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Bilinear operators associated with Schrödinger operators

by

Chin-Cheng Lin (Chung-Li), Ying-Chieh Lin (Chung-Li),
Heping Liu (Beijing) and Yu Liu (Beijing)

Abstract. Let L = −∆ + V be a Schrödinger operator in Rd and H1
L(Rd) be the

Hardy type space associated to L. We investigate the bilinear operators T+ and T− defined
by

T±(f, g)(x) = (T1f)(x)(T2g)(x)± (T2f)(x)(T1g)(x),

where T1 and T2 are Calderón–Zygmund operators related to L. Under some general
conditions, we prove that either T+ or T− is bounded from Lp(Rd)× Lq(Rd) to H1

L(Rd)
for 1 < p, q < ∞ with 1/p + 1/q = 1. Several examples satisfying these conditions are
given. We also give a counterexample for which the classical Hardy space estimate fails.

1. Introduction. Among other motivations, due to their close relations
to the Cauchy integral along Lipschitz curves, Calderón commutators, and
compensated compactness, bilinear (or multilinear) operators have attracted
much attention. In [1, 2, 6] and references therein, Hardy space estimates of
bilinear operators are extensively studied. In this article we consider bilinear
operators related to a Schrödinger operator L. We establish an estimate for
them with respect to a Hardy type space associated with the Schrödinger
operator L, under some general conditions. Some examples satisfying these
conditions are given. We also give a counterexample for which the classical
Hardy space estimate fails.

Let L = −∆ + V be a Schrödinger operator, where ∆ is the Laplacian
on Rd, d ≥ 3, and V belongs to a certain reverse Hölder class RHq. A non-
negative locally Lq integrable function V on Rd is said to belong to RHq

(1 < q <∞) if there exists C > 0 such that the reverse Hölder inequality

(1.1)
(

1
|B|

�

B

V (x)q dx
)1/q

≤ C
(

1
|B|

�

B

V (x) dx
)

holds for every ball B in Rd. Obviously, RHq2
⊂ RHq1

if q2 > q1 . But it
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is important that the RHq class has a property of “self-improvement”: if
V ∈ RHq, then V ∈ RHq+ε for some ε > 0. Throughout this article, we
always assume that 0 6≡ V ∈ RHd/2. Thus, V ∈ RHq0

for some q0 > d/2.
Let {Ts}s>0 = {es∆}s>0 be the heat semigroup with the kernel Hs(x, y)

= Hs(x − y). Because V ≥ 0 and V ∈ Ld/2loc (Rd), the Schrödinger operator
L = −∆+V generates a (C0) contraction semigroup {TLs }s>0 = {e−sL}s>0.
Let KL

s (x, y) denote the kernel of TLs . By the Trotter product formula
(cf. [5]),

(1.2) 0 ≤ KL
s (x, y) ≤ Hs(x, y) = (4πs)−d/2e−|x−y|

2/(4s).

It is well-known that the maximal function

Mf(x) = sup
s>0
|Tsf(x)|

characterizes the Hardy space H1(Rd), namely, f ∈ H1(Rd) if and only
if Mf ∈ L1(Rd), and ‖f‖H1 ∼ ‖Mf‖L1 . A Hardy type space H1

L(Rd) as-
sociated with the Schrödinger operator L was introduced by Dziubański
and Zienkiewicz [4]. The maximal function with respect to the semigroup
{TLs }s>0 is defined by

MLf(x) = sup
s>0
|TLs f(x)|.

A function f ∈ L1(Rd) is said to be in H1
L(Rd) if MLf ∈ L1(Rd). The norm

of such a function is defined by ‖f‖H1
L

= ‖MLf‖L1 . It is visible from (1.2)
that H1(Rd) ⊂ H1

L(Rd), by the atomic decomposition of H1
L(Rd) (see [4]).

Following [7], we define the auxiliary function ρ(x, V ) = ρ(x) by

ρ(x) = sup
r>0

{
r :

1
rd−2

�

B(x,r)

V (y) dy ≤ 1
}
, x ∈ Rd.

