√
3)2 ([7]).

Several years later, P. Bechler ([1]) proved that for the piecewise linear
Strömberg wavelet, the Lebesgue constant is indeed 2 + (2 −

√
3)2. Then

Z. Ciesielski and A. Kamont ([6]) showed that for the classical non-periodic
Franklin system, the Lebesgue constant is 2 + (2−

√
3)2, verifying the con-

jecture in [7].
For splines of higher degree (d ≥ 2), a problem was the mere existence

of a bound Cd for the L∞-norms of orthogonal projections onto splines of
degree d with arbitrary knots, where Cd depends only on d and not on
the partition. This was a long-standing conjecture by C. de Boor solved by
A. Yu. Shadrin in [16] (in the non-periodic case). Predating Shadrin’s result,
there were several results for specific degrees (for instance [8] for d = 2 in the
non-periodic case) or specific sequences of points (for instance [9] and [10],
considering the sequence of dyadic partitions both in the non-periodic and
periodic case respectively for arbitrary degree d). In the periodic case, there
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is a further partial result in [13] showing the existence of a bound C2 for
the L∞-norm of orthogonal projections for d = 2 not depending on the
knots. The exact values of the Lebesgue constants in the cases d ≥ 2 are not
known.

In the present paper, we determine the Lebesgue constant for the periodic
(classical) Franklin system (corresponding to d = 1) to be 2 + 33−18

√
3

13 . Our
analysis was constantly guided by extensive computer simulations (both
numerical and symbolic) involving the Gram matrix and its inverse (see
Section 3.1).

2. Formulation of the Main Theorem. Our main result concerns
partially equally spaced knots on the torus T = R/Z. We choose the special
points

(2.1) tj =
{
j/(2n) for j = 0, . . . , 2ν,
(j − ν)/n for j = 2ν + 1, . . . , N − 1,

for arbitrary n, ν ∈ N with 0 ≤ ν ≤ n− 1 and N := n+ ν. We remark that
for ν = 0 or ν = n we arrive at equally spaced knots. Let Vn,ν be the linear
subspace generated by the piecewise linear, continuous functions with knots
(2.1) and Pn,ν be the orthogonal projection onto Vn,ν . The B-spline basis
for Vn,ν with a special choice of parameters n, ν is pictured in Figure 1.

The main theorem now reads as follows:

Main Theorem 2.1. For all n ∈ N and 0 ≤ ν ≤ n, we have the follow-
ing bound for the norm of the projection operator Pn,ν onto Vn,ν :

‖Pn,ν‖∞ := ‖Pn,ν : L∞(T)→ L∞(T)‖ < 2 +
33− 18

√
3

13
=: γ.

Furthermore, for n→∞ and ν = 1,

lim
n→∞

‖Pn,1‖∞ = γ.

3. Preliminaries

3.1. Orthogonal projections. Let V be an N -dimensional subspace
of L2[0, 1] and {N0, . . . , NN−1} a basis of V . We first look at the changes in
formula (1.1) if the basis functions are no longer orthogonal. In this case,
the orthogonal projection P onto V is given by

Pf(s) =
N−1∑
j,k=0

ajk〈Nk, f〉Nj(s),
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or as an integral operator with kernel k(s, t) =
∑N−1

j,k=0 ajkNj(s)Nk(t):

Pf(s) =
1�

0

k(s, t)f(t) dt,

where (ajk) is the inverse of the Gram matrix (bjk) with bjk = 〈Nj , Nk〉.
The norm of P as a mapping from L∞[0, 1] to L∞[0, 1] is

(3.1) ‖P‖∞ = ess sup
s∈[0,1]

1�

0

|k(s, t)| dt.

Since P is self-adjoint, the norm of P as an operator from L1[0, 1] to L1[0, 1]
is the same.

We now consider periodic B-splines of degree one on T = R/Z. For this
let 0 = t0 < t1 < · · · < tN−1 < 1 with an arbitrary natural number N ≥ 2.
Further set t−1 := tN−1− 1, tN := 1 and δj := tj+1− tj for −1 ≤ j ≤ N − 1.
Then we let Nj for 0 ≤ j ≤ N − 1 be the unique continuous function on
T which is linear on every interval (tk−1, tk) and has values Nj(tk) = δj,k
for 0 ≤ k ≤ N − 1. Formally we define the functions Nj : T → [0, 1] for
0 ≤ j ≤ N − 1 as

(3.2) Nj([t]) :=


(s− tj−1)/δj−1 if [t] = [s] for tj−1 < s ≤ tj ,
(tj+1 − s)/δj if [t] = [s] for tj < s ≤ tj+1,
0 otherwise,

where [t] for t ∈ R is its equivalence class in T. From now on we identify
[0, 1) with T and furthermore, by a slight abuse of notation, we consider Nj

to be defined on [0, 1).
Figure 1 shows periodic B-splines of degree one defined in (3.2) for the

points in (2.1) with a special choice of parameters n, ν.

t0 t1 t2 t3 t4 t0δ0 δ1 δ2 δ3 δ4 = δ−1

N0 N1 N2 N3 N4 N0

Fig. 1. Situation for N = 5, ν = 1, n = N − ν = 4

Let (as above) V be the (finite-dimensional) subspace generated by
{N0, . . . , NN−1} and P be the orthogonal projection from L2[0, 1) onto V .
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Then formula (3.1) for the norm of P simplifies to

‖P‖∞ = max
j=0,...,N−1

1�

0

|k(tj , t)| dt,

where k(s, t) =
∑N−1

j,k=0 aj,kNj(s)Nk(t) and (aj,k) is the inverse of the Gram
matrix (bj,k) = 〈Nj , Nk〉. If we let κ(j) :=

	1
0 |k(tj , t)| dt, it can be shown by

an elementary calculation that

(3.3) κ(j) =
N−1∑
k=0

δk
2


|aj,k|+ |aj,k+1| if sgn aj,k = sgn aj,k+1,

a2
j,k + a2

j,k+1

|aj,k|+ |aj,k+1|
otherwise,

where every subscript is taken modulo N . Observe that κ(j) depends on N
too. With the rational function φ(t) := (1 + t2)/(1 + t)2, equation (3.3) can
be rewritten as

(3.4)

κ(j) =
N−1∑
k=0

δk
2

(|aj,k|+ |aj,k+1|) ·
{

1 if sgn aj,k = sgn aj,k+1,
φ(|aj,k+1|/|aj,k|) otherwise.

We now collect a few simple facts about the function φ:

Lemma 3.1. Let φ : (0,∞)→ [1/2, 1) be defined by

t 7→ φ(t) =
1 + t2

(1 + t)2
.

Then

φ(t) = φ(t−1), φ′(t) =
2(t− 1)
(1 + t)3

, φ′′(t) =
4(2− t)
(1 + t)4

for all t > 0. So in particular φ is decreasing for t < 1 and increasing for
t > 1 and φ′ is increasing for t < 2 and decreasing for t > 2. Furthermore,

φ(λ) =
2
3
, φ(4) =

17
25
, φ(6) =

37
49
, φ′(λ) =

λ−1

3
√

3
,

where λ = 2 +
√

3.

