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Operators with hypercyclic Cesàro means

by

Fernando León-Saavedra (Cádiz)

Abstract. An operator T on a Banach space B is said to be hypercyclic if there exists
a vector x such that the orbit {Tnx}n≥1 is dense in B. Hypercyclicity is a strong kind of
cyclicity which requires that the linear span of the orbit is dense in B. If the arithmetic
means of the orbit of x are dense in B then the operator T is said to be Cesàro-hypercyclic.
Apparently Cesàro-hypercyclicity is a strong version of hypercyclicity. We prove that an
operator is Cesàro-hypercyclic if and only if there exists a vector x ∈ B such that the orbit
{n−1Tnx}n≥1 is dense in B. This allows us to characterize the unilateral and bilateral
weighted shifts whose arithmetic means are hypercyclic. As a consequence we show that
there are hypercyclic operators which are not Cesàro-hypercyclic, and more surprisingly,
there are non-hypercyclic operators for which the Cesàro means of some orbit are dense.
However, we show that both classes, the class of hypercyclic operators and the class of
Cesàro-hypercyclic operators, have the same norm-closure spectral characterization.

1. Introduction. Let T be a bounded linear operator on a complex
Banach space B. The motivation for this work comes from some questions
related to ergodic theory (see [Du], [LZ], [MZ], [Sw] for instance). The uni-
form ergodic theory deals with the asymptotic behavior of the arithmetic
means

Mn(T ) =
I + T + . . .+ Tn−1

n

in the operator norm (uniform) topology, as n tends to infinity. N. Dunford
in 1943 (see [Du]) discussed the connections between the spectrum of T and
convergence of sequences of functions Qn(T ) of T . Specifically, he obtained
the following basic result in uniform ergodic theory:

Theorem (Dunford). The sequence Mn(T ) uniformly converges if and
only if

(a) limn−1‖Tn‖ = 0, and

2000 Mathematics Subject Classification: 47B37, 47B38, 47B99.
Key words and phrases: hypercyclic operator, hypercyclic sequences, Cesàro means,
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(b) the point 1 is at most a simple pole of the resolvent Rλ(T ) =
(T − λI)−1.

Many interesting and equivalent geometric conditions for the convergence
of Mn(T ) are also obtained in [MZ] and [LZ].

In the present work we consider the natural question (posed by J. Zemá-
nek to the author) of connections between T and the “maximal divergence”
of Mn(T ). The maximal divergence is understood to be the existence of a
vector x in B such that the orbit {Mn(T )x}n≥1 is dense in B. Let us call such
operators Cesàro-hypercyclic and the vector for which the last condition is
satisfied, a Cesàro-hypercyclic vector.

An operator T is hypercyclic if there exists a vector x such that the
orbit {Tnx} is dense in B. In this case the vector x is called hypercyclic for
T . If there exists a vector x for which the set {λT nx : n ∈ N, λ ∈ C} is
dense, then the operator T and the vector x are called supercyclic. If there
exists a sequence {λn} for which the set {λnTnx} is dense we will say that
T is supercyclic for the sequence {λn}. Finally we can extend the notion to
sequences of linear operators; the sequence {Tn} is hypercyclic if there exists
x such that {Tnx} is dense.

Our first result states that an operator T is Cesàro-hypercyclic if and
only if there exists a vector x such that {n−1Tnx} is dense, that is, T
is supercyclic for the sequence {1/n}. This result is similar to Dunford’s
Theorem in the hypercyclic setting. Observe that it implies that Cesàro
hypercyclicity is a special kind of supercyclicity.

Since the Cesàro means are more regular, in general one may think that
Cesàro hypercyclicity is a stronger condition than hypercyclicity. In Sec-
tion 3 we characterize the unilateral and bilateral weighted shifts which are
Cesàro-hypercyclic. As a consequence we show that for the case of unilat-
eral shift, Cesàro hypercyclicity is indeed a stronger condition than hyper-
cyclicity. Surprisingly, for the bilateral weighted shift case, there are still
examples that have no vectors with dense orbit but do have dense Cesàro
orbit.