The auxiliary function ρ(x) plays an important role in studying the bound-
edness of singular integral operators related to the Schrödinger operator L
as well as the atomic decomposition of H1

L(Rd) (see [4, 7]).
In this article we consider the bilinear operators

T±(f, g)(x) := (T1f)(x)(T2g)(x)± (T2f)(x)(T1g)(x),

where f ∈ Lp(Rd), g ∈ Lq(Rd) with 1 < p, q < ∞ and 1/p + 1/q = 1, and
Ti (i = 1, 2) are Calderón–Zygmund operators related to the Schrödinger
operator L and satisfying the following two conditions:

(i) There exist parallel Calderón–Zygmund operators T̃i related to the
Laplacian ∆ and a constant δ > 0 such that

(1.3) |Ti(x, y)− T̃i(x, y)| ≤ C

ρ(y)δ|x− y|d−δ
, x 6= y,
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where Ti(x, y) and T̃i(x, y) denote the kernels of Ti and T̃i, respec-
tively.

(ii) One of the parallel bilinear operators

T̃±(f, g)(x) := (T̃1f)(x)(T̃2g)(x)± (T̃2f)(x)(T̃1g)(x)

has the vanishing moment; that is, either T̃+ or T̃− satisfies

(1.4)
�

Rd
T̃±(f, g)(x) dx = 0 for all f, g ∈ C∞c (Rd).

We will show that either T+ or T− is bounded from Lp(Rd) × Lq(Rd) to
H1
L(Rd).

Theorem 1.1. Suppose that the bilinear operators T± are defined as
above. Let 1 < p, q < ∞ and 1/p + 1/q = 1. Then either T+ or T− (but
not both), which corresponds to the parallel bilinear operator satisfying (1.4),
maps Lp(Rd)×Lq(Rd) into H1

L(Rd) and there exists a constant C > 0 such
that

‖T±(f, g)‖H1
L(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

The proof of Theorem 1.1 will be given in the next section. In Section 3,
we give some examples which satisfy the conditions of Theorem 1.1, and
also a counterexample for which the standard Hardy space estimate fails.

We will use C to denote a positive constant, which is not necessarily
the same at each occurrence and may depend on the dimension d and the
constant in (1.1). By A ∼ D, we mean that there exists a constant C > 1
such that 1/C ≤ A/D ≤ C. For a given ball B, we denote by B∗ the
concentric ball with twice the radius, and B∗∗ = (B∗)∗.

2. The proof of Theorem 1.1. Firstly, we recall some useful facts
about the auxiliary function ρ(x). It is known that 0 < ρ(x) < ∞ for any
x ∈ Rd (cf. [7]). Therefore,

Rd =
∞⋃

k=−∞
Ωk,

where
Ωk = {x ∈ Rd : 2−k−1 ≤ ρ(x) < 2−k}.

Lemma 2.1 ([4]). There exists a constant N = N(V ) and a sequence
{x(k,α) ∈ Ωk : k, α ∈ Z} of points such that the family {B(k,α)} of critical
balls defined by B(k,α) = {x ∈ Rd : |x− x(k,α)| < ρ(x(k,α))} satisfies

(i)
⋃

(k,α)B(k,α) = Rd;
(ii) #{(k′, α′) : B∗∗(k′,α′) ∩B

∗∗
(k,α) 6= ∅} ≤ N for every (k, α).

Furthermore, there exists a family {ξ(k,α)}k,α∈Z of C∞ functions such that
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(iii) supp ξ(k,α) ⊆ B∗(k,α);
(iv) 0 ≤ ξ(k,α)(x) ≤ 1 and

∑
(k,α) ξ(k,α)(x) = 1 for all x ∈ Rd;

(v) ‖∇ξ(k,α)‖∞ ≤ C/ρ(x(k,α)).

Lemma 2.2 ([7]). There exists l0 > 0 such that

1
C

(
1 +
|x− y|
ρ(x)

)−l0
≤ ρ(y)
ρ(x)

≤ C
(

1 +
|x− y|
ρ(x)

) l0
l0+1

, ∀x, y ∈ Rd.

In particular, ρ(x) ∼ ρ(y) if |x− y| < Cρ(x).

To prove Theorem 1.1, we need the following estimates for the kernel
KL
s (x, y):

Lemma 2.3 ([3, 4]). For any l > 0, there exists Cl > 0 such that

KL
s (x, y) ≤ Cls−d/2e−|x−y|

2/(5s)

(
1 +

√
s

ρ(x)
+
√
s

ρ(y)

)−l
.(2.1)

Also, there exists a constant C > 0 such that

|KL
s (x, y)−Hs(x, y)| ≤ C

ρ(x)σ|x− y|d−σ
,(2.2)

where σ = 2− d/q0 > 0.

We also need the following classical result about bilinear operators, which
is a special case of [6, Theorem I].