By (3.4), exact formulae for the entries of the inverse (ajk) of the Gram
matrix are absolutely necessary to determine the exact value of the Lebes-
gue constant. We will provide this information in Proposition 4.1 for the
periodic case. In the non-periodic dyadic case, such exact formulae were
given in [3] and they were used in the calculation of the corresponding
Lebesgue constant in [6]. For the general Franklin system, there are impor-
tant estimates for both the non-periodic and periodic cases (see [11] and
[12] respectively). To calculate the exact value of the Lebesgue constant, we
supplement these estimates with exact formulae.
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3.2. Solutions of fk−1 − 4fk + fk+1 = 0 and their properties. In
this section we examine the properties of the solutions of the recurrence
fk−1 − 4fk + fk+1 = 0, which we will use extensively. For an arbitrary real
number x, let Ax := cosh(αx) and

√
3Bx := sinh(αx) with α > 0 defined by

coshα = 2. For k ∈ N0, Ak and Bk can also be defined by the recurrence
relations

Ak+1 = 2Ak + 3Bk with A0 = 1,(3.5)
Bk+1 = Ak + 2Bk with B0 = 0.(3.6)

This follows from the basic identities

cosh(x+ y) = coshx cosh y + sinhx sinh y,(3.7)
sinh(x+ y) = sinhx cosh y + coshx sinh y.(3.8)

We note that it is easy to see (or a special case of Lemma 3.3 below) that

Ak+1 ≤ 4Ak for k ∈ N0,(3.9)
Bk+1 ≤ 4Bk for k ∈ N.(3.10)

Observe also that

Ak = 2Ak+1 − 3Bk+1,(3.11)
Bk = 2Bk+1 −Ak+1,(3.12)

for k ∈ N0. Moreover, we have the formulae

(3.13) Ax =
1
2

(λx + λ−x), Bx =
1

2
√

3
(λx − λ−x), x ∈ R,

with

λ = 2 +
√

3, λ−1 = 2−
√

3.

We remark that α = log λ. For reference, we list the first few values of An
and Bn:

(A0, . . . , A4) = (1, 2, 7, 26, 97), (B0, . . . , B4) = (0, 1, 4, 15, 56).

The crucial fact about Ak and Bk is that they are independent solutions
of the linear recursion fk−1 − 4fk + fk+1 = 0, since λ and λ−1 are the two
solutions of its characteristic equation t2 − 4t+ 1 = 0 and Ak and Bk have
the representation (3.13). The recursion fk−1− 4fk + fk+1 = 0 in turn takes
into account the special form of the Gram matrix for the points (2.1) (see
(4.1) and (4.4)). This is important, since we need exact formulae for the
inverse of the Gram matrix and these consist of terms depending on Ak
and Bk.
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Lemma 3.2. For K ∈ N0,
K∑
k=0

(Bk +Bk+1) = AK+1 − 1, 2
K∑
k=0

Ak = 3BK+1 −AK+1 + 1,

K∑
k=0

(Ak +Ak+1) = 3BK+1, 2
K∑
k=0

Bk = AK+1 −BK+1 − 1.

Proof. The proof uses induction and the recurrences (3.5), (3.6), (3.11)
and (3.12) for An and Bn.

Lemma 3.3. Let k ∈ N0. Then

−1 ≤ −λ−k = λBk −Bk+1 ≤ 0,(3.14)

0 ≤ λAk −Ak+1 =
√

3λ−k ≤
√

3,(3.15)

−1 ≤ λ−k =
√

3Bk −Ak ≤ 0.(3.16)

Proof. This follows from (3.13).

Lemma 3.4. For all n ∈ N and 0 ≤ k ≤ n,

BkAn−k +AkBn−k = Bn, BnAn−k −Bn−kAn = Bk,

AkAn−k + 3Bn−kBk = An, AnAn−k − 3BnBn−k = Ak.

Proof. This follows directly from (3.7) and (3.8).

4. Proof of the Main Theorem. We begin with a short overview
of the main steps of the proof. In Section 4.1 we treat the special case of
equally spaced knots, since this is the simplest case and we get an even
better Lebesgue constant than the one stated in Theorem 2.1. This serves
as some kind of preliminary result, where all important proof steps of more
general cases are included:

(i) Compute the inverse of the Gram matrix.
(ii) Estimate the L∞-norms of the projection operators using (i). For

this, it is important to distinguish the cases where the number of
points in the knot sequence is even or odd. This comes from the
fact that the inverse of the Gram matrix has a different structure
in the two cases.

(iii) Determine the asymptotics of these projection operator norms.

In Section 4.2 we calculate the inverse of the Gram matrix for non-equally
spaced knots.

Section 4.3 concentrates on estimating ‖Pn,ν‖∞ for ν = 1, where (as
we will see) we get the largest values for the projection operator norms.
We furthermore determine the asymptotics in this case, which gives us the
asserted value 2 + 33−18

√
3

13 of the Lebesgue constant.
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In Section 4.4 we estimate the remaining cases for other choices of ν
by employing easy-to-use, but sufficiently sharp estimates on quotients of
neighbouring entries of the inverse of the Gram matrix.

4.1. Equally spaced knots. As a preliminary case we consider the
points (2.1) for ν = 0 and N = n and show that ‖Pn,0‖∞ < 2 and
limn→∞ ‖Pn,0‖∞ = 2. For this case of equally spaced knots, the Gram matrix
(bjk)0≤j,k≤N−1 is

(4.1) (bjk) =
1

6n



4 1 1
1 4 1

. . . . . . . . .

1 4 1
1 1 4


,

where the empty entries are zero. Since all rows in (bjk) are equal up to
shifts, the same must be true for the inverse (ajk). For the first row of
(ajk), make the ansatz a0,k = (−1)k(c1Ak + c2Bk) with constants c1, c2 to
be determined. Thus

a0,k + 4a0,k+1 + a0,k+2 = 0 for k ≥ 0.

Insert this ansatz into the boundary conditions

4a0,0 + a0,1 + a0,N−1 = 1, a0,N−2 + 4a0,N−1 + a0,0 = 0

to determine c1, c2 and simplify to get

a0,k =
6n(−1)k

D(N)
gk

with

(4.2) gk = BN−k + (−1)NBk and D(N) = 2((−1)N−1 +AN ).

Since all rows in (ajk) are equal up to shifts, the quantity (3.4) does not
depend on j in this case. So while we consider equally spaced knots, we
write κ instead of κ(j) for arbitrary 0 ≤ j ≤ N − 1. We consider separately
the cases of N even and N odd. The difference in the analysis of these two
cases comes from the fact that gk is always positive for N even, whereas for
N odd the sign of gk changes once.

N even. If we assume that N is even, we obtain from (3.4)

κ = 3D(N)−1
N−1∑
k=0

(gk + gk+1)φ
(
gk+1

gk

)
.
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Using the definition of gk and Lemma 3.3 we see that λ−1 < gk+1/gk < λ,
so by Lemma 3.1, φ(gk+1/gk) < φ(λ) and thus

κ < 6φ(λ)D(N)−1
N−1∑
k=0

(Bk +Bk+1).

Lemma 3.2 and the fact that φ(λ) = 2
3 then give us

κ < 4
AN − 1

2(AN − 1)
= 2.

N odd. For N odd, we see that (3.4) becomes

κ = 6D(N)−1

[
B(N+1)/2 −B(N−1)/2

+
(N−3)/2∑
j=0

(BN−j +BN−j−1 −Bj −Bj+1)φ
(

BN−j −Bj
BN−j−1 −Bj+1

)]
.

The mean value theorem implies

φ(qj) ≤ φ(λ) + (qj − λ)φ′(λ), where qj :=
BN−j −Bj

BN−j−1 −Bj+1
,

since φ′(t) is decreasing for t ≥ λ ≥ 2 and qj ≥ λ by Lemma 3.3. For qj −λ,
we have again, due to Lemma 3.3 and 0 ≤ j ≤ (N − 3)/2,

qj − λ =
BN−j − λBN−j−1 + λBj+1 −Bj

BN−j−1 −Bj+1
≤ 1 + λBj+1

BN−j−1 −Bj+1

≤ 1 + λBj+1

BN−j−1(1− λ−N+2j+2)
≤ 2

1 + λBj+1

BN−j−1
.