Thus hypercyclicity does not imply Cesàro hypercyclicity and vice versa.
In this connection, in Section 4 we show that any separable Banach space
admits a Cesàro-hypercyclic operator, thus obtaining the Cesàro version of
Ansari–Bernal’s result (see [An], [Be]) for hypercyclicity. Finally, although
both classes are quite different we show (see Section 5) that their norm
closures have the same spectral characterization.

Before going further the author would like to thank the staff of the Insti-
tute of Mathematics of the Polish Academy of Sciences, specially Professor
J. Zemánek, for their hospitality during the author’s stay in Warsaw in
February 1998.
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2. Hypercyclic arithmetic means. This section is devoted to prov-
ing an analogue to Dunford’s result. That is, an operator T on a Banach
space is Cesàro-hypercyclic if and only if the sequence T n/n is hypercyclic.
Hence, Cesàro hypercyclicity is a special kind of supercyclicity. To prove
this result we need to show some properties relating to the spectrum of
Cesàro-hypercyclic operators.

Given a complex number λ, let Mn(λ) denote the arithmetic mean of
the powers of λ, that is,

Mn(λ) =
1 + λ+ λ2 + . . .+ λn−1

n
, n = 1, 2, . . .

Observe that if |λ| > 1 then Mn(λ) diverges to ∞. On the other hand if
|λ| ≤ 1 then Mn(λ) is contained in the closed unit disk for any positive
integer n. Therefore we can state the following result.

Lemma 2.1. Let λ, z0 be complex numbers. Then the set {Mn(λ)z0}n≥1

of complex numbers is not dense in C.

Denote by σp(T ) the point spectrum of an operator T . It is well known
that the range ran(T − λ) is dense if and only if λ /∈ σp(T ?).

Proposition 2.2. If T is Cesàro-hypercyclic then σp(T ?) = ∅, that is,
ran(T − λ) is dense for any λ ∈ C.

Proof. Suppose that λ ∈ σp(T ?). Then there exists x? ∈ B? \ {0} such
that T ?x? = λx?. Now if x is a Cesàro-hypercyclic vector for T , then the
sequence {Mn(T )x}n≥0 is dense in B. Therefore the collection of complex
numbers 〈Mn(T )x, x?〉 will be dense in C. But for each n we have

〈Mn(T )x, x?〉 = 〈x,Mn(T ?)x?〉 = 〈x,Mn(λ)x?〉 = Mn(λ)〈x, x?〉
and by Lemma 2.1 it is clear that the set of complex numbers defined by
the right side of this equation, as n ranges through the positive integers, is
not dense in the complex plane, which concludes the proof.

Now let us regard x as a hypercyclic vector for the sequence {n−1Tn}
or the sequence {n−1(I − Tn)}, and observe that

(2.1)
∥∥∥∥
Tnx

n
− (I − Tn)x

n

∥∥∥∥ = n−1‖x‖

converges to zero as n→∞. So (2.1) establishes the following:

Proposition 2.3. Let T be a bounded linear operator and x ∈ B. Then
the following conditions are equivalent :

(a) The sequence {n−1Tnx} is dense.
(b) The sequence {n−1(I − Tn)x} is dense.
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The following theorem characterizes the chaotic behaviour of {Mn(T )x}
in terms of a special kind of supercyclicity of T , in a useful form.

Theorem 2.4. Let T be a bounded linear operator on a Banach space B.
The following conditions are equivalent :

(a) The sequence of arithmetic means Mn(T ) is hypercyclic.
(b) The sequence {n−1Tn} is hypercyclic.

Proof. The main idea of the proof is based on the equality

(2.2) (T − I)
I + T + . . .+ Tn−1

n
=
I − Tn
n

.

Assume that T is Cesàro-hypercyclic. Then there exists a vector x ∈ B such
that {Mn(T )x} is dense in B. Since T is Cesàro-hypercyclic, by Proposi-
tion 2.2, ran(T −I) is dense and therefore the image of a dense subset under
T − I is dense. Hence, the orbit

(T − I)({Mn(T )x}) =
{
I − Tn
n

(x)
}

is dense in B. Finally since {n−1(I−Tn)} is hypercyclic, from Proposition 2.3
we deduce that the sequence {n−1Tn} is hypercyclic.