Lemma 2.4. Suppose that {T 1
i } and {T 2

i }, i = 1, . . . , N (N ≥ 2), are
Calderón–Zygmund operators on Rd. Let

S(f, g) =
N∑
i=1

(T 1
i f)(T 2

i g).

If �

Rd
S(f, g)(x) dx = 0 for all f, g ∈ C∞c (Rd),

then, for 1 < p, q < ∞ with 1/p + 1/q = 1, S maps Lp(Rd) × Lq(Rd) into
H1(Rd) and there exists a constant C > 0 such that

‖S(f, g)‖H1(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).
Remark 2.5. Although Grafakos [6] proves his results for convolution

operators, Lemma 2.4 can be proved for (generalized) Calderón–Zygmund
operators by the same argument.

We are ready to show Theorem 1.1.

Proof of Theorem 1.1. We give the proof for the bilinear operator T−

only; the proof for T+ is similar. Let f ∈ Lp(Rd) and g ∈ Lq(Rd). Assume
that the parallel Calderón–Zygmund operators T̃i (i = 1, 2) and the parallel
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bilinear operator T̃− satisfy (1.3) and (1.4). We split T−(f, g) into three
parts,

(2.3) T−(f, g)(x) = T−1 (f, g)(x) + T−2 (f, g)(x) + T̃−(f, g)(x),

where
T−1 (f, g) = (T1f − T̃1f)(T2g)− (T2f − T̃2f)(T1g),

T−2 (f, g) = (T̃1f)(T2g − T̃2g)− (T̃2f)(T1g − T̃1g).

It follows from Lemma 2.4 that T̃−(f, g) ∈ H1(Rd) and

‖T̃−(f, g)‖H1(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

Since H1(Rd) ⊂ H1
L(Rd), we have T̃−(f, g) ∈ H1

L(Rd) and

(2.4) ‖T̃−(f, g)‖H1
L(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

It suffices to show T−1 (f, g) + T−2 (f, g) ∈ H1
L(Rd), that is,

ML(T−1 (f, g) + T−2 (f, g))(x) = sup
s>0
|TLs (T−1 (f, g) + T−2 (f, g))(x)| ∈ L1(Rd).

For simplicity we write F (f, g)(x) = T−1 (f, g)(x) + T−2 (f, g)(x). Choose a
sequence {x(k,α)} of points and a family {ξ(k,α)} of functions as in Lemma
2.1. Then

(2.5) ‖T−1 (f, g) + T−2 (f, g)‖H1
L(Rd)

≤
∑
(k,α)

( �

(B∗∗
(k,α)

)c

+
�

B∗∗
(k,α)

)
sup
s>0
|TLs (ξ(k,α)F (f, g))(x)| dx

=:
∑
(k,α)

I(k,α) +
∑
(k,α)

J(k,α).

By (2.1),

I(k,α) =
�

(B∗∗
(k,α)

)c

sup
s>0

∣∣∣ �
Rd
KL
s (x, y)ξ(k,α)(y)F (f, g)(y)dy

∣∣∣ dx
≤ Cl

�

(B∗∗
(k,α)

)c

sup
s>0

�

Rd
ρ(y)ls−(d+l)/2e−|x−y|

2/(5s)|ξ(k,α)(y)F (f, g)(y)| dy dx

≤ Cl
�

(B∗∗
(k,α)

)c

�

Rd

ρ(y)l

|x− y|d+l
|ξ(k,α)(y)F (f, g)(y)| dy dx.

For x /∈ B∗∗(k,α) and y ∈ supp ξ(k,α) ⊂ B∗(k,α), Lemma 2.2 yields ρ(y) ∼
ρ(x(k,α)) and

|x− y| ≥ |x− x(k,α)| − |x(k,α) − y| ≥ 1
2 |x− x(k,α)|.
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Thus,

I(k,α) ≤ Cl‖ξ(k,α)F (f, g)‖L1(Rd)

�

(B∗∗
(k,α)

)c

ρ(x(k,α))l

|x− x(k,α)|d+l
dx

≤ Cl‖ξ(k,α)F (f, g)‖L1(Rd),

and hence ∑
(k,α)

I(k,α) ≤ C
∑
(k,α)

‖ξ(k,α)F (f, g)‖L1(Rd) = C‖F (f, g)‖L1(Rd)(2.6)

≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).
To estimate

∑
(k,α) J(k,α), we write∑

(k,α)

J(k,α) ≤
∑
(k,α)

�

B∗∗
(k,α)

sup
s≥ρ(x(k,α))

2

|TLs (ξ(k,α)F (f, g))(x)| dx(2.7)

+
∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|TLs (ξ(k,α)F (f, g))(x)| dx

=: J1 + J2.