Using these facts and the estimates B(N−1)/2 ≥ λ−1B(N+1)/2−λ−1 (Lemma
3.3) and −Bj ≤ 0, we obtain

(4.3) κ ≤ 6D(N)−1

[
(1− λ−1)B(N+1)/2 + λ−1

+ φ(λ)
(N−3)/2∑
j=0

(BN−j +BN−j−1 −Bj+1)

+ 2φ′(λ)
(N−3)/2∑
j=0

(BN−j +BN−j−1 −Bj+1)
1 + λBj+1

BN−j−1

]
.

We split the analysis of this expression into a few subcases and introduce
the notation p = (N + 1)/2 to shorten indices.
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The sum I :=
∑p−2

j=0(BN−j +BN−j−1 −Bj+1). We apply Lemma 3.2 to
get

I = 1
2(2AN − 3Ap +Bp + 1) ≤ 1

2(2AN − (3
√

3− 1)Bp + 1),

by Lemma 3.3.

The sum II :=
∑p−2

j=0(BN−j +BN−j−1−Bj+1)1+λBj+1

BN−j−1
. Since by Lemma

3.3, BN−j = λBN−j−1 + λ−N+j+1 and λ−N+j+1 ≤ λ−N+1Bj+1, we get

II ≤ (1 + λ)
p−2∑
j=0

(1 + λBj+1)− (1− λ−N+1)
p−2∑
j=0

Bj+1(1 + λBj+1)
BN−j−1

.

But now, by estimating the second sum by its summand with index p− 2,
p−2∑
j=0

Bj+1(1 + λBj+1)
BN−j−1

≥ Bp−1(1 + λBp−1)
Bp

≥ λ
B2
p−1

Bp
,

and by Lemmas 3.2 and 3.3,
p−2∑
j=0

1 + λBj+1 =
N − 1

2
+
λ

2
(Ap −Bp − 1) ≤ N − 1

2
+
λ(
√

3− 1)
2

Bp.

We thus finally obtain

II ≤ (1 + λ)
(
N − 1

2
+
λ(
√

3− 1)
2

Bp

)
− (1− λ−N+1)λ

B2
p−1

Bp
.

These estimates together with (4.3) imply, on noting D(N) ≥ 2AN and
φ(λ) = 2/3, that

κ ≤ 2

+
3
AN

[
θBp + λ−1 +

1
3

+ 2φ′(λ)
(

(1 + λ)
N − 1

2
− (1− λ−N+1)λ

B2
p−1

Bp

)]
,

where

θ = (1− λ−1)− (
√

3− 1/3) + (1 + λ)λφ′(λ)(
√

3− 1) = 0.

Since B2
p−1/Bp dominates (N − 1)/2 for large N , we finally see that for N

sufficiently large (N ≥ 8),
κ < 2.

In fact, Table 1 on page 274 gives this inequality for all N ≥ 2. An analogous
argument to Section 4.3.3 finally yields limN→∞ κ = 2, and this completes
what we wanted to show in this section.

4.2. Non-equally spaced knots. We now consider the points (2.1) in
case 1 ≤ ν ≤ n − 1 (i.e. the knots are not equally spaced anymore). The
first step is to calculate the inverse of the Gram matrix in this setting. As
before, we take every index concerning the Gram matrix (bjk) or its inverse
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(ajk) modulo N . The Gram matrix (bjk) = (〈Nj , Nk〉)0≤j,k≤N−1 admits the
representation

(4.4) (bjk) =
1

12n



6 1 2
1 4 1

. . . . . . . . .

1 4 1
1 6 2

2 8 2
. . . . . . . . .

2 8 2
2 2 8



,

where the row with the pattern 1, 6, 2 has index 2ν. This leads to the fol-
lowing equations:

6a0,k + a1,k + 2aN−1,k = 12nδ0,k,(4.5)

aj−1,k + 4aj,k + aj+1,k = 12nδj,k for j = 1, . . . , 2ν − 1,(4.6)

a2ν−1,k + 6a2ν,k + 2a2ν+1,k = 12nδ2ν,k,(4.7)

aj−1,k + 4aj,k + aj+1,k = 6nδj,k for j = 2ν + 1, . . . , N − 1,(4.8)

where δj,k is the Kronecker delta and 0 ≤ k ≤ N − 1. Let

(4.9) D(N, ν) := 2AN +
3
2
B2νBN−2ν − 2(−1)N .

Then we define

g(N, ν, j, k) :=
D(N, ν)aj,k(−1)k+j

6n
.

Observe that aj,k depends on N and ν too. But in the current context, the
indices N , ν and also j are fixed, so we write gk instead of g(N, ν, j, k).
Inserting the definition of gk into (3.4), we obtain

(4.10) κ(j) = D(N, ν)−1

[
3
2

2ν−1∑
k=0

(|gk|+ |gk+1|)ξj,k+3
N−1∑
k=2ν

(|gk|+ |gk+1|)ξj,k
]

with

ξj,k =
{

1 if sgn aj,k = sgn aj,k+1,
φ(|gk+1|/|gk|) else.

In order to determine (aj,k), we identify the values of gk:
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Proposition 4.1. If 0 ≤ j ≤ 2ν − 1, then gk equals

2(−1)NBj−k +BN−j+k +B2ν−jAN−2ν+k +Bk(AN−j + 3B2ν−jBN−2ν)
if k ≤ j,

2(−1)NBk−j +BN−k+j +B2ν−kAN−2ν+j +Bj(AN−k + 3B2ν−kBN−2ν)
if j ≤ k ≤ 2ν,

(−1)N (Bk−j +Ak−2νB2ν−j) +BN−k+j +BjAN−k if 2ν ≤ k ≤ N − 1.

If 2ν ≤ j ≤ N − 1, then gk equals

(−1)N (Bj−k +Aj−2νB2ν−k) +BN−j+k +AN−jBk if k ≤ 2ν ≤ j,
(−1)NBj−k +Ak−2νBN−j+2ν +AN−jBk + 3

2Bk−2νB2νBN−j

if 2ν ≤ k ≤ j,
(−1)NBk−j +AN−kBj +Aj−2νBN−k+2ν + 3

2B2νBN−kBj−2ν

if j ≤ k ≤ N − 1.

Proof. If we insert these formulae for gk into (4.5) and (4.6) for 0 ≤ j ≤
2ν − 1 and into (4.7) and (4.8) for 2ν ≤ j ≤ N − 1, we deduce the assertion
by a case-by-case analysis, using the fact that An and Bn are solutions of
the recurrence fk−1 − 4fk + fk+1 = 0. Observe that to evaluate (4.5)–(4.8)
the recursions (3.5), (3.6), (3.11), (3.12) for Ak and Bk and the identities
from Lemma 3.4 are useful.

Remark 4.2. From Proposition 4.1 we can see that for N even, gk ≥ 0
for all 0 ≤ k ≤ N − 1, while for N odd, gk ≥ 0 for |k − j| ≤ (N − 1)/2 and
gk ≤ 0 for |k − j| ≥ (N + 1)/2.

4.3. The main case ν = j = 1. The first special case to analyze is
ν = j = 1. As we will see, this is the main case in the sense that for N →∞
and ν = j = 1, κ := κ(1) converges to the Lebesgue constant 2 + 33−18

√
3

13 .
In this section, we set K = N − 1 for notational convenience. We then find,
as a special instance of Proposition 4.1, that gk = g(N, 1, 1, k) equals

2[(−1)N +AK −BK ] if k = 0,
8BK if k = 1,
2[AN−k +BN−k + (−1)N (Ak−2 +Bk−2)] if 2 ≤ k ≤ N − 1.

Note that g2 = g0. Additionally,

D(N, 1) = 18BK − 2AK − 2(−1)N .