For the converse assume that the sequence {n−1Tn} is hypercyclic. Then
Proposition 2.3 along with expression (2.2) ensures the existence of a vector
x in B such that the orbit

{(T − I)Mn(T )(x)} = {Mn(T )((T − I)x)}
is dense in B. That is, the vector (T − I)x is Cesàro-hypercyclic for T .

Remark 2.5. From the proof of Theorem 2.4 it follows that any Cesàro-
hypercyclic vector for T is also supercyclic for the sequence {n−1}.

3. Unilateral and bilateral weighted shifts. This section deals with
the relationship between the set of hypercyclic operators and the set of
Cesàro-hypercyclic operators. In view of the properties of convergence (uni-
formization) that the Cesàro means usually enjoy, one may think that the
condition of Cesàro hypercyclicity is stronger than hypercyclicity. In this sec-
tion we will apply Theorem 2.4 to unilateral and bilateral weighted shifts.
We show that any Cesàro-hypercyclic unilateral weighted shift is hyper-
cyclic, while for the bilateral weighted shifts this is not the case: there are
operators that are not hypercyclic but their Cesàro means are hypercyclic.

Let {en}n≥0 be the canonical basis of `2(Z+). If {wn}n≥1 is a bounded
sequence in C \ {0}, then the unilateral backward weighted shift T : `2 → `2

is defined by
Ten = wnen−1, n ≥ 1, T e0 = 0.
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Since the properties of hypercyclicity and Cesàro hypercyclicity are invariant
under similarity, we can suppose that the weights are positive (see [Sh,
Prop. 1]). Analogously `2(Z) denotes the Hilbert space of bilateral sequences
which are 2-summable, and let {en}n∈Z be the canonical basis of `2(Z). If
{wn}n∈Z is a bounded sequence in C \ {0} the bilateral weighted shift is
defined by

Ten = wnen−1.

As in the case of the unilateral shift we can suppose that the weights are
positive.

The hypercyclicity of unilateral and bilateral shifts has been studied in
several works (see [Gr], [MS], [Ro], [Sa1–3]). The basic tool to check if an
operator is hypercyclic is the Hypercyclicity Criterion. This criterion is a
sufficient condition for hypercyclicity that was discovered by Carol Kitai in
her 1982 unpublished thesis (see [Ki]). It was rediscovered later by Gethner
and Shapiro (see [GeS]).

Hypercyclicity Criterion. Let {Tn} be a sequence of bounded op-
erators on a separable Banach space B. Suppose that there exists a strictly
increasing sequence {nk} of positive integers for which there are

(a) a dense subset X ⊂ B such that ‖Tnkx‖ → 0 for every x ∈ X;
(b) a dense subset Y ⊂ B and a sequence of mappings Sk : Y → Y such

that TnkSk = identity on Y , and ‖Sky‖ → 0 for every y ∈ Y .

Then the sequence {Tnk} is hypercyclic, that is, there exists a vector
x ∈ B such that {Tnkx} is dense in B.

Observe that if a sequence {Tn} of operators satisfies the criterion for a
sequence {nk} then it satisfies it for any subsequence {rk} ⊂ {nk}. Hence if
a sequence {Tn} satisfies the criterion for {nk} then {Trk} is hypercyclic for
any subsequence {rk} ⊂ {nk}; when this phenomenon happens the sequence
{Tn} is said to be hereditarily hypercyclic. The Hypercyclicity Criterion and
hereditary hypercyclicity are equivalent for the sequence of iterates Tn = Tn

of a single operator (see [Bès]).
From [Sa2, Theorem 2.8] it is not difficult to deduce that a unilateral

weighted backward shift is hypercyclic if and only if there is an increasing
sequence {nk} of positive integers such that

(3.1) lim
k→∞

nk∏

i=1

wi+q =∞

for each non-negative integer q. Moreover in [LM2] it is shown that any
hypercyclic unilateral shift T satisfies the Hypercyclicity Criterion (that is,
the sequence Tn = Tn satisfies it).
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Proposition 3.1. Let T be a unilateral weighted backward shift with
weight sequence {wn}n≥1. Then T has hypercyclic Cesàro means if and only
if there exists an increasing sequence {nk} of positive integers such that

lim
k→∞

∏nk
i=1 wi+q
nk

=∞

for each non-negative integer q.