For J1, we apply (2.1) and Lemma 2.2 to obtain
�

B∗∗
(k,α)

sup
s≥ρ(x(k,α))

2

|TLs (ξ(k,α)F (f, g))(x)| dx

≤ Cl
�

B∗∗
(k,α)

sup
s≥ρ(x(k,α))

2

�

Rd
ρ(y)ls−(d+l)/2e−|x−y|

2/(5s)|ξ(k,α)(y)F (f, g)(y)| dy dx

≤ Cl
�

B∗∗
(k,α)

sup
s≥ρ(x(k,α))

2

�

Rd
s−(d+l)/2ρ(x(k,α))

l|ξ(k,α)(y)F (f, g)(y)| dy dx

≤ Cl‖ξ(k,α)F (f, g)‖L1(Rd)

�

B∗∗
(k,α)

ρ(x(k,α))
−d dx ≤ Cl‖ξ(k,α)F (f, g)‖L1(Rd)

and hence

(2.8) J1 ≤ C
∑
(k,α)

‖ξ(k,α)F (f, g)‖L1(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

To estimate J2, we decompose

(2.9) J2 ≤
∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|(TLs − Ts)(ξ(k,α)F (f, g))(x)| dx

+
∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (f, g) + ξ(k,α)T

−
2 (f, g))(x)| dx

=: J21 + J22.
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For x ∈ B∗∗(k,α) and y ∈ supp ξ(k,α) ⊂ B∗(k,α), by Lemma 2.2 we have |x−y| <
6ρ(x(k,α)) ∼ ρ(x). Then the estimate (2.2) gives

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|(TLs − Ts)(ξ(k,α)F (f, g))(x)| dx

≤ C
�

B∗∗
(k,α)

�

Rd

1
ρ(x)σ|x− y|d−σ

|ξ(k,α)(y)F (f, g)(y)| dy dx

≤ C
�

Rd
|ξ(k,α)F (f, g)| ρ(x(k,α))

−σ
( �

|x|<6ρ(x(k,α))

dx

|x|d−σ

)
dy

≤ C‖ξ(k,α)F (f, g)‖L1(Rd),

which yields

(2.10) J21 ≤ C
∑
(k,α)

‖ξ(k,α)F (f, g)‖L1(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

We still have to estimate J22. For s > 0, let Γ0 = {y ∈ Rd : |x−y| <
√
s}

and Γn = {y ∈ Rd : 2n−1√s ≤ |x− y| < 2n
√
s}, n ∈ N. Then

Ts(ξ(k,α)T
−
m(f, g))(x) =

∞∑
n=0

Ts(ξ(k,α)T
−
m(f, g)χΓn )(x), m = 1, 2,

where χΓn denotes the characteristic function of the set Γn. Let η ∈ C∞0 (Rd)
with 0 ≤ η ≤ 1 satisfy η(y) = 1 for |y| < 2 and η(y) = 0 for |y| > 4. Set
ηn0 (y) = η

( x−y
2n
√
s

)
and ηn1 (y) = 1− ηn0 (y), n ∈ N∪ {0}. We split the operator

T−m(f, g) into four parts:

T−m(f, g)

= T−m(f, ηn1 g) + T−m(ηn1 f, g)− T−m(ηn1 f, η
n
1 g) + T−m(ηn0 f, η

n
0 g), m = 1, 2.

We first consider
�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (f, ηn1 g)χΓn )(x)| dx.

Write

T−1 (f, ηn1 g) = (U1
1 f)U2

1 (ηn1 g)− (U1
2 f)U2

2 (ηn1 g),

where

U1
1 = T1 − T̃1, U1

2 = T2 − T̃2, U2
1 = T2, U2

2 = T2.