Furthermore the use of the recurrences (3.5), (3.6), (3.11) and (3.12) for Ak
and Bk yields
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|g1|+ |g2| = 2(−1)N + 6BK + 2AK ,(4.11)

|gk|+ |gk+1| = 4|AN−k + (−1)NAk−1| for k ≥ 2, k 6= (N + 1)/2,(4.12)
|g(N+1)/2|+ |g(N+3)/2| = 8AK/2 for N even,(4.13)

|g(N+1)/2|+ |g(N+3)/2| = 8BK/2 for N odd.(4.14)

We recall that all indices are taken modulo N . The quotient of consecutive
values of gk has the following special form:

Lemma 4.3. For 2 ≤ k ≤ N − 1,

|gk+1|
|gk|

=
A|N/2−k|

A|N/2−k+1|
if N is even,(4.15)

|gk+1|
|gk|

=
B|N/2−k|

B|N/2−k+1|
if N is odd.(4.16)

Proof. Let k ≤ N/2. Then by (3.7), (3.8) and the definitions of An and
Bn we have

AN−k−1 = AN/2−kAN/2−1 + 3BN/2−kBN/2−1,

BN−k−1 = AN/2−kBN/2−1 +BN/2−kAN/2−1,

Ak−1 = AN/2−1AN/2−k − 3BN/2−kBN/2−1,

Bk−1 = BN/2−1AN/2−k −AN/2−1BN/2−k.

For N even, summing these four equations yields gk+1/2 on the left hand
side and AN/2−k times a term independent of k on the right hand side. On
the other hand, for N odd, summing the first two equations and subtracting
the second two gives |gk+1|/2 on the left hand side and BN/2−k times a
term independent of k on the right hand side. An analogous argument for
k ≥ N/2 completes the proof of the lemma.

4.3.1. Estimates for N even. For N even, from (4.10) and the fact
g0 = g2 we get

κ := κ(1) = 3D(N, 1)−1
K∑
k=1

(gk + gk+1)φ
(
gk+1

gk

)
.

Inserting (4.11)–(4.14) into this expression and recalling K = N − 1 shows
that κ equals

(4.17) 3D(N, 1)−1

[
(2 + 6BK + 2AK)φ

(
1 +AK −BK

4BK

)
+ 8

K∑
k=2

Ak−1φ

(
A|N/2−k|

A|N/2−k+1|

)]
.
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Now observe that Lemmas 4.3 and 3.3 imply λ−1 < gk+1/gk =
A|N/2−k|/A|N/2−k+1| < λ for k ≥ 2, so using Lemma 3.1, the above ex-
pression for κ is strictly less than

6D(N, 1)−1

[
(1 + 3BK +AK)φ

(
1 +AK −BK

4BK

)
+ 4φ(λ)

K−1∑
k=1

Ak

]
.

If we use Lemma 3.2 to evaluate the sum and remark that AK =
√

3BK +
λ−K by Lemma 3.3, we deduce, by setting 1+AK−BK

4BK
= η + h with

η =
√

3− 1
4

and h = h(N) =
1 + λ−K

4BK
,

that

(4.18) κ ≤ 6D(N, 1)−1[(1 + 3BK +AK)φ(η + h) + 2φ(λ)(3BK −AK − 1)].

Since φ′(t) is increasing for t ≤ 2 (Lemma 3.1) and h ≤ 1/2 for N ≥ 2, the
mean value theorem yields

(4.19) φ(η + h) ≤ φ(η) + φ′(η + 1/2)h.

Thus, using (4.19) in (4.18) we see that in order to prove κ < γ, it suffices
to show that

(4.20) 6D(N, 1)−1[(1 + 3BK +AK)(φ(η) + φ′(η + 1/2)h)
+ 2φ(λ)(3BK −AK − 1)] < γ.

If we multiply this inequality by D(N, 1), collect the factors for BK and AK
and observe that

θ := 6φ(η) + 2γ − 12φ(λ) =
1√
3

(18γ − 18φ(η)− 36φ(λ)),

we see that (4.20) is equivalent to

(4.21) θ(
√

3BK −AK − 1) + 6h(N)(1 + 3BK +AK)|φ′(η + 1/2)| > 0.

Now we use again AK =
√

3BK + λ−K and insert the definition of h(N) to
express the left hand side of (4.21) as

(1 + λ−K)
[

3
2BK

(1 + (
√

3 + 3)BK + λ−K)|φ′(η + 1/2)| − θ
]
.

Clearly, this is greater than

(1 + λ−K)
[

3(
√

3 + 3)
2

|φ′(η + 1/2)| − θ
]
,

which is easily seen to be greater than zero. Thus we have shown that κ < γ
for N even and ν = j = 1.



Lebesgue constant for the Franklin system 265

4.3.2. Estimates for N odd. For N odd, (4.10) and Remark 4.2 imply
that κ equals

3D(N, 1)−1

[ K∑
k=1

k 6=(N+1)/2

(|gk|+ |gk+1|)φ
(
|gk|
|gk+1|

)
+ |g(N+1)/2|+ |g(N+3)/2|

]
.

We now use Lemma 4.3 and the identities (4.11)–(4.14) and recall that
K = N − 1 to obtain, after a little calculation,

(4.22) κ = 6D(N, 1)−1

[
(3BK +AK − 1)φ

(
AK −BK − 1

4BK

)

+ 4
K/2∑
k=2

(AN−k −Ak−1)φ
(

BN/2−k

BN/2−k+1

)
+ 4BK/2

]
.

We first estimate two summands of κ separately.

The term I := (3BK +AK − 1)φ
(
AK−BK−1

4BK

)
. We have 3BK +AK − 1 ≤

(3 +
√

3)BK by Lemma 3.3 and AK−BK−1
4BK

= η − h with

η =
√

3− 1
4

and h =
1− λ−K

4BK
,

so the mean value theorem implies

I ≤ (3 +
√

3)BKφ(η − h) ≤ (3 +
√

3)BK(φ(η)− φ′(0)h)

= (3 +
√

3)BK(φ(η) + 2h),

since φ′ is increasing for t ≤ 2 and φ′(0) = −2.

The term II :=
∑K/2

k=2(AN−k −Ak−1)φ
(BN/2−k+1

BN/2−k

)
. Since BL+1 = λBL +

λ−L, the mean value theorem and the fact that φ′ is decreasing for t ≥ 2
yield

φ

(
BN/2−k+1

BN/2−k

)
≤ φ(λ) + φ′(λ)

λk−N/2

BN/2−k
.

Now, use the identity 2
∑L

k=0Ak = 3BL+1−AL+1 + 1 from Lemma 3.2 and
simplify using the recurrences for Ak and Bk to obtain

K/2∑
k=2

(AN−k −Ak−1) =
1
2

(3BK −AK − 6BK/2 + 1)

≤ 1
2

((3−
√

3)BK − 6BK/2 + 1),
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by Lemma 3.3. Next, we get

S :=
K/2∑
k=2

AN−k
λk−N/2

BN/2−k
=
√

3
K/2∑
k=2

λk−N/2(λN−k + λk−N )
λN/2−k − λk−N/2

=
√

3
K/2∑
k=2

λN−k + λk−N

λN−2k − 1
,

by (3.13). Since 1 ≤ λN−2k/2, we estimate

S ≤ 2
√

3
K/2∑
k=2

λN−k + λk−N

λN−2k
= 2
√

3
K/2∑
k=2

λk + λ3k−2N

= 2
√

3
[
λK/2+1 − λ2

λ− 1
+ λ−2N λ

3(K/2+1) − λ6

λ3 − 1

]
≤ 2
√

3
[
λK/2+1

λ− 1
+ λ−2N λ

3(K/2+1)

λ− 1

]
= 4
√

3
AK/2

1− λ−1
≤ 4
√

3

√
3BK/2 + 1
1− λ−1

.

Altogether, we get

II ≤ φ(λ)
2

((3−
√

3)BK − 6BK/2 + 1) + 4
√

3φ′(λ)

√
3BK/2 + 1
1− λ−1

.