Proof. Assume that T is Cesàro-hypercyclic. Let q be a non-negative
integer and z =

∑q
j=0 ej . Given ε > 0, since T is Cesàro-hypercyclic, there

exist a vector x =
∑∞
j=1 xjej and n large enough (n > 2q) such that

(3.2) ‖x− z‖ < ε

and

(3.3)
∥∥∥∥
Tn

n
x− z

∥∥∥∥ < ε.

Condition (3.2) follows from the fact that the set of hypercyclic vectors for
a hypercyclic sequence is a dense Gδ set (see [GoS, Theorem 1.2]). From
(3.2) we see that |xj | < ε for j > q and |xj − 1| < ε for 0 ≤ j ≤ q.

From (3.3), it follows that
∣∣∣∣
∏n
i=1 wi+s
n

xs+n − 1
∣∣∣∣ < ε

for 0 ≤ s ≤ q. Therefore, if we take into account that |xs+n| < ε (n > 2q),
it follows that ∣∣∣∣

∏n
i=1 wi+s
n

∣∣∣∣ >
1− ε
ε

for 0 ≤ s ≤ q, and this proves the necessity.
Conversely, suppose that there exists an increasing sequence {nk} of pos-

itive integers such that limk→∞ n−1
k

∏nk
i=1 wi+q = ∞ for each non-negative

integer q. It is sufficient to show that the sequence Tk = Tnk/nk satisfies the
Hypercyclicity Criterion. Indeed, take X = Y = linear span{en}n≥0. Since
Tnek = 0 for n large, we have Tk → 0 pointwise on X. Define the sequence
of linear mappings Sk as

Skeq = nk

( nk∏

i=1

wi+q

)−1
eq+nk .

Observe that TkSk is the identity on Y and since nk(
∏nk
i=1 wi)

−1 → 0 for each
q, we have Sk → 0 pointwise on Y . Hence n−1Tn satisfies the Hypercyclicity
Criterion and therefore T is Cesàro-hypercyclic, which yields the desired
result.
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Remark 3.2. The proof above actually gives more, namely, every uni-
lateral weighted backward shift with hypercyclic Cesàro means is hereditar-
ily Cesàro-hypercyclic, that is, there exists an increasing sequence {nk} of
positive integers such that for any subsequence {rk} ⊂ {nk}, the sequence
Mrk(T ) is hypercyclic.

Proposition 3.1 together with the result of Salas (see condition (3.1) in
this section) yield the following corollary.

Corollary 3.3. Every Cesàro-hypercyclic unilateral weighted shift is
hypercyclic.

From [Sa2, Theorem 2.1] we know that a bilateral weighted backward
shift is hypercyclic if and only if there exists a sequence {nk} of positive
integers such that for any integer q,

(3.4) lim
k→∞

nk∏

i=1

wq+i =∞ and lim
k→∞

nk−1∏

i=0

wq−i = 0.

In order to characterize when a bilateral backward shift is Cesàro-hypercyclic
we follow the techniques used in [Sa1,2] and [MS]. The details are left to the
reader.

Proposition 3.4. Let T be a bilateral weighted shift with weight se-
quence {wn}n∈Z. Then T is Cesàro-hypercyclic if and only if there exists an
increasing sequence {nk} of positive integers such that for any integer q,

lim
k→∞

∏nk
i=1 wi+q
nk

=∞ and lim
k→∞

∏nk−1
i=0 wq−i
nk

= 0.

Remark 3.5. As in Remark 3.2, Proposition 3.4 can be strengthened
as follows: every Cesàro-hypercyclic bilateral weighted shift is hereditarily
Cesàro-hypercyclic.

Example 3.6. The bilateral backward shift T defined by the weight se-
quence

wn =
{

1 if n ≤ 0,
2 if n ≥ 1,

is not hypercyclic, but it is Cesàro-hypercyclic.

Proof. Observe that
∏n−1
i=0 wq−i is constant, therefore by Salas’ theorem

(see condition (3.4) in this section) T is not hypercyclic. On the other hand
observe that

∏n−1
i=0 wq−i
n

=
C

n
and

∏n
i=1 wq+i
n

=
{

2n/n if q > 0,
2n+q/n if q ≤ 0.