Then
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|Ts(ξ(k,α)T
−
1 (f, ηn1 g)χΓn )(x)|

≤
2∑
l=1

�

Γn

Hs(x− y)|U1
l f(y)| |U2

l (ηn1 g)(y)− U2
l (ηn1 g)(x)| dy

+
2∑
l=1

�

Γn

Hs(x− y)|U1
l f(y)| |U2

l (ηn1 g)(x)| dy

≤ C2nde−22n−4
2∑
l=1

1
(2n
√
s)d

�

|x−y|<2n
√
s

|U1
l f(y)| |U2

l (ηn1 g)(y)−U2
l (ηn1 g)(x)| dy

+ C2nde−22n−4
2∑
l=1

1
(2n
√
s)d

�

|x−y|<2n
√
s

|U1
l f(y)| |U2

l (ηn1 g)(x)| dy,

where we have used (1.2) in the last inequality. Because U jl (j, l = 1, 2)
are Calderón–Zygmund operators, their kernels satisfy the standard kernel
estimate for some δ > 0. For |x− y| ≤ 2n

√
s,

|U2
l (ηn1 g)(y)− U2

l (ηn1 g)(x)| ≤
�

|x−z|≥2n+1
√
s

|x− y|δ

|x− z|d+δ
|(ηn1 g)(z)| dz

≤ CM(ηn1 g)(x),
where M is the Hardy–Littlewood maximal operator. Thus,

|Ts(ξ(k,α)T
−
1 (f, ηn1 g)χΓn )(x)|

≤ C2nde−22n−4
2∑
l=1

(
M(U1

l f)(x)M(ηn1 g)(x) +M(U1
l f)(x)|U2

l (ηn1 g)(x)|
)

and hence∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (f, ηn1 g)χΓn )(x)| dx

≤ C2nde−22n−4
�

Rd

2∑
l=1

M(U1
l f)(x)(M(ηn1 g)(x) + |U2

l (ηn1 g)(x)|) dx

≤ C2nde−22n−4
2∑
l=1

‖M(U1
l f)‖Lp(Rd)(‖M(g)‖Lq(Rd) + ‖U2

l g‖Lq(Rd))

≤ C2nde−22n−4‖f‖Lp(Rd)‖g‖Lq(Rd).
A similar argument shows∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (ηn1 f, g)χΓn )(x)| dx

≤ C2nde−22n−4‖f‖Lp(Rd)‖g‖Lq(Rd)
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and∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (ηn1 f, η

n
1 g)χΓn )(x)| dx

≤ C2nde−22n−4‖f‖Lp(Rd)‖g‖Lq(Rd).

Finally we consider the term T−1 (ηn0 f, η
n
0 g). Using (1.2) and (1.3), we obtain

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (ηn0 f, η

n
0 g)χΓn )(x)|

≤
2∑
l=1

sup
0<s<ρ(x(k,α))

2

�

Γn

Hs(x− y)|U1
l (ηn0 f)(y)| |ξ(k,α)(y)| |U2

l (ηn0 g)(y)| dy

≤ sup
0<s<ρ(x(k,α))

2

�

Γn

Hs(x− y)
( �

Rd
|T1(y, z)− T̃1(y, z)| |(ηn0 f)(z)| dz

)
× |T2(ηn0 g)(y)| dy

+ sup
0<s<ρ(x(k,α))

2

�

Γn

Hs(x− y)
( �

Rd
|T2(y, z)− T̃2(y, z)| |(ηn0 f)(z)| dz

)
× |T1(ηn0 g)(y)| dy

≤ Ce−22n−4
sup

0<s<ρ(x(k,α))
2

s−d/2‖ηn0 g‖Lp1 (Rd)

×
{ �

Γn

( �

Rd

|(ηn0 f)(z)|
ρ(z)δ|y − z|d−δ

dz

)p′1
dy

}1/p′1
,

where 1/p′1 + 1/p1 = 1. For z ∈ supp ηn0 = {y ∈ Rd : |x − y| ≤ 2n+2√s},
x ∈ B∗∗(k,α), and s < ρ(x(k,α))2, we have |z−x(k,α)| ≤ 2n+3ρ(x(k,α)). It follows
from Lemma 2.2 that ρ(z)−δ ≤ C2nδl0ρ(x(k,α))−δ for a fixed constant l0 > 0.
Hence, a well-known result for fractional integrals gives

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (ηn0 f, η

n
0 g)χΓn )(x)|

≤ C2nδl0e−22n−4
sup

0<s<ρ(x(k,α))
2

s−d/2ρ(x(k,α))
−δ
∥∥∥∥|ηn0 f | ∗ 1

| · |d−δ

∥∥∥∥
Lp
′
1 (Rd)

× ‖ηn0 g‖Lp1 (Rd)