Let us now return to (4.22). The estimate h ≤ 1
4BK

, combined with the
estimates for I and II, gives

κ ≤ 6D(N, ν)−1(σBK − τBK/2 + ϑ)

with

σ = (3 +
√

3)φ(η) + 2φ(λ)(3−
√

3), τ = 12φ(λ)− 4− 48φ′(λ)
1− λ−1

> 0,

ϑ =
3 +
√

3
2

+ 2φ(λ) +
16
√

3φ′(λ)
1− λ−1

.

Now recall that D(N, 1) = 18BK − 2AK + 2 ≥ (18 − 2
√

3)BK by Lemma
3.3, so in order to prove κ < γ, it suffices to show

γ(18− 2
√

3)BK
6

> σBK − τBK/2 + ϑ.

Since σ = γ
6 (18− 2

√
3), this is equivalent to

τBK/2 − ϑ > 0,

which is true for N ≥ 7. For N < 7 we get the desired bound for κ from
Table 1 on page 274.
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4.3.3. Asymptotic behaviour. In this section, we calculate the limit of
κ as N → ∞ for ν = j = 1. In the following, the symbol ∼ will denote
asymptotic equality for N → ∞. Since AN ∼

√
3BN , AN+1 ∼ λAN (by

Lemma 3.3), recalling the definition of D(N, 1) = 18BK − 2AK − 2 (where
as above, K = N − 1) we get for N even from (4.17)

κ = 6D(N, 1)−1

[
(1 + 3BK +AK)φ

(
1 +AK −BK

4BK

)
+ 4

K∑
k=2

Ak−1φ

(
A|N/2−k|

A|N/2−k+1|

)]

∼ 6
(18− 2

√
3)BK

[
(3 +

√
3)BKφ

(√
3− 1
4

)
+ 4φ(λ)

K−1∑
k=3N/4

Ak

]
.

Using the identity 2
∑L

k=0Ak = 3BL+1 − AL+1 + 1 from Lemma 3.2, we
further get

κ ∼ 6
(18− 2

√
3)BK

[
(3 +

√
3)BKφ

(√
3− 1
4

)
+ 2φ(λ)(3−

√
3)BK

]
∼ 6

18− 2
√

3

[
(3 +

√
3)φ
(√

3− 1
4

)
+ 2φ(λ)(3−

√
3)
]

= γ = 2 +
33− 18

√
3

13
.

If on the other hand N is odd, from (4.22) we obtain

κ ∼ 6
(18− 2

√
3)BK

[
(3 +

√
3)BKφ

(√
3− 1
4

)

+ 4
K/4∑
k=2

AN−kφ

(
BN/2−k

BN/2−k+1

)]
.

Again, the identity 2
∑L

k=0Ak = 3BL+1−AL+1 +1 and BN+1 ∼ λBN imply
κ ∼ γ in the same way as above. The estimates of this section together with
the numerical results from Table 1 show that for ν = j = 1, we have κ < γ
and limN→∞ κ = γ. We will see in the next section that this is the critical
case, since κ < γ for all other values of ν and j.

4.4. Estimating κ(j). In this section we derive bounds for κ(j) for all
remaining values of ν, j, which will allow us to deduce that ‖Pn,ν‖∞ < γ for
all n, ν ∈ N with 0 ≤ ν ≤ n. To derive these estimates we first need some
bounds for the quotients of consecutive values of g:
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Lemma 4.4. Let N be even. Then

6−1 ≤ gk+1

gk
≤ 6 if k = 0 or k = 2ν − 1,(4.23)

4−1 ≤ gk+1

gk
≤ 4 if k 6= 0 and k 6= 2ν − 1.(4.24)

For j = k = 0, we have the better estimate

4−1 ≤ gk+1

gk
≤ 4.

We get analogous estimates for N odd, but we have to add a further
restriction to the domain of validity of the inequalities:

Lemma 4.5. Let N ≥ 7 be odd and |k − j| ≤ (N − 5)/2 or |k − j| ≥
(N + 5)/2. Then

6−1 ≤ |gk+1|
|gk|

≤ 6 if k = 0 or k = 2ν − 1,

4−1 ≤ |gk+1|
|gk|

≤ 4 if k 6= 0 and k 6= 2ν − 1.

Additionally, for j = k = 0 we have the better estimate

4−1 ≤ |gk+1|
|gk|

≤ 4.

For the proof of Lemma 4.4 and parts of the proof of Lemma 4.5, see
Appendix A.

We note that in the following, we only treat the case of N even. In fact,
as we will show later (in Section 4.4.4), the case of N odd will follow from
these estimates. Combining (4.10) with Remark 4.2 shows for N even that
κ(j) equals

(4.25)

D(N, ν)−1

[
3
2

2ν−1∑
k=0

(gk + gk+1)φ
(
gk+1

gk

)
+ 3

N−1∑
k=2ν

(gk + gk+1)φ
(
gk+1

gk

)]
.

In estimating κ(j), we consider the three cases j = 0, 1 ≤ j ≤ 2ν − 1 and
2ν ≤ j ≤ N − 1 separately.

4.4.1. j = 0. Invoking Lemma 4.4, we get the bound

D(N, ν)κ(0) ≤ 3
2φ(6)I1 + 3

2φ(4)I2 + 3φ(4)I3 =: J,

where

I1 = g2ν−1 + g2ν , I2 =
2ν−2∑
k=0

(gk + gk+1), I3 =
N−1∑
k=2ν

(gk + gk+1).
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Proposition 4.6. For j = 0,

I1 = 2(B2ν−1 +B2ν) +AN−2ν+1,

I2 = 2A2ν−1 − 2 +AN −AN−2ν+1 +AN−2ν(A2ν − 2),
I3 = 2AN −A2ν +AN−2ν −A2νAN−2ν − 1.

Proof. Insert the formulae from Proposition 4.1, use the recurrences
(3.11), (3.12) for Ak and Bk and Lemmas 3.2 and 3.4.

With this proposition and the identity AN = AN−2νA2ν + 3BN−2νB2ν

from Lemma 3.4 we see that

J = 3
2φ(6)[2(B2ν−1 +B2ν) +AN−2ν+1]

+ 3
2φ(4)[4AN − 4 + 3B2νBN−2ν −AN−2ν+1 + 2(A2ν−1 −A2ν)].

Now recall that D(N, ν) = 2AN + 3
2B2νBN−2ν − 2. If we then use the

recurrences (3.11), (3.12) for A2ν−1 and B2ν−1 and set s := 3
2(φ(6)−φ(4)) =

138
1225 it follows with φ(4) = 17

25 that

(4.26) J =
51
25
D(N, ν) + s(6B2ν − 2A2ν +AN−2ν+1).

Plugging in the estimate for B2ν from Lemma 3.3 and remarking that 2ν ≤
N − 1 and N − 2ν + 1 ≤ N − 1, we get

(4.27) J ≤ 51
25
D(N, ν) + s(2

√
3− 1)AN−1.

Using again Lemma 3.3 on AN−1, we obtain

J ≤ 51
25
D(N, ν) + (AN +

√
3)
s

λ
(2
√

3− 1).

Finally, the definition of D(N, ν) and the fact that the function ν 7→ B2ν

BN−2ν is concave for 1 ≤ ν ≤ (N − 1)/2 and therefore attains its minimum
at the border for 2ν = N − 1 yield

AN +
√

3 ≤ D(N, ν)
2

= AN +
3
4
B2νBN−2ν − 1 for N ≥ 3.

Thus,

κ(0) ≤ 51
25

+
s

2λ
(2
√

3− 1) ≈ 2.07719 for N ≥ 3.

For N < 3, this follows from the numerical results of Table 1 on page 274.