Therefore by Proposition 3.4 the operator T is Cesàro-hypercyclic.
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4. Existence of Cesàro-hypercyclic operators on separable Ba-
nach spaces. In [An] and [Be], S. Ansari and L. Bernal, solving inde-
pendently a question posed by Rolewicz (see [Ro]), showed that for any
separable Banach space B there exists a hypercyclic operator T on B. In
the present section we will show that any separable Banach space admits a
Cesàro-hypercyclic operator.

The crucial fact in this section is to show the following result:

Theorem 4.1. Let T be a unilateral weighted backward shift defined on
`2(Z+), with a positive weight sequence {wn}n≥1, and let r be a positive
integer. Then the operator sequence

(I + T )n

nr

satisfies the Hypercyclicity Criterion.

Theorem 4.1 contains Theorem 3.3 of [Sa2] and Proposition 4.3 of [LM1].
The proof of Theorem 4.1 is easier than that of Proposition 4.3 of [LM1]
thanks to the following version of the Hypercyclicity Criterion which appears
in [GoS] and [Le, Theorem 2].

Theorem A. Let {Tn} be a sequence of commuting bounded operators.
The sequence {Tn} satisfies the Hypercyclicity Criterion if and only if for
any two non-void open sets U , V and any open neighborhood W of the origin,
there exists a positive integer n such that

Tn(U) ∩W 6= ∅ and Tn(W) ∩ V 6= ∅.
The proof of Theorem 4.1 uses techniques of [Sa2] to prove that I+T

is hypercyclic whenever T is a weighted backward shift with positive weights.
We will also need a lemma whose proof is a suitable modification of Lemma
3.2 in [Sa2].

Lemma B. Fix a positive integer r. Let Cn = (ci,j(n)) be the 2k × 2k

matrix with

ci,j(n) =
1
nr

(
n

2k + j − i

)
.

Let Bn = (bi(n)) be a column vector such that bi(n) is a rational function
in n of degree at most 2k − i − r, where i = 1, . . . , 2k. Then for n large
enough we have detCn 6= 0 and there exists a solution Xn = (xi(n)) of the
equation Bn = CnXn and the entries xi(n) satisfy |xi(n)| ≤ P/ni, where P
is a constant.

Now we have all the ingredients to establish the proof of Theorem 4.1.

Proof of Theorem 4.1. In accordance with Theorem A, let U ,V be two
non-void open sets and W an open neighborhood of the origin. We can
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suppose that there exists a dense set in `2(Z+) having the form D = {zj =
∑2j−1
i=0 zi,jei : j ∈ Z+}.
Since D is dense and U is open, we can choose zk ∈ U ∩ D for some

positive integer k, that is, zk =
∑2k−1
i=0 zi,kei. We add to the vector zk a

suitable vector x =
∑2k

i=1 xie2k+i−1 to be determined afterwards, with the
same length as zk, and we try to solve the following system:

(4.1)
〈

(I + T )n

nr

( 2k−1∑

j=0

zj,kej +
2k∑

i=1

xie2k+i−1

)
, ep

〉
= 0

with p = 0, . . . , 2k − 1. Recall that

Tmes =
{∏s

l=s−m+1wles−m if m ≤ s,
0 otherwise,

and observe that the matrix of the system (4.1) is the 2k × 2k matrix D =
(di,j) with entries

di,j =
1
nr

(
n

2k + j − i

) 2k+j−1∏

s=i

ws.

Then

detD =
( 2k−1∏

j=−2k+1

(w2k+j)
2k−|j|

)
detC

where C = ci,j and ci,j = n−r
(

n
2k+j−i

)
. By applying Lemma B, it follows

that if n is large enough, the system (4.1) is solvable, and the solution
satisfies |xi| ≤ P/ni for some constant P . Since

(I + T )n

nr

( 2k−1∑

j=0

zj,kej +
2k∑

i=1

xie2k+i−1

)
=

1
nr

2k∑

p=1

( p−1∑

j=0

(
n

j

)
T j
)
xpe2k+p−1,

it follows that
∥∥∥∥

(I + T )n

nr

( 2k−1∑

j=0

zj,kej +
2k∑

i=1

xie2k+i−1

)∥∥∥∥ ≤
1
nr

2k∑

p=1

( p−1∑

j=0

(
n

j

)
‖T‖j

)
‖xp‖

≤ L

n1+r

where L is another constant. That is, there exists a positive integer n0 such
that if n ≥ n0 then there exists a vector x(n) (with small norm) such that

(4.2) zk + x(n) ∈ U and
(I + T )n

nr
(zk + x(n)) ∈ W,



210 F. León-Saavedra

that is,
(I + T )n

nr
(U) ∩W 6= ∅ if n ≥ n0.