≤ C2nδl0e−22n−4
sup

0<s<ρ(x(k,α))
2

(2n
√
s)d+δ√

sdρ(x(k,α))δ
1

(2n
√
s)d+δ

‖ηn0 f‖Lq1 (Rd)

× ‖ηn0 g‖Lp1 (Rd)

≤ C2n(d+δ+δl0)e−22n−4
M(|f |q1)1/q1(x)M(|g|p1)1/p1(x),
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where 1/p′1 = 1/q1 − δ/d. Since 1/p1 + 1/q1 = 1 + δ/d > 1/p+ 1/q, we are
always able to choose p1 and q1 such that 1 < p1 < q and 1 < q1 < p. Then∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (ηn0 f, η

n
0 g)χΓn )(x)| dx

≤ C2n(d+δ+δl0)e−22n−4
�

Rd
M(|f |q1)1/q1(x)M(|g|p1)1/p1(x) dx

≤ C2n(d+δ+δl0)e−22n−4

×
( �

Rd
M(|f |q1)p/q1(x) dx

)1/p( �

Rd
M(|g|p1)q/p1(x) dx

)1/q

≤ C2n(d+δ+δl0)e−22n−4‖f‖Lp(Rd)‖g‖Lq(Rd).

Therefore,

(2.11)
∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
1 (f, g))(x)| dx

≤
∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

∞∑
n=0

|Ts(ξ(k,α)T
−
1 (f, g)χΓn )(x)| dx

≤ C‖f‖Lp(Rd)‖g‖Lq(Rd)
∞∑
n=0

2n(d+δ+δl0)e−22n−4 ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

Similarly,

(2.12)
∑
(k,α)

�

B∗∗
(k,α)

sup
0<s<ρ(x(k,α))

2

|Ts(ξ(k,α)T
−
2 (f, g))(x)| dx

≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

Both (2.11) and (2.12) imply

(2.13) J22 ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

Combining (2.3)–(2.10) and (2.13), we complete the proof for the bilinear
operator T−.

3. Examples. In this section we give some examples to illustrate our
result.

Example 3.1. Let T1 = Liγ1 , T2 = Liγ2 , γ1, γ2 ∈ R. Then T1, T2 are
Calderón–Zygmund operators (cf. [7, Theorem 0.4]) and the parallel opera-
tors T̃1 = (−∆)iγ1 , T̃2 = (−∆)iγ2 satisfy the condition (1.3) with δ = 2−d/q0
(cf. [7, (4.11)]). It is easy to verify that T̃−(f, g) = (T̃1f)(T̃2g)− (T̃2f)(T̃1g)
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has the vanishing moment. Therefore, the bilinear operator T−(f, g) =
(T1f)(T2g)− (T2f)(T1g) satisfies the assumptions of Theorem 1.1.

Example 3.2. Suppose V ∈RHq0
for some q0 > d. Let T1 =L−1/2∂/∂xj ,

T2 = L−1/2∂/∂xk, 1 ≤ j, k ≤ d. Then T1, T2 are Calderón–Zygmund opera-
tors (cf. [7, Theorem 0.8]) and the parallel operators T̃1 = (−∆)−1/2∂/∂xj =
Rj , T̃2 = (−∆)−1/2∂/∂xk = Rk are the classical Riesz transforms, which sat-
isfy the condition (1.3) with δ = 2−d/q0 (cf. [7, (5.9)]). Because T̃−(f, g) =
(T̃1f)(T̃2g) − (T̃2f)(T̃1g) has the vanishing moment, the bilinear opera-
tor T−(f, g) = (T1f)(T2g) − (T2f)(T1g) satisfies the assumptions of The-
orem 1.1.

Example 3.3. Suppose V ∈ RHq0
for some q0 > d. Let T1 = (∂/∂xj)

◦ L−1∂/∂xk, T2 = (∂/∂xl)L−1∂/∂xm, 1 ≤ j, k, l,m ≤ d. Then T1, T2 are
Calderón–Zygmund operators (cf. [7, Theorem 0.8]). The parallel operators
T̃1 = RjRk, T̃2 = RlRm also satisfy the condition (1.3) with δ = 2 − d/q0 .
This will be proved in Lemma 3.7 below. As in Examples 3.1 and 3.2,
T̃−(f, g) = (T̃1f)(T̃2g) − (T̃2f)(T̃1g) has the vanishing moment. Thus the
bilinear operator T−(f, g) = (T1f)(T2g) − (T2f)(T1g) satisfies the assump-
tions of Theorem 1.1.