4.4.2. 1 ≤ j ≤ 2ν − 1. Just as for j = 0, Lemma 4.4 yields the bound,
for 1 ≤ j ≤ 2ν − 1,

D(N, ν)κ(j) ≤ 3
2φ(6)I1 + 3

2φ(4)I2 + 3φ(4)I3 =: J,
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where now

I1 = g0 + g1 + g2ν−1 + g2ν , I2 =
2ν−2∑
k=1

(gk + gk+1), I3 =
N−1∑
k=2ν

(gk + gk+1).

Proposition 4.7. For 1 ≤ j ≤ 2ν − 1,

I1 = 2(Bj +Bj−1 +B2ν−j +B2ν−j−1)
+ 3BN−2ν+1(Bj +B2ν−j) +AN−j+1 +AN−2ν+j+1,

I2 = 2D(N, ν)− 3(B2ν−j +Bj)(BN−2ν+1 + 2BN−2ν)
+ 2(Aj−1 −AN−j +A2ν−j−1 −AN−2ν+j)−AN−j+1 −AN−2ν+1+j ,

I3 = AN−j +AN−2ν+j −A2ν−j −Aj + 3BN−2ν(Bj +B2ν−j).

Proof. As in the case j = 0, it suffices to insert the formulae from Propo-
sition 4.1, use Lemmas 3.2 and 3.4 and the recurrences (3.5), (3.6), (3.11)
and (3.12).

Now recall that we defined s = 3
2(φ(6)−φ(4)) = 138

1225 and φ(4) = 17
25 ; thus

inserting the formulas of Proposition 4.7 into the definition of J and using
the recursions (3.11) and (3.12) for Aj−1, Bj−1, A2ν−j−1, B2ν−j−1 yields

J =
51
25
D(N, ν) + 2s(3Bj −Aj + 3B2ν−j −A2ν−j)

+ s(AN−j+1 +AN−2ν+j+1 + 3BN−2ν+1(B2ν−j +Bj)) =: J1 + J2 + J3.

From Lemma 3.3 we deduce

J2 ≤ 2s(3−
√

3)(Bj +B2ν−j).

Since the functions x 7→ Ax + AK−x and x 7→ Bx + BK−x are convex for
K > 0 and 0 ≤ x ≤ K, we see that the maximum is attained at the border,
so J is less than or equal to

51
25
D(N,ν)+2s(3−

√
3)(1+B2ν−1)+s(AN+AN−2ν+2+3BN−2ν+1(1+B2ν−1)).

We now require ν ≥ 2. Since we are in the case 1 ≤ j ≤ 2ν − 1, we see
that the only case missing is ν = 1, j = 1, which was treated in Section 4.3.
Using the estimates

• B2ν−1 ≤ λ−1B2ν ≤ λ−1B2νBN−2ν (Lemma 3.3),
• AN−2ν+2 ≤ AN−2 ≤ λ−2AN +

√
3
λ (1 + λ−1) (Lemma 3.3),

• 3BN−2ν+1B2ν−1 ≤ AN/2 (Lemmas 3.3 and 3.4),
• 3BN−2ν+1 ≤ 3BN−3 ≤ 3λ−3BN ≤

√
3λ−3AN (Lemma 3.3),

we get
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J − 51
25
D(N, ν) ≤ s(a1 + a2AN + a3B2νBN−2ν)

= s

(
a1 + a2 +

a2

2
D(N, ν)−

(
3a2

4
− a3

)
B2νBN−2ν

)
with a1 = 2(3 −

√
3) +

√
3
λ (1 + λ−1), a2 = 3

2 + λ−2 +
√

3λ−3 and a3 =
2
λ(3 −

√
3). Since the function ν 7→ B2νBN−2ν is concave and therefore

attains its minimum for 2ν = N − 1 we conclude with the exact value of
3a2/4− a3 ≥ 0 that

J ≤ D(N, ν)
[

51
25

+
sa2

2

]
for N ≥ 4.

Thus finally

(4.28) κ(j) ≤ 51
25

+
sa2

2
≤ 2.130411 for N ≥ 4.

Once again, Table 1 on page 274 shows that we have the same bound if
N < 4.

4.4.3. 2ν ≤ j ≤ N − 1. We invoke Lemma 4.4 again to get

D(N, ν)κ(j) ≤ 3
2φ(6)I1 + 3

2φ(4)I2 + 3φ(4)I3 =: J,

where

I1 = g0 + g1 + g2ν−1 + g2ν , I2 =
2ν−2∑
k=1

(gk + gk+1), I3 =
N−1∑
k=2ν

(gk + gk+1).

Proposition 4.8. For 2ν ≤ j ≤ N − 1,

I1 = (1 +B2ν +B2ν−1)(Aj−2ν +AN−j) +Bj +Bj−1 +BN−j +BN−j+1

+Bj−2ν +Bj−2ν+1 +BN−j+2ν +BN−j+2ν−1,

I2 = Aj−1−Aj−2ν+1+(Aj−2ν +AN−j)(A2ν−1−2)+AN−j+2ν−1−AN−j+1,

I3 = D(N, ν) + (1−A2ν)(Aj−2ν +AN−j)− 3
2B2ν(BN−j +Bj−2ν).

Proof. Insert the formulae for g from Proposition 4.1 and use Lemmas
3.2, 3.4 and the recurrences (3.5), (3.6), (3.11) and (3.12).

If we apply the recurrences (3.5), (3.6), (3.11) and (3.12), Lemma 3.4 and
Proposition 4.8 to J , we see that it simplifies to (recall that s = 3

2(φ(6) −
φ(4)) = 138

1225 and φ(4) = 17
25)

J =
51
25
D(N, ν) + s[3Bj −Aj + (Aj−2ν +AN−j)(3B2ν −A2ν)

+ 3BN−j+2ν −AN−j+2ν +AN−j+1 +Aj−2ν+1].

Remember that 2ν ≤ j ≤ N−1. Since the functions j 7→ AN−j+1+Aj−2ν+1,
j 7→ 3Bj −Aj + 3BN−j+2ν −AN−j+2ν , j 7→ Aj−2ν +AN−j are convex, they
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attain their maximum at the border, in our case for j = 2ν, so

J ≤ 51
25
D(N, ν)

+ s[6B2ν − 2A2ν + 3BN −AN +AN−2ν(3B2ν −A2ν) + 2 +AN−2ν+1].

For 2ν = N − 1, we see with an estimate utilizing Lemma 3.3 and the
recurrences for Ak and Bk that κ(j) ≤ J

D(N,ν) ≤
51
25 + 3

4s ≈ 2.1245 for
N ≥ 4. If 2ν ≤ N − 2, we use the estimates

•
√

3B2ν ≤ A2ν (Lemma 3.3),
• 3BN ≤

√
3AN (Lemma 3.3),

• AN−2ν+1 ≤ AN−1,
• AN−2ν ≤

√
3BN−2ν + 1 (Lemma 3.3),

• 3BN−2νB2ν ≤ AN/2 (Lemmas 3.3 and 3.4),
• AN−1 ≤ λ−1(AN +

√
3) (Lemma 3.3),

• B2ν ≤ B2νBN−2ν/4 (2ν ≤ N − 2)

and obtain further

J − 51
25
D(N, ν) ≤ s[a1 + a2AN + a3B2νBN−2ν ]

= s

(
a1 + a2 +

a2

2
D(N, ν)−

(
3a2

4
− a3

)
B2νBN−2ν

)
with a1 = 2 +

√
3λ−1, a2 = 3

2(
√

3 − 1) + λ−1, a3 = 3
4(3 −

√
3). Since

3
4a2 − a3 > 0, we conclude that

κ(j) =
J

D(N, ν)
≤ 51

25
+
sa2

2
≈ 2.117 for N ≥ 5.

For N < 5, see Table 1 on page 274.