On the other hand let zk =
∑2k−1
j=0 zj,kej be a vector in W ∩ D and let

yl =
∑2l−1
j=0 yj,lej be a vector in V ∩ D. We can suppose without loss of

generality that k ≥ l. Again we add to zk one vector with the same “length”
as zk and we consider the linear system of equations

(4.3)
〈

(I + T )n

nr

( 2k−1∑

j=0

zj,kej +
2k∑

i=1

xie2k+i−1

)
− yl, ep

〉
= 0

with p = 0, . . . , 2k − 1. Observe that the coefficient matrix of the system
(4.3) is the 2k × 2k matrix D = (di,j) with entries

di,j =
1
nr

(
n

2k + j − i

) 2k+j−1∏

s=i

ws,

and the free term of (4.3) is Bn = (bi(n)), where bi(n) is a rational function
in n of degree at most 2k − i − r. Therefore applying again Lemma B it
follows that if n is large enough, the system (4.3) has a solution, and this
solution satisfies |xi| ≤ P/ni for some constant P . Since

(I + T )n

nr

( 2k−1∑

j=0

zj,kej+
2k∑

i=1

xie2k+i−1

)
−yl=

1
nr

2k∑

p=1

( p−1∑

j=0

(
n

j

)
T j
)
xpe2k+p−1,

it follows that
∥∥∥∥

(I + T )n

nr

( 2k−1∑

j=0

zj,kej +
2k∑

i=1

xie2k+i−1

)
− yl

∥∥∥∥

≤ 1
nr

2k∑

p=1

( p−1∑

j=0

(
n

j

)
‖T‖j

)
‖xp‖ ≤

L

n1+r

where L is a new constant. Hence, if n is large enough there exists a vector
x(n) (with small norm) such that

zk + x(n) ∈ W and
(I + T )n

nr
(zk + x(n)) ∈ V.

Therefore by (4.2) if n is large enough, we have

(I + T )n

nr
(U) ∩W 6= ∅ and

(I + T )n

nr
(W) ∩ V 6= ∅.

As a consequence of the latter, by Theorem A, (I + T )n/nr satisfies the
Hypercyclicity Criterion, and the proof is complete.
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Remark 4.2. (a) The proof of Theorem 4.1 can be adapted for `p(Z+)
with 1 ≤ p <∞.

(b) Observe that Theorem 4.1 implies in particular that the operator I+
T , where T is any unilateral weighted backward shift, is Cesàro-hypercyclic.

Let B be a separable complex Banach space and let {xn}, {x?n} be two se-
quences in B and B? respectively. Recall that {xn, x?n} is a bounded biorthog-
onal system if both sequences are bounded, x?n(xm) = δn,m and the linear
span of {xn} is dense in B. As application of the Hahn–Banach theorem
one can show that any separable Banach space admits a bounded biorthog-
onal system (see [LT, Theorem 1.4.f]). Therefore in B we can consider the
subspace

X1 =
{ ∞∑

n=0

anxn : an ∈ C,
∞∑

n=0

|an| <∞
}
,

which is a Banach space endowed with the norm
∥∥∥
∞∑

n=0

anxn

∥∥∥
1

=
∞∑

n=0

|an|.

In fact X1 is isomorphic to `1(Z+) by the isomorphism J : `1 → X1 defined
by Jen = xn, where {en} is the standard unit vector basis of `1(Z+). Let
Tn : `1 → `1 be a sequence of bounded linear operators. A sequence of
operators T̂n : B → B is said to be a quasi-extension of {Tn} if T̂n|X1 =
JTnJ

−1.
Finally we need to show that dense subsets in X1 are dense in B. For

this, it is sufficient to show that the identity map (X1, ‖ · ‖1) → (B, ‖ · ‖)
is continuous. But this follows easily because of the boundedness of the
sequence {xn}:

∥∥∥
∞∑

n=0

anxn

∥∥∥ ≤
∞∑

n=0

|an| · ‖xn‖ ≤M
∞∑

n=0

|an| = M‖x‖1.