Example 3.4. Suppose V ∈RHq0
for some q0 > d. Let T1 =L−1/2∂/∂xj ,

T2 = (∂/∂xk)L−1∂/∂xl, 1 ≤ j, k, l ≤ d. Then the parallel bilinear operator
T̃+(f, g) = (T̃1f)(T̃2g) + (T̃2f)(T̃1g) has the vanishing moment. It follows
that the bilinear operator T+(f, g) = (T1f)(T2g) + (T2f)(T1g) satisfies the
assumptions of Theorem 1.1.

Example 3.5. Suppose V ∈ RHq0
for some q0 > d. Let T1 = Liγ , γ ∈ R,

T2 = L−1/2∂/∂xj , 1 ≤ j ≤ d. As in Example 3.4, the parallel operator
T̃+(f, g) = (T̃1f)(T̃2g) + (T̃2f)(T̃1g) has the vanishing moment. It follows
that the bilinear operator T+(f, g) = (T1f)(T2g) + (T2f)(T1g) satisfies the
assumptions of Theorem 1.1.

We also give a counterexample for which the classical Hardy space esti-
mate fails.

Example 3.6. Consider the Hermite operator H = −∆ + |x|2 on R3.
We have

H =
1
2

3∑
j=1

(AjA∗j +A∗jAj),

where

Aj = − ∂

∂xj
+ xj , A∗j =

∂

∂xj
+ xj , j = 1, 2, 3.



292 C.-C. Lin et al.

Let

Tj = H−1/2 ∂

∂xj
=

1
2
H−1/2(A∗j −Aj),

and f, g ∈ L2(R3). In view of Example 3.2, the bilinear operator T−(f, g) =
(T1f)(T2g)−(T2f)(T1g) belongs to the Hardy type space H1

H(Rd) associated
with the Hermite operator H.

The 3-dimensional Hermite functions Φµ(x) are the eigenfunctions of H
and form an orthonormal basis for L2(R3). Moreover,

AjΦµ = (2µj + 2)1/2Φµ+ej , A∗jΦµ = (2µj)1/2Φµ−ej ,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) (cf. [8, pp. 5–6]), and

H−1/2Φµ = (2|µ|+ 3)−1/2Φµ.

Let f(x) = Φe1(x) and g(x) = Φe2(x). We have

T1f(x) =
1
2
H−1/2(A∗1 −A1)Φe1(x) =

1
2

(√
2√
3
Φ(0,0,0)(x)− 2√

7
Φ(2,0,0)(x)

)
,

T2f(x) =
1
2
H−1/2(A∗2 −A2)Φe1(x) =

1
2

(
0−
√

2√
7
Φ(1,1,0)(x)

)
,

T1g(x) =
1
2
H−1/2(A∗1 −A1)Φe2(x) =

1
2

(
0−
√

2√
7
Φ(1,1,0)(x)

)
,

T2g(x) =
1
2
H−1/2(A∗2 −A2)Φe2(x) =

1
2

(√
2√
3
Φ(0,0,0)(x)− 2√

7
Φ(0,2,0)(x)

)
.

It follows from the orthogonality of {Φµ} that
�

R3

T−(f, g)(x) dx =
�

R3

(T1f(x)T2g(x)− T2f(x)T1g(x)) dx

=
1
6
− 1

14
=

2
21
.

Thus T−(f, g) has a nonzero integral, which implies T−(f, g) /∈ H1(R3).

Finally, we prove that the parallel operators in Example 3.3 satisfy the
condition (1.3). Let RLj,k(x, y) and Rj,k(x, y) denote the kernels of the oper-
ators (∂/∂xj)L−1∂/∂xk and RjRk for 1 ≤ j, k ≤ d, respectively.

Lemma 3.7. Suppose V ∈ RHq0
, q0 > d, and δ = 2 − d/q0. Then, for

1 ≤ j, k ≤ d,

|RLj,k(x, y)−Rj,k(x, y)| ≤ C

ρ(y)δ|x− y|d−δ
, x 6= y.(3.1)

To prove Lemma 3.7, we need the following three lemmas (see [7]).
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Lemma 3.8. Suppose V ∈ RHq0
, q0 > d/2. For 0 < r < R <∞,

1
rd−2

�

B(x,r)

V (y) dy ≤ C
(
r

R

)2−d/q0 1
Rd−2

�

B(x,R)

V (y) dy.