Summary. Up to now we have shown that in particular for N ≥ 5 even,
for all 1 ≤ ν ≤ (N − 1)/2 and all 0 ≤ j ≤ N−1 (except the case ν = 1, j = 1)

(4.29) κ(j) ≤ 2.130411 (see (4.28)).

4.4.4. κ(j) for N odd. Now let N be odd. We recall the formula (4.10)
for κ(j),

κ(j) = D(N, ν)−1

[
3
2

2ν−1∑
k=0

(|gk|+ |gk+1|) · ξj,k + 3
N−1∑
k=2ν

(|gk|+ |gk+1|) · ξj,k
]
,

where

ξj,k =
{

1 if sgn aj,k = sgn aj,k+1,
φ(|gk+1|/|gk|) otherwise.

If we write this formula in the form κ(j) =
∑N−1

k=0 sk, then every summand
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sk admits the (trivial) bound

sk ≤
3(|gk|+ |gk+1|)

D(N, ν)
,

since φ(t) ≤ 1 for all t ≥ 0. We now denote by De(N, ν) and gek the ex-
pressions for D(N, ν) and gk respectively, but for N even. That is, write 1
instead of (−1)N in (4.9) and in the expressions for gk in Proposition 4.1,
no matter if N is even or odd. Then we get

(4.30) sk ≤
3(gek + gek+1)
De(N, ν)

.

Easy estimates for gek and De(N, ν) supply now

(4.31)
3(gek + gek+1)
De(N, ν)

≤ 10−3,

provided (N − 3)/2 ≤ |k− j| ≤ (N + 3)/2 and N ≥ 19. So, let N ≥ 19. De-
fine the index set Λ = {(N − 3)/2, (N − 1)/2, (N + 1)/2, (N + 3)/2}. Then

κ(j) =
N−1∑
k=0

sk =
∑
k/∈Λ

sk +
∑
k∈Λ

sk.

We find that
∑

k/∈Λ sk equals

D(N, ν)−1

[
3
2

2ν−1∑
k=0
k/∈Λ

(|gk|+ |gk+1|)φ(|gk+1|/|gk|)

+ 3
N−1∑
k=2ν
k/∈Λ

(|gk|+ |gk+1|)φ(|gk+1|/|gk|)
]

and by the above considerations this is at most

De(N, ν)−1

[
3
2

2ν−1∑
k=0
k/∈Λ

(gek + gek+1)φ(|gk+1|/|gk|)

+ 3
N−1∑
k=2ν
k/∈Λ

(gek + gek+1)φ(|gk+1|/|gk|)
]
.

We apply Lemma 4.5 to see that the terms φ(|gk+1|/|gk|) admit the same
bounds as for N even. Thus, if we first apply the estimate and then omit
the restriction k /∈ Λ for the summation range, we arrive at estimating the
same sum as for N even. Since for N even we got the bound (4.29) (except
for ν = j = 1), we finally obtain∑

k/∈Λ

sk ≤ 2.130411.
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The remaining sum
∑

k∈Λ sk is now estimated using (4.30) and (4.31):∑
k∈Λ

sk ≤ 4 · 10−3,

so altogether we get
κ(j) ≤ 2.134411

for all N ≥ 19, ν, j (no matter if N is odd or even) except the case ν = j = 1.

Summary. Combining the present section with Sections 4.1 and 4.3
shows that for all N ≥ 19, 0 ≤ ν ≤ n and 0 ≤ j ≤ N − 1, we have the
bound

κ(j) < γ.

The numerical results of Table 1 yield this estimate for N ≤ 20, so we get
the first assertion of our main theorem (i.e. ‖Pn,ν‖∞ < γ for all n ∈ N, 0 ≤ ν
≤ n). The asymptotic value γ for ‖Pn,1‖∞ (as n→∞) was already identified
in Section 4.3. So, the proof Theorem 2.1 is complete.

Appendix

Proof of Lemma 4.4. In order to prove (4.23) and (4.24) we recall the
bounds (3.9) and (3.10):

(A.1) Bl+1 ≤ 4Bl for l ≥ 1, Al+1 ≤ 4Al for l ≥ 0.

We consider several cases depending on the values of j, k, ν:

I. 0 ≤ j ≤ 2ν − 1

I.a. k = 0, j 6= 0. From (A.1) and the formula for gk in Proposition
4.1, we get 6g1 − g0 ≥ 0 immediately. For the reverse inequality
we get, since we assumed j ≥ 1,

6g0 − g1 = (12Bj − 2Bj−1) + (6BN−j −BN−j+1)
+B2ν−j(6AN−2ν −AN−2ν+1)
−AN−j − 3B2ν−jBN−2ν

≥ 10Bj + 2BN−j + 2B2ν−jAN−2ν

−AN−j − 3B2ν−jBN−2ν ,

by (A.1). Since 2BN−j ≥ AN−j (for N−j ≥ 1, which is satisfied)
and AN−2ν ≥

√
3BN−2ν , we see that this is ≥ 0.

I.b. 1 ≤ k ≤ j − 1. Again, with (A.1) and the assumption k ≤ j − 1
we get 4gk−gk+1 ≥ 0 immediately. The second inequality is only
critical for k = j − 1 and in this case we get (with (A.1))

4gk+1 − gk = − 2 + 4BN −BN−1 + (positive term)
≥ 3BN − 2 ≥ 0 for N ≥ 1.
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I.c. j ≤ k ≤ 2ν − 2. For 4gk+1 − gk ≥ 0, it suffices to use (A.1), and
similarly for 4gk − gk+1 ≥ 0 in the case k 6= j. For k = j,

4gk−gk+1 = −2+4BN−BN−1+(positive term) ≥ 0 for N ≥ 1.

I.d. k = 2ν − 1. As in I.c, the distinction between the cases k = j
and k > j gives 6gk − gk+1 ≥ 0. On the other hand (recall that
k = 2ν − 1, j ≤ 2ν − 1)

6gk+1 − gk = (12B2ν−j − 2B2ν−1−j) + (6BN−2ν+j −BN−2ν+1+j)

−AN−2ν+j + (6BjAN−2ν −BjAN−2ν+1)− 3BjBN−2ν

≥ 0 + 2BN−2ν+j −AN−2ν+j + 2BjAN−2ν − 3BjBN−2ν ,

by (A.1). The inequalities 2BN−2ν+j ≥ AN−2ν+j (observe N −
2ν + j ≥ 1) and AN−2ν ≥

√
3BN−2ν then yield 6gk+1 − gk ≥ 0.

I.e. 2ν ≤ k ≤ N−1. Since now k > j, an application of (A.1) suffices
for 4gk − gk+1 ≥ 0. The same reasoning provides 4gk+1 − gk ≥ 0
in the case k 6= N − 1∨ j 6= 0, and for k = N − 1, j = 0 we have

4gk+1 − gk = (4BN −BN−1) +B2ν(4AN−2ν −AN−1−2ν)− 1
≥ 3BN − 1 ≥ 0 for N ≥ 1.

II. 2ν ≤ j ≤ N − 1

II.a. k = 0. Again, 6gk+1 − gk ≥ 0 is a trivial consequence of (A.1).
Furthermore, by (A.1),

6gk − gk+1 = 6BN−j −BN−j+1 −AN−j + (positive terms)
≥ 2BN−j −AN−j ≥ 0.

II.b. 1 ≤ k ≤ 2ν − 2. Here, both 4gk − gk+1 ≥ 0 and 4gk+1 − gk ≥ 0
are consequences of (A.1).

II.c. k = 2ν − 1. The bound 6gk − gk+1 ≥ 0 follows from (A.1). For
the converse we get

6gk+1 − gk = (6Bj−2ν −Bj−2ν+1)−Aj−2ν

+ (6BN−j+2ν −BN−j+2ν−1) + (positive term).

If j > 2ν, we have 6Bj−2ν−Bj−2ν+1 ≥ 2Bj−2ν , which is greater
than Aj−2ν ; if j = 2ν, then 6gk+1 − gk ≥ −2 + 5BN ≥ 0.

II.d. 2ν ≤ k ≤ j − 1. For k > 2ν, 4gk − gk+1 ≥ 0 is a consequence of
(A.1). If k = 2ν, we have

4gk − gk+1 = 2BN−j+2ν −
3
2
B2νBN−j + (positive term).

Since 2BN−j+2ν ≥ AN−j+2ν and 3B2νBN−j = AN−j+2ν −
A2νAN−j ≤ AN−j+2ν , we get 4gk − gk+1 ≥ 0. The converse
estimate 4gk+1 − gk ≥ 0 follows once more from (A.1) provided
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k < j − 1. If on the other hand k = j − 1, we see that

4gk+1 − gk = −1 +AN−j(4Bk+1 −Bk) + (positive term) ≥ 0,

since k = j − 1 ≥ 2ν ≥ 2.
II.e. j ≤ k ≤ N −1. The estimate 4gk− gk+1 ≥ 0 follows from (A.1)

if k > j, as does 4gk+1 − gk ≥ 0 for k < N − 1. For k = j resp.
k = N − 1, the calculations are similar to those in II.d.

Proof of Lemma 4.5. If N is odd, the proof is similar to that of Lemma
4.4 but with twice as many case distinctions, since one has to consider the
cases |k − j| ≤ (N − 5)/2 and |k − j| ≥ (N + 5)/2 separately. We pick
out one special case and omit all the others since they involve very similar
arguments. We will treat values of ν, k, j where 2ν ≤ k ≤ j− 1 and consider
the two cases mentioned above:

I. |j−k| ≤ (N − 5)/2. From Proposition 4.1 and Remark 4.2 we obtain

|gk| = −Bj−k +Ak−2νBN−j+2ν +AN−jBk + 3
2Bk−2νB2νBN−j ,

|gk+1| = −Bj−k−1 +Ak+1−2νBN−j+2ν +AN−jBk+1

+ 3
2Bk+1−2νB2νBN−j .

The inequality 4|gk| − |gk+1| ≥ 0 for k = 2ν is a simple consequence
of Lemmas 3.3 and 3.4. Utilizing Lemma 3.3, we get, for k ≥ 2ν + 1,

(A.2) 4|gk| − |gk+1| ≥ −4Bj−k + (4− λ)Ak−2νBN−j+2ν .

Since N − j + 2ν ≥ 3, A3 = 26 and 2ν ≤ k, Lemma 3.4 implies that

Ak−2ν ≤
Ak−2νAN−j+2ν

A3
=
Ak−2νAN−j+2ν

26
≤
AN−j+k

26
.

This estimate, the definition of the recurrences Ak and Bk and Lem-
mas 3.3 and 3.4 yield

Ak−2νBN−j+2ν ≥
1√
3

(Ak−2νAN−j+2ν −Ak−2ν)

≥ 1
2
√

3
(AN−j+k − 2Ak−2ν) ≥ 2

√
3

13
AN−j+k.

Thus, this estimate and (A.2) imply

4|gk| − |gk+1| ≥ (4− λ)
2
√

3
13

AN−j+k − 4Bj−k

≥ (4− λ)
6
13
BN−j+k − 4Bj−k

≥
(
λ5(4− λ)

6
13
− 4
)
B(N−5)/2 ≥ 0,
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if we use Lemma 3.3 in conjunction with our hypothesis |j − k| ≤
(N − 5)/2. The estimate 4|gk+1| − |gk| ≥ 0 follows analogously.

II. |j−k| ≥ (N + 5)/2. From Proposition 4.1 and Remark 4.2 we obtain
|gk| = Bj−k −Ak−2νBN−j+2ν −AN−jBk − 3

2Bk−2νB2νBN−j ,

|gk+1| = Bj−k−1 −Ak+1−2νBN−j+2ν −AN−jBk+1

− 3
2Bk+1−2νB2νBN−j .

If we employ Lemma 3.3 three times, we obtain

4|gk| − |gk+1| ≥ 3Bj−k − (4− λ)[BN−j+2νAk−2ν

+BkAN−j + 3
2B2νBN−jBk−2ν ]

Since by Lemma 3.4 every summand in the square brackets is ma-
jorized by BN−j+k, we finally get

4|gk| − |gk+1| ≥ 3(Bj−k − (4− λ)BN−j+k) ≥ 0,

by the hypothesis |j − k| ≥ (N + 5)/2. For the inequality 4|gk+1| −
|gk| ≥ 0, we first omit some positive terms to get

4|gk+1| − |gk| ≥ 4Bj−k−1 −Bj−k − 4Ak+1−2νBN−j+2ν

− 4AN−jBk+1 − 6Bk+1−2νB2νBN−j .

As above, Lemmas 3.4 and 3.3 yield

4|gk+1| − |gk| ≥ 4Bj−k−1 −Bj−k − 10BN−j+k+1

≥ (4− λ)Bj−k−1 − 1− 10BN−j+k+1.

Now we employ again Lemma 3.3 and the fact that |j−k|≥(N + 5)/2
to get

4|gk+1| − |gk| ≥ (λ3(4− λ)− 10)B(N−3)/2 − 1 ≥ 0.
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[7] Z. Ciesielski and A. Niedźwiecka, A conversation with the Odra 120 computer about
approximation by polygonal functions, Wiadomości Mat. 20 (1977), 29–34 (in Pol-
ish).

[8] C. de Boor, On the convergence of odd-degree spline interpolation, J. Approx. Theory
1 (1968), 452–463.

[9] J. Domsta, A theorem on B-splines, Studia Math. 41 (1972), 291–314.
[10] —, A theorem on B-splines. II. The periodic case, Bull. Acad. Polon. Sci. Sér. Sci.

Math. Astronom. Phys. 24 (1976), 1077–1084.
[11] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monogr. 75,

Amer. Math. Soc., Providence, RI, 1989.
[12] K. A. Keryan, The unconditional basis property of a general Franklin periodic system

in Lp[0, 1], 1 < p < ∞, Izv. Nats. Akad. Nauk Armenii Mat. 40 (2005), 18–60 (in
Russian).

[13] —, On boundedness of L2 projections on the space of periodic splines of order 3,
East J. Approx. 14 (2008), 451–465.

[14] K. I. Oskolkov, The upper bound of the norms of orthogonal projections onto sub-
spaces of polygonals, in: Approximation Theory (Warszawa, 1975), Banach Center
Publ. 4, PWN, Warszawa, 1979, 177–183.

[15] P. Oswald, The norm in C of orthoprojections onto subspaces of piecewise linear
functions, Mat. Zametki 21 (1977), 495–502 (in Russian).

[16] A. Yu. Shadrin, The L∞-norm of the L2-spline projector is bounded independently of
the knot sequence: a proof of de Boor’s conjecture, Acta Math. 187 (2001), 59–137.

Markus Passenbrunner
Department of Analysis
J. Kepler University
Altenberger Strasse 69
A-4040 Linz, Austria
E-mail: passenbr@bayou.uni-linz.ac.at

Received December 15, 2010
Revised version July 27, 2011 (7066)

http://dx.doi.org/10.4064/sm164-1-4
http://dx.doi.org/10.1016/0021-9045(68)90033-6
http://dx.doi.org/10.1007/BF02392832



	Introduction
	Formulation of the Main Theorem
	Preliminaries
	Orthogonal projections
	Solutions of fk-1-4fk+fk+1=0 and their properties

	Proof of the Main Theorem
	Equally spaced knots
	Non-equally spaced knots
	The main case =j=1
	Estimates for N even
	Estimates for N odd
	Asymptotic behaviour

	Estimating (j)
	j=0
	1j2-1
	2jN-1
	(j) for N odd