Theorem 4.3. Every separable Banach space admits a Cesàro-hypercyc-
lic operator.

Proof. Let {tn} be any sequence of positive numbers with
∑∞
n=1 tn < 1,

and let T̂ (x) =
∑∞
n=0 tn+1x

?
n+1(x)xn. Since the sequence {x?n} is bounded,

the operator T̂ is bounded. Now we consider the operator Î+T̂ on B. Observe
that it is a quasi-extension of the operator I + T , where T is the weighted
backward shift defined in `1 by Te0 = 0 and Ten = tnen−1.

By Theorem 4.1 and Remark 4.2(a), I + T is Cesàro-hypercyclic on `1.
On the other hand let J : `1 → X1 be the natural isomorphism. Since
(Î + T̂ )|X1 = J(I +T )J−1 it follows that if x is a Cesàro-hypercyclic vector
for I + T , then Jx is a Cesàro-hypercyclic vector for (Î + T̂ )|X1. But if the



212 F. León-Saavedra

orbit
{(

I+T̂
n

)n
(x)
}

is dense in X1 for some x, then it is also dense in B.
Therefore I + T̂ is a Cesàro-hypercyclic operator on B.

5. The norm closure of the class of Cesàro-hypercyclic opera-
tors. In this section we provide a spectral description of the closure of the
class of all Cesàro-hypercyclic operators on Hilbert spaces.

Let H be a separable Hilbert space and denote by HC(H) the class of
all hypercyclic operators and by CH(H) the class of all Cesàro-hypercyclic
operators. We already know that the two classes are different. However, we
will show that their closures in the operator norm topology coincide. In
[He1] Herrero provides a spectral description of the norm closure, HC(H),
of the class HC(H). The class of all Cesàro-hypercyclic operators CH(H)
is invariant under similarity, and therefore it can be analyzed with the ap-
proximation machinery developed in [He1, 3]. By means of Theorem 2.4,
we will show that the techniques used in [He2] can be applied to obtain an
analogous result for the class CH(H).

The spectrum of an operator T is the set σ(T ) = {λ ∈ C : T − λI is
not invertible}. If K(H) denotes the ideal of all compact operators acting on
H, then the Calkin algebra is the quotient space L(H)/K(H). If T ∈ L(H),
the canonical projection of T onto L(H)/K(H) will be denoted by T̃ . The
essential spectrum of T is σe(T ) = σ(T̃ ). Let T ? denote the adjoint of T .
Recall that T ∈ L(H) is called semi-Fredholm if ranT is closed and the index
Ind(T ) = dim(Ker(T ))−dim(Ker(T ?)) is finite. The set %s-F(T ) denotes the
semi-Fredholm domain of T , that is, the set of all complex numbers λ such
that T−λ is semi-Fredholm. Finally, we denote by σW(T ) the Weyl spectrum
of T (that is, of complex numbers λ such that T −λ is not a semi-Fredholm
operator of index 0) and by σ0(T ) the set of all normal eigenvalues of T
(that is, of isolated points of σ(T ) which are not in σe(T )). The spectral
description of CH(H) is the following:

Theorem 5.1. The class CH(H) consists of those operators T ∈ L(H)
satisfying the conditions:

(1) σW(T ) ∪ ∂D is connected ;
(2) σ0(T ) = ∅; and
(3) Ind(T − λ) ≥ 0 for all λ ∈ %s-F(T ).

An essential step in the proof of Theorem 5.1 is the following result.

Proposition 5.2. Assume that T is a Cesàro-hypercyclic operator. Then

(i) σp(T ?) = ∅;
(ii) Ind(T − λ) ≥ 0 for all λ ∈ %s-F(T );
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(iii) σW(T ) = σ(T ); and
(iv) σ(T ) ∪ ∂D is a connected set.