Lemma 3.9. Suppose V ∈ RHq0
, q0 > d/2. Then

1
rd−2

�

B(x,r)

V (y) dy ∼ 1 if and only if r ∼ ρ(x).

Lemma 3.10. Suppose V ∈ RHq0
, q0 > d. There exist C > 0 and l0 > 0

such that
1

Rd−2

�

B(x,R)

V (y) dy ≤ C
(

1 +
R

ρ(x)

)l0
and �

B(x,R)

V (y)
|x− y|d−1

dy ≤ C

Rd−1

�

B(x,R)

V (y) dy.

Proof of Lemma 3.7. If |x− y| > ρ(y), the estimate (3.1) is trivial. Sup-
pose |x− y| ≤ ρ(y). Let ΓL(x, y) and Γ (x, y) be the fundamental solutions
for L and −∆, respectively. Note that

−∆x(ΓL(x, y)− Γ (x, y)) = −V (x)ΓL(x, y),

where ∆x denotes the Laplacian in the variable x. We have

ΓL(x, y)− Γ (x, y) = −
�

Rd
Γ (x, z)V (z)ΓL(z, y) dz.

Thus,
∂

∂xj

∂

∂yk
ΓL(x, y)− ∂

∂xj

∂

∂yk
Γ (x, y) = −

�

Rd

∂

∂xj
Γ (x, z)V (z)

∂

∂yk
ΓL(z, y) dz.

Let R = |x− y|/4. By [7, (6.1)], for any l > 0, there exists Cl such that∣∣∣∣ ∂∂xj ∂

∂yk
ΓL(x, y)− ∂

∂xj

∂

∂yk
Γ (x, y)

∣∣∣∣
≤

�

Rd

Cl
|x− z|d−1

· V (z) dz
(1 + |y − z| ρ(h)−1)l|y − z|d−1

=
�

|x−z|<R/2

+
�

|y−z|<R/2

+
�

|x−z|≥R/2, |y−z|≥R/2

= I1 + I2 + I3.

Using Lemmas 3.10, 3.8, 3.9 and 2.2, we obtain
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I1 ≤
Cl
Rd−1

�

B(x,R/2)

V (z) dz
|x− z|d−1

≤ Cl
R2d−2

�

B(x,R/2)

V (z) dz ≤ Cl
ρ(y)δRd−δ

.

Similarly,

I2 ≤
Cl

ρ(y)δRd−δ
.

Note that |x−z| ∼ |y−z| when |x−z| ≥ R/2 and |y−z| ≥ R/2. This yields

I3 ≤ Cl
�

|y−z|≥R/2

V (z) dz
(1 + |y − z| ρ(y)−1)l|y − z|2d−2

≤ Cl
( �

ρ(y)>|y−z|≥R/2

V (z) dz
|y − z|2d−2

+ ρ(y)l
�

|y−z|≥ρ(y)

V (z) dz
|y − z|2d−2+l

)
.

By Hölder’s inequality, the RHq0
condition, and Lemma 3.9,

�

ρ(y)>|y−z|≥R/2

V (z) dz
|y − z|2d−2

≤ C
( �

B(y,ρ(y))

V (z)q0 dz
)1/q0

( ρ(y)�

R/2

t−(2d−2)q′
0
+d−1 dt

)1/q′
0

≤ Cρ(y)d/q0−2R−(2d−2)+d/q′
0 =

C

ρ(y)δRd−δ
,

where d− (2d− 2)q′0 < 0 is valid for d ≥ 3. Using Lemma 3.10 and taking l
sufficiently large, we obtain

ρ(y)l
�

|y−z|≥ρ(y)

V (z) dz
|y − z|2d−2+l

≤ Cl ρ(y)l
∞∑
m=1

(2mρ(y))−2d+2−l
�

B(y,2mρ(y))

V (z) dz

≤ Cl
ρ(y)d

∞∑
m=1

2−(l−l0+d)m =
Cl
ρ(y)d

≤ Cl
ρ(y)δRd−δ

,

where we have used R ≤ ρ(y) and d > δ in the last inequality. Thus we
obtain

|RLj,k(x, y)−Rj,k(x, y)| =
∣∣∣∣ ∂∂xj ∂

∂yk
ΓL(x, y)− ∂

∂xj

∂

∂yk
Γ (x, y)

∣∣∣∣
≤ C

ρ(y)δ|x− y|d−δ

and Lemma 3.7 follows.
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