Proposition 5.2 states that CH(H) ⊂ {T ∈ L(H) : T satisfies (1)–(3)}.
On the other hand using the continuity properties of the Riesz–Dunford
functional calculus and the stability properties of the semi-Fredholm oper-
ators (see [He1, Chapter 1], [Ka, Chapter 4]), we deduce that the class of
operators satisfying (1)–(3) of Theorem 5.1 is a closed set in the operator
norm topology. Therefore Proposition 5.2 shows that

(5.1) CH(H) ⊂ {T ∈ L(H) : T satisfies (1)–(3)}.
Proof of Proposition 5.2. Observe that (i) was proved in Proposition 2.2.

On the other hand using the basic properties of semi-Fredholm operators
(the reader is referred to the classical book of Kato [Ka, Chapter IV]) we
see that (ii) and (iii) are consequences of (i).

As in [Ki], note that if an operator T is Cesàro-hypercyclic and it is the
direct sum of two operators T1 ⊕ T2 = T acting on H1 ⊕ H2, then each
compression Ti is Cesàro-hypercyclic on Hi, i = 1, 2. If σ(T ) includes a
connected component σ that is contained in D and if H1 and H2 are the
Riesz spectral invariant subspaces of T associated with σ and σ(T ) \σ with
σ(T |H1) = σ and σ(T |H2) = σ(T )\σ, it follows easily that ‖(T |H1)nx‖ → 0
as n → ∞, in particular ‖n−1(T |H1)nx‖ → 0 for each x ∈ H1. And this
contradicts the Cesàro hypercyclicity of T |H1.

Now let us prove that σ(T ) cannot include a closed subset σ ⊂ C \ D.
Since a sequence {Tn} of invertible operators is hypercyclic if and only if the
sequence {T−1

n } of the corresponding inverses is also hypercyclic (see [GoS,
p. 234]), for every operator T that is Cesàro-hypercyclic and invertible, the
sequence {nT−n} is hypercyclic. Suppose that σ(T ) includes a closed subset
σ ⊂ C \ D. Let T1 be the operator associated to σ in the Riesz spectral
decomposition theorem and H1 be the invariant subspace corresponding to
T1. Observe that T1 is invertible and σ(T−1

1 ) ⊂ D so ‖T−n1 x‖ → 0 exponen-
tially as n→∞, for each x ∈ H1. Therefore ‖nT−n1 x‖ → 0 for each x ∈ H1,
which contradicts the fact that T1 is Cesàro-hypercyclic on H1.

In order to prove the reverse inclusion in (5.1), it is necessary to con-
struct some models. That is, given an operator T satisfying (1)–(3), we must
construct a Cesàro-hypercyclic Tε such that ‖T − Tε‖ < ε. Herrero showed
that given an operator satisfying (1)–(3), there exists a hypercyclic operator
Tε such that ‖T − Tε‖ < ε. Following the proof of D. A. Herrero (see [He2,
Proposition 2.4 and Theorem 2.1]) and taking into account Theorem 2.4 one
can show that the model constructed therein is also a Cesàro-hypercyclic op-
erator. Hence, this proves the reverse inclusion in (5.1) and thus the proof
of Theorem 5.1 is finished.
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6. Final remarks

1. Infinite-dimensional subspaces of Cesàro-hypercyclic vectors. In [LM2]
it is shown that the existence of an infinite-dimensional subspace of hyper-
cyclic vectors for an operator T basically depends on the essential spectrum
of T . For the Cesàro-hypercyclic case an analogous result can be obtained
with some rearrangements in the proofs.

Theorem. Let T a bounded operator on a separable Banach space B.

(a) If Mn(T ) satisfies the Hypercyclicity Criterion and the essential spec-
trum of T intersects the closed unit disk , then T has an infinite-dimensional
closed subspace whose non-zero elements are Cesàro-hypercyclic for T .

(b) If the essential spectrum of T does not intersect the closed unit disk
then all closed subspaces of Cesàro-hypercyclic vectors for T have a finite
dimension.

2. In an analogous way we can define the notion of Cesàro supercyclicity.
An operator T on a separable Banach space B is Cesàro-supercyclic if there
exists a vector x such that the set {λMn(T )x : n ∈ N, λ ∈ C} is dense in B.
Using the techniques of Section 2 and some ideas which appear in [MS] one
can prove that Cesàro supercyclicity is equivalent to supercyclicity.

3. Finally, as we can see in Dunford’s theorem, condition (b) is not used
along the work. It would be interesting to know the role that condition (b)
plays in the hypercyclic setting.
